Empir Software Eng (2019) 24:68-102 @ CrossMark
https://doi.org/10.1007/s10664-018-9620-y

Software engineering in start-up companies: An analysis
of 88 experience reports

Eriks Klotins! © . Michael Unterkalmsteiner! -

Tony Gorschek!

Published online: 21 May 2018
© The Author(s) 2018

Abstract

Context Start-up companies have become an important supplier of innovation and software-
intensive products. The flexibility and reactiveness of start-ups enables fast development
and launch of innovative products. However, a majority of software start-up companies fail
before achieving any success. Among other factors, poor software engineering could be a
significant contributor to the challenges experienced by start-ups. However, the state-of-
practice of software engineering in start-ups, as well as the utilization of state-of-the-art is
largely an unexplored area.

Objective In this study we investigate how software engineering is applied in start-up
context with a focus to identify key knowledge areas and opportunities for further research.
Method We perform a multi-vocal exploratory study of 88 start-up experience reports.
We develop a custom taxonomy to categorize the reported software engineering practices
and their interrelation with business aspects, and apply qualitative data analysis to explore
influences and dependencies between the knowledge areas.

Results We identify the most frequently reported software engineering (requirements engi-
neering, software design and quality) and business aspect (vision and strategy development)
knowledge areas, and illustrate their relationships. We also present a summary of how
relevant software engineering knowledge areas are implemented in start-ups and identify
potentially useful practices for adoption in start-ups.

Conclusions The results enable a more focused research on engineering practices in start-
ups. We conclude that most engineering challenges in start-ups stem from inadequacies in
requirements engineering. Many promising practices to address specific engineering chal-
lenges exists, however more research on adaptation of established practices, and validation
of new start-up specific practices is needed.

Communicated by: Forrest Shull

P4 Eriks Klotins
eriks.klotins @bth.se

1 Software Engineering Research Laboratory, Blekinge Institute of Technology, Kariskrona, Sweden

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9620-y&domain=pdf
http://orcid.org/0000-0002-1987-2234
mailto:eriks.klotins@bth.se

Empir Software Eng (2019) 24:68-102 69

Keywords Software start-up - Software engineering practices - Experience reports

1 Introduction

Software start-ups are important suppliers of innovation and innovative software products
(Baskerville et al. 2003), providing products and services that are a significant part to the
economy (Startup Compass Inc. 2015). This potential is strengthened further as the use of
cutting-edge technologies enable start-ups to develop, launch and evolve software products
fast and with very few resources (Baskerville et al. 2003).

A challenge is that most start-up companies collapse before any significant achieve-
ments are realized (Tovstiga and Grossmann 2012). This is explained by market conditions,
lack of commitment, financial issues or, simply put, a bad product idea. However, prod-
uct engineering activities takes substantial resources from start-ups, especially in the early
stages (Crowne 2002; Giardino et al. 2015). Inadequacies in used engineering practices
could lead to under or over-engineering the product, wasted resources, and missed market
opportunities.

One of the main qualities of start-ups is their ability to quickly take advantage of new
business, market and technology opportunities (Giardino et al. 2014; Bajwa et al. 2017).
Decisions, such as what features to build, how and when, belongs to the realm of engineer-
ing and have a huge impact on how the start-up responds to new opportunities. For example,
certain decisions may hamper flexibility of the product, thus reducing the speed of adapt-
ing the product for entering new markets. Taking one sub-optimal decision may have only
a small effect on start-up’s prospects, however the compound effect of the decisions deter-
mines whether the start-up is able to remain on the edge of innovation or is struggling to
keep its product running. This is a source of risk and opportunity with potential effects to
all aspects of the company.

Yau and Murphy (2013) argue that practices adapted from established companies attempt
to solve problems that are not present in start-ups, while ignoring start-up specific chal-
lenges, such as time-to-market as the primary goal, and accumulating technical debt
(Carmine et al. 2016). Even though similar challenges can be present in established orga-
nizations too and addressed by state-of-the-art practices, it is the combination of multiple
challenges that makes engineering in start-ups difficult. There is a gap in understanding how
these start-up specific challenges influence the engineering process and what engineering
practices are suitable for such context (Klotins et al. 2015; Paternoster et al. 2014).

This lack of understanding results in that there are very few, if any, start-up context
relevant software engineering processes/methods/models/frameworks (called practices from
now on). At the same time, a substantial amount of money is invested in start-up companies.
In the first three quarters of 2015 alone, start-up companies received investments of 429
billion USD in the US and Europe (PitchBookData 2015a, b). With an optimistic start-up
failure rate of 75% this constitutes 322 billion USD of capital potentially wasted on building
unsuccessful products (Startup Compass Inc. 2015; PitchBook Data 2015a, b). To what
extent inadequacies in software engineering practices are responsible or linked to success
rate is very hard to judge. However, even if the effect of improved engineering practices only
would result in a few percent change in success rate, it would yield significant impact and
capital return. Thus, the focus of our study is to explore specifically software engineering
in start-ups and pinpoint specific areas for further research that are likely to benefit start-up
practitioners.

@ Springer

70 Empir Software Eng (2019) 24:68-102

Researchers have recognized the importance of software engineering in start-ups. Bosch
et al. (2013) and Deakins and Dillon (2005) propose adaptations of iterative and incremental
development methods to address engineering challenges in start-up companies. However,
this work is preliminary and has not been validated yet in practice (Klotins et al. 2015;
Paternoster et al. 2014). Carmine et al. (2016) report on an interview study aiming to
understand how start-ups select their product development strategy and how start-ups con-
sider product quality attributes. Giardino et al. (2015) also investigated the key challenges
in software start-ups and report that technology uncertainty is the key challenge in soft-
ware start-ups. However, none of these studies provide a comprehensive answer of what
engineering practices are relevant in start-ups.

In this paper we use empirical data from 88 start-up experinece reports to provide the first
insight into what engineering knowledge areas are relevant in software start-ups. Our aim is
to explore what engineering practices the start-ups report as relevant, how these practices are
applied and what results they yield. To analyze the reports we use qualitative data analysis
methods (Seaman 1999; Garousi et al. 2016)

To cater for the fact that the experience reports cover also business and marketing aspects,
which are tightly intertwined with software engineering aspects, we use a software and busi-
ness practices taxonomy to support the analysis of the reports. Even though we acknowledge
importance of good business, market and other practices, the focus of this paper is strictly
on software engineering practices.

The main contribution of this paper is the identification and description of the state-of-practice
in software start-up companies, pinpointing to several relevant software engineering areas
that need further research. Moreover, we present related work to each relevant software
engineering knowledge area, illustrating potentially useful engineering practices for start-ups.

The remainder of this paper is structured as follows: Section 2 presents background and
related work and Section 3 introduces the research methodology. The results are presented
in Section 4, analyzed and discussed in Section 5. Section 6 concludes the paper.

2 Background and related work
2.1 Software start-ups

As early as 1994, Carmel (1994) recognizes small software companies being exception-
ally successful at innovation and delivery of new products. Termed software start-ups, these
companies share many features with small and medium enterprizes such as market pressure,
youth and immaturity, and limited resources (Sutton et al. 2000). However, start-up com-
panies are different due their goals and challenges. Contrary to established companies who
aim to shape their products to address a known market need, start-up companies attempt to
identify an unmet market need and to invent a product satisfying this need (Startup Compass
Inc. 2015).

The engineering context in start-ups is characterized by uncertainty, lack of resources,
rapid evolution and an immature team among other factors (Sutton et al. 2000). However, the
start-up context also provides flexibility to adapt new engineering practices and reactiveness
to keep up with emerging technologies and markets (Giardino et al. 2014).

Product related issues are reported as the key challenge in start-up companies (Giardino
et al. 2015). However, recent literature mapping studies identify a lack of research in the
area from a software engineering perspective (Klotins et al. 2015; Giardino et al. 2014).

@ Springer

Empir Software Eng (2019) 24:68-102 71

Moreover, most publications to date are experience reports lacking in-depth analysis and
rigorous research methods on empirical data (Klotins et al. 2015).

Despite attempts to explore the start-up phenomenon, only a few studies specifically
focus on understanding how software engineering is done in start-up companies. Yau and
Murphy (2013) and Sutton Sutton et al. (2000) recognized that engineering practices aimed
at established companies are not suitable for start-ups. As a result, various models for soft-
ware development in start-up context were proposed (Deakins and Dillon 2005; Bosch et al.
2013; Zettel et al. 2001), however there is very little evidence of application and validation
of these models (Klotins et al. 2015).

An agenda to specify important research topics regarding software engineering in start-ups
has been created by the Software Start-up Research Community (Abrahamsson et al. 2016).
Among other topics, engineering practices in start-ups is identified as an important research area.

Rafiq and et al (2017) and Melegati et al. (2016) have studied requirements engineer-
ing practices in start-ups and provide an insight into how product ideas evolve and what
practices are used to connect founders’ vision with customer needs.

Crowne (2002) proposes a start-up life-cycle model and identifies goals and the key chal-
lenges at each of the life-cycle phases. According to the model, in the first phase a company
develops an early version of the product. The goal of the second phase is to improve quality
of the product until it can be commissioned with little effort. In the third phase, the company
grows and conquers the market. In the fourth phase the company matures into an established
organization. However, there is no detailing on the use or adaption of engineering practices,
or their evolution over time and phases.

Giardino et al. present a behavioral model aimed at explaining start-up failures. They
argue that a start-up must first explore the problem domain and then validate a proposed
solution, however mismatching validation activities with exploration activities could lead
to a failure (Giardino et al. 2014). This is directly related to engineering practices such as
overall requirements engineering or scoping.

Olsson and Bosch (2015) identify challenges of using customer feedback in large
software-intensive product engineering. A case study reveals that to compensate for inad-
equate utilization of user feedback, companies invent requirements and steer product
direction by “gut feeling”. Invented requirements lead to a large amount of unused and
incorrectly implemented features contributing to product failure (Olsson and Bosch 2015).

Software engineering in start-ups shares many similarities with companies using agile
development practices, such as iterative development, empowered small team, and ongo-
ing planning (Ramesh et al. 2007; Chow and Cao 2008). However, customer involvement,
which is one of the key agile principles, is difficult to establish as start-up companies
lack a distinct set of customers. Hence, start-ups operate in a market-driven environment
(Dahlstedt et al. 2003). In a market-driven environment, requirements are often invented
and validated through frequent product releases (Dahlstedt et al. 2003; Alves et al. 2006).

There has been a substantial work to identify general operating practices for start-ups,
such as The Lean Start-up (Ries 2011) and Customer Development Model (Blank 2013a).
However, there exist very few peer-reviewed studies in software engineering fora, with May
(2012) being the exception, reporting on the application of said practices. Therefore, it
remains to be explored to what extent these or any other practices are adopted by start-ups.

2.2 Scope of software engineering in start-ups

Sutton et al. (2000) argues that start-up companies are sensitive to many influencing factors,
such as customers, partners, changes in technologies and markets. The developed software is

@ Springer

72 Empir Software Eng (2019) 24:68-102

often a component of another product and which is an essential part of the start-up company
itself (Baskerville et al. 2003). Therefore, software engineering in start-ups must be studied
jointly with its dependencies and influences to other areas of a start-up (Broy 2006).

The interrelation of software engineering, product development and other areas in an
organization is recognized by ISO/IEC 42010:2011 which provides a definition of software-
intensive system as: “any system where software contributes essential influences to the
design, construction, deployment, and evolution of the system as a whole to encompass
individual applications, systems in the traditional sense, subsystems, systems of systems,
product lines, product families, whole enterprizes, and other aggregations of interest” (IEEE
2011).

To fully understand the importance of software engineering in start-ups we widen our
field of view and capture other concepts that influence or depend on software engineering.
To define the scope for this study we use a taxonomy, further elaborated in Section 2.3.

2.3 Software engineering and business practice taxonomy

A taxonomy is useful for categorization and mapping of knowledge, facilitating identifica-
tion of gaps and boundaries of a phenomenon (Smite et al. 2014). Seaman (1999) suggests to
use of preformed codes, e.g. a taxonomy, to facilitate coding in qualitative studies. Hence, to
support the identification of software engineering and other relevant practices we developed
a taxonomy listing knowledge areas and practices for start-ups - the SoftWare and Business
Process, hereinafter the SWBP, taxonomy. The taxonomy consists of software engineering
knowledge areas as defined by SWEBOK, and several business aspects oriented knowledge
areas inspired by Osterwalder et al. (2005) and Zachman (2003).

