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Abstract

Context. Interest in and research on neural networks and their capacity for finding solutions
to nonlinear problems has increased greatly in recent years.

Objectives. This thesis attempts to compare competitive coevolution to traditional
neuroevolution in the game StarCraft: Brood War.

Methods. Implementing and evolving Al-controlled players for the game StarCraft and
evaluating their performance.

Results. Fitness values and win rates against the default StarCraft Al and between the
networks were gathered.

Conclusions. The neural networks failed to improve under the given circumstances. The best
networks performed on par with the default StarCraft Al
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1 Introduction

1.1 Background

Interest in and research on neural networks and their capacity for finding solutions to
nonlinear problems has increased greatly in recent years. While much has been discovered,
the many different variations on neural networks and their uses leaves many research gaps.
Modern computer games, in particular, is a field where neural networks have found several
uses [1], yet is only partially explored.

An open problem regarding neural networks in games is the efficiency of competitive
coevolution, i.e. the fitness of a network is evaluated by letting it play against another agent
from the same population. This stands in contrast to what can be described as traditional
neuroevolution, where the network is evaluated by playing against a preprogrammed Al
agent. Competitive coevolution can in theory lead to open-ended evolution and thus improve
indefinitely, although such behaviour has never been achieved. Risi and Togelius [1] suggest
that more room for complexity, as exists in modern games, might allow for more
sophisticated methods to be evolved.

In this thesis we intend to investigate the efficiency of competitive coevolution compared to
traditional neuroevolution. We will accomplish this by evolving two Al-controlled players for
the game StarCraft: Brood War and then comparing the resulting players. The reason for
choosing StarCraft is twofold: first, it is a real-time strategy game where each unit can make
any one of several decisions multiple times per second. This makes for an extremely large
possibility space which neural networks are generally considered good at exploring. Second,
there is a fair amount of both tools and precedence for developing Al for StarCraft, which
should aid in the implementation compared to other games.

1.2 Related work

Both Lubberts et al and Runarsson et al have investigated competitive coevolution with
regards to the board game Go [2], [3]. As shown by Runarsson et al, coevolution has the
potential of achieving a higher level of play than self-play learning on small Go boards given
the right configuration. However, standard setups of the evolutionary algorithms resulted in
the self-play algorithm both learning faster and achieving a higher level of play [3].

Zhen and Watson evaluated NEAT and its real-time variant, tNEAT, in controlling StarCraft
units in matchups between different types of units. The matchups were 12 units vs. 12 units
where each individual unit was controlled by its own neural network. The study showed the
viability of using neuroevolution for unit micromanagement [4].



Shantia et al compared two different reinforcement learning methods in 3v3 and 6v6
matchups of Terran Marines. The networks in the 6v6 scenario proved to learn much slower
due to the vastly increased number of possible game states and thus much larger problem
space [5].

1.3 Aims
The aims of this thesis are:
e Explore and understand the difference between competitive coevolution and
traditional benchmarked evolution when evolving Al-controlled players for games.
e (Gain greater insight into the development and implementation of neural networks to
play games.
e Explore the benefits of and problems with competitive coevolution in neural
networks.

1.4 Objectives
In order to evaluate different learning approaches in StarCraft: Brood War, we need to do the
following:
e Implement a player for StarCraft: Brood War that can be controlled by a neural
network.
e (reate an in-game scenario that allows the neural network to fight the default game
Al
e (reate a version of the same scenario where two neural networks fight each other.
Let the two approaches evolve over a number of generations.
Record the fitness values in order to track progress of the two approaches, and
compare the results.
e Evaluate the two different neural networks by letting them fight both the default Al
and each other.



1.5 Research question
Is there a difference in evolution speed between competitive coevolution and traditional
neuroevolution when evolving Al-controlled players for StarCraft: Broodwar? If so, what is

the difference?

Null hypothesis: The evolution speed of competitive coevolution and traditional
neuroevolution is equal.

Hypothesis 1: Competitive coevolution has a higher evolution speed than traditional

neuroevolution.

Hypothesis 2: Traditional neuroevolution has a higher evolution speed than competitive
coevolution.



