
Information and Software Technology 112 (2019) 18–34

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Selecting component sourcing options: A survey of software engineering’s

broader make-or-buy decisions

Markus Borg

a , ∗ , Panagiota Chatzipetrou

b , c , Krzysztof Wnuk

b , Emil Alégroth

b , Tony Gorschek

b ,
Efi Papatheocharous a , Syed Muhammad Ali Shah

d , Jakob Axelsson

a

a RISE Research Institutes of Sweden AB, Scheelevägen 17, Lund, SE-223 70, Sweden
b Blekinge Institute of Technology, Valhallavägen 1, Karlskrona SE-371 41, Sweden
c Örebro University School of Business, Örebro SE-701 82, Sweden
d iZettle, Regeringsgatan 59, Stockholm SE-111 56, Sweden

a r t i c l e i n f o

Keywords:
Component-based software engineering
Sourcing
Software architecture
Decision making
Survey

a b s t r a c t

Context: Component-based software engineering (CBSE) is a common approach to develop and evolve contem-
porary software systems. When evolving a system based on components, make-or-buy decisions are frequent,
i.e., whether to develop components internally or to acquire them from external sources. In CBSE, several differ-
ent sourcing options are available: (1) developing software in-house, (2) outsourcing development, (3) buying
commercial-off-the-shelf software, and (4) integrating open source software components.
Objective: Unfortunately, there is little available research on how organizations select component sourcing options
(CSO) in industry practice. In this work, we seek to contribute empirical evidence to CSO selection.
Method: We conduct a cross-domain survey on CSO selection in industry, implemented as an online questionnaire.
Results: Based on 188 responses, we find that most organizations consider multiple CSOs during software evolu-
tion, and that the CSO decisions in industry are dominated by expert judgment. When choosing between candidate
components, functional suitability acts as an initial filter, then reliability is the most important quality.
Conclusion: We stress that future solution-oriented work on decision support has to account for the dominance of
expert judgment in industry. Moreover, we identify considerable variation in CSO decision processes in industry.
Finally, we encourage software development organizations to reflect on their decision processes when choosing
whether to make or buy components, and we recommend using our survey for a first benchmarking.

1

a

t

e

c

i

m

t

c

r

c

e

i

f

i

m

c

d

s

t

f

o

i

o

r

c

t

a

R

i

b

p

h
R
A
0

. Introduction

Component-based software engineering (CBSE) is an established
pproach to enable large-scale code reuse and rapid development. By
urning systems into assemblies of components, CBSE supports software
volution by simplifying component replacement [1] . However, in
ontemporary software engineering, the best option might not be to
nternally develop the new component. For example, buying com-
odity software components off-the-shelf might enable a faster time

o market [2] . Furthermore, outