This is the published version of a paper presented at The 23rd EurOMA Conference, Trondheim, Norway, June 2016.

Citation for the original published paper:

Johnsson, M. (2016)
The importance of innovation enabler for innovation teams.
In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15071
The importance of innovation enablers for innovation teams

Mikael Johnsson (mikael.johnsson@bth.se, mikael.j.johnsson@gmail.com)
Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

Abstract
This research aims to study the importance of innovation enablers (Enablers), i.e. factors that enable innovation work, for innovation teams in on-going innovation work and to identify which Enablers that are most important. Prior research states that Enablers are important for innovation work, but there’s still knowledge to gain regarding their relative importance. Data from three innovation teams, supported by an external facilitator, were used within this study. The long-term qualitative study demonstrates that the Enablers’ importance varies, but Collaboration, Dedication and Mind-set were the most important Enablers in general to overcome innovation project related problems. Further research is suggested.

Keywords: Innovation enabler, Innovation team, Innovation management

Purpose
This research aims to study the importance of innovation enablers, i.e. factors that enable teams with the deliberately purpose to conduct innovation work, in on-going innovation projects conducted by X-functional innovation teams (innovation teams). The reasons for studying innovation teams are that there’s a need of increased speed when innovating (Menon et al, 2002; Barczak et al, 2009; Chen et al, 2010), and X-functional innovation teams are a suggested solution for agile innovation work (e.g. Hallgren, 2009; Johnsson, 2014; Kesting and Ulhøj, 2010; Nakata and Im, 2010). Therefore it’s of interest to gain more knowledge of factors that enable such work.

Prior research regarding innovation enablers has been conducted from different perspectives. Aiman-Smith et al (2005) studied enablers for an innovation culture within organizations, and developed an innovation potential assessment tool based on the eight areas they discovered from empirical and theoretical data, pilots and validation. West and Sacramento (2012) conducted a review on team climate and its’ affects on output from creativity and innovation work. Denning (2011) identified five transformations of management as enablers for innovation work. Knowledge as such is considered to be important to innovation teams, and the creation of knowledge in open innovation teams were studied by du Chantenier et al (2009) to increase the success rates of open innovation, and Kianto (2011) identified that social factors have a great impact on the innovation outcomes in knowledge worker teams.

Research of a more holistic character has identified that multiple enablers are
required for innovation work. West et al (2004) have developed a framework in how to stepwise develop innovation teams that focuses on team task, team composition, organizational context, and team processes. A study of factors that encourage innovation in hospitality firms was conducted by Lopez-Fernandez et al (2011), where four internal factors was identified; firm size; membership in a business group e.g. franchise, management contract, or membership association; willingness to change; and a sufficiently strong bureaucratic framework to manage and institutionalize any innovations. Johnsson (Forthcoming) conducted a review to identify innovation enablers that weren’t explicitly demonstrated in prior research but still being important for innovation teams’ innovation work. He identified 20 innovation enablers enclosing the organizational-, team-, and individual perspective, which were assessed to be important in a study on innovation teams in on-going innovation projects in an industrial context (Johnsson, 2016).

A few studies have focused on factors that enable innovation and also ranked them by importance. Gamatese and Hallowell (2011) studied enablers in construction projects by conducting questionnaires and interviews on project personnel. Identified important enablers for innovation were climate, structure, time to explore ideas, face-to-face communication, personal involvement of innovation champion, collaboration between team members and repository for lessons learned, but the research identified four factors that were seen as most important for enabling innovation on a project level; first, owner/client influence; second, presence of an innovation champion; third, presence of lessons learnedknowledge management system; fourth, upper management support for innovation; fifth, to which extend R&D was supported. Aagard and Gertsen (2011) conducted a research of key enablers for front-end innovation in the pharmaceutical industry. Six factors were identified as most important from interviews with a mixture of respondents from strategic management level to newly employed personnel with low experience; first, empowerment of employees to learn and explore; second, explorative team culture tolerant of failure; third, targeted knowledge sharing and collaboration with external partners; fourth, efficient cross functional knowledge sharing and collaboration; fifth, front-end innovation as a flexible learning process; sixth, an innovation strategy and goals guiding not dictating innovation.

