
                            P a g e  |  1  

 
 

  

Biological Inspired Deformable Image 

Sensor 

Wei Wen 

  



                            P a g e  |  2  

 
 

  

Table of Contents  

Abstract 7 

Preface 9 

Acknowledgements 11 

1. Introduction  14 

1.1. Aims and Contributions 19 

1.2. Thesis outline 21 

2. The model of incident photons 22 

3. Image generation 26 

4. The results and discussion 28 

5. Conclusion and Summary 42 

5.1 Conclusion 42 

5.2 Summaries of Papers 44 

Reference 47 

Paper I: Novel Software-based Method to Widen Dynamic Range of CCD Sensor Images 52 

1 Introduction 52 

2 Effect of fill factor 53 

3 Methodology 55 

4 Experimental setup 57 

5 Results and discussion 58 

6 Conclusion 61 

References 62 

Paper II: A Software Method to Extend Tonal Levels and Widen Tonal Range of CCD 
Sensor Images 63 



                            P a g e  |  3  

 
 

  

1. Introduction 64 

2. Methodology 66 

3. Experimental setup 68 

4. Results and discussion 70 

5. Conclusion 73 

References 73 

Paper III: Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image 76 

1. Introduction 76 

2. Image Acquisition and Processing Pipelines 78 

3. Camera Response Function vs. Virtual Camera Response Function 80 

4. Relation of Fill Factor to the Virtual Camera Respond Function 82 

5. Fill Factor Estimation 82 

6. Experimental Setup 85 

7. Results and Discussion 86 

8. Conclusions 92 

References 93 

Paper IV: Image Quality Assessment of Enriched Tonal Levels Images 97 

1. Introduction 97 

2. Related works 98 

3. Generation of the enriched nTLs Images 99 

4. Evaluation of the enriched nTLs Images 100 

a. Method-1 100 

b. Method-2 100 

5. Result and Discussion 101 



                            P a g e  |  4  

 
 

  

a. Result of Evaluation Method-1 101 

b. Result of Evaluation Method-2 103 

6. Conclusion 107 

Acknowledgement 108 

References 108 

Paper V: Back to Basics, Towards Novel Computation and Arrangement of Spatial Sensory 
in images 111 

1. Introduction 111 

2. Related works to Hexagonal resampling 113 

3. Methodology 115 

4. Experimental Setup 118 

5. Results and Discussion 119 

6. Conclusion 122 

Acknowledgement 123 

References 123 

Paper VI: The Impact of Curviness on Four Different Image Sensor Forms and Structures
 126 

1. Introduction 126 

2. Background 127 

3. Image Generation 129 

3.1. Generation of the Hexagonal Enriched Image (Hex_E) 129 

3.2. Generation of the Square Enriched Image (SQ_E) 130 

3.3. Generation of the Half Pixel Shift Image (HS) and Half Pixel Shift Enriched Image 
(HS_E) 131 

4. Curviness Quantification 131 

4.1. Implementing a First Order Gradient Operation 132 



                            P a g e  |  5  

 
 

  

4.2. Implementing Hessian Matrix on SQ, and SQ_E Images 132 

4.3. Implementing Second Order Operation to Detect Saddle and Extremum Points 133 

5. Experimental Setup 135 

6. Results and Discussion 137 

6.1. First Order Gradient Operation 137 

6.2. Hessian Matrix on SQ, and SQ_E Images 141 

6.3. Saddle and Extremum Points 146 

7. Conclusions 151 

References 152 

Paper VII: Virtual Deformable Image Sensors: Towards to A General Framework for Image 
Sensors with Flexible Grids and Forms 156 

1. Introduction 156 

2. Virtual Deformable Image Sensor 161 

2.1. Hexagonal Tiling 163 

2.2. Penrose Pixel Arrangment 164 

3. Image Generation on Deformable Grid 165 

4. Implementing Histogram of Gradient in Different Configurations 166 

5. Experimental Setup 168 

6. Results and Discussion 169 

7. Conclusions 177 

References 177 

Paper VIII: A Common Assessment Space for Different Sensor Structures Error! Bookmark 
not defined. 

1. Introduction Error! Bookmark not defined. 

2. Arrangement addressing Error! Bookmark not defined. 

3. Image generation Error! Bookmark not defined. 



                            P a g e  |  6  

 
 

  

3.1 Generation of the virtual hexagonal enriched image (Hex_E) Error! Bookmark not 
defined. 

3.2 Generation of the virtual Half pixel shift enriched image (HS_E) Error! Bookmark not 
defined. 

5. Experimental Setup Error! Bookmark not defined. 

6. Results and Analysis Error! Bookmark not defined. 

7. Conclusion Error! Bookmark not defined. 

References Error! Bookmark not defined. 

 

 



                            P a g e  |  7  

 
 

  

ABSTRACT  
 

Nowadays, cameras are everywhere thanks to the tremendous progress on sensor technology. 

However, their performance is far away from what we experience by our eyes. The study from 

evolution process shows how the sensor arrangement of retina in human vision has 

differentiated from other species and is formed into a specific combination of sub -

arrangements from hexagonal to elliptical ones. There are three major key differences between 

our visual cell arrangement and current camera sensors which are: the sub-arrangements, the 

pixel form and the pixel density.  

Despite the advances in sensor technology we face limitations in their further development; 

i.e. to make the cameras close to the visual system. This is due to the optical diffraction limit 

which prevents us to increase the sensor resolution, and rigidity of hardware implementation 

which prevent us to change the image sensor after manufacturing. In the thesis the possibilities 

to overcome such limitations are investigated where the intention is to find a closer sensory 

solution to the visual system in comparison to the current ones.  