2 Neural Networks

2.1 Neural networks

Artificial neural networks (ANN) as a computational model were first presented by
McCulloch and Pitts in 1943. The model was loosely modeled after axons and synapses, and
simulates the “all-or-none” process of neurons through threshold logic in order to propagate
signals through the system. In other words, if the sum of a neuron’s inputs is above a given
threshold, the neuron’s output is 1. If the sum of the inputs is below the threshold, the output
is 0 [6].

Author Kevin Gurney gives the following definition for neural networks, including emphasis
on key terms:

“A neural network is an interconnected assembly of simple processing elements, units
or nodes, whose functionality is loosely based on the animal neuron. The processing
ability of the network is stored in the interunit connection strengths, or weights,
obtained by a process of adaptation to, or learning from, a set of training patterns.” [7]

The weight values of the connections between neurons determine the resulting data, and these
weights can be changed iteratively in order to “train” the network to give a desired result
from a given input. Figure 2.1 illustrates a neural network where the circles represent nodes
and the arrows represent the weighted connections.

Input 1 Output 1

Input 2 Output 2

Figure 2.1: Simple neural network



More complexity can be introduced to the network by adding one or more layers of Aidden
nodes between the input and the output, as seen in figure 2.2. The extra connections between
nodes allow for more advanced behavior and a larger number of viable solutions.
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Figure 2.2: Neural network with one hidden layer

2.2 Neuroevolution

Genetic algorithms, like neural networks, are inspired by natural processes in their design. All
living organisms have genetic material containing information about their features and
attributes, which they carry on to the next generation. The offspring carries genetic features in
chromosomes from both of its parents, the combination of which might manifest in new and
possibly beneficial ways. Genes more suited to the surroundings make the organism more
likely to survive and reproduce, which allows it to transfer the beneficial genes to the next
generation in a process known as natural selection.

Genetic algorithms encode their features in a way analogous to the natural process, where



each solution is represented as a chromosome. Each generation, the viability of each solution
is evaluated by an appropriately defined fitness function and represented as a single fitness
value. The best performing solutions are allowed to reproduce by combining their
chromosomes, while the worst performing solutions are discarded from the population. This
allows for an environment where only the best solutions “survive”, and the viability of the
solutions increase with each generation.

Neuroevolution is a method for training neural networks which makes use of genetic
algorithms to improve itself.

Neuroevolution refers to the use of genetic algorithms to solve the following tasks when
developing neural networks [8]:
e learning of weights when training the network,
e determining the network architecture, i.e. the number of nodes and which links should
exist between nodes,
e simultaneously determining the weights and the structure of the network.

In the past couple of years neural networks have been used to demonstrate means of
developing solutions to a number of problems, including agents capable of learning how to
play computer games [1].

2.3 NEAT

One common variation of a neural network implementation is NeuroEvolution of
Augmenting Topologies (NEAT). NEAT is a method of training neural networks which
simultaneously evolves both the weights and the structure of the network, thus both
optimizing and complexifying solutions. NEAT also allows for speciation of the neural
networks to make the process more efficient. Changing the structure of a neural network
usually initially reduces its fitness, since the weights are not calibrated for the new structure.
By grouping similar networks into species which primarily compete within their own niche,
innovation is protected and new topologies get a chance to improve [9].

The original NEAT implementation in C++, along with several variations in other languages,
is available online [10].

2.4 Competitive coevolution

In competitive coevolution, the fitness of each network is evaluated by letting it compete with
other networks in the same or in a different population. This means the strength of a network
is only relative to other networks as improvement of one means decrease of another. The idea



is to let competing solutions outdo each other in order to create an ‘arms race’ [11]. Ideally
speaking, the evolution is open-ended and the solutions improve with each generation
indefinitely. In reality, however, there are several problems to address. True, open-ended
“arms race” coevolution has never been achieved [1].



3 Method

3.1 Motivation

In order to answer the research question we will implement and evolve two neural networks
for StarCraft: one for the traditionally evolved network, and one for the competitively
coevolved version. We can then evaluate them by analysing the two networks’ progress as
they evolve, how well they perform against the default game Al and against each other.

We chose StarCraft as the game for two main reasons:
e There are several tools available which help with the implementation, primarily
BWAPI (see Sec. 3.2) which allows us to easily create a bot to interact with the game.
e We believed the sheer possibility space offered by a real-time strategy game would
allow for more complex behaviour to develop.