Still, there’s little knowledge of the importance of innovation enablers by innovation teams in on-going innovation projects, for which increased knowledge would gain both managerial and operational practices when conducting innovation work and supporting innovation teams. Previous research has focused on identifying factors that support innovation in one way or the other, and there are sometimes suggestions regarding how to implement the identified factors, but they tend to be demonstrated as a snapshot, or a summary of factors that are important to innovation work in general. E.g. West et al (2004) and du Chantenier et al (2009) discuss innovation teams from two different perspectives, where West et al suggest how to create innovative teams and du Chantenier et al suggests solutions to overcome challenges in open innovation teams. Kianto (2011) have studied factors that facilitate innovation in work groups but the teams were not asked to answer questions regarding if they assessed these factors to be important to them, nor was the teams created to deliberately conduct innovation work. Johnsson’s (2016) study regarding important innovation enablers for innovation teams came to the conclusion that they were important but they weren’t ranked by importance. Gamatese and Hallowell (2011) and Aagard and Gertsen (2011) identified important factors that enable innovation and ranked these factors by importance. However, the respondents were not members of innovation teams, the projects were not on-going
innovation projects and the studies did not focus on their relative importance in different phases of the innovation projects.

It’s said that the most important asset for innovation work are the humans (Kayabasi et al., 2013; López-Fernández et al., 2011; Steele and Murray, 2004). However, except for Johnsson’s (2016), prior research hasn’t included the people that are conducting the practical innovation work, i.e. the members’ of the innovation teams. None of the identified research have demonstrated a picture that provide an understanding of innovation enablers in an on-going innovation project, therefore it’s easy to believe that prior research suggests that identified innovation enablers are equal important during an innovation project. For these reasons, increased knowledge regarding the importance of innovation enablers for innovation teams would contribute to prior research. In addition, practitioners, managers and becoming innovation team members would benefit from this research by better understanding the current and forthcoming need of innovation enablers in innovation projects.

The research question that emerged from the literature review is: Are any innovation enablers significant important for an innovation team in an on-going innovation project? If so, which are most important, and in what phase of the innovation process?

Design/methodology/approach

Data from three innovation teams (Teams) on-going innovation projects and their sponsor (Sponsor) in a large industrial company (Company) have been used within this longitude qualitative case study, where the innovation enablers (Enablers) suggested by Johnsson (Forthcoming) was used during the study, briefly demonstrated below;

 - **Awareness [1]**, i.e. ability to “see” invisible or unrevealed innovation related opportunities. This enabler is based on employees with capabilities to understand and detect new opportunities, including e.g. lateral- and metaphoric thinking, capturing- and interpreting dreams; **Capabilities [2]**, i.e. skills related to manage or work in an innovation project, including both technical and non-technical capabilities. This also includes personality traits as e.g. attraction to complexity, high energy, independence of judgment, intuition, self-confidence, ability to accommodate opposites, intelligence, knowledge, eagerness to learn, inquisitiveness, risk-taking and a strong desire to fulfil goals are also important; **Climate [3]**, i.e. OK to fail-, let’s try-, let’s do-mentality in work environment. A climate refers to the manner of working together for which the team has developed based on their shared perception of policies, practices and procedures. A climate is less stable than culture and can be seen as an expression of culture at a specific time; **Collaboration [4]**, i.e. collaboration between individuals to create X-functional teams, networks, departments, suppliers, customers and competitors to conduct innovation work together. However, collaboration is dependent on both diversity and convergence where all parties must want to collaborate to be successful; **Culture [5]**, i.e. norms and invisible rules within the organization, “this is how we do here”- mentality. Culture is hard to change as it is partly conscious and partly subconscious, where communication is one key to create a strong culture; **Dedication [6]**, i.e. factors that makes one feel dedicated, motivated or stimulated to work in innovation projects. Motivation is usually coming from extrinsic-, intrinsic- and relational factors. Practical ways of getting buy-in is to embrace the uncertainty which is embedded in innovation work; **Economy [7]**, i.e. budget or non-monetary resources that an organization invest in an innovation project; **Education [8]**, i.e. innovation related training in theory- and practice to maintain the knowledge and skills up to date in e.g.
communication, collaboration, sketching, problem solving and lateral thinking; Empowerment [9], i.e. trust to take own decisions regarding recourses to spend on tasks to do in the innovation project.; Entre-/intrapreneurship [10], i.e. doers that make things happen. Entrepreneurial and intrapreneurial behaviour has positive effects on innovation within a company and contribute to a sustaining innovation system. These people do not wait for opportunities to be found, they are made or recognized; Human resources [11]; i.e. access to colleagues that could contribute by sharing competence and contributing to reduce bottlenecks in the innovation project; Incentives [12], i.e. monetary and non-monetary rewards, which could be both intrinsic or extrinsic. Examples of intrinsic incentives are e.g. recognition from managers and extrinsic incentives are e.g. bonuses or prizes; Knowledge [13], i.e. knowledge regarding innovation and expertise in a specific innovation project, including tacit knowledge as ‘know-how’; Knowledge management [14], i.e. knowledge in how to use knowledge or how to fill knowledge gaps related to the innovation project; Management [15], i.e. project managers, leadership, management support related to the innovation project. On-going commitment from top management and middle management is seen as one main key for innovation as they are the link to economic-, structural-, social-, and cognitive activities; Mind-set [16], i.e. individuals’ self-confidence, want to contribute, want-to develop its company, having pro-innovation bias, will to participate is essential to the innovation work performance. Need [17], i.e. an explicit and clarified need to solve for the company’s customer. “The Why we should do this”; Processes [18], i.e. innovation process, models and best practice that guides from idea to a product (including new processes, services etcetera) on market. The cyclic innovation processes is the standard of today when it comes to innovation work. Depending on who is demonstrating it, it has several stages, where the beginning is more of an abstract work, and the latter part is dedicated to implementing and launching on the market; Strategy [19], i.e. directions in where to aim for regarding the innovation work, such as e.g. customer segment, areas, geographical markets, level of novelty on new products and technology to use or develop; Time [20], i.e. dedicated or allocated time to spend on the innovation project. Time will then be used for defining, framing and understanding the problem, reflection, to avoid information overload, and to implement the knowledge into new solutions.