Breaking the diffraction barrier and solving the rigidity problem are simultaneously achieved 

by introducing and estimating virtual subpixels. A statistical framework co nsisting of local 

learning model and Bayesian inference for predicting the incident photons captured on each 

such a subpixel is used to resample the captured image by any current camera sensor. By 

investigating the virtual variation of pixel size and fill factor the validity of the proposed idea 

is proven by which the results show significant changes of dynamic range and tonal levels in 

relation to the variation. As an example, for both monochrome and color images the results 

show that by virtual increase o f fill factor to 100%, the dynamic range of the images are 

widened and the tonal levels are enriched significantly over 256 levels for each channel. 

The results of virtual variation of the fill factor and pixel size indicates that it is feasible to 

change the rigidity of the image sensor using the software -based method. Inspired by the 

mosaic in the fovea, the center of human retina, the hexagonal sub-arrangement and pixel form 

are proposed to generate images based on the estimated virtual subpixels. Compared to the 

original square images, not only the dynamic range and tonal levels are improved, but also the 

hexagonal images are superior in detection of edges, i.e. more edge points on the contour of 

the objects are detected in hexagonal images.  

The evaluation of different sub -arrangements or pixel forms of the image sensor is a 

challenging task and should be directed to a more specific task. Since the curvature contours 

contain most of the information related to object perception and human vision is highly 

evolved to detect curvature object, the task is focused to investigate the impact of the curviness 

on the different pixel forms and sub -arrangements, by comparing two categories of images; 

having curved versus linear edges of the objects in a pair of images which have exact similar 

contents but different contours. The detectability of each of the different sensor structures for 

curviness is estimated and the results show that the image on hexagonal grid with hexagonal 

pixel form is the best image type for d istinguishing the curvature contours in the images.  

According to the pattern of pixels tiling, there are two types of pixel sub -arrangements, i.e. 

periodic (e.g. square or hexagonal), and aperiodic (e.g. Penrose). Each type of sub-

arrangements is investigated where the pixel forms and density are variable. By having at least 

two generated images of one configuration (i.e. specific sub-arrangement, pixel form and 

density), the result of histogram of gradient orientation of the certain sensor arrangement 
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shows a stable and specific distribution which we called it the ANgular CHaracteristic of a 

sensOR structure (ANCHOR). Each ANCHOR has a robust pattern which is changed by the 

change of the sensor sub-arrangement. This makes it feasible to plan a sensor sub-arrangement 

in the relation to a specific application and its requirements, and more alike the biological 

vision sensory. To generate such a flexible sensor, a general framework is proposed for virtual 

deforming the sensor with a certain configuration of th e sensor sub-arrangement, pixel form 

and pixel density.  

Assessing the quality difference between the images generated by different sensor 

configuration or addressing from on configuration to another one generally needs the 

conversion of one to another. To overcome this problem, a common space is proposed by 

implementing a continuous extension of square or hexagonal images based on the orbit 

function, for quality evaluating the images with different arrangements and addressing from 

one type of image to another one. The evaluation results show that the creation of such space 

is feasible which facilitates a usage friendly tool to address an arrangement and assess the 

changes between different spatial arrangements, for example, it shows richer intensity 

variatio n, nonlinear behavior, and larger dynamic range in the hexagonal images compared to 

the rectangular images.   

 

 
Keywords: image sensor, pixel form, sub-arrangements, fill factor, square 

image, hexagonal image, deformable sensor, quality assessment. 
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PREFACE 
 

This doctoral thesis summarizes my work within the field of image processing. The 

work has been conducted at the faculty of computing at Blekinge Institute of 

Technology. The thesis consists of two sections: 

 

Section A 

 
Provides an overview of the publ ished work in the form of five chapters:  

1. Introduction  

2. The model of incident photons  

3. Image generation 

4. The results and discussion 

5. Conclusions and Summaries 

 

 

Section B 

 
Reformatted version of the published papers is attached. 

 

Paper I : Novel Software-based Method to Widen Dynamic Range of CCD Sensor 

Images 

Paper II : A Software Method to Extend Tonal Levels and Widen Tonal Range of CCD 

Sensor Images 

Paper III : Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image 

Paper IV : Image Quality Assessment of Enriched Tonal Levels Images 

Paper V : Back to Basics, Towards Novel Computation and Arrangement of Spatial 

Sensory in images 

Paper VI : The Impact of Curviness on Four Different Image Sensor Forms and 

Structures 

Paper VII : Virtu al Deformable Image Sensors: Towards to A General Framework for 

Image Sensors with Flexible Grids and Forms 
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Paper VIII : A Common Assessment Space for Different Sensor Structures 
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1. Introduction  
 

The image formation in a digital camera is the process that the light reflected on the 

surrounding object surface goes through the optics and is captured by the image 

sensor in the camera shown in Figure 1. The ability of collecting light which is 

composed of photons depends on the performance of a camera, which includes two 

parts: transparency of the optics and the actual number of photons that are captured 

by image sensor. The characteristic of an image sensor array shows the photon 

capturing ability of the camera . A sensor array consists of a large number of light-

sensing elements, sensor pixels, arranged in a two-dimensional array where each 

sensor pixel functions as a potential well to store/register the generated 

charge/photoelectrons. The photon collection process on a sensor array is 

demonstrated in Figure 2, where each bucket represents storage of photoelectrons, 

by modelling a photodiode and a well of one pixel in the image s ensor and the rain 

drops, blue lines, represent the incident photons that fall into the sensor. By having 

bigger bucket or more buckets more rain drops, number of photons, are collected. 

The photons that arrives on one pixel are converted into electrons, where the number 

of electrons created per photon is defined as quantum efficiency (QE), one of the most 

important parameter for evaluating the quality of a detector. The average QE of a 

charge couple device (CCD) sensor is 60-70% [1] and the newest bio-imaging CCD 

cameras have a QE of nearly 75% and as high as 90% for back thinned CCD sensors. 