Even though SWEBOK is not specifically designed for software start-up companies and
lacks emerging areas of software engineering, such as value-based software engineering
(Boehm 2003; Azar et al. 2007) and market-driven requirements engineering (Dahlstedt
et al. 2003; Karlsson et al. 2007), it promotes a consistent view on software engineering,
and is well recognized within software engineering community (Sicilia et al. 1990; Budgen
et al. 2008).

Other frameworks, such as CMMI (Product Team and Team 2010) and SPICE (Dorling
1993), are oriented toward software process identification, assessment and improvement.
However, as indicated by Giardino et al. (2014) and Sutton et al. (2000), start-up organi-
zations are very immature in a process sense, thus identification of engineering processes
could be difficult.

Several business practice frameworks, such as ABPMP BMP CBOK (Abpmp 2009),
papers by Osterwalder et al. (2005) and Zachman (2003), aim to map and categorize busi-
ness practices, however none of them is specific to start-up companies (Blank 2013b). Due
to youth and immaturity of start-up companies, traditional business processes are difficult to
identify. Therefore, we created a simplified business practice taxonomy based on ABPMP
BMP CBOK. The exact categories of the taxonomy are provided in the supplementary
material.!

We use the unified SWBP taxonomy to identify and categorize all relevant practices to
explore software-intensive product development in start-ups.

Thttp://eriksklotins.lv/files/exp-reports-study-supplemental- material.pdf

@ Springer

http://eriksklotins.lv/files/exp-reports-study-supplemental-material.pdf

Empir Software Eng (2019) 24:68-102 73

3 Research methodology
3.1 Research questions

Our research goal is to investigate how software engineering is practiced in start-up compa-
nies and how software engineering contributes to other areas of a start-up, such as business
and marketing. To break down the research goal further, we formulate the following research
questions:

RQ1: What software engineering knowledge areas do software start-up companies
consider most relevant?

We explore what knowledge areas and specific categories in software engineering are of
interest for start-up companies. This enables to focus further research on the areas that have
the potential to actually support software start-up companies.

RQ2: How are the identified knowledge areas applied in start-ups?

We explore how the identified knowledge areas (RQ1) are implemented in start-up com-
panies. This increases the understanding of how, or whether at all, software engineering
knowledge and practices are applied.

RQ3: What are the relationships between different knowledge areas?

We explore the relationships between the applied practices to understand how practices
and knowledge areas affect each other. The understanding of the relationships enables the
analysis of how significant each practice is in context of other practices.

RQ4: What practices are missing to support software engineering in start-up companies?

Having identified relevant knowledge areas (RQ1), how the knowledge areas are imple-
mented in terms of practices (RQ2), and relationships between the practices (RQ3) we
identify gaps in applied practices. We review related work to identify practices that could
be useful for adaptation in start-ups.

3.2 Data sources and collection

We use a collection of start-up experience reports (cbinsights.com 2015) as the data source.
The reports represent a primary data source, i.e. we perform original analysis of data, and
we perform third degree analysis, i.e. we independently analyze artifacts that are already
available (Lethbridge et al. 2005).

The experience reports describe lessons-learned from start-up companies, written by one
of the participants after critical events occurred in the start-up, for example, a key person
leaving a company, a product launch, a buyout or closure of the company. Even though the
reports represent “multi-vocal literature”, i.e. are unstructured and vary in length, focus and
style (Ogawa and Malen 1991; Tom et al. 2013), they provide a rich insight on how start-ups
perceive and approach software-intensive product engineering (Garousi et al. 2016). The
reports cover a much broader scope than just product engineering thus providing insights
how product engineering is influenced by and what influence engineering has on other
factors in start-ups.

We screened the collection to remove inaccesible or otherwise irrelevant reports, prior to
the detailed analysis, according to the following criteria:

1. The report is inaccessible, for example, the link provided in the website to the actual
report is broken.

2. The report clearly does not describe experience from a start-up company, for example,
the report describes experiences from an established company.

@ Springer

74 Empir Software Eng (2019) 24:68-102

3. The report clearly does not describe experiences from a software start-up, i.e. the start-
up does not do software engineering in any way.

From the initial set of 93 reports, 5 reports were removed and 88 remained for further
analysis. Secondary data sources are start-up profiles (crunchbase.com 2015) that record
company track length, geographical location and members of their founding teams. Figure 1
illustrates how each data source contributed to answering the stated research questions.

We created a simple database tool to import, store and maintain traceability between dif-
ferent pieces of data. Prior to storing, we trimmed irrelevant information, i.e. ads, unrelated
pictures, links, from the reports and split the reports into chunks by a paragraph for further
analysis. A paragraph was selected as unit of analysis as it is large enough to convey a com-
plete statement and small enough to maintain traceability. The splitting was first done with
an automated tool and later manually revised. The final chunks were 1 - 16 sentences long.

3.3 Analysis design and execution

To analyze the reports we use qualitative data analysis methods, that is, different types of
coding and themeing of concepts (Seaman 1999; Saldafia 2010). Figure 1 illustrates the used
data sources, the three analysis steps, the output and how it answers the research questions.

In step 1 we apply provisional coding we explore the data and identify and catego-
rize statements in the reports related to software engineering or business development
(Saldafia 2010). We associate statements in the reports with preformed codes from the
SWBP taxonomy (see Section 2.3), as suggested by Seaman (1999).

Our study is specifically angled toward software engineering practices and their con-
nections to business knowledge areas, thus the SWBP taxonomy supports identification of
relevant data to answer our research questions. We associate statements in the reports with
a knowledge area, category or a sub-category from the taxonomy. More explicit statements
are mapped to sub-categories, while more general statements are associated with a knowl-
edge area in general. Mapping to the lowest level enables analysis both on knowledge area
level and a more specific analysis of what sub-categories in a particular knowledge area
are addressed. To code ambiguous statements we use simultaneous coding (Saldafia 2010),
mapping the statement to multiple categories of the SWBP taxonomy. To further describe
each identified statement we added two magnitude sub-codes (Saldafia 2010). The first sub-
code captures the impact direction of a described practice. We use the values “positive”,
“unknown” and “negative” to capture the report’s author own reflection on the impact of
a practice. For the second sub-code we use the values “product”, “business” and “both” to

Start-up SWBP taxonomy
demographics ¢
Mapping to the
provisional coding SWBP RQ1
magnitude coding taxonomy
Experience RQ2
reports
RQ3
descriptive coding . Categories and
process coding g)adtatfzr;g;dmg relationships RQ4
evaluation coding s

Fig. 1 Overview of the coding process and research questions

@ Springer

Empir Software Eng (2019) 24:68-102 75

capture the affected object. The scope for each code is a sentence in a report. Sub-codes are
added on top of each code.

In step 2 we perform another pass on each report and look at the reported experience
as a whole to identify key concepts, analysis points, leading to gains or losses in software
engineering or business development. Looking at the reporter’s opinion on what activities
had significant impact on software engineering, we attempt to identify contextual factors
and activities causing the high impact situation. We make use of descriptive (to summarize),
process (to capture ongoing action) and evaluation (to assess the situation) coding (Saldafia
2010) jointly to capture analysis points in a report. Through analysis of the described situa-
tion we aim to differentiate between reported symptoms (e.g. running out of resources) and
actual causes (e.g. poor resource planning due to lack of experience). Coding in this step is
open, i.e. we let codes to emerge naturally without use of the taxonomy. Examples of coding
in the steps 1-2 are provided in the supplementary material.?

In step 3 we apply pattern and axial coding (Saldafia 2010) to combine similar analysis
points and to establish relationships between emerging categories. As similar activities and
contextual factors recur in the data, we group them under a candidate category. We merge,
split and update the candidate categories during the coding process. A category gains full
category status when its category description allows understanding of characteristics, condi-
tions, consequences and interaction of the expressed concept. To understand how different
concepts influence each other we further employ axial coding (Corbin and Strauss 1990)
looking for possible causes and consequences across all analysis points forming each cate-
gory. This enables deeper understanding of a concept and provides multiple explanations for
its emergence and impact. Field memos in a form of white board drawings, notes and mind-
maps were created to record any discoveries in the data. During the analysis we kept track
of what specific statements from reports actually support the category or the relationship
and continuously update a category description. We use this information to further develop
or discard patterns emerging from the data.

Saldafia (2010) suggests to connect categories with underlying concepts by applying
theming portions of data. Where possible, we associate the categories with practices from
the the SWBP taxonomy. The association connects the categories to state-of-the-art enabling
further elaboration and exploration of a category.

3.4 Answering the research questions

We answer RQ1 (What software engineering knowledge areas do software start-up compa-
nies consider most relevant?) by counting how frequently each knowledge area is discussed
in the reports. Some reports repeatedly address the same issue resulting in multiple identical
codes and impact sub-codes. Such repeated codes are useful for further qualitative analy-
sis, however are counted only once in the quantitative analysis in order not to inflate the
importance of a knowledge area. By differentiating between the reported positive or nega-
tive impact on software engineering or business development aspects, we identify potential
inadequacies in the application of knowledge in that particular area, specific for the software
startup context. The analysis of this research question is presented in Section 4.2.

We answer RQ2 (How are the identified knowledge areas applied in start-ups?) by
summarizing reported practices relevant to each knowledge area.

2http://eriksklotins.lv/files/exp-reports-study-supplemental-material pdf

@ Springer

http://eriksklotins.lv/files/exp-reports-study-supplemental-material.pdf

76 Empir Software Eng (2019) 24:68-102

We answer RQ3 (What are the relationships between different knowledge areas?) by
developing a graph illustrating relevant knowledge areas and their relationships. By look-
ing at the number of data-points we identify the most important relationships for further
exploration. We discuss the relationships in context of related work.

We answer RQ4 (What other practices are missing to support software engineering in
start-up companies?) by identifying the most interconnected categories and their relation-
ships in Fig. 9 (RQ3). We assess the central categories in context of the related categories,
examine if the answer to RQ2 suggest any particular practice pertaining the relationship,
and review related work for candidate practices.

3.5 Validity threats
We present four categories of validity threats as proposed by Runeson et al. (2012).
3.5.1 Construct validity

Construct validity is concerned with to what extent the studied operational measures
represent what the researcher is attempting to investigate (Runeson et al. 2012).

A possible threat is that we may fail to recognize relevant practices in the reports.
To address this threat we use a taxonomy to support identification and categorization of
statements from the reports.

We use the SWBP taxonomy as a framework to identify and categorize statements from
the reports.

However, the SWBP taxonomy is partly based on SWEBOK and may not up to date
with emerging concepts in software engineering such as value based software engineering
(Boehm 2003; Azar et al. 2007) and market-driven requirements engineering (Dahlstedt
et al. 2003; Karlsson et al. 2007). To address the threat that some important aspects are
missed due to the lack of a comprehensive taxonomy we use two separate coding strategies,
i.e. provisional coding (based on a taxonomy) and analysis points (independent from any
taxonomy).

Due to lack of detail or terminology differences between the reports and the taxonomy
it could be challenging to map certain statements to specific software engineering prac-
tices. We address this threat by a) applying multiple codes to the same statement to capture
multiple interpretations and b) mapping the statements to different levels of the taxonomy.
As a possible consequence of multiple codes per statement, we may incorrectly estimate
the number of statements addressing a particular category of the taxonomy. However,
multiple codes also enable identification and analysis of closely related and overlapping
practices.

Another threat to construct validity is a possible bias stemming from the nature of sub-
jective experience reports. In their essence, the reports are self-evaluations by the authors.
They may have overlooked their own shortcomings, e.g. a lack leadership or technical skills,
and rationalized their experience with external circumstances (Pronin et al. 2002). However,
due to relatively large sample and diverse population we likely cover different personality
types, therefore minimizing this threat (Feldt et al. 2010). An alternative solution could be to
use grounded theory (Corbin and Strauss 1990) and study a smaller sample in more detail,
thus strengthening the internal validity at the expense of generalizability.

Even though we applied multiple remedies to address the threats that stem from the
nature of the data we have collected, we are conservative in the conclusions that we draw
from the data and analysis.