The three Teams were systematically created in accordance with the CIT-process (Johnsson, Forthcoming), which is a five-step process to create high performing innovation teams on a X-functional basis, briefly described as follow; first, secure top managements’ and managements’ commitment; second, identify an innovation team convener (Convener), who’s first task will be to identify members to the innovation team; third, prepare the Convener with instructions regarding innovation management and instructions in how to gather team members on a X-functional basis; fourth, the Convener gathers the innovation team members and ensure that the team members’ managers’ approve participation in the innovation project; the last step is to arrange a kick-off and launch the innovation project. The chosen innovation process for the Projects within this research relates to the innovation process demonstrated by Tidd and Bessant (2013) and consists of four phases; first, searching for ideas; second, selecting idea to develop; third, implementing and launching developed product (services etc.) on the market; and fourth, capturing the value created along the process. The practical innovation work was conducted in accordance with the Raft-model, which is a practitioner-based approach of how to manage agile innovation work (Johnsson, 2009; Johnsson et al, 2010).
Team A consisted of 4 members, Team B consisted of 4 members and Team C consisted of 7 members. The Teams’ missions were to deliver innovative concepts that clearly demonstrated business opportunities and customer value. The approach of this research is action-based by means of that the researcher has influenced, advised and coached the Teams during the project, i.e. facilitated the Teams in their work and in the use of the innovation process. However, the researcher carefully separated the complexity of participation and science in accordance with Gummesson (2000).