3.2 StarCraft: Brood War and BWAPI

StarCraft: Brood War is a real-time strategy game released by Blizzard Entertainment in 1998
and is one of the most successful games of its genre. The game takes place in a science
fiction-based setting where the player takes the role of an army commander. In a real-time
strategy game, the player controls multiple units and buildings. Gameplay involves unit
production, base building, resource management, upgrading units, buildings and technology,
and direct unit control. The larger scale strategic choices such as unit and resource production
and base development - the “big picture” decisions - are referred to as macro. The direct
control of units, i.e. deciding where they should go and which action they should perform, is
referred to in the StarCraft community as micro.

There are three different races/factions in StarCraft: Brood War, each with its own playstyle:
e Terran consists of humans and favor versatility and average-costed units,
e Protoss are highly technologically advanced aliens and favor expensive, powerful
units,
e Zerg are an insect-like alien race which favor large numbers of cheap units.
We have chosen to focus on two Terran units for our project: the Medic and the Marine.
Using different races or many different units would make the problem space far too complex
for the scope of this project.

In order to let a neural network manipulate units in the game, we will use the Brood War API
(BWAPI). BWAPI is a third party open source C++ project which allows students,
researchers and hobbyists to create Artificial Intelligence agents that play Brood War [12].
StarCraft: Brood War and BWAPI have previously been used to study NEAT and other
approaches to machine learning [10], [11].



3.3 Overview

We implemented a version of NEAT capable of evolving a bot, i.e. an Al-controlled player of
Brood War. BWAPI was used to interface with the game. We chose to focus on the
micromanagement of a small number of units in the game, since the scope of evolving a
comprehensive Al-controlled player is far too big. The same implementation of the bot was
used for both the coevolution and the non-coevolved approach.

We used an existing implementation of NEAT written for Visual Studio [13] in order to
simplify the integration with BWAPI. We used StarEdit to create a custom map with the
attributes necessary for the experiment.

Each player controls four units (three marines and one medic) where the network determines
the actions of each unit. The coevolved network plays against a player from another
population, while the traditional network plays against the default Starcraft AIl. During each
game round, the players aim to kill each other’s units. A game round ends when all marines
on either side have been killed. When the round is over, the relevant data is summarized, all
units are reset, and the next round begins.

Each unit has two possible outcomes that the bot chooses from: action and evade:

e If the unit evades, it calculates the average position of nearby enemies and moves in
the opposite direction.

e Ifthe unit acts and it is a marine, it attacks the lowest health enemy within weapon
range. If no enemies are within range, it moves towards the average position of all
enemies.

e [f the unit acts and it is a medic, it heals the lowest health ally, prioritizing nearby
allies.

The behaviour of these outcomes were explicitly defined. The output of the neural network
was used to decide which action to take.



3.4 Experiment

3.4.1 Implementation
Design. We created a DLL implementing the virtual methods BWAPI uses to communicate
with the game. Four of these functions were used to manage the game rounds:

e onStart() is called when the game starts. It was used to initialize some variables and
generate the initial population if needed.

e onFrame() is called each logical frame. Most of the code was here: all units were
updated by feeding input to the active network, if the round was over the network’s
performance was evaluated, and

e onUnitCreate(Unit) is called when a unit is created. This was used to check for new
rounds: if the new unit is a medic owned by the bot, a new round has started since
exactly one medic is created each round.

e onUnitDestroy(Unit) is called when a unit is destroyed. Was used to check the
remaining number of marines and mark the round as ended or not, accordingly.

The bot loads the first population into memory when the game starts, and runs through them
in turn. When all networks in the population are evaluated, the fitness values are calculated
and the population of the next generation are created.

The network is only updated every 10 logical frames in order to give the previous action a
chance to have a relevant effect.

Input. As network input, we used the following values:
e unit health,
number of enemies within weapon range (“nearby enemies”),
total number of enemies within twice the weapon range (“distant enemies”),
number of allies within weapon range (“nearby allies”),
total number of allies within twice the weapon range (“distant allies”),

a value indicating whether the unit is currently attacking something (1 if it is, O
otherwise),

a value indicating whether the unit is currently being healed (1 if it is, 0 otherwise),
e a value indicating whether the unit is a medic (1 if it is, O otherwise).