Additionally to the improvement on the QE of the sensor, the digital image sensor 

technology has made huge progress by increase of the image resolution and 

improving low -light performance [2]. The achievements are due to the reduction of 

the sensory element (the pixel size), improving the conversion of collected photons 

to electrons (the quantum efficiency), and using hardware techniques on the sensor 

[3,4]. However, the image quality is not affected only by the pixel size or quantum 

efficiency of a sensor [5]. As the sensor pixel size becomes smaller, this results in a 

smaller die size and a higher spatial resolution gain; all at the cost of a lower signal -

to-noise ratio, lower dynamic range, and fewer tonal levels [6]. Not only the QE and 

pixel size, but also the inter -pixel distance, arrangement, and form of the pixels play 

significant roles in the photon collection  which is verified by comparison between 

current sensor techniques and biological vision systems, especially human visual 

system. 
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Figure 1. The image formation process. 

 

 

Figure. 1. Graphical representation of photon collection process on a sensor array.  

Due to the physical limitation on the sensor manufacturing, it is impossible to 

eliminate the inter -pixel distance, the gap, between photodiode area in pixels. One 

way to define the gap is using the fill factor, which is the ratio of light sensitive area 

versus total area of a pixel [7]. Then the effective quantum efficiency of a sensor array 

is proportional to fill factor as in ὗὉ ὊὊ ὗὉ, where ὗὉ  is the effective 

ὗὉ and ὊὊ is the fill factor.  In special applications, e.g. live cell imaging, when very 

little light is emitted to the sensor, e.g. in order to reduce phototoxicity, having high 

quantum eff iciency and in its turn having full fill factor becomes especially 

important.  In image sensor system, there is an inherent uncertainty in the read-out 

process due to the electronic measurement, dependent upon read out speed among 

other factors; this uncertainty is referred to as read noise. The proportion of read out 

signal to read noise is termed the signal-to-noise ratio (SNR). The read noise of a 

sensor has a Gaussian distribution across the pixels [8]. The ability to quantitatively 

measure both dim and bright signals is expressed by dynamic range (DR) which 
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refers to the maximum signal value of a sensor i.e. having the full well capacity 

ËÐÝÐËÌËɯÉàɯÛÏÌɯÚÜÔɯÖÍɯÛÏÌɯÚÌÕÚÖÙɀÚɯËÈÙÒɯÕÖÐÚÌɯÈÕËɯÙÌÈËɯÕÖÐÚÌȭɯ3ÏÌÙÌÍÖÙÌȮɯÈɯÚÌÕÚÖÙɀÚɯ

ability to perform well in lowlight conditions requires a large dynamic range. T he 

dependency of DR on dark noise can be considered negligibly as far as the dark noise 

is highly dependent on camera temperature and in most of demanding applications 

like as in bio-imaging this is prevented by integrated cooling. From above facts it can 

be argued that increase of the SNR and widening of the DR is proportional to fill 

factor. An effective way to increase the fill factor is to put a microlens above each 

pixel which converges light from the whole pixel unit area into the photodiode in 

order to capture more number of photons as shown in Figure. 2, larger bucket 

captures and holds more photons. Since 90s, various microlenses have been 

developed for increasing fill factor and thereby widen not only the DR but also 

extend the tonal levels, i.e. the mid-tone levels expansion between the possible 

lightest and darkest luminosity values of a captured image. They are widely used in 

CCD sensors [6,9].  However it is still impossible to make fill factor 100% in practical 

production due to the physical limitations  in digital camera development [2]. Two 

phenomena related to such physical limitations are the saturation and the blooming 

effects. They occur in all image sensors under conditions in which either the finite 

charge capacity of individual photodiodes (i.e. sensitive sensor pixel), or the 

maximum charge transfer capacity is reached ÖÝÌÙɯÛÏÌɯÚÌÕÚÖÙɯÖÙɯÚÌÕÚÖÙɯÈÙÙÈàɀÚɯ

properties. The amount of charge that can be accumulated in an individual sensitive 

sensor pixel is defined by its full well capacity, and depends primarily on the sensor  

dimensions and the pixel gap size.  

The most dominant grid structure of the image sensor in a digital camera is the 

two -dimensional square grid, where each pixel is having square as the basic form. Its 

easy implementation in the Cartesian coordinate system makes its current popularity 

since the invention of the first digital image camera. The resolution on the image 

sensor array has been increased drastically by reducing the pixel size, in some special 

image sensors such as OV5675 from OmniVision [10], the pixel size is as small as  

ρȢρς ‘ά ρȢρς ‘ά. However, the smaller pixel size results to lower dynamic range 

(DR), lower signal -to-noise ratio (SNR) and lower fill factor (FF) [11], indicating that 

reducing the pixel size reduces the image quality. Moreover, the optical diffraction 

limit; wh ich is a constrain by the aperture of optical elements, makes it impossible to 

physically reduce the pixel size less than ρȢςς ‗ὪȾὈ according to Rayleigh criterion, 

where ‗ is the wavelength of light, Ὢ is the focal length of lens, and Ὀ is the aperture 

diameter. The wavelengths of visible light range are between 390 ὲά to 780 ὲά for a 

typical human eye. To achieve a better photon collector sensor array, a better design 

for the sensor array is needed to replace the current pixel arrangement and form.  
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Anatomical and physiological studies indicate that our visual quality related 

issues, such as high contrast sensitivity, high signal-to-noise ratio (SNR), and optimal 

sampling are related directly to the form and arrangement of the cell sensors in the 

visual system [12], which have a significant role in optimizing the visual acuity [13]. 

In human visual system the retina, formed by the rod and cone photoreceptors, 

initiates the visual process by converting a continuous image to  a discrete array of 

signals. Curcio et el. [2] investigation on human photoreceptor revealed that the 

properties of the rods and cones mosaic determine the amount of information which 

is retained or lost by sampling process, including resolution acuity an d detection 

acuity. The photoreceptor layer specialized for maximum visual acuity is in the 

center of the retina, the fovea, which is 1.5 mm wide and is composed by cones 

entirely. Figure. 3 shows the distribution of photoreceptors in the areas from the 

center to periphery of retina. The shape of cones is much closed to hexagonal and the 

cones in center fovea are densely packed, where there is no gap between each two 

cones. Due to this configuration the visual acuity and neural sampling in fovea are 

optimiz ed. However, in the periphery part, the cones and rods are not packed closely, 

especially the cones are very apart from each other, and the form of each 

photoreceptor is closer to elliptical.  