The research was conducted in two steps; first, data from Teams A’s on-going innovation project and the Sponsor were collected. Interviews, questionnaires, and statement based questionnaires (Yin, 2013) were used to collect data at four occasions in the on-going innovation project. The data collection started at the kick-off and the ended one year later. At that time the innovation project was in the early steps of the third phase of the innovation process demonstrated by Tidd and Bessant (2013). In the questionnaires, the respondents ranked the relative importance of the Enablers (1-20) at that moment of the innovation project, where 1 indicated the most important and 20 the least important for the moment. The statement-based questionnaire was based on 45 statements in where the Enablers were put in a context. E.g. “I have enough time to do a good job in the innovation project”. “I would do a good job in the innovation project, even if the allocated time “on paper” would not be sufficient”. “I’m satisfied with my deliveries in the innovation project”. “The innovation team has got helpful innovation related advices from innovation management or affiliate persons”. The respondents were also asked how easy the questions/statements were to understand (1-7), where 1 indicated not easy at all- and 7 very easy to understand. Approximately one hour were spent at each occasion for data collection, where about 20-30 minutes were dedicated for structured and unstructured interviews. Team meetings were recorded and e-mail conversations were held between the Facilitator and the Convener between the meetings. The data from the questionnaires and the statement-based questionnaires were charted. When listening on the audio-recorded interviews and team meetings the focus was on the respondents’ explicit and inexplicit comments and explanations that could be related to the Enablers (Boyatzis 1998; Yin, 2013). Relevant sections from the audio-recorded interviews were transcribed, where quotes were taken to demonstrate similarities and divergences between respondents; in the second step the team meeting notes from the innovation projects conducted by Team B and C was analysed. Rich team meeting notes were taken by the Facilitator approximately once a week for Team B during the 6 month project, and once every second week for Team C during the 13 month long project. The notes include reflections from all members and the Facilitator in the beginning and in the end of the meeting, notes regarding the projects’ progress and advices for forthcoming work by the Facilitator. The notes from the three teams were analysed in the light of the Enablers; where the focus was to identify problems and their underlying reasons, and which Enabler(s) that were related to solve the identified problems.

Findings
The findings from this study are demonstrated below. First the findings regarding which Enablers’ that are most important in the different phases of the projects, followed by identified key Enablers that solved problems occurring during the innovation projects.

<table>
<thead>
<tr>
<th>Data</th>
<th>Phase in</th>
<th>The most important Enablers</th>
<th>The most important Enablers</th>
</tr>
</thead>
</table>

Table 1 – The table demonstrates the most important Enablers in different phases of the innovation process.
Table 2 – The table demonstrates problems identified from the notes from Team A, related Enablers, effect on the innovation project and key Enabler that solved the problem.