@ Springer

Empir Software Eng (2019) 24:68-102 71

3.5.2 Reliability

This aspect is concerned with the extent to which the results and analysis are independent
from the specific researchers (Runeson et al. 2012).

We address reliability by ensuring transparency and traceability throughout our data col-
lection and analysis, providing a detailed description of the applied research method. All
analyzed experience reports are provided as supplemental material.3

We have kept traceability information throughout our results and analysis linking specific
conclusions with supporting statements in the experience reports.

3.5.3 Internal validity

Internal validity is threatened when a researcher is investigating one factor affecting another
factor and there exists a third, unknown factor, that confounds the studied relationship
without the researchers knowledge (Runeson et al. 2012).

A possible threat here is the single researcher bias in the coding process. To address this
threat we applied researcher triangulation. Twice in the coding process, at the beginning
and later in the process, selected reports were analyzed independently by three researchers
and the results discussed to identify and eliminate any individual biases. In addition to the
triangulation, intermediate results were discussed among the researchers and compared to
state-of-the-art.

3.5.4 External validity

External validity concerns the ability to generalize the result of research efforts to industrial
practice and to what extent the results are of interest outside the investigated case (Runeson
et al. 2012).

A potential threat to external validity is sampling. For our study we have used conve-
nience sampling and studied a relatively large number of cases from different geographical
regions, market segments, team composition variations, product types, and consider both
successful and failed cases.

The majority of start-up cases in our sample (63 of 88, 72%) are closed companies. As
elaborated in Section 4.1 and Fig. 4, this proportion is representative of the whole start-
up population which is nevertheless biased toward failed start-ups. Therefore we avoid to
present any prescriptive advice that derives from the studied companies.

4 Results
4.1 Overview of the data set
We have analyzed experience reports of 88 start-ups. The sample of companies is diverse in

developed products, geographical location and founders experience. We attempt to estimate
to what extent the studied sample is representative to the whole population.

3http://eriksklotins.lv/files/exp-reports-study-supplemental-material pdf

@ Springer

http://eriksklotins.lv/files/exp-reports-study-supplemental-material.pdf

78 Empir Software Eng (2019) 24:68-102

30
£
5 25
Q.
v
>
220
c
©
Q
£ 15
[e}
(]
‘s
2 10
(]
o]
g
3 s
0
S & ¢ & @& @ & & & Q@ N vy XN
S S M M A T S A M M A
N
N

Experience reports published Start-ups founded

Fig. 2 Overview of the start-up founding and report publishing time

Figure 2 shows an overview of when companies in our sample were founded and when
the reports were published. A total of 56 out of 88 companies (63%) have provided infor-
mation on their founding and closure time. The companies were founded between 2001
and 2013 (Median = 2010). For 77 companies we were able to identify when they have
published their experience report. The reports were published between 2006 and 2015
(Median = 2013).

Figure 3 summarizes the operational track length of the companies, which varies between
less than a year to 8 years. The majority of companies for which we know the track length,
38 out of 56 companies (68%), have operated between one and three years.

A total of 65 out of 88 companies (73%) have provided location information. Within this
group, 48 out of 65 companies (74%), were located in US, 13 companies were located in
Europe, and the rest were located in India, Australia and Canada.

In Fig. 4 we summarize status of the studied companies. In contrast to what is stated
on the website (cbinsights.com 2015), some of the companies have re-emerged, continue

8 years 1
6 years 4
5 years 2
4 years 9
3 years 10
2 years 17
1 year 11
Lessthan ayear 2
Unknown track length 37

0 5 10 15 20 25 30 35 40
Number of companies

Fig. 3 Overview of the operational track length

@ Springer

Empir Software Eng (2019) 24:68-102 79

1 10 20 30 40 50 60 70
Operational 3 3
Acquired 17 2
Inactive 3 2
Closed 43 iil5]
Do not mention external advice Report use of external advice

Fig. 4 Outcomes of the companies and impact of external advice

working, or were acquired by other companies, thus can be considered as relative suc-
cesses. Analyzing the reports and publicly available information, as of June 2016, we
have identified different outcomes of the evaluated companies. We distinguish between the
following:

— Operational: The company is still in operation. This category also includes companies
that have re-emerged with similar products. Also, companies that have pivoted, e.g.
redesigned their product. Examples of such companies are:

— GroupSpaces, available at http://groupspaces.com/

— Pumodo, available on iTunes as ‘Champion - Football Livescore, League and
Cup Action’

— PatientCommunicator, available at http://patientcommunicator.com/

— Acquired: The company, the team or its intellectual property was acquired by another
company. Examples of such companies are:

— Decide, acquired by eBay in 2013
— PackRat, acquired by Facebook in 2011
— ReadMill, acquired by Dropbox in 2014

— Inactive: The company has ceased any active sales or commercial product development
activities, however the product is still available to users. This category also includes
inactive companies that have made their products available as open-source.

— Closed: The company has ceased any operations, the product is not available to users.

In Fig. 4 we distinguish between companies that have reported participation in incubator
programs or otherwise received an external expert advice, e.g. consulted with investors or
mentors. There is no clear tendency of external advice being a determinant to company
survival, acquisition or close-down.

In the general start-up population, the failure rate is about 75% (Startup Compass Inc.
2015). Companies that are closed down or inactive we consider as failed start-ups. Compa-
nies that are operational or have been acquired we consider successes. As Fig. 4 shows, in
our sample 6 companies are still operational and 19 have been acquired, resulting in a total
of 25 (28%) companies that can be seen as successful, while 58 (66%) of the companies have
been closed, thus can be considered as failed. Although we do not know financial details of
the operational and acquired companies, the percentage of failed companies in the general
population (75%), and closed and inactive companies in our sample (72%) is similar.

@ Springer

http://groupspaces.com/
http://patientcommunicator.com/

80 Empir Software Eng (2019) 24:68-102

4.2 Knowledge area overview

As a result of provisional coding (see Step 1 in Fig. 1), we identified and mapped 876
statements from the experience reports to the SWBP taxonomy. Saldafia (2010) suggests to
look into how many reports mention a particular code instead of a total count of codes in the
dataset. Therefore, we removed identical codes per report from further frequency analysis.
After this filtering our dataset contains 755 codes.

We use the number of codes to illustrate what knowledge areas and their subcategories
are common in the reports and what rarely occurred (Saldafia 2010). There could be sev-
eral explanations why a knowledge area is discussed in an experience report. One is that
activities associated with a particular knowledge area were conducted and had some inter-
esting effect. This explanation suggests that a knowledge area is relevant for start-ups either
because it is useful (and yields positive results), or requires adaptation for use in start-ups
(if the knowledge area was applied with good intentions but provided unanticipated results).
Another explanation is that a company did not apply a potentially useful knowledge area,
however reflected on their mistake in a report. This suggests that a knowledge area could be
useful in hindsight.

Figure 5 shows a summary of this analysis. The horizontal axis shows the number of
reports mentioning a particular knowledge area; direction (positive or negative) indicates
impact. Differently shaded bars show whether the impact is discussed as having impact
on business development, software engineering or both. The total length of a bar indicates
the total number of codes referring to particular knowledge area. Note, that a knowledge
area could be discussed from various aspects in a single report, thus resulting in multiple
different codes per same knowledge area. The number of statements discussing a particular
knowledge area but not specifying any impact are shown in circles between the bars. In
total, 209 (28%) statements address software engineering aspects, and 296 (39%) address
business aspects of start-ups.

As Fig. 5 shows, software requirements engineering, software design and professional
practice are the top three most discussed knowledge areas in relation to inadequacies in
product engineering. Software engineering process, computing foundations, mathematical
foundations and the engineering foundations knowledge areas are not discussed at all in the
reports.

Figures 6, 7 and 8 illustrate what specific subcategories of requirements engineering,
software design and engineering professional practice are discussed in the reports. From the
requirements engineering knowledge area, requirements validation, analysis and elicitation
are the most discussed sub-categories. From the software design knowledge area, the most
discussed sub-category is user interface design. From the software professional practice the
most discussed sub-category is group dynamics and psychology.

5 Analysis and discussion

In this section we synthesize our analysis into the software engineering knowledge areas
reported by startups to answer the remaining three research questions. First, we report
how a knowledge area is applied, what specific practices are mentioned and what specific
challenges are discussed in the reports in relation to the knowledge area (RQ2). Second,
we explore what relationships between knowledge areas are reported to understand how
software engineering knowledge areas influence each other (RQ3). Third, we look into
related work from similar engineering contexts, compare challenges between start-up and

@ Springer

Empir Software Eng (2019) 24:68-102 81

SW Requirements Engineering ‘ ‘ 116 e

SW Design 5

SW Construction

SW Testing 3

SW Maintenance

SW Configuration Management

SE Management

SW Engineering Process

SE Models and ethods

SW Quality 3 9

SE Professional Practice e

SE Economics 2 0

Computing foundations

Mathematical foundations

Engineering foundations

Develop Vision and Strategy F 10 12 @ J

Market and sell products and services ‘ 14)(1 e

Manage customer service 2)@ e

Develop and manage human capital 74 e

Manage Financial Resources ‘ ‘ 9 a]

Manage external relationships 702 e

Business assistance and training 3 e

Legal structure and protection 2 0
-80 -60 -40 -20 0 0 20

Impact <4 Negative — Unknown — Positive —9»

T Impact on business m Impact on product . Impact on both

10 12 @ Number of codes with unknown impact on business, product or both

Fig. 5 Overview of the number of statements associated with knowledge areas

other engineering contexts, and identify potentially useful practices to solve engineering
challenges in start-ups (RQ4).

Figure 9 shows key knowledge areas and their relationships of software-intensive prod-
uct engineering in start-up companies (identified by applying pattern and axial coding as
explained in Section 3.3). In Fig. 9, boxes represent knowledge areas, arrows denote a rela-
tionship between knowledge areas. A relationship indicates that a parent category provides
input, i.e. information, to a child category. In further subsections we discuss the knowledge
areas and their relationships in detail.

To support traceability between our analysis and data in the reports, we use references
to the original data. The references are represented by identifiers in curly braces after a
statement, formatted in the following way: C<{company#>-<chunk#>}. The identifiers
refer to the supplementary material available online.*

“http://eriksklotins.1v/files/exp-reports-study-supplemental- material.pdf

@ Springer

http://eriksklotins.lv/files/exp-reports-study-supplemental-material.pdf

82 Empir Software Eng (2019) 24:68-102

SW Requirements Fundamentals

Requirements Process

Requirements Elicitation 9
Requirements Analysis 3
Requirements Specification
Requirements Validation ‘ ’ 174
Practical Considerations
Software requirements tools
-40 -30 -20 -10 0 0 10
Impact <4 Negative — Unknown — Positive —»
[] Impact on business [] Impact on product [l 'mpact on both
174 Number of codes with unknown impact on business or product

Fig. 6 Breakdown of the software requirements engineering knowledge area

SW design fundamentals ‘
Key issues in SW design
SW structure and architecture
User interface design 2
SW design quality analysis and evaluation
SW design notations
SW design strategies and methods
SW desing tools
-10 -5 0 0 5

Impact <4 Negative — Unknown — Positive —»

[] Impact on business [] 1mpact on product [l 'mpact on both

2 Number of codes with unknown impact on product

Fig. 7 Breakdown of the software design knowledge area

_—r

Impact <4 Negative — Unknown — Positive —9»

Professionalism
Group Dynamics and Psychology

Communication Skills

-10

D Impact on business D Impact on product . Impact on both

Fig. 8 Breakdown of the software professional practice knowledge area

@ Springer

Empir Software Eng (2019) 24:68-102 83

Value proposition
(part of Develop Vision and Strategy KA)

Target Promised Competitive
audience benefits features

Business processes

SWEBOK

Requirements engineering

Requirements Requirements - Release . | Requirements
sources and A > . > s
. prioritisation planning validation
elicitation
Software design | Professional ‘ Engineering
KA - practice KA [~ management KA
Maintenance KA > Quality KA < Testing KA

Fig. 9 Software engineering categories and their relationships

5.1 Develop vision and strategy knowledge area

Our analysis shows the process of identifying a product value proposition as a bridge
between marketing and engineering aspects of a product. Value proposition provides an
essential input for starting software requirements engineering activities. The value proposi-
tion is a structured description of a product idea. It outlines what is the target audience for
the product is, what benefits the product aims to deliver, and what the competitive features
of the product are (Carlson and Wilmot 2006).