 

   

 
Figure 3. The enhanced and zoomed images of four segments of a human foveal 

photoreceptor mosaic from the original image printed in [4]. From left to right, the 
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segment is chosen from the center of fovea, the slope of fovea, and the peripheral 

areas that are 1.35mm and 5 mm away from the fovea center respectively. 

 

Inspired by  the human visual system, the hexagonal grid structure, as an 

alternative grid structure for image representation instead of the conventional grid, 

has been proposed and implemented on both hardware and software way, due to its 

advantages compared to the square grid [14,15]. Two examples of the hardware 

solutions are:  a super CCD from Fujifilm by arranging  octagonal-formed pixel s in a 

hexagonal sensor grid [16], and  a new color filter  arrays (CFA) in hexagonal form for 

the image sensors [17]whi ch improve s the quality of the acquired information by the 

sensor. However, t he cost of technology changing from the current  square grid and 

pixel form to the hexagonal ones has been one of the major issues in either the camera 

or the display manufacturing , which has resulted to the ÛÖËÈàɀÚɯÜÕ×Ö×ÜÓÈÙÐÛàɯÖÍɯ

hexagonal technique implementation  on the hardware. Another  issue is about the 

image processing in hexagonal grid which is unlike the square grid  and the pixels are 

not addressed by integer Cartesian coordinates. This is due to that the pixels on 

hexagonal grid are not aligned in two orthogonal directions. This leads to the 

difficulty of the image quality assessment between different sensor grids. Besides the 

hardware implementation of the hexagonal grid, several attempts of building 

artificial retinas with electronic hardware are also achieved showing a development 

from implementations with discrete components [18] over first integrated versions 

[19] to high -density arrays [20] with resolutions of up to 48,000 pixels [21]. 

Since it is difficult to implement even hexagonal sensor grid in the hardware 

solution and it is almost impossible to change the sensor grid and pixel form 

physically on the hardwar e, numerous software solutions using image processing 

algorithms are developed to generate images on different sensor grids. Different 

algorithms and mathematics models emerged in recent years to acquire hexagonal 

grids. For example, the rectangular grid can be suppressed in rows and columns 

alternatively and be sub-sampled; i.e. half-pixel shifting method [22]. In this way, a 

bigger hexagonal pixel is generated in cost of obtaining lower resolution in 

comparison to the original rectangular grid. In the method, the dist ance between 

rows is changed by ЍσȾς and the pixel shifting can be achieved e.g. by implementing 

normalized convolution [23]. The significances of such a structure are the 

ÌØÜÐËÐÚÛÈÕÊÌɀÚɯÈÕËɯƚƔɯËÌÎÙÌÌÚɯÐÕÛÌÙÚÌÊÛÐÖÕɯÖÍɯÛÏÌɯÚÈÔ×ÓÐÕÎɯ×ÖÐÕÛÚȭɯ(Õɯ8ÈÉÜÚÏÐÛÈɯÌÛɯÈÓȭɯ

[24], the pseudo hexagonal element is composed of small square pixels with the 

aspect ratio of 12:14, which was later implemented by Jeevan et al. with different ratio 

of 9:8 [25]. In the spiral architecture of He et al. [26] four square pixels are averaged 

and generate a hexagonal pixel. Based on the spiral architecture, a design procedure 

for the development of hexagonal tri -directional derivative operators is present in 

[27], that can be applied directly to hexagonal images and can be used to improve 

both efficiency and accuracy with respect to feature extraction on conventional 

intensity images. Although the architecture preserve the main property of object, it 
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is losing some degree of resolution which has impact especially on the result of edge 

detection applications [28]. Later this architecture was improved by Wu et al. [29], by 

mapping the rectangular grids to hexagonal ones, processing images on hexagonal 

grids, and remapping the results to the square grids. By processing images on a 

hexagonal grid less distortion was observed [30]. All above software-based methods 

have one major common property; they convert the rectangular grid to the hexagonal 

one using linear combination of rectangular pixels. The technique of resampling 

digital images on this pseudo -hexagonal grid by using three i nterpolation kernels is 

proposed in [31] and one blurring kernel have been demonstrated. Then a new spline 

based on Least-squares approach is presented in [32], used for converting to 

hexagonal lattice and has been demonstrated to achieve better quality than 

traditional interpolative resampling. In the most recent research, [33] introduced the 

method to convert the image from square to hexagonal lattice in Frequency domain 

using Fourier transform.  In another type of tiling grids , aperiodic tiling grid (i.e. 

Penrose or log-spiral grids) [34,35], there are various pixel forms which can be fixed 

and regular, such as square, hexagonal and rhombus, or can be dynamic and 

irregular, such as voronoi [36,37]. To have a higher fill factor, all the pixel forms are 

used for removing the gap between pixels. However, the achievement of the different 

pixel forms in different grids are still done by interpolation.    

 

1.1. Aims and Contributions 
The main aim of the work presented in this thesis is to explore and investigate the 

new flexible sensors, since the physical rigidity makes the image sensor impossible 

to be changed after the manufacturing. To overcome the hardware limitation and 

deform the current image sensor, this work proposed a software-based way to 

achieve different properties of the sensor, including a framework that offers 

signi ficant flexibility in design of grid structure, pixel form and gap factor of the 

image sensor. 