<table>
<thead>
<tr>
<th>Team A</th>
<th>Problem</th>
<th>Reason to problem</th>
<th>Phase in innovation process</th>
<th>Team’s reflection on situation</th>
<th>Team’s solution</th>
<th>Effect on project</th>
<th>Problem solved due to key Enabler in Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal resources won’t attend at crucial workshop.</td>
<td>Up-coming vacation</td>
<td>Search</td>
<td>Lack of commitment</td>
<td>External help.</td>
<td>Saving time and costs</td>
<td>[4, 10, 13, 14, 16]</td>
<td></td>
</tr>
<tr>
<td>Lack of team member’s participation</td>
<td>Work overload</td>
<td>Search</td>
<td>Bring member back.</td>
<td>Discuss problem as a team.</td>
<td>Committed Team</td>
<td>[13, 14]</td>
<td></td>
</tr>
<tr>
<td>Budget not confirmed by management.</td>
<td>Technical solution not set</td>
<td>Select</td>
<td>We’ll solve it.</td>
<td>Solve problems as they arise.</td>
<td>Self-confident Team</td>
<td>[10, 13, 14, 16]</td>
<td></td>
</tr>
<tr>
<td>Not supportive organization</td>
<td>New innovation process</td>
<td>Select</td>
<td>We’ll do it anyway</td>
<td>Keep on working</td>
<td>Saving time and costs</td>
<td>[16]</td>
<td></td>
</tr>
<tr>
<td>Lack of engineers for project tasks</td>
<td>Layoffs #1</td>
<td>Implement</td>
<td>Frustration</td>
<td>Team works extra hours</td>
<td>Slow, but progress</td>
<td>[10, 16]</td>
<td></td>
</tr>
<tr>
<td>Not looking for external help.</td>
<td>Loyal to colleagues in layoff #1</td>
<td>Implement</td>
<td>Frustration</td>
<td>Team works extra hours</td>
<td>Slow, but progress</td>
<td>[10, 16]</td>
<td></td>
</tr>
<tr>
<td>Not pushing for budget</td>
<td>Budget constrains, risk for project exit</td>
<td>Implement</td>
<td>Frustration</td>
<td>Team works extra hours</td>
<td>Survival in project portfolio</td>
<td>[10, 16]</td>
<td></td>
</tr>
<tr>
<td>Grief</td>
<td>Member’s death</td>
<td>Implement</td>
<td>Continue project?</td>
<td>Reconsidering team actions</td>
<td>Delayed project</td>
<td>[6, 16]</td>
<td></td>
</tr>
<tr>
<td>Not pushing for recourses.</td>
<td>Resource constrains due to layoffs #2, risk for</td>
<td>Implement</td>
<td>Frustration</td>
<td>Wait for resources</td>
<td>Survival in project portfolio. Delayed project</td>
<td>[10, 16]</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Reason to problem</td>
<td>Phase in innovation process</td>
<td>Team’s reflection on situation</td>
<td>Team’s solution</td>
<td>Effect on project</td>
<td>Problem solved due to key Enabler in Team</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lack of member’s participation</td>
<td>Work overload</td>
<td>Search</td>
<td>Discussing problem</td>
<td>Keep on working</td>
<td>Committed Team</td>
<td>[6]</td>
<td></td>
</tr>
<tr>
<td>Team wants to build physical things before needfinding.</td>
<td>Unfamiliar with innovation process</td>
<td>Search</td>
<td>Frustration</td>
<td>Follow process</td>
<td>Slow progress. Needed information collected</td>
<td>[6]</td>
<td></td>
</tr>
<tr>
<td>Solutions chosen too early.</td>
<td>One team member’s too biased</td>
<td>Select</td>
<td>Frustration</td>
<td>Discussing main problem</td>
<td>Work pace slow down</td>
<td>[6, 16]</td>
<td></td>
</tr>
<tr>
<td>Lack of competence in the team</td>
<td>Selected solution requires new expertise</td>
<td>Select</td>
<td>Enthusiasm</td>
<td>Search for competence</td>
<td>On time</td>
<td>[4, 14, 16]</td>
<td></td>
</tr>
<tr>
<td>Convener #1 leaves the Team</td>
<td>New job</td>
<td>Implement</td>
<td>Looking for new Convener</td>
<td>Team member step in as Convener</td>
<td>Project keeps on going</td>
<td>[6, 13, 14, 16]</td>
<td></td>
</tr>
<tr>
<td>Team on idle.</td>
<td>Vacation</td>
<td>Implement</td>
<td>Frustration</td>
<td>Focus on deadline</td>
<td>Project progress</td>
<td>[6, 16]</td>
<td></td>
</tr>
<tr>
<td>Tight time plan</td>
<td>Lots of actions to meet deadline</td>
<td>Implement</td>
<td>Focused on deadline</td>
<td>Focus on suppliers dedication</td>
<td>No negative effect on performance</td>
<td>[4, 6, 13, 14, 16]</td>
<td></td>
</tr>
<tr>
<td>Convener #2 leaves the Team</td>
<td>New job</td>
<td>Implement</td>
<td>Starts looking for new Convener</td>
<td>Convener #2 suggests new convener.</td>
<td>No negative effect on performance</td>
<td>[6, 13, 14, 16]</td>
<td></td>
</tr>
</tbody>
</table>
No clear direction for ideas | Open scope for project | Search | Confused by abstract thinking | Discussing what to do. | Slow start | [6]
Lack of time | Work overload | Search | Frustration | Discussing problem | No progress | [6]
No market connection in the team | Too homogenous team | Search | Frustration | Suggestions for solutions too early | Project delayed | [4]
No interviews with end users conducted | Lack of Time | Search | Frustration | Looking for resources and collaboration | Project delayed | [4]
Lack of market information | Lack of Time | Select | Eager to get going | Skipping parts in process | Project delayed | [4]
Need of more meetings for finalizing concept presentation | More complex than expected | Implement | Positive mindset | Involving more personnel, working extra hours | Project delayed | [4, 6, 16]

Discussion and conclusion
The first part of this study indicates that significant important innovation enablers in general according to the innovation team are Dedication, Economy, Entrepreneurship, Mind-set and Time. The Sponsor on the other hand found Capabilities, Climate, Culture, Dedication, Empowerment, Entrepreneurship, Mind-set and Need to be significant important innovation enablers in general. The top three most important innovation enablers according to the Team varied in different phases of the innovation process; first phase: Dedication, Economy Mind-set; second phase: Time, Entrepreneurship, Dedication; third phase: Time, Entrepreneurship, Dedication. There were some similarities between the Team and the Sponsor, e.g. they both found Dedication, Entrepreneurship and Mind-set to be significant important. The major different was that the Sponsor focused on the culture and climate in the first phases and focused more on the individuals in the latter phases of the innovation project, and Time wasn’t significant important at any time according to the Sponsor. The Team on the other hand focused on individual and practical aspects all the time, as e.g. Dedication and Time.