The reports discuss identification of the value proposition as an iterative process where
the initial formulation is brainstormed, and then improved by means of market research, cus-
tomer interviews, prototype demonstrations and similar activities {C2-50, C11-10, C24-3,
C29-63, C37-30, C48-5, C50-9, C52-26, C63-45, C64-33, C67-45}. The value proposition
bridges the gap between market research (with a goal to explore market potential of the
product) and requirements engineering (with a goal to identify a feasible solution) (Hague
et al. 2004; Dahlstedt et al. 2003).

As shown in Fig. 9 a structured formulation of the product idea helps to identify specific
goal level requirements which then are broken down into more specific functional and qual-
ity requirements by requirements engineering activities. Target audiences help to identify
stakeholders for requirements elicitation activities. Inadequacies in the value proposition
may hinder requirements engineering activities. For example, an unclear overall product

@ Springer

84 Empir Software Eng (2019) 24:68-102

goal makes it difficult to specify criteria for requirements prioritization, release scoping and
for identifying stakeholders.

5.2 Requirements engineering knowledge area

Software requirements engineering is a set of activities to capture the needs and constraints
placed on a software product, and to identify a feasible solution that contribute to solving a
real-life problem. Therefore, requirements engineering can take both problem and solution
oriented view (IEEE 2014).

As shown in Fig. 5, requirements engineering is the most discussed software engineering knowledge
area in the reports. Further analysis of statements from the reports, illustrated in Fig. 9, suggests
that requirements engineering is the central software engineering activity in start-ups.

Start-up companies operate in a market-driven environment, thus initial requirements
are invented by a start-up team (Dahlstedt et al. 2003; Ambler 2002). In similar contexts
outside start-ups, requirements are validated by internal feasibility reviews, interviews, sur-
veys, crowd-funding success and other techniques that are applicable in the pre-development
stage (Fabijan et al. 2012; Ambler 2002). Requirements negotiation takes place to prioritize
what features to implement next (Tingling and Saeed 2007).

The experience reports suggest that start-ups use a similar approach to requirements
engineering. Software is developed in short iterations aimed to implement and validate a
slice of requirements. Results from the validation are used as input for subsequent iterations.
As Company #1 reflects on quickly building a prototype, testing it and only then undertaking
more extensive mobile application development:

“We had a mobile website prototype in front of users within a week and iterated based
on that before building out the native [mobile application] version.”

Requirements engineering drives the software development process by helping to acquire
domain knowledge, explore problem domain, and to identify potential solutions (Hofmann
and Lehner 2001; IEEE 2014). As put by Company #66:

“One of the key lessons I learned is that great startups have a blindingly obvious,
ideally really large and painful problem that the company is trying to solve. Solving
this problem should drive almost every decision in the startup.”

Exploring the problem domain and user needs is one of the key practices in early stage start-
ups (Crowne 2002; Churchill and Lewis 1983). Our findings are consistent with Hofmann
and Lehner (2001) who argue that inadequacies in requirements engineering are the single
largest cause of software project failure.

In the following subsections we discuss sub-categories of the requirements engineering
knowledge area.

5.2.1 Requirements sources and elicitation

This category represents practices to collect requirements and to identify sources from
where engineers can collect requirements (IEEE 2014; Dahlstedt et al. 2003).

The reports suggest that start-ups operate in a market-driven context and that the initial
requirements are derived from the product value proposition. Interviews, surveys, observa-
tions and demonstration of prototypes are reported as methods to adjust goals, discovering
new requirements, and to validate existing requirements {C1-45, C14-20, C29-2, C48-5,
C50-9, C59-24, C75-4, C79-102, C86-10}

@ Springer

Empir Software Eng (2019) 24:68-102 85

The data from the experience reports suggests also that start-up teams use local busi-
nesses, people from their social network and even their teams as requirements sources.
Similar products, industry standards and regulations, and partnership agreements are dis-
cussed as important requirements sources in addition to customer feedback. Examination
of similar products is reported as useful to identify base functionality of a product and to
spot opportunities for innovation {C06-12, C1-45, C14-8, C14-20, C33-73, C39-10, C50-8,
C61-43, C69-6, C75-4, C79-102, C86-10}.

The reports suggest that the utilization of customer feedback depends on access to
requirements sources and interviewer’s skill to discover actual customer needs. The access
could be limited by, for example, physical distance and inadequacies in identifying potential
customers. Mistaking curious people for potential customers can lead to false requirements
hindering the product’s market potential. Some companies report testing customer interest
by asking for an upfront payment {C14-34, C21-7, C02-25}. As Company #14 states:

“I think we did not understand that the real purpose of selling was validation (or inval-
idation) and had the *always be closing’ mindset at a too early stage of the company.
Later, I have been joking that during the validation process, if customers don’t buy,
you should open a champagne bottle and celebrate that you found one way that didn’t
work and are now a lot closer to success.”

The start-up companies reflect on the importance of early customer feedback and the
dangers of not using customer input in the requirements engineering process. Even though
gathering of customer input is discussed as difficult due to a physical distance and vague
understanding of the target market, customer input is reported as an essential part of require-
ments engineering. Companies that have neglected early customer feedback report poor
product reception in the market and wasted resources on developing unwanted features,
often leading to the company’s collapse {C03-10, C22-4, C35-23, C50-8, C52-20, C34-2,
C59-24, C75-4, C75-17, C75-19, C76-11, C78-15, C78-19, C86-10, C88-4}.

A commonly reported difficulty is to create an engaged community of early customers
of the product. This community facilitates requirements elicitation, validation and other
activities were direct customer feedback is essential. The reports suggest that initially a
person may show genuine interest in the product, however, if the product does not solve an
actual problem for the customer, the interest fades away quickly {C06-6, C35-20, C52-22,
C59-7, C65-16, C67-38, C69-6, C82-16, C83-6}.

The reports suggest that misuse of customer feedback stems from difficulties to identify
and access requirements sources, i.e. customers, and poor elicitation methods, for example
asking the wrong questions {C4-22, C4-72, C59-7, C59-24, C61-43, C79-102, C83-6}. As
Company #2 reflects:

“People compliment you on the idea because they believe it will be so useful for
people other than themselves. i.e., they get into advisor mode.”

Discussion As shown in Fig. 9, using value proposition to identify concrete requirements
sources and software requirements is one of the first steps in product engineering activities.
Inadequacies in value proposition and requirements engineering activities could hinder any
further engineering activities. Unclear quality and functional requirements lead to over or
under-engineering of the product.

Identification and access to useful requirements sources is essential for requirements
elicitation (Mitroff 1983). In a market-driven context, a company must solve the practical

@ Springer

86 Empir Software Eng (2019) 24:68-102

problem on how to select a manageable number of users, e.g. early customers, to perform
requirements elicitation activities.

Pacheco and Garcia (2012) suggest to classify all likely users and to study all of the user
classes to identify their role in the product. Pruitt and Grundin (2003) suggest that the use
of superficial characters representing users of the product, i.e. ’personas’, helps to identify
different user groups and to facilitate discussion around the requirements. The personas
could be created with help of a small group of customers or domain experts and further detailed
with interviews, surveys and ethnographies to create more detailed descriptions of the users
and their needs (Miller and Williams 2006; Pruitt and Grundin 2003). This lightweight
practice could be useful for start-ups when actual customers are not readily available.

Fabijan et al. (2012) suggest different customer feedback collection techniques useful
at different development stages. Since access to actual users for face-to-face interviews is
usually limited, start-ups could use indirect requirement sources such as listing the product
idea on a crowd-funding website (Fabijan et al. 2012; Pruitt and Grundin 2003), validating
the product idea and discover new requirements with less effort.

Due to practical restrictions, only a limited number of potential users can be involved
in elicitation and any requirements are generalized over a larger population. However,
such approach poses risks of biases, such as sampling (e.g. consulting only expert users
as requirements sources), and data collection method (e.g. utilizing only quantitative sur-
veys). Wilson (2006) argues that triangulation and use of multiple methods, measures and
approaches must be explicitly interweaves in requirements elicitation process. He argues,
that the best results can be achieved by mixing qualitative and quantitative methods, and
using multiple complimentary data sources.

Karlsson et al. (2007) report that technology focused companies often neglect user feed-
back in favor of inventing requirements internally. This is partly due to difficulties obtaining
feedback on a new product that is unknown for a market, and partly due to focus on tech-
nology rather than actual customer needs (Karlsson et al. 2007). The reports suggest that
start-ups often use interviews to elicit requirements from users, however users are not always
able to articulate their needs. Davis et al. (2006b) identify four typical situations in require-
ments elicitation and argue that each requires specific elicitation techniques. For example,
if a user and the analyst share knowledge about a specific requirement, simple questioning
to verify the requirement could be sufficient. However, if a requirement is unknown to both
sides then mutual exploration of the problem and requirements discovery are a more suit-
able approach to elicitation (Davis et al. 2006a). This resonates very well with findings by
Kujala (2008) arguing that it is beneficial to empower and involve a group of key customers
in daily development activities.

5.2.2 Requirements Prioritization

Requirements prioritization is a requirements analysis activity to categorize requirements by
how essential they are for meeting overall goals of the product. The requirement priorities
need to be balanced against resources, time and other constraints (IEEE 2014).

Requirements prioritization is discussed most commonly in relation to identifying fea-
tures for the smallest viable feature set, i.e. a minimum viable product (MVP) (Junk 2000).
The MVP is reported as useful to showcase the main advantages of the product to users and
to spot inadequacies in product features or design early {C75-17, C14-11}.

The reports indicate that customers, own ideas, competitors and similar sources provide
a constant flow of ideas for new features and improvements. However, due to resource lim-
itations, only a few can be implemented. Start-ups report on selecting features that deliver

@ Springer

Empir Software Eng (2019) 24:68-102 87

the most value to their customers. However, this process is reported as difficult without
mentioning any specific practices {12-110, 14-27, 15-25, 33-6, 43-6, 48-9, 50-9, 52-6}.

Requirements prioritization is reported as challenging, specifically the selection of prior-
itization criteria. To maintain a product focus and to stay within resource, time and quality
constraints, the company must prioritize what features are the most relevant to deliver a
promised value proposition {C50-11, C50-11, C57-12, C71-24}.

Some companies reflect that their challenges with requirements prioritization originate
from a vague value proposition, i.e. unclear product goals and benefits. The reports suggest
that consequences of poor requirements prioritization are over-scoped product releases and
wasted resources on implementing unwanted features {C76-5, 50-18, 69-14, 79-48}.

Discussion As illustrated in Fig. 9, requirements prioritization goals are defined by the
product value proposition.

Quantifying value is a complex task and often involves making a compromise between
interests of different stakeholders. When maximizing value is used as a prioritization goal,
different perspectives of value need to be considered. Khurum et al. (2012) propose a break-
down of software value aspects therefore enabling discussion about different perspectives
on value.

Lehtola et al. (2005) identifies a need for alignment between business and engineering
activities in a market-driven setting. The authors discuss use of roadmapping as a technique
to align product and market perspectives. A road-map helps to connect immediate engi-
neering goals with higher level objectives and to facilitate the discussion between different
stakeholder perspectives, i.e. customers, business and engineering.

5.2.3 Release planning

Release planning is closely related to requirements prioritization and concerns the iden-
tification of sets of requirements that can be delivered to customers and provide compet-
itiveness in the market (Carlshamre and Regnell 2000). In a market-driven setting there
is a constant pressure to deliver features faster (Giardino et al. 2014). However practical
challenges, such as requirements interdependencies, need to be resolved.

When planning product releases, start-ups follow two general approaches: frequently
releasing small increments and delivery of a fully-fledged product. The frequent delivery
approach starts by creating a very simple functionality, even mock-ups, and continues until
the product matures. A continuous delivery process allows to conduct continuous require-
ment validation and to immediately adjust the product direction {C33-33, C48-4, C53-46,
C54-9, C54-11, C87-60, C46-13}. Fully-fledged releases take more time to build, thus con-
tinuous validation of the product direction is challenging. Moreover, as validation takes
place after the release, substantial effort is put on risk to be wasted {C14-11, C14-42, C52-
20, C78-19, C78-20, C87-60, C46-13}. Attempts to launch a fully-fledged version are most
commonly discussed in relation to neglect of user input and focus on technology rather than
an actual customer need {C14-11, C14-42, C52-20, C78-19, C78-20, C87-60, C46-13}.