Unit health serves to give the network information about how much danger the unit is in, and
is expressed as a fraction of its maximum health. The two inputs for nearby and distant
enemies serve a similar purpose, as do the inputs for the number of allies: they give the unit a

rough idea of how dangerous the surrounding area is and how much support it has.

Whether the unit is being healed or is attacking something has direct implications for choices
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in combat, as such that information is fed to the network. Making a distinction between
medics and marines as input allows the network to behave differently for different units, but
also allows for the specific differences to be optimised.

Distant enemies and distant allies are both scaled to the range [0..0.5], as their values should
have less influence over the network compared to other inputs. All other input values are
scaled to fall within the range [0..1].

Output. The inputs were calculated for each unit and entered into the network. The
network’s output then decided the action of that unit. The output consisted of two nodes: if
Node 0 had an equal or larger value than Node 1, the unit would evade. Otherwise, the unit
would act.

Fitness calculation. Calculating fitness in a way that accurately reflects the effectiveness of
the network is very important for The fitness of a network is determined by the remaining
health of the bot’s units, the remaining health of the enemy’s units, and the time taken to
complete the game round.

The fitness was calculated as follows:

Squad health _ Frames
Enemy health + 1 1000 +1 (l)

Squad health is the sum of the remaining health of the bot’s units.
Enemy health is the sum of the remaining health of the enemy’s units.
Frames is the duration of the game round in number of logical frames.

We determined experimentally that the duration of a game round lies at around 100-500
frames. We thus decided to use the number of frames divided by 1,000 in order to ensure that
it has an appropriate effect on the fitness value. We also decided on a cutoff point of 1,000
frames where the game round would be considered over due to timeout. In order to
discourage passive behavior that would cause a timeout, i.e. the bot tries to “hide” rather than
defeat the enemy, a timeout resulted in a fitness of 0 regardless of health. NEAT does not
work with negative fitness values, so 1 is added to ensure a positive fitness value.

The total health of the four units is 180, which means the range of possible fitness values
theoretically lies within [0..181]. However, since game rounds typically end with medics at
full health - the algorithm for finding the lowest health unit will almost always select a
marine since they have lower starting health - the range will in practice lie within [0.8..3.7].

11



3.4.2 Execution

Automated evolution. Each approach was evolved for 20,000 generations. This was to
ensure that the networks achieve significant results, since it can take thousands of generations
before the network improves due to the complexity of the problem. The population size was
100 and each network was evaluated for one game round, for a total of 2,000,000 rounds. By
manipulating the local speed of the game, we processed around 12,000 logical frames per
second which meant that the experiment took in total 9-12 hours to complete. The experiment
was repeated 5 times with different random seeds in order to improve the validity of the
results.

The experiment was automated through the use of a custom StarCraft map which sets up the
next round as soon as the previous round ends, through the use of the built-in trigger system.
When either player had 0 marines, all units were removed and units for the next round were
placed at predetermined locations. Chaoslauncher [14], a third party piece of software which
adds functionality to Brood War, was used to automate menu navigation and inject the Al
DLL into the game.

Benchmarks. The networks were benchmarked by letting them play 20 game rounds against
the default StarCraft Al and examining both the win rate and the average fitness values. The
win rate is the primary indicator: once the bot can consistently defeat the default Al, it can be
considered better.

This benchmark was performed after the experiment as well as every 500 generations in order
to track progress. The results from the benchmark were not used to train the networks.

Evaluation. After the coevolved and traditional networks were evolved for the same number
of generations, they were evaluated by letting them play in six configurations:
e coevolved network vs traditional network,
coevolved network vs default StarCraft Al,
coevolved network vs coevolved network,
traditional network vs traditional network,
traditional network vs default StarCraft Al

The win rate of the two networks in each configuration can then be compared and we can
determine which one yielded a better result given the same learning time.

Recording data. As the simulation was being run, the population of neural networks was
written to a file every 500 generations so that they could be evaluated in the benchmark later.
Furthermore, the best, worst, and average fitness values of each generation were recorded
continuously in the same way.

12



4 Results

Here are the results from the benchmarks and evaluation as described in section 3.4.2.