The core of this work is a novel method to resample the image on the sensor with 

higher resolution by modeling the incident photons on the sensor . The image will  be 

arranged onto a grid of subpixels. Each pixel of a captured image by traditional image 

sensor (i.e. having square grid and pixel form) is projected onto a grid of square 

subpixels in which the grid is arranged by the known fill factor or its estimation  

value, where each pixel is composed by n by n subpixels. Inspired by Monte Carlo 

simulation, the intensity values of the subpixels are estimated by a statistical 

resampling process; using of a local learning model, a Bayesian inference method, 

and a maximum likelihood estimator (of Gaussian distribution). Then the subpixels 

are ready for projection onto the new pixel form or sensor grid . 
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The work to deform the sensor starts from the investigation on fill factor which is the 

bottle neck problem for improvin g performance of the sensor, especially the quantum 

efficiency, in order to widen dynamic range of output image.  Both Paper I and II 

prove the feasibility of widening the d ynamic range and extending the tonal level of 

one image by virtual increase of fill factor to 100%, where the experiment images are 

monochrome and generated by simulation toolbox in Paper I and a real CCD camera 

in Paper II. However, the  fill factor is an industrial secrecy by most image sensor 

manufacturers due to its direct effect on th e assessment of the sensor quality. Paper 

III proposed a method to estimate the fill factor of a camera sensor from an arbitrary 

single image. The virtual response function of the imaging process and sensor 

irradiance are estimated from the generation of v irtual images. Then the global 

intensity values of the virtual images are obtained, which are the result of fusing the 

virtual images into a single, high dynamic range radiance map. A non -linear function 

is inferred from the original and global intensity v alues of the virtual images. With 

the estimated fill factor and its virtual increase to 100%, the dynamic range and tonal 

level in color images are both enhanced in Paper IV. The image contrast is improved 

in both monochrome and the color images.  

Since it was successful to increase the pixels fill factor virtually based on the 

modelling of the incident photons on the sensor, paper V and VI proposed the 

methods for generating images on virtual hexagonal grid by half -pixel shift and 

virtual hexagonal form re sampling.  In Paper V, it has been proved that more number 

of the edge points can be detected in hexagonal images. The impact of different  sensor 

structures including the new hexagonal one are investigated where the implemented  

original images were used previously in an earlier investigation [ 16] on human visual 

preference of curved versus linear edges based on recognition of the physical 

elements in different  visual stimulus . Paper VI introduced a method for curviness 

quantification by comparison of the sha rp transitions in contour of all correspondent 

objects in pair of images which have exact similar contents but two different contours. 

The quantification results reveal the impact of the sensor properties, grid structure, 

pixel form and fill factor on the images, which indicate that the grid structure is the 

most important one that makes difference between the type of images, and the pixel 

form is the second important one. It was also found that the enriched hexagonal 

image type is the best among other investigated image types in preservation of 

curviness. 

The results match the discovery of the psychological study in [16], that our visual 

system prefers curved visual objects due to the sensor arrangement in the fovea. 

However,  the center of human retina, fovea, is also close densely packed and   its 

hexagonal arrangement varies from the center to peripheral area. Our previous 
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systematic investigation resulted to the proposal of a general framework towards a 

virtual deformable image sensor in which grid, pixel  and the gap can change their 

form and size which facilities the virtual generation  of any types of sensor 

arrangement. The framework is proposed in Paper VII, whose core is the modelling 

of the incident photons onto the sensor surface. Compared to the previous papers 

and work, the attention is paid to the aperiodic tiling grid, i.e. Penrose grid. In the 

framework for a certain sensor arrangement a configuration of three optional 

variables are used which includes the structure of arrangement, the pixel form  and 

the gap factor. The results revealed that the histogram of gradient orientations of a 

certain sensor arrangement has a specific distribution (called ANCHOR) and the 

ANCHORs change their patterns by the change of arrangement structure. Using the 

framew ork and ANCHOR it becomes feasible to plan a sensor arrangement in the 

relation to a specific application and its requirements where the sensor arrangement 

can be planed even as combination of different ANCHORs. This idea may result in 

being able to have a sensor arrangement in the future very alike that of the biological 

vision sensory system. Finally, Paper VII created a common space for addressing and 

assessing different spatial arrangements of sensors, which is implemented by 

extending a discrete arrangement to a continuous one with discrete Weyl Group orbit 

function transform. This makes it feasible to compare e.g. the images with hexagonal 

and rectangular arrangements in one common space without arrangement 

transforming.  

1.2. Thesis outline 
The work presented in this thesis is based on the eight papers reproduced in Part II. 

The work is structured in two parts; first part provides an overview of related 

problems, the proposed methods to solve the problems, then an analysis of related 

results and conclusions. Second part contains the papers which elaborate in detail the 

first part . Part I consists of five chapters. The description of the proposed model of 

incident photons  is given in Chapter 2 and the process for generating images with 

different configurations  is explained in Chapter 3. The analysis of the results is 

presented and discussed in Chapter 4. First part is concluded in Chapter 5 which also 

presents summaries of the papers.  
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2. The model of incident photons 
 

By collecting incomin g photons into a sample grid, an image sensor samples an 

image. Fig. 4 illustrates such conventional sampling grid on an image sensor array of 

four pixels. The white and black areas represent the sensitive areas and non-sensitive 

areas in pixels respectively. The blue arrows in the figure represent the positions of 

sampled signal. Let assume the size of each pixel is Ўὼ by Ўώ. Then Ўὼ and  Ўώ , the 

sample interval in ὼ and ώ directions, are the spatial resolution of the output image. 

The sampling function can be expressed as 

Ὂὼȟώ  ὭЎὼȟὮЎώὪὼȟώ

where ὼȟώȟὼ and ώᴂare pixel coordinates in the input optical image Ὢand the output 

sampled image Ὂ ȟ with size of ὓ by ὔ, respectively [38]. Let also assume the size of 

the sensitive area is Ўὼᴂ by Ўώᴂ as shown in Fig. 4. Thus, when the incident light is not 

in the sensitive area with size of Ўὼᴂ by Ўώᴂ, Ὂὼȟώ π. 