Due to market pressure or internal uncertainty of what customers expect from the prod-
uct, companies desire to satisfy customers with a more complete and polished product. How-
ever, implementation of more features or higher quality requires more resources and post-
pones the opportunity to demonstrate the product to users, thus hindering requirements val-
idation activities. Companies that have leveraged on early user feedback and have launched
a less complete product, report fewer difficulties in marketing the product {C35-23,
C50-11, C52-20, C57-12, C71-24, C75-17, C75-18, C76-5, C78-19, C82-12, C86-11}.

@ Springer

88 Empir Software Eng (2019) 24:68-102

We found that companies often overscope their releases aiming to deliver a more
“ground-breaking” product in hopes for more positive user feedback {C14-11, C52-20,
C46-13, C78-19, C87-60}. As Company #59 states:

“We should have concentrated on the core idea and launched a Minimum Viable Prod-
uct (MVP) to test the concept, as we initially had planned even though we never had
heard of the concept of an MVP. We kept building more features, since we always
felt that ’the service needs X because Flickr has it too’ or "he/she said he needs that

59

feature’.

Overscoping could be a consequence of poor requirements prioritization.

Discussion As illustrated in Fig. 9, release planning is closely related to requirements
prioritization and requirements validation. Prioritization provides means for identify-
ing requirements to be included in a product release. Requirements in the release are
demonstrated to customers and, thereafter, validated by customer feedback.

Bjarnason et al. (2010) recognize that scoping of product releases is challenging. They
report that an unclear vision of overall goals, constant inflow of requirements, and miscom-
munication are some of the reasons for over-scoping the releases (Bjarnason et al. 2010). As
shown by the experience reports and supported by Bjarnason et al. (2010), consequences of
over-scoped releases are unmet customer expectations, wasted effort and delays.

Dahlstedt et al. (2003) and Alves et al. (2006) report that in market-driven requirements
engineering most requirements validation takes place after the product is released to the
users. Therefore, frequent releases enables early identification of potential flaws in the value
proposition or the requirements.

Incremental delivery of the product and frequent adjustment of plans are described as
key practices of Scrum (Rising and Janoff 2000). Rising and Janoff (2000) reports that orga-
nizing development in sprints and prioritizing features for upcoming release helps to deal
with uncertainty and changing requirements. Moreover, the Scrum method implies that after
each iteration an assessment of progress, user feedback and re-prioritization of tasks takes
place. Such rigorous approach to development and planning helps to break down the product
to manageable chunks and progress is made even if requirements change. Predictable tim-
ing and scope of product releases encourages users to adopt the product (Rising and Janoff
2000).

5.2.4 Requirements validation

Requirements validation covers practices to ensure that engineers have understood the
requirements and the proposed solution actually solves the original problem (IEEE 2014).

The reports suggest that start-up companies aim to focus their activities around con-
tinuous requirements validation. The most commonly discussed technique is to implement
requirements in a early version of a product, i.e. a prototype, demonstrate it to the users
and to collect feedback, commonly called a feedback loop {C01-47, C14-8, C29-3, C35-20,
C52-22, C54-9, C55-16, C61-7, C71-23, C75-18, C86-14, C87-56, C34-4, C46-13}.

User feedback is used both to validate the requirements and to identify new user requirements
for the product. In addition, interviews with users are reported as useful to review and discuss
the requirements before prototyping {C02-11, C06-6, C14-8, C29-33, C63-13, C34-2}.

The companies report on using various metrics to gather quantitative data how customers
use the product. The collected metrics are used to validate requirements and to steer further
product development {C1-66, C48-5, C50-18, C53-72, C57-12, C64-17, C75-10}.

@ Springer

Empir Software Eng (2019) 24:68-102 89

However, many companies have failed to establish the feedback loop either due to the
lack of an internal engineering process to manage user feedback or the difficult access to
users {C49-21, C50-18, C34-2, C86-10}. As Company #14, building a software tool for
ordering photo prints on-line, reflects:

“Iterations took longer than planned for us, because small print labs were often quite
busy and did not have time to immediately have a look at the new version and give
feedback. [..] When they finally had time to try out the new version, if they felt that it
still needed improvement or they came up with a new feature that would be needed,
the launch was likely to be postponed by at least a month.”

Discussion As shown in Fig. 9, requirements validation in start-ups is closely related to
release planning and provides an input to planning activities. Release planning determines
what features are released and, therefore, undergo validation. Outcomes from the validation
are used to adjust further product direction.

The most recurring issues in requirements validation are the lack of a structured process
to utilize user feedback and the inability to select relevant metrics. However, the experience
reports offer little details on specific practices addressing these issues. Our findings are con-
sistent with Olsson and Bosch (2015) who identify similar issues in established companies
developing software-intensive products.

Hanssen and Fegri (2006) report on involving expert users in a deploy-test-evaluate loop.
The expert users are central in testing and evaluating each release. However, the authors
also emphasize the required overhead to maintain the user-developer relationship, to keep
the users engaged and to make strategic decisions on the product direction.

Further research is required to understand how to identify users to be involved in devel-
opment process and to what extent methods by Hanssen and Faegri (2006) could be applied
in start-ups.

5.3 Software design knowledge area

Software design is a set of activities and a result of defining software architecture, components,
interfaces and other characteristics of the system, supporting its construction. Software design
can take place before the construction process as in plan-driven contexts, or interweave with
the construction process as in an agile setting (IEEE 2014; Yang et al. 2016).

As shown in Fig. 7, most (22 out of 34) statements associated with the Software Design
knowledge area lack details for mapping to subcategories. The remainder of the statements
specifically discuss the User Interface Design subcategory.

The reports offer very little information on the actual construction of the product, coding
or integration of components. Instead, the reports discuss design decisions behind selecting
one or another construction technology, components or design goals.

Statements from the reports suggest that start-ups aim to release their products or ser-
vices fast, thus spending little time on upfront software design. Start-ups opt for incremental
designs and faster product releases {47, 3101, 3956}. Scalability and flexibility of the prod-
uct are identified as primary goals of software design {264, 1245, 1836, 1922, 2982, 3249,
3956, 1305, 733,1166}.

Start-ups report on attempts to leverage on cutting-edge technologies with the aim to gain
a competitive advantage such as faster time-to-market or additional features. However, new
technologies are often reported as immature causing product quality issues. As Company
#3 states

@ Springer

90 Empir Software Eng (2019) 24:68-102

“Sure, it was seven years ago, pre-iPhone and pre-Android, so it was ahead of its
time, we had to use Adobe Flash on a browser which sucked in so many ways I can’t
even start to explain how bad it was. Technology would be so much better and more
important all mobile today.”

Selection of technology also concerns third-party solutions that can be integrated and
configured to constitute the product. Third-party components are used as a method to deliver
functionality with little development effort. Leveraging on existing functionality of third-
party components is reported as a key practice in software design. Some companies that
have not leveraged on third-party components admit lack of skill and experience in software
design {C04-23, C69-12}.

Several reports mention good product user experience as an important quality and their
efforts to improve it. However, no specific practices regarding user experience engineering
are mentioned {6-11, 14-15, 35-17, 66-35, 63-54}. User interface design is recognized as
having an impact on customer behavior and attitude toward the product. As Company #66
reflects on user interface and user experience design:

“The team never properly sat down and brainstormed the UX. Quick decisions were
made to get the MVP out the door and these had serious impacts on how the product
was received by customers.”

Constantinides et al. (2010) and May (2012) also recognize the importance of user interface
and its impact on product adaptation.

Other goals of user interface design are the development of a product’s visual appeal, to
establish a brand identity, to gain attention from media {C02-87, C33-36, C67-13}, search
engine optimization {C17-16}, and promoting viral effects in social networks {C66-35}. An
iterative approach of frequently updating the user interface and measuring changes in the
user behavior is reported as a viable practice to build user interface of a product {C01-47,
C02-80, c12-126, C14-33, C33-33, C52-19, C82-13, C46-13, C54-29, C63-06, C02-81}.

The reports suggest that start-up companies use brainstorming {C66-42}, mock-ups and
wire-frames {C14-15} to design user interfaces of a product. Frequent iterations {C33-36},
experiments {C66-35} and usability tests {C14-15} are applied to continuously improve the
user interface {C02-87, C35-36, C61-17, C66-35}.

However, under a tight schedule, the process could be abandoned and user interface
designs are done in a hurry with little consideration {C14-15} causing quality issues later.
Attempts to salvage a product that is unsuccessful for other reasons by tweaking the user
interface leads to wasted resources with little or no gain {C02-87, C14-15, C63-54}.

Discussion The reports suggest that when the understanding of requirements is vague, it is
useful to put together a quick prototype demonstrating a feature in question. The prototype
is used to gather user feedback before any extensive development takes place {C33-14, C57-
26, C71-18, C78-25, C79-50, C79-115}. However, sticking more features into a makeshift
product degrades the architecture and technical debt accumulates over time. Maintaining a
manageable level of technical debt and creating an architecture supporting changing require-
ments and enabling quick prototyping is a major challenge {C04-58, C14-12, C22-04,
C33-42, C50-11, C58-15, C64-31}.

Software design activities in start-ups are closely related to requirements engineering.
Non-functional requirements determine the required level of quality as an input for software
design activities. However, vague or invented non-functional requirements could lead to
under or over-engineering of a product {C04-22,C04-71, C23-3, C75-23, C55-14}.

@ Springer

Empir Software Eng (2019) 24:68-102 91

Quality requirements constraining internal aspects of the product, such as time-to-market
or maintenance costs, are repoted as often overlooked. Poor or neglected quality require-
ments may create pitfalls in the long run: inadequately high maintenance costs when product
is launched or overly long release cycles {C04-22,C04-71, C23-3, C75-23, C55-14, C32-3,
C78-25, C35-22, C79-115}.

Creating software design that requires minimal lead time and can accommodate changing
requirements while maintaining high product quality is a challenge. The reports suggest that
it takes skilled engineers to build such designs and reflections on how inadequate engineer-
ing skills had contributed to poor design leading to poor product quality {C79-50, C75-23,
C53-68, C72-18, C73-40, C01-02, C02-80, C35-52, C43-17, C49-26, C52-19, C67-33}.

A study by Woods (2015) suggests that goals of software architects often clash with
goals of agile teams, however there are simple principles that allow both to benefit from
each other. For example, breaking the software into smaller components and delivering
incrementally helps to avoid large upfront designs. Communicating architecture principles
to the developers help the team members to understand why architectural structures exist and
what are most important characteristics of the architecture. Yang et al. (2016) identifies forty
three software architecture approaches that can be used in an agile context. The identified
approaches range from naive (considering architecture only for current iteration) to use or
architectural design patterns and cost-benefit analysis.

State-of-the-art in agile software architecture offers a variety of practices and guidelines
that could be relevant for start-ups. However, it needs to be explored which exact practices
are most efficient to address start-up specific challenges.

5.4 Software engineering professional practice knowledge area

The software engineering professional practice knowledge area comprises skills, knowl-
edge and attitudes that an engineer must posses to practice software engineering (IEEE
2014). The reports discuss various aspects of professional practice, such as decision
making, motivation, trust, importance of good software engineering skills, and ability to
learn.

Difficulties in communication are discussed as having a significant impact on decision
making, motivation, trust and general climate in the team. As Company #79 describes the
communication between co-founders:

“Overall, the most important [challenge] is that Nathan and I had difficulty communicating
in a way which would allow us save the company, and that this really drained out motivation.”

The reports contain descriptions of team structures ranging from hierarchical to flat. In
a start-up team the highest authority are founders. However, some founders empower and
involve other team members in making important decisions while others exercise autocracy
in all aspects of their companies {C01-46, C12-54, C62-17, C74-40, C78-17}.