The second part of the study provides a different picture of which Enablers that are most important for the Teams’ progress in the projects. The interviews and notes confirms that the Enablers’ importance vary depending on work tasks and phase of the innovation process. In overall, the most important Enablers to overcome innovation project related problems within this study were; first, Collaboration, Dedication and Mind-set; second, Knowledge management; third, Entrepreneurship and Knowledge. When studying the Enablers’ importance in the different phases of the innovation process a more nuanced picture appears within this study; The two most important Enablers in the Search-phase were Collaboration and Dedication, followed by Entrepreneurship, Knowledge, Knowledge management and Mind-set; The three most important Enablers in the Select-phase were Collaboration, Knowledge management and Mind-set, followed by Entrepreneurship and Knowledge; The two most important Enablers in the Implement-phase were Dedication and Mind-set. The second most important Enablers were Collaboration, followed by Entrepreneurship, Knowledge and Knowledge management.

The most frequent discussed issues on the Team meetings were associated to Dedication and Time, where Time was related to e.g. work overload, downsizings and
suppliers’ lack of time. Dedication was related to lack of commitment and accountability from team members. But, Dedication was also the solution for time-issues, i.e. when the team members were dedicated enough they somehow put in some extra hours to keep the project going even though it was tough times and work overload. Collaboration was the Enabler that brought new energy to the projects and speed up the working pace. Mind-set was the enabler that kept the Team looking for new ways of working and focus on the goal even though problems frequently occurred.

To conclude, the most important Enablers were identified but their importance varies depending on phase in the innovation process and what kind of problems that occurs. A handful number of Enablers were significant important for problem solving, these Enablers are suggested to be in focus when selecting team members for future innovation teams. The Facilitator played an important role to support the Teams with advice and directions to consider in accordance with the innovation process.

Relevance/contribution
This study highlight the relative importance of Enablers in on-going innovation projects. The study demonstrates that the Enablers’ relative importance varies in innovation projects. Even though Dedication and Mind-set are the two Enablers that are seen as the most important ones in overall within this study, the deviations in what the respondents identified as important and what was important to solve upcoming problems in practice is important to highlight. This demonstrates that dedicated individuals with positive attitude for innovation work within innovation teams are essential for their overall performance, which contributes to the research regarding how innovation teams are created. This knowledge can be used when developing theoretical models and future research on innovation enablers. The findings from this study didn't align with the findings of Gamatese and Hallowell (2011) and Aagard and Gertsen (2011) except for Collaboration that was found to be significant important in all studies. The deviations may have its explanation in the research design, as this study’s data are from on-going innovation projects and the respondents were all team members or sponsor to the practical innovation work. Though, the findings of Gamatese and Hallowell’s, and Aagard and Gertsen’s aligned to the Sponsor’s responses in the way that culture and climate was identified as important which indicates that respondents that are not practical involved in the innovation work respond from a more holistic perspective.

From a managerial standpoint this knowledge could be used when creating new innovation teams, teaching/training e.g. innovation coaches and innovation teams to plan for/foresight up-coming actions and innovation enablers within an innovation project. Innovation enablers are suggested to be continuously evaluated as their importance varies in an innovation project.

Future research
As stated above, there are significant important Enablers, the Enablers’ importance varies during ongoing innovation projects and the Facilitator plays an important role to the Teams’ performance in on-going innovation projects. Further research regarding the identified Enablers importance for innovation teams members is suggested, as the identified Enablers were related to the team and the individuals themselves. In addition, further research regarding the facilitator’s presence and involvement in innovation projects, the innovation team learning aspect when being supported by a facilitator and the innovation team creating process related to the identified important Enablers is also
suggested. As this study is based on three innovation teams in an industrial context, further studies is suggested to build large-scale validation of these results.

References

Boyatzis, R.E. (1998), Transforming Qualitative Information: Thematic analysis and code development. USA, SAGE Publications Inc.

Johnsson, M. (Forthcoming), Creating High Performing Innovation Teams.

Johnsson, M. (Forthcoming), Innovation Enablers for Innovation Teams.