 

Fig. 2. The image sampling on an image sensor.  

When the fill factor is lower than 100%, in that case the region of support 

corresponding to the sensitive area is not the whole area of one pixel. A signal 

resampling procedure is used in order to expand the region of support and improve 

the captured signal. For each pixel the resampled procedure consists of following 

parts: a) local learning model, b) sub-pixel rearrangement, c) model simulations on 

sub-pixel grid, d) intensity estimatin g of sub-pixels based on Bayesian inference, and 

e) pixel intensity estimation based on highest probability. Each part of the procedure 

is explained in more details as it follows.  

a) Local learning model  
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In a neighborhood of the actual pixel one or combinati on of several statistical models 

are tuned according to data structure in the pixel neighborhood. The incident 

photons on the image sensor undergoes a Poisson random process during the 

exposure time; i.e. the number of photons that are captured by the image sensor is a 

random variable. The number of photons in each pixel area eventually (i.e. after 

sampling and quantization) results in generation of the pixel intensity.  However, the 

relation between pixel intensities in a neighborhood of pixels is constrain ed by the 

optical means (e.g. the lens). This relationship is assumed to have a gaussian 

characteristic in this thesis and it is modeled in each neighborhood. By extending 

each neighborhood of a captured image by introducing subpixels , new 

neighborhoods of  pixels are generated which each may have only known or only 

unknown or both known and unknown subpixels intensity values. The Gaussian 

model is learned from  several close neighborhoods which include statistical enough 

known subpixels intensities.   

b) Sub-pix el rearrangement   

By knowing the fill factor, the image is rearranged in a new grid of virtual sensor 

pixels, each of which consisting of virtual sensitive and non -sensitive areas. Each of 

these areas is defined by integer number of sub-pixels. The intensity value of each 

pixel in the CCD image is assigned to all of subpixels in the virtual sensitive area. The 

intensity values of all sub -pixels in non -sensitive area in virtual sensor pixels were 

assigned to zero. An example of such rearrangement of sampled data to sub-pixel 

level is presented in Figure. 5. The pixel is composed by 40 by 40 subpixels, and its 

active area is 32 by 32, resulting in the fill factor is 64%, where the light grey area is 

the active area and the dark grey is the non-active area. 

 

Fig. 3. The virtual image sensor pixel composed by subpixels whose fill factor is set as 64%. 

c) Model simulations on sub -pixel grid  

In a sub-pixel rearranged neighborhood of the actual pixel, the local learned model 

is used to simulate all intensity values of the sub -pixels. The known intensity values 
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of virtual sensitive sub -pixels and result of interpolation on the sub -pixel grid for 

obtaining the unknown intensity values of virtual non -sensitive sub-pixels are used 

to initia te the intensity values in the simulation. Several simulations are 

accomplished where in each one the number of actual sub-pixels varies from zeros to 

total number of sub -pixels of the actual virtual sensitive area. In this way each sub-

pixel of the actual virtual sensor obtains, after a number of simulations, various 

random intensity values.  

d) Intensity estimating of sub -pixels based on Bayesian inference  

Bayesian inference is employed to estimate the intensity of each sub-pixel by having 

the model simulati ons values as the observation values. Let y be the observed 

intensity value of each sub-pixel after simulations and x be the true intensity value of 

the sub-pixel, then 

ώ ὼ ὲ 

where n can be considered as the contaminated noise by the interpolation process. 

Here the goal is to make the best guess, Ø , of the value x given the observed values 

by 

ὼ ÁÒÇÍÁØὖὼȿώ, 

and   ὖὼȿώ
ώὼ

 

where 0ØȿÙ is the probability distribution of x given y, 0ÙȿØ is the probability 

di stribution of y given x, 0Ø and 0Ù are the probability distribution of x and y.  

By assumption of having a Gaussian noise yields 

ὖώȿὼ 0ὼȿὼ ὲ
ρ

Ѝς“„
Ὡ  

where ʎ  is the variance of the noise; i.e. the variance of interpolated data from  

simulations for each subpixel . The educated hypothesis P(x) is obtained by the local 

learning model which here has a Gaussian distribution with the mean ʈ and 

standard deviation of ʎ as following  

0ὼ
ρ

Ѝς“„
Ὡ  

For posterior probability on x yields  
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ὖὼȿώ ὖώȿὼ0ὼ
ρ

Ѝς“„
Ὡ

ρ

Ѝς“„
Ὡ  

 

The x which maximizes 0ØȿÙ is the same as that which minimizes the exponent term 

in the above equation. Thus if  Æὼ   , when the derivative  Æᴂὼ

π, the minimum value or the best intensity estimation of the corresponding subpixel 

is 

ὼ
ώ„ ‘„

„ „
 

 

e) Pixel intensity estimation based on highest probability  

The histogram of intensity values of the actual virtual sensor sub -pixels is calculated 

which indicates a tendency of intensities probability. The multiplicatio n of inverse of 

fill factor with highest value of such probability is considered as the estimated 

intensity value of the actual virtual sensor as the result of resampling procedure  
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3. Image generation 
 

In this chapter, the process of generating an image with different sensor 

configurations  is explained. According to the model of the incident photons onto the 

sensor surface discussed in chapter 2, the detailed reconstruction process is divided 

into three steps of (a) projecting each original pixel intensity ont o a new grid of 

subpixels based on the gap size and form in the configuration; (b) estimating the 

values of subpixels based on a local learning model; and (c) estimating the new pixel 

intensity by decision -making based on the grid structure and pixel form in the 

configuration. The three steps are elaborated below: 

(a)  A grid of virtual image sensor pixels is constructed. Each original pixel, 

having square pixel form and arranged in square grid is projected onto a grid of ὒ × 