Autocracy is discussed in the reports as a cause and consequence of lack of trust between
team members, miscommunication of company goals and lack of transparency in deci-
sion making. However, involving the whole team in every decision hinders performance
and team motivation. Separating areas of responsibility and empowering team members
to make decisions are discussed in the reports as viable practices for decision making
{C05-06, C12-83, C16-08, C17-19, C46-05, C66-42, C69-04, C71-13, C74-40, C77-22,
C78-17, C84-12}. Company #17 points out that in a dynamic start-up environment it is dif-
ficult to make decisions based on previous experience. Instead decisions should be based on
data and experimentation:

@ Springer

92 Empir Software Eng (2019) 24:68-102

“No one has any idea what is going to work and what’s not. Don’t listen to the people
who think they know. Sure, this one didn’t pan out, but each failure helps us navigate
the thousands of decisions we will need to make for the next one. That knowledge
helps us build better things that will last longer.”’

Mutual trust between team members is reported as an important factor for good team-
work and decision making. Founding teams with joint previous experience reflect on team
issues more positively and reflect on mutual trust as a contributing factor to good teamwork.
The inability to communicate mutual expectations, intentions and motivate own decisions
hinders trust {C49-26, C62-19, C72-18, C73-32, C73-34}.

Capabilities to learn new emerging practices, adapt to an uncertain environment and
collaborate are reported as essential in a start-up environment. Some reports discuss how
unanticipated personality traits have contributed to team break-up and company collapse,
suggesting that good team composition is essential in start-ups {C02-47, C14-2, C21-17,
C29-4, C73-32, C46-5}.

A working environment encouraging communication and collaboration, such as a ded-
icated office space and joint activities, boosts performance and increases motivation
{C56-16, C61-65, C71-14, C73-9, C73-34, C77-22}. Working remotely is reported to have
negative effects in the long term {C21-14, C75-15, C77-3}, however, when done with con-
sideration, working remotely can have positive effects, i.e. to avoid disturbances in the office
{C75-12} or being closer to the target market {C01-45, C21-14}.

The reports discuss how initial optimism for fast success vanishes and development tasks
shift from inventing the product to less exciting activities such as handling customer ser-
vice {C02-50, C02-74, C04-20, C04-22, C77-3}. When a critical motivator is not present
anymore, a team member may leave the company or start following his own agenda {C01-
28, C12-142, C21-16}. Motivation to work in a start-up is often discussed in the reports in
relation to shared goals and vision. A lack of shared understanding about changing goals is
reported as a consequence of poor value propositions {C01-58, C12-142, C22-07, C53-86,
C71-14, C74-40, C76-06. C77-16, C79-18}.

Due to time constraints, start-up companies choose people that fit the team by “character
rather than skill” {C63-6, C73-34, C76-6}, implying that one’s commitment and teamwork
skills are more important than technical skills.

The reports discuss emotional issues of working in a start-up. Taking responsibility of
many tasks at once creates anxiety, leading to burnout and loss of motivation. The reports
suggest that the founders loss of motivation to continue operating a start-up, leads also to
the end of the company. Anxiety and burnout are also reported as outcomes and poor work
and personal life balance {C01-18, C27-35, C73-8}.

Software engineering is an inherently human and team based intellectual activity. Team
factors have emerged as critical in many different development environments and have
effect to nearly any other activity (Fagerholm 2012; Khan and Spang 2011; Chow and Cao
2008; Sudhakar 2012; Carmine et al. 2016). However, as shown in Fig. 9, the reports suggest
that software design is the most affected software engineering knowledge area. Difficulties
in communication, inadequacies in skills and decision making are exposed through sub-
optimal software design and poor product quality. This finding is consistent with Carmine
et al. (2016) reporting that team’s disregard of structures and engineering processes lead to
deterioration of product architecture.

Fagerholm et al. (2015) reports a study on different factors affecting developer per-
formance in lean and agile environments. In this study performance is used to bench-
mark efficiency and effectiveness of a team. They explore different factors facilitating

@ Springer

Empir Software Eng (2019) 24:68-102 93

performance, creating performance awareness, disrupting performance and others. This
study shows that there are few key factors contributing to good developer experience.
For instance, control of own work, decision power, and good environmental atmosphere
contributes positively to overall team performance. Several factors, such as open office,
collaboration and competition, and subordinance can both enhance and worsen a team
performance.

De Melo et al. (2013) explores agile team productivity and lists several team related
processes contributing to productivity, staff turnover and commitment. For example, good
conflict management, sharing of expertise, and team coordination are essential to high
developer commitment, low staff turnover and high productivity.

As exemplified with these two studies, state-of-the-art identifies the key ingredients for
high performing teams in agile and lean environments. The same factors could be applicable
in start-up teams. However, start-ups face certain specific limitations in team formation.
Firstly, start-ups are founder centric and team environment highly depends on dynamics
between the founders (Criaco et al. 2014). Secondly, lack of resources limit access to highly
skilled individuals, especially in the early stages. This could lead to sub-optimal initial team
composition, and more effort is required to develop the team as a whole to reach the desired
performance level (Fagerholm et al. 2015; Carmine et al. 2016).

5.5 Software Quality knowledge area

Software quality is a multi-faceted concept in software engineering. Nearly all other
knowledge areas aim to somehow contribute to software quality (IEEE 2014). Kitchen-
ham and Lawrence (1996) identifies five perspectives on quality: transcendental, user,
manufacturing, product and value-based view.

Figure 5 illustrates that little details are provided in the reports regarding software
quality. Superficial statements indicate that start-up companies see software quality as prod-
uct’s characteristics to meet users needs, thus focusing on the user perspective of quality
(Kitchenham and Lawrence 1996). The reports discuss usability, especially performance,
user experience and reliability as their focus areas {C50-15, C50-22, C61-17, C67-23,
C67-26, C67-32, C78-15, C86-13, C86-14, C87-22, C37-4, C46-10}.

The reports reflect on issues stemming from product quality: poor product reception due
to an insufficient level of quality, or emphasis on the wrong quality aspects (for example,
scalability over time-to-market) {C14-15, C63-54, C66-35, C54-35, C69-12 }.

Poor product adoption or loss or reputation are reported as consequences of poor product
quality. However, very little details are provided on quality requirements and on any quality
assurance procedures.

Discussion While start-ups discuss very little how to achieve software quality, the con-
sequences of inadequate quality, such as ruining the product’s image or overly expensive
product maintenance, are discussed. We observed that software quality is more discussed
in closed companies. This tendency suggests that the importance of software quality
may be realized only in hindsight. However, we could not confirm any statistically
significant connection between company outcome and statements pertaining software
quality.

As shown in Fig. 9, quality originates from product design. The analysis of the reported
software design practices in Section 5.3 reveals that companies often put excessive resources
on improving certain quality attributes with little market need. The analysis of the reported
requirements engineering practices in Section 5.2 shows that there is little discussion on

@ Springer

94 Empir Software Eng (2019) 24:68-102

quality requirements. Moreover, no practices to assure quality requirements were identified
(see Section 5.7).

These findings indicate a gap between requirements engineering and software design.
We argue that vague and wrongly prioritized quality requirements contribute to inadequate
product design affecting the product’s potential to deliver the promised value.

Regnell et al. (2008) argue that in a market-driven context, product quality aspects have
different thresholds. If a quality indicator is below a certain threshold, a product is useless.
Within certain thresholds the product is useful but does not differentiate itself from com-
petition. Above a certain threshold the product becomes competitive and at some point the
quality becomes excessive and costly (Regnell et al. 2008). The concept of quality thresh-
olds enables a company to identify important quality indicators and to perform requirements
elicitation to determine the threshold values. Understanding of the threshold values and mul-
tiple perspectives of value enables the company to set and specify quality goals. Azar et al.
(2007) propose a lightweight method to balance multiple influences to quality requirements
and to determine optimal product quality goals. As elaborated in Section 5.3, companies
often fail to determine the required level of quality and waste resources on excessive quality
features. More research is required to understand to what extent value-oriented requirements
engineering practices could be applied in start-ups.

5.6 Software Engineering Management knowledge area

The engineering management knowledge area concerns organizational aspects of software
engineering, such as initiating, planning, monitoring, controlling and reporting of software
engineering activities (IEEE 2014). While the dynamic environment in start-ups makes any
detailed plans outdated quickly, the engineering process still must be controlled, follow
resource and time constraints, and produce a result that is aligned with overall goals of the
company.

With respect to the software engineering management knowledge area, the reports
discuss effort estimation, monitoring and product discontinuation practices.

The reports suggest that the companies aim to achieve certain business goals, either to
qualify for further external funding or to establish sufficient cash-flow to support devel-
opment efforts. Pursuing these goals require investments in product development. Thus,
estimation of the required resources is an important step to assess feasibility of the goals.
The reports discuss how overly optimistic estimates contribute to the collapse of a company
due to the lack of resources to finish the product {C29-35, C66-35, C77-5, C79-11, C79-
120} or missed market opportunities {C29-35, C79-11}. However, the reports do not discuss
any specific effort estimation method.

The start-ups report that any initial plans are based on assumptions {C01-77, C02-74,
C06-8,C52-30,1967-1978,C24-12} and are adjusted as data from requirements validation
comes in { C39-9, C06-6, C82-7, C50-8, C57-18, C34-5, C65-21, C65-14, C35-22, C14-
47, C66-20, C37-12, C61-10, C61-21, C61-17, C29-40, C33-27, C04-92, C53-110, C54-33,
C02-75, C02-91}. Feedback from customers helps to determine the next immediate step,
e.g. to improve certain features or collect feedback from a different stakeholder group. Even
though the companies frequently refer to adjusting their plans based on success of a product
release, we found very little details about this process {C01-43, C12-142, C22-04, C02-32,
C29-07, C33-44, C52-08, C52-20, C53-50, C46-13, C60-40, C82-16, C86-10, C51-12}.

The reports suggest that start-ups attempt to estimate their progress by looking at various
metrics that should be carefully selected and tied to business goals. Measuring the wrong
thing or measuring too many things may lead to data overload and difficulties to interpret

@ Springer

Empir Software Eng (2019) 24:68-102 95

many conflicting measurements {C01-66, C02-93, C05-5, C14-13, C29-25, C33-46, C35-
26, C48-5, C50-18, C57-12, C64-17, C74-36}. As Company #50 reflects on selecting KPI:

“As a business leader you need to figure out the metric that matters most for your
company and understand that the more you measure, the less prioritized you’ll be.
Don’t fall into the trap of trying to measure everything.”

The reports discuss different approaches to product discontinuation. Companies with
products that had attracted a significant number of users report a timely notification to the
users about the product discontinuation, and instructions on how to back-up their data and
migrate to different solutions {C18-4,C47-6}. Some companies leave the product accessible
but cease any further development or maintenance efforts {C05-7, C10-15,C32-4,C36-5}.
Few companies report open-sourcing the product {C80-13, C65-41}.

The reports suggest that decisions stemming from engineering management influence
release planning, e.g. by determining the release strategy, and requirements prioritization
by setting prioritization goals. Engineering management also influences the professional
practice knowledge area by setting expectations and constraints on the engineering team.

Discussion Shahin and Mahbod (2007) proposes criteria for defining organizational goals
and a structured method to select key performance indicators for assessing progress toward
said goals. A combination of SMART (Specific, Measurable, Attainable, Realistic and
Timely) criteria to define goals and analytical hierarchy process (AHP) to select metrics to
assess progress toward the goals (Shahin and Mahbod 2007) is a feasible alternative to the
“gut feeling” approach described by Olsson and Bosch (2015) and Terho et al. (2015).

Terho et al. (2015) argue that fundamental changes to the start-ups’ business plans, i.e.
pivoting, are largely based on a gut feeling and are caused by an urgent need, e.g. need
for more revenue. However, the collection on operational data (key performance indicators)
helps to make more motivated decisions with specific goals (Terho et al. 2015). Therefore,
use of a structured method to select important metrics, for example Shahin and Mahbod
(2007), could improve decision making in start-ups.

Garengo et al. (2005) report that the lack of resources, little attention to formalization
and a reactive approach are factors that hinder implementation of performance indicators in
small and medium enterprizes. Cocca and Alberti (2009) argue that key performance indica-
tors are essential to make informed decisions and propose best practices in implementation
of performance indicators. The study lists qualities of a good performance indicator and
exemplifies maturity grids as a tool to in decision making. Shahin and Mahbod (2007) pro-
pose a lightweight technique based on the analytical hierarchy process (AHP) to select and
prioritize key performance indicators. These practices for selecting and implementing key
performance indicators could be considered for adaptation in start-ups (Shahin and Mahbod
2007; Cocca and Alberti 2009).