Neural Networks vs Default Al

== Traditional

» Coevolved

Winrate

o O O O 0O O O 0O O o O 0o o O o o o o o o
o O O O o O O o o oo oo oo oo OO o o o oo o o
n N N WwwwLw w w un w wuw wn w w w wun w w
- N M < N O M~ 0 O 0O = N M S W0 O M~ 0 O
L=l =T = = B =l = =

Generation

Figure 4.1: Win rate of the best neural network of each benchmark generation versus
the default StarCraft AL
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Fitness Values

4 == Average
e= Best

== Worst

N

0 5000 10000 15000 20000

Generation

Figure 4.2: Best, worst, and average fitness values from each generation of the
traditionally evolved networtk.

As shown in figure 4.1, both types of neural network displayed approximately the same win
rate against the default Al, with no improvement between generations. Furthermore, it shows
that there was no point where either network consistently outperformed the default Al.

Figure 4.2 shows how the fitness of the traditionally evolved network did not change

significantly across generations. The fitness values mostly fall within the expected range
[0.8..3.7] with some values even lower.
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Traditional vs coevolved
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Figure 4.3: Win rates between traditional and coevolved networks.

Traditional vs traditional
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Figure 4.4: Win rates of traditional network playing against itself.
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Coevolved vs coevolved

1 == (Coevolved
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0,5 \
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Generation
Figure 4.5: Win rates of coevolved network playing against itself.
As seen in figure 4.3, neither network type appears dominant when pitched against each
other. The values are very inconsistent throughout generations.

Figure 4.4 and figure 4.5 show that the traditional and coevolved network, respectively, also
have very little consistency between generations when pitched against itself.
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5 Analysis and Discussion

5.1 Evaluation against default StarCraft Al
Figure 4.1 shows that neither network improved throughout the experiment and that both
networks were, at best, equally matched with the default Al. This could be due to one or more
of the following:
® Bad fitness function. If the fitness value does not accurately represent the performance
of the neural network, it will not be able to improve. The fitness values for most
networks fell within the expected range of [0.8..3.7]. However, a fitness score above 3
indicates that the brain greatly outperforms the default AI, which was not the case.
e Not enough evaluation. Each member of each population was evaluated once, which
might not have been enough to properly evaluate the effectiveness of a genome.
e Output not sophisticated enough. The output from each brain determined which action
the network takes: either attack or retreat. It is possible that just having these two
options was not enough for the network to develop any complex behavior.

The best fitness value from each generation was in the range of [3.0..3.5] as seen in figure
4.2, which implies the traditional network defeated the default Al with a lot of health
remaining on those cases. However, these networks were evenly matched with the default Al
as seen in figure 4.1, which shows a discrepancy in the evaluation process.

5.2 Evaluation between neural networks

As seen in figure 4.3, figure 4.4 and figure 4.5, there is no observable trend when evaluating
the networks against each other. This is to be expected, since neither type of network
improved throughout the experiment. As there is no consistent strategy to improve upon, the
winner of each matchup is essentially determined at random based on how the two brain’s
behaviors happen to interact.

5.3 Research question

Is there a difference in evolution speed between competitive coevolution and traditional
neuroevolution when evolving Al-controlled players for StarCraft: Broodwar? If so, what is
the difference?

No difference in evolution speed was found, as both types of neuroevolution failed to evolve
in the given conditions.

17



6 Conclusion and Future Work

Conclusion

From the experiment we conclude that this NEAT implementation was incapable of evolving
a bot under the given circumstances and thus unable to reject the null hypothesis. It is unclear
what the specific problem with the implementation was. It could be bad fitness evaluation,
not enough evaluation, or the output might not have been impactful enough to allow for a
difference.

As the best networks throughout the generations performed on par with the default StarCraft
Al, it seems likely that the fight-or-flight output of the neural network did not allow for
complex enough strategies. Additionally, the consistently high fitness values of the best
networks suggest that the fitness evaluation did not accurately reflect the neural network’s
performance.

The related work suggests that with the right configuration, competitive coevolution can
potentially outperform traditional neuroevolution. We were however unable to achieve that in
this thesis. Given more time, we might have been able to make the neuroevolution more
effective and achieve better results.

Future work

In future work we would like to investigate different approaches to neuroevolution in order to
successfully evolve a network and answer the research question. Different squad sizes and
unit combinations could also be investigated.
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