 ὒ square subpixels. According to the configuration size of the gap Ὃ  between the 

pixels, the size of the active pixel area is defined as Ὓ Ὓ, where Ὓ ὒ Ὃ. The 

intensity value of every pixel in the image sensor array is assigned to the virtual  

active pixel area in the new grid. The intensities of subpixels in the gap areas are 

assigned to be zero. An example of such sensor rearrangement on sub-pixel level is 

×ÙÌÚÌÕÛÌËɯÐÕɯ%ÐÎÜÙÌɯƙȮɯÞÏÌÙÌɯÛÏÌÙÌɯÐÚɯÈɯƗɯÉàɯƗɯ×ÐßÌÓÚɀɯÎÙÐËȮɯÈÕËɯÛÏÌɯÓÐÎÏÛɯÈÕËɯËÈÙÒɯÎÙÌy 

areas represent the active pixel areas and the gap areas. Assuming ὒ σπ and Ὓ

ρψ, and thereby the gap size becomes Ὃ ρς according to the above equation.  The 

size of the square subpixel grid for one pixel is examined from 20×20 to 40×40, the 

intensity in the generated images show no further significant changes after th e size 

is 30×30. Thus, in the experiment, ὒ is set to 30.  

 

(b) The second step is to estimate the values of subpixels in both pixel areas and 

gap areas. The local model used in this work is Gaussian model, which  is generated 

by maximum likelihood method.  Then a local noise source is generated within each 

local model and introduced to its certain neighborhood. Inspired by Monte Carlo 

simulation, all subpixels in each certain neighborhood are estimated in an iteration 

process using the known pixel values (for subpixels in the active pixel area) or by 

linear polynomial reconstruction (for subpixels in gap area). In each iteration step the 

number of subpixels in the pixel are a is varied from zero to total number of subpixels 

in pixel area. After the iteration process, a vector of intensity values for each subpixel 

is generated and the final subpixel value is predicted using Bayesian inference 

method and maximum likelihood of Gaussian distribution.  

 

(c) In the third step, the subpixels are projected onto the new deformable sensor 

grid with different sensor grid, pixel form and gap s ize in respective configuration . 

In this work , four  sets of configurations are considered: 1) square grid and pixel form 

https://en.wikipedia.org/wiki/Linear_polynomial
https://en.wikipedia.org/wiki/Linear_polynomial
https://en.wikipedia.org/wiki/Linear_polynomial
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with or without gap, 2) pseudo -hexagonal grid by half -square-pixel shift and square 

pixel form with or without gap, 3) hexagonal grid and pixel form with or without 

gap, and 4) Penrose grid and rhombus pixel form with or without gap , where each 

of the configurations deformability is demonstrated.  For the image generation in the 

different grids, the subpixels are projected back onto the new sensor grid. The 

intensity value of each pixel in different sets of configurations is the inte nsity value 

which has the strongest contribution in the histogram of its belonging subpixels.  The 

example of four sensor rearrangements onto subpixels are shown in Figure. 6. 

 

Figure 6. From left to right: the sensor rearrangement onto the subpixel, the 

projection of the square pixels onto the hexagonal grid by half pixel shifting method, 

the projection of the square pixels onto the hexagonal grid in generation of 

hexagonal image and the projection of the square pixels onto the Penrose grid in 

generation of Penrose image. 
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4. The results and discussion 
 

A set of six color images selected from the CID2013 database [39] are shown in Figure 

8. The database includes 480 color jpg images captured from 79 different cameras. 

Each image is down sampled (PDS) by Gaussian pyramid  to generate the PDS image. 

For each PDS image the RGB, color space is converted to YUV color space. The 

mathematical relationship b etween RGB and YUV can be found in [40ɬ42]. The 

luminance component of the YUV space is chosen for further processing due to its 

significant quality impact on the image.  The grid pixel of the luminance image is 

extended to sub pixel level and used to generate the new image with the method 

proposed in section 3 by virtual increase of fill factor to 100% . The new generated 

images are tone mapped by Krawczyk tone mapping operator  (K-TMO) [43] and 

shown in Figure 8 as well. The related histograms of both original and K -TMO images 

are shown in Figure 9. Both Figure 8 and 9 show larger dynamic range, higher 

contrast and more tonal levels in th e generated tone-mapped images in comparison 

to the original images.  

 

In paper III, it has shown that the K-TMO is the best tone mapping among the four  

chosen TMO methods, i.e. the logarithmic mapping  (L-TMO) , Banterle TMO (B-TMO) 

[45], Krawczyk TMO  (K-TMO) , and Fattal TMO (F-TMO). Implementing this strategy 

makes the image quality assessment (IQA ) of multi scale structural similarity ( MS-

SSIM) more useful in which instead  of original image, the K -TMO image is used as 

the reference image. Table 8 shows the result of full reference IQA  of MS-SSIM for 

PDS images when the reference images are the respective K-TMO images. The bold 

and red values show the maximum and minimum similarity respectively . According 

to the results in Table 8 and paper III, the HDR image is the most similar image to the 

reference K-TMO image, indicating the image has been improved from the original.  

 



                            P a g e  |  2 9  

 
 

  

 

Figure 8. The comparison of K-TMO images to the respective PDS set of images. 

 

Figure 9. The related histograms of the images in Figure 9. 
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Table 1. The result of ful l reference IQA of MS-SSIM for PDS images when the 

reference images are the respective K-TMO images. The bold and red values show 

the maximum and minimum similarity respectively.  