Giardino et al. (2014) emphasize the uncertainty in the start-up environment and argue
that development teams in start-ups are formed by low-experienced engineers. The lack
of joint and individual experience makes the application of expert judgment based effort
estimation methods difficult (Molokken and Jorgensen 2003). Usman et al. (Usman and
Mendes) report that the most widespread effort estimation technique in agile teams is plan-
ning poker, and the most popular size metric is story points. Moreover, the most common
planning levels are current iteration and release. Whether the same methods are equally
widespread in start-ups as well requires further research. However, group estimates, i.e.
planning poker, is reported as being more accurate than individual estimates and could be
very well applied in start-ups (Haugen 2006).

@ Springer

96 Empir Software Eng (2019) 24:68-102

Existing literature presents very little discussion on software product discontinuation.
Jansen et al. (2011) presents a structured plan on how to discontinue a software product.
The proposed plan includes adequate pre-planning, transferring customers and partners to
another solution and finally reallocation of the product team. Given the lack of resources it
is unlikely that start-ups put more than absolute minimal effort on product discontinuation.
However, the list of steps to discontinue a product proposed by Jansen et al. (2011) could
serve as a roadmap for product discontinuation in start-ups.

5.7 Software testing knowledge area

Software testing is the dynamic verification that a product works as expected on a set of
selected test cases. Some of the main tasks of testing are to determine what to test, specify
input data and expected software behaviors, and to organize the process of software testing
(IEEE 2014).

The reports contain only general statements addressing the software testing knowledge
area. The statements suggest that start-up companies perform testing activities only when
obvious issues emerge. For example, when performance had degraded below an acceptable
level {C24-16, C67-26, C86-13}. Feedback from users is used to spot discrepancies in the
product instead of performing rigorous internal testing {C14-23, C29-36, C67-26}.

Some companies report product failures in operation with substantial loss of resources
and reputation. As company #54 states:

“Finally, the server went down, scuttling the entire operation. Hill started handing out
margaritas by the fistful to keep everyone happy. [..] The app picked up a number of
1-star reviews following the debacle”.

The reports did not specify whether the failures were due to lack of specific requirements
or failure to meet such requirements.

As illustrated in Fig. 9 software testing has a direct impact on software quality. The
product must have an acceptable level of quality on all relevant aspects, or the product is
simply useless to customers (Regnell et al. 2008).

Discussion Carmine et al. (2016) argue that product quality has a low priority in software
start-ups. Instead of rigorous internal testing, start-up companies utilize user feedback to
determine if a level of quality is acceptable. A possible explanation is that due to frequently
changing or unclear requirements there is no other reliable input for testing (Graham 2002).
However, as elaborated in Section 5.5, inadequacies in product quality can severely damage
a product’s reputation. Therefore, a company must carefully assess the risks stemming from
the reliance on user side testing.

Another possible explanation is that a large part of testing is done by developers dur-
ing the development process. This explains why the product appears to be in shape when
released (code defects are removed), however failures in operation indicate a lack of design
and stress testing (Runeson et al. 2006). Our findings suggest that start-ups are overlooking
a potentially important knowledge area.

5.8 Software Maintenance knowledge area
A result of software development is a delivery of a software product to is users. However,

post delivery defects may emerge, operating environment change or users could propose
new requirements. The software maintenance phase begins when software is released to

@ Springer

Empir Software Eng (2019) 24:68-102 97

customers and ensures that the software continue to operate as intended. Software mainte-
nance activities fall into perfective maintenance (to improve some quality the software, e.g.
performance), corrective maintenance (to remove defects), adaptive maintenance (to adapt
the software to a changed environment) and preventive maintenance (to prevent problems
before they occur) (IEEE 2014).

Start-up companies report on software maintenance costs {C23-3, C32-3} and resource
allocation for maintenance activities. The reports discuss the struggle of performing timely
corrective maintenance due to understaffed teams. Long response time to product faults is
reported as having a negative impact on product adoption {C77-3}. Adaptive maintenance
to keep up with the product and any third-party component changes is reported as a concern
{C14-12, C38-9}.

Discussion The reports contain very little details on how start-ups manage software main-
tenance. However, inadequately high costs of keeping the product running is reported in
relation to poor software design. As discussed in Section 5.3, goals of software design shift
from faster time-to-market to reducing maintenance effort. This shift takes place when the
product feature set stabilizes and more and more users start-using the product (Crowne
2002).

If this shift is not executed properly, a large number of users can overwhelm the product,
exposing any inadequacies in product design and quality. Tackling these inadequacies may
require substantial resources and time, contributing to the collapse of the company.

Batista Webster et al. (2005) propose a taxonomy for evaluating risks pertaining to soft-
ware maintenance. The taxonomy could be used in start-ups to identify and address potential
maintenance risks during product development. Tom et al. (2013) argue that taking risks in
engineering, i.e. creating technical debt, is a trade-off between shorter time-to-market and
internal product quality. However, how exactly technical debt is handled in start-ups and
to what extent this taxonomy is exhaustive and relevant in start-up context requires more
research (Batista Webster et al. 2005; Tom et al. 2013).

6 Conclusions and future work

This study is the largest (by a number of studied cases) and broadest (by addressed software
engineering knowledge areas) investigation into engineering aspects of start-ups to-date.
With this study we paint a rich picture on how start-ups reflect on utilizing software
engineering, what engineering practices start-ups use, and why. This study is aimed to char-
acterize software engineering in start-ups, thus providing the necessary groundwork for
conducting further and more detailed investigation into software-intensive product engi-
neering in start-up context. To achieve our goal we perform third level analysis of start-up
experience reports from 25 relatively successful and 63 closed start-ups.

Our results show that start-ups apply market-driven requirements engineering practices
to discover and validate ideas for innovative products. However, the applied requirements
engineering practices are often rudimentary and lack alignment with other knowledge areas.
As a consequence, inadequacies in requirements engineering hinder other engineering activ-
ities and might lead to unwanted technical debt, poor product quality, and wasted resources
on building irrelevant features. Further work is needed to identify good requirements
engineering practices in start-ups.

We have found very little discussion regarding software testing. However, the reports
discuss disastrous events when a product had failed in hands of customers. We conclude

@ Springer

98 Empir Software Eng (2019) 24:68-102

that software testing practices could be overlooked by start-ups. Further research is needed
to understand state-of-practice in software testing in start-up context.

Other software engineering knowledge areas have a supportive role in continuous
requirements identification and validation. For example, software design knowledge must
support fast evolution of product prototypes, used to gather customer requirements, to a
robust solution for easy maintenance.

The results of this study are intended to be useful to researchers in supporting further
research in the area. The results can also be useful to start-up engineers willing to learn
from experience of others. We have analyzed our findings in context of related work, thus
hinting practitioners toward potentially useful practices. Future work includes examining
key knowledge areas in more detail, and exploring to what extent the use of certain practices
contributes to achieving start-up goals.

Acknowledgments The authors would like to thank Dr. Krzysztof Wnuk for insightful discussions,
comments and hints to related work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Abpmp (2009) Guide to the business process management common body of knowledge. management

Abrahamsson P, Nguyen-duc A, Baltes GH, Conboy K, Dennehy D, Sweetman R, Edison H, Shahid S, Wang
X, Garbajosa J, Gorschek T, Unterkalmsteiner M, Hokkanen L, Lunesu I, Marchesi M, Morgan L, Selig
C, Oivo M, Shah S, Kon F (2016) Software Startups - A Research Agenda. e-Informatica. Softw Eng J
10(1):1-28

Alves C, Pereira S, Castro J (2006) A study in market-driven requirements engineering. Work. em Eng
Requisitos WERO06, pp 2-3

Ambler S (2002) Lessons in agility from Internet-based development. IEEE Softw 19(2):66-73

Azar J, Smith RK, Cordes D (2007) Value-oriented requirements prioritization in a small development
organization. IEEE Softw 24(1):32-37

Bajwa SS, Wang X, Duc AN, Abrahamsson p (2017) failures to be celebrated: an analysis of major pivots of
software startups. Empir Softw Eng 22(5):2373-2408

Baskerville R, Ramesh B, Levine L, Pries-Heje J, Slaughter S (2003) Is internet-speed software development
different? IEEE Softw 20(2015):70-77

Batista Webster KP, De Oliveira KM, Anquetil N (2005) A risk taxonomy proposal for software maintenance.
IEEE Int Conf Softw Maint ICSM 2005:453-464

Bjarnason E, Wnuk K, Regnell B (2010) Overscoping: Reasons and consequences - A case study on decision
making in software product management. Softw. Prod. Manag. (IWSPM), 2010 Fourth Int Work, pp
30-39

Blank S (2013a) The four steps to the epiphany, 2nd edn. K&S Ranch, NY

Blank S (2013b) Why the lean start up changes everything. Harv Bus Rev 91(5):64

Boehm B (2003) Value-based software engineering: reinventing, vol 28

Bosch J, Olsson H, Bjork J, Ljungblad J (2013) The early stage software startup development model: A
framework for operationalizing lean principles in software startups. In: Lean Enterp. Softw. Syst., chap.
The Early, pp 1-15

Broy M (2006) The ’Grand challenge’ in informatics: Engineering Software-Intensive systems. Comput (long
Beach Calif) 39(10):72-80

Budgen DT, Brereton M, Pearl Kitchenham B (2008) Using mapping studies in software engineering. In:
Proceedings of the PPIG, 2008, vol 2, pp 195-204

Carlshamre P, Regnell B (2000) Requirements lifecycle management and release planning in market-driven
requirements engineering processes. In: Proceedings - International Working Database Expert Systems
with Applications DEXA 2000-Janua (September), pp 961-965

@ Springer

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2019) 24:68-102 99

Carlson CR, Wilmot WW (2006) Innovation: The five disciplines for creating what customers want. Crown
Business

Carmel E (1994) Rapid development in software package startups. In: Proceedings 27th hawaii int’l
conference System Sciences

Carmine G, Paternoster N, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2016) Software development
in startup companies: The greenfield startup model. IEEE Trans Softw Eng X(September):233

cbinsights.com (2015) https://www.cbinsights.com/blog/startup-failure-post-mortem/

Chow T, Cao DB (2008) A survey study of critical success factors in agile software projects. J Syst Softw
81(6):961-971

Churchill N, Lewis V (1983) Five stages of small business growth. Harv Bus Rev 61(3):30-40

Cocca P, Alberti M (2009) A framework to assess performance measurement systems in SMEs. Int J Product
Perform Manag 59(2):186-200

Constantinides E, Lorenzo-Romero C, Gémez Ma (2010) Effects of web experience on consumer choice: a
multicultural approach. Internet Res 20(2):188-209

Corbin JM, Strauss A (1990) Grounded theory research: procedures, canons, and evaluative criteria. Qual
Sociol 13(1):3-21

Criaco G, Minola T, Migliorini P, Serarols-Tarrés C (2014) To have and have not: founders’ human capital
and university start-up survival. J Technol Transfer 39(4):567-593

Crowne M (2002) Why software product startups fail and what to do about it. In: Engineering Management
Conference. IEEE, Cambridge, pp 338-343

crunchbase.com (2015) https://www.crunchbase.com/

Dahlstedt AG, Karlsson L, Persson A, Natt och Dag J, Regnell B (2003) Market-Driven Requirements engi-
neering processes for software products - a report on current practices. In: Int Work COTS prod software,
RECOTS 2003

Davis A, Dieste O, Hickey A, Juristo N, Moreno AM (2006a) Effectiveness of requirements elicitation
techniques: Empirical results derived from a systematic review. Proc IEEE Int Conf Requir Eng:176—185

Davis CJ, Fuller RM, Tremblay MC, Berndt DJ (2006b) Communication challenges in requirements
elicitation and the use of the repertory grid technique. J Comput Inf Syst 46(JANUARY):78-86

De Melo CO, Cruzes SD, Kon F, Conradi R (2013) Interpretative case studies on agile team productivity and
management. Inf Softw Technol 55(2):412-427

Deakins E, Dillon S (2005) A helical model for managing innovative product and service initiatives in volatile
commercial environments. Int J Proj Manag 23(1):65-74

Dorling A (1993) SPICE: Software Process improvement and capability dEtermination. Inf Softw Technol
35(6-7):404-406

Fabijan A, Olsson HH, Bosch J (2012) Customer feedback and data collection techniques in software R&D:
a literature review. In: Icsob. vol 114, pp 139-153

Fagerholm F (2012) Developer Experience : Concept and Definition, pp 73-77

Fagerholm F, Ikonen M, Kettunen P, Munch J, Roto V, Abrahamsson P (2015) Performance Alignment
Work: How software developers experience the continuous adaptation of team performance in Lean and
Agile environments. Inf Softw Technol 64:132-147

Feldt R, Angelis L, Torkar R, Samuelsson M (2010) Links between the personalities, views and attitudes of
software engineers. Inf Softw Technol 52(6):611-624

Garengo P, Biazzo S, Bititci U (2005) Performance measurement systems in SMEs: A review for a research
agenda. Int] Manag Rev 7(1):25-47

Garousi V, Felderer M, Mintyld MV (2016) The Need for Multivocal Literature Reviews in Software Engi-
neering: Complementing Systematic Literature Reviews with Grey Literature. In: Proceedings of the
20th International Conference on Evaluation Assessment Software Engineering, pp 26:1—-26:6

Giardino C, Unterkalmsteiner M, Paternoster N, Gorschek T, Abrahamsson P (2014) What Do We Know
about Software Development in Startups? IEEE Softw 31(5):28-32

Giardino C, Wang X, Abrahamsson P (2014) Why Early-Stage Software Startups Fail: A Behavioral
Framework, pp 27-41

Giardino C, Bajwa SS, Wang X (2015) Key challenges in Early-Stage software startups. In: Agile Processing
of Software Engineering Extremity Programming, vol. 212, pp. 52-63

Graham D (2002) Requirements and testing: Seven Missing-Link myths. IEEE Softw 19(5):15-17

Hague P, Hague N, Morgan CA (2004) Market research in practice: A quide to the basics

Hanssen GK, Faegri TE (2006) Agile customer engagement. Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering - ISESE 06, pp 164

Haugen NC (2006) An empirical study of using planning poker for user story estimation. Proc - Agil Conf
2006(2006):23-31

@ Springer

https://www.cbinsights.com/blog/startup-failure-post-mortem/
https://www.crunchbase.com/

100 Empir Software Eng (2019) 24:68-102

Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in software projects. IEEE
Softw 18(4):58-66

IEEE (2011) ISO/IEC/IEEE 42010 Systems and Software engineering - arcthitecture description 2011

IEEE (2014) Guide to the Software Engineering Body of Knowledge Version 3.0 (SWEBOK Guide V3.0)

Jansen S, Popp KM, Buxmann P (2011) The sun also sets: Ending the life of a software product. Softw Bus
80:154-167

Junk WS (2000) The dynamic balance between cost, schedule, features, and quality in software development
projects. Comput. Sci. Dept., univ idaho SEPM-001

Karlsson L, Dahlstedt AG, Regnell B, Natt och Dag J, Persson A (2007) Requirements engineering chal-
lenges in market-driven software development - An interview study with practitioners. Inf Softw Technol
49(63):588-604

Khan RA, Spang K (2011) Critical Success Factors for International Projects. In: 6th IEEE Int Conf Intell
Data Acquis Adv Comput Syst Technol Appl, vol 2, no 10, pp 879-883

Khurum M, Gorschek T, Wilson M (2012) The software value map - an exhaustive collection of value aspects
for the development of software intensive products. J. SOFTWARE-EVOLUTION Process (July 2010),
pp 481-491

Kitchenham B, Lawrence S (1996) Software quality: the elusive target. IEEE Softw 1(January):12-21

Klotins E, Unterkalmsteiner M, Gorschek T (2015) Software Engineering Knowledge Areas in Startup
Companies : a mapping study. In: Lecture Notes Business Information Processing. Springer, pp 245-257

Kujala S (2008) Effective user involvement in product development by improving the analysis of user needs.
Behav Inf Technol 27(6):457-473

Lehtola L, Kauppinen M, Kujala S (2005) Linking the business view to requirements engineering: long-term
product planning by roadmapping. 13th. IEEE Int. Conf. Requir. Eng. REOS5, pp 439443

Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: data collection techniques for software
field studies. Empir Softw Eng 10:311-341

May B (2012) Applying Lean Startup: An Experience Report — Lean & Lean UX by a UX Veteran: Lessons
Learned in Creating & Launching a Complex Consumer App. In: Agile Conference, pp 141-147. IEEE

Melegati J, Goldman A, Paulo S (2016) Requirements Engineering in Software Startups: a Grounded Theory
approach. 2nd International Work Software Startups, Trondheim

Miller G, Williams L (2006) Personas: Moving beyond Role-Based requirements engineering. Microsoft
North Carolina State, pp 1-10

Mitroff I (1983) Stakeholders of the organizational mind, Jossey-Bass, San Francisco

Molokken K, Jorgensen M (2003) A review of software surveys on software effort estimation. 2003 Int.
Symp. Empir. Softw. Eng. 2003. ISESE 2003. Proceedings (1325)

Ogawa RT, Malen B (1991) Towards rigor in reviews of multivocal literatures: applying the exploratory case
study method. Rev Educ Res 61:265-286

Olsson HH, Bosch J (2015) Towards continuous customer validation: a conceptual model for combining
qualitative customer feedback with quantitative customer observation. In: Icsob, vol 114, pp 261-266

Osterwalder A, Pigneur Y, Tucci C (2005) Clarifying business models: origins, present, and future of the
concept. Commun Assoc Inf Syst 15:1-43

Pacheco C, Garcia I (2012) A systematic literature review of stakeholder identification methods in
requirements elicitation. J Syst Softw 85(9):2171-2181

Paternoster N, Giardino C, Unterkalmsteiner M, Gorschek T, Abrahamsson P (2014) Software development
in startup companies: a systematic mapping study. Inf Softw Technol 56(10):1200-1218

PitchBook Data I (2015a) European Middle Market Report 2H 2015

PitchBook Data I (2015b) U.S. Middle market report Q4 2015. Technical report

Product Team CMMI, Team CP (2010) CMMI for Development, Version 1.3. Carnegie Mellon Univ.
(November), pp 482

Pronin E, Lin DY, Ross L (2002) The bias blind spot: Perceptions of bias in self versus others. Personal Soc
Psychol Bull 28(3):369-381

Pruitt J, Grundin J (2003) Personas : Practice and Theory. Proc. 2003 Conf. Des. user Exp. pp. 115

Rafiq U et al (2017) Requirements Elicitation Techniques Applied in Software Startups. 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), IEEE

Ramesh B, Cao L, Baskerville R (2007) Agile requirements engineering practices and challenges: an
empirical study. Inf Syst J 20(5):449-480

Regnell B, Svensson RB, Olsson T (2008) Supporting roadmapping of quality requirements. IEEE Softw
25:42-47

Ries E (2011) ¢ How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful
Businesses, crown busi edn

Rising L, Janoff NS (2000) The Scrum software development process for small teams. IEEE Softw 17(4):26-32

@ Springer

Empir Software Eng (2019) 24:68-102 101

Runeson P, Andersson C, Thelin T, Andrews a, Berling T (2006) What do we know about defect detection
methods? [software testing]. IEEE Softw 23(3):82-90

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering. Wiley, Hoboken

Saldafia J (2010) The coding manual for qualitative researchers

Seaman C (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557-572

Shahin A, Mahbod MA (2007) Prioritization of key performance indicators. Int J Product Perform Manag
56(3):226-240

Sicilia M4, Cuadrado Jj, Garcia E, Rodriguez D, Hilera JR (1990) The Evaluation of ontological representa-
tions of the SWEBOK as a revision tool, pp 1-4

Smite D, Wohlin C, Galvina Z, Prikladnicki R (2014) An empirically based terminology and taxonomy for
global software engineering, vol 19, no 1, pp 105-153

Startup Compass Inc. (2015) The global startup ecosystem ranking 2015. Technical Report

Sudhakar GP (2012) A model of critical success factors for software projects. J Enterp Inf Manag Iss Ind
Manag Data Syst Iss Charalambos Spat J Enterp Inf Manag 19(1):83-96

Sutton SM, Cubed EC, Andretti M (2000) The Role of Process in a Software Start-up. IEEE Softw 17(4):33-39

Terho H, Suonsyrja S, Mikkonen T (2015) Ways to Cross the Rubicon: Pivoting in Software Startups Henri,
pp 555-568

Tingling P, Saeed A (2007) Extreme programming in action: a longitudinal case study. In: HCI International,
pp 242-251

Tom E, Aurum A, Vidgen R (2013) An exploration of technical debt. J Syst Softw 86(6):1498-1516

Tovstiga G, Grossmann H (2012) Strategic innovation: Exploring the link between differentiation, learning
and innovation failure in start-up enterprises. In: 2Nd Annual International Conference on Innovations
in Entrepreneurship (IE 2012), ie, pp 76

Usman M, Mendes E Effort Estimation in Agile Software Development: A Survey on the State of the Practice
Categories and Subject Descriptors

Wilson CE (2006) Triangulation: the explicit use of multiple methods, measures, and approaches for
determining core issues in product development. In: Interactions, vol 13, no 6, pp 46-49

Woods E (2015) Aligning architecture work with agile teams. IEEE Softw 32(5):24-26

Yang C, Liang P, Avgeriou P (2016) A systematic mapping study on the combination of software architecture
and agile development. J Syst Softw 111:157-184

Yau A, Murphy C (2013) Is a Rigorous Agile Methodology the Best Development Strategy for Small Scale Tech
Startups? Technical report University of Pennsylvania Department of Computer and Information Science

Zachman JA (2003) The Zachman framework for enterprise architecture Primer for Enterprise Engineering
and Manufacturing.[si]: Zachman International

Zettel J, Maurer F, Miinch J, Wong L (2001) LIPE: A Lightweight Process for E-business Startup Companies
Based on Extreme Programming, pp 255-270

Eriks Klotins is a PhD student of Software Engineering at Blekinge Institute of Technology (BTH). The
focus of his thesis is software engineering practices in start-ups and development of a start-up engineer-
ing roadmap. He has over nine years of experience in software development projects ranging from large
government IT systems to several start-ups projects. Contact him by: eriks.klotins @bth.se.

@ Springer

102 Empir Software Eng (2019) 24:68-102

Michael Unterkalmsteiner received the BSc degree in applied computer science from Free University of
Bozen-Bolzano in 2007, and the MSc and PhD degrees in software engineering from Blekinge Institute of
Technology (BTH) in 2009 and 2015, respectively. He is a senior lecturer at BTH. His research interests
include software repository mining, software measurement and testing, process improvement, and require-
ments engineering. He is a member of the IEEE. For more information or contact: www.Imsteiner.com,
michael.unterkalmsteiner @bth.se.

— e |

Tony Gorschek is a professor of Software Engineering at Blekinge Institute of Technology (BTH. He has
over ten years’ industrial experience as a CTO, senior executive consultant, and engineer, but also as a chief
architect and product manager. In addition, he has built up five start-ups in fields ranging from logistics to
internet-based services. Contact him by: tony.gorschek @bth.se.

@ Springer

www.lmsteiner.com

	Software engineering in start-up companies: An analysis of 88 experience reports
	Abstract
	Introduction
	Background and related work
	Software start-ups
	Scope of software engineering in start-ups
	Software engineering and business practice taxonomy

	Research methodology
	Research questions
	Data sources and collection
	Analysis design and execution
	Answering the research questions
	Validity threats
	Construct validity
	Reliability
	Internal validity
	External validity

	Results
	Overview of the data set
	Knowledge area overview

	Analysis and discussion
	Develop vision and strategy knowledge area
	Requirements engineering knowledge area
	Requirements sources and elicitation
	Discussion

	Requirements Prioritization
	Discussion

	Release planning
	Discussion

	Requirements validation
	Discussion

	Software design knowledge area
	Discussion

	Software engineering professional practice knowledge area
	Software Quality knowledge area
	Discussion

	Software Engineering Management knowledge area
	Discussion

	Software testing knowledge area
	Discussion

	Software Maintenance knowledge area
	Discussion

	Conclusions and future work
	Acknowledgments
	Open Access
	References