Index HDR Nor Ori  B-TMO  F-TMO  L-TMO  

1 0.538 0.868 0.768 0.820 0.849 0.349 

2 0.982 0.866 0.562 0.798 0.828 0.421 

3 0.985 0.817 0.556 0.804 0.878 0.413 

4 0.878 0.509 0.250 0.673 0.849 0.449 

5 0.950 0.895 0.692 0.791 0.818 0.396 

6 0.814 0.919 0.808 0.743 0.899 0.422 

 

In paper I  and II  it is shown that it is feasible to overcome the rigidity of the image 

sensor by virtual increase of the fill factor to 100% and have different variation s of 

pixel size. In the following papers,  III,  the work extends the previous works by 

changing the pixel form and arrangement with the software -based method. One of 

the original images, with square sensor arrangement (SQ), which is used for the 

experiment in this work  and the set of the related new generated images, which their 

generations were explained in Section 3, are shown in Figure 10. The images from left 

to right in the first row are the original image, and the related generated images : the 

enriched square (SQ_E), half-pixel shifted  enriched (HS_E), hexagonal enriched 

(Hex_E) and Penrose enriched images (Pen_E). The images in the second row of 

Figure 8 are the zoomed region of the images (shown as red square). The generated 

images show better dynamic range in comparison to the original images, as it was 

shown in [44]. 

 

Figure 10. One of original images and its set of generated images. 

Paper V proves that despite the detection of  the vertical edges by having  the 

hexagonal form of the hyperpel  is severely, the hexagonal images still can preserve 
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the edges superior in comparison to the SQ images, with a significant curvature 

detection ability , i.e. more edge points are detected in hexagonal image. It is also 

shown that  the impact of the curvature on the different sensor configuration is still a 

big challenge. Figure 11 shows 23 pairs of images which have exact similar contents 

but two different  contours; i.e. straight to curved line. Then each pair of images with 

the same semantic content is defined as straight contour (SC) or curved contour (CC) 

images. All images have the same resolution to ensure that the resolution is not 

affecting the number of gradients. A set of four types of images are generated from 

each original image, including SQ_E, half -pixel shifted  (HS), HS_E, and Hex_E. 

 

Figure 11. Twenty -three pairs of images from the database, where the images in firs t 

and third  row s have sharp contours and the images in the second and fourth row s 

have the curved contours. 

The challenging task is investigated by introducing  quantification 

measurements which are achieved by implementing f irst and second order gradient 

operations in form of several introduced and defined dissimilarity parameters. For 

the images on the hexagonal grid; hexagonal and half-pixel shift images, the first 

order gradients are computed at six directions, which are 0, 60, 120, 180, 240, and 300 

degrees. Due to resolution similarity of the generated images on the hexagonal grid, 

their number of pixels and the computed gradient elements  are the same. The top 

and middle row of Figure 12 shows the sorted first order gradient values from the 

generated Hex_E image in comparison to the generated HS and HS_E image at 0, 60 

and 120 degrees from left to right respectively. The amount of spreading of the 

gradient values reveals the correlation between the grid structure of the images. The 

more similar the image grids are, the amount of spreading is less. The more densely 

the points are distributed, the less variation from the gradient results are expected. 

Due to the grid similarity of original images and the SQ_E images, the correlations of 

sorted gradient valu es at 0, 45 and 90 degrees between them are linear which are 

shown in the bottom row of Figure 6. However, the correlations of sorted gradient 

values at 0, 60 and 120 degrees on the pseudo hexagonal grid structure and hexagonal 

grid structure are nonlinear  and dissimilar; shown in top and middle rows of Figure 

12. The same is the correlation of sorted gradient values at 0 degree between the SQ 
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image grid structure to both the pseudo hexagonal grid structure and hexagonal grid 

structure which are shown in Fi gure 13 on the first and third columns from left 

respectively; i.e. the correlation is in each case nonlinear and dissimilar. 

The Figure 13 shows that the gradient results from the four types of generated 

images in comparison to the original SQ image is different from each other; especially 

the second plot from left. This is because the grids in HS, HS_E and Hex_E images 

are more alike to each other and more different from the square grid (i.e. the grid of 

SQ and SQ_E images). The similarity/dissimilarity o f each two grid structures are 

possible to visualize; as they are shown in Figures 12 and 13. However, to quantify 

such a similarity/dissimilarity the first order gradient operation can be used as it is 

described in paper VI Section 4.1. Accordingly, the covariance of the gradient values 

of each two images are computed where each compared two images have the same 

contents but different grid structures. Then the eigen values and eigen vectors of each 

covariance matrix is computed using singular value decompo sition (SVD) method.   

Table 2 shows the summary of the comparison results of the first and second 

eigenvalues of the first gradient values in a cross comparison between original image 

and four types of generated images. The different property among the ty pes of 

images are caused by the diversity of their grid structure, pixel form or fill factor 

ÝÈÓÜÌȭɯȿ8ÌÚɀɯÈÕËɯȿ-ÖɀɯÐÕɯÛÏÌɯÛÈÉÓÌɯÙÌ×ÙÌÚÌÕÛɯÚÐÔÐÓÈÙÐÛàɯÈÕËɯËÐÚÚÐÔÐÓÈÙÐÛàɯÖÍɯÚÜÊÏɯÈɯ

property in relation between each generated image and the SQ image. The values in 

the last four columns of Table 2 are the sums of the first and second eigenvalues of 

the respected image type. In the table, the increase of the first or second eigenvalue 

indicates the increase of similarity or dissimilarity between the generated image  and 

SQ image respectively. The SQ_E and HS images in relation to the SQ image show 

higher similarity than the other image types; see the first eigenvalue results in Table 

2. The comparison of these two types of images show that the grid structure is more 

important than pixel form and fill factor value to cause differences between them. 

The Hex_E and HS_E images in relation to the SQ image show higher dissimilarity 

respectively. The comparison of these two types of images show that when the grid 

structures are the same the pixel form is more important than fill factor value to cause 

differences between them. The results show that the choice of grid structure, pixel 

form, and fill factor value are respectively important in generation of a new type of 

images. Here it  should  be noted that these three properties are not quite independent 

from each other. In Table 2, the results related to SC and CC for all four types of 

images show that they are clearly distinctive. However, the detail comparison of SC 

and CC in Paper VI show that it is not possible to have a clear conclusion between 

SC and CC by first order operation; due to the results variation.   
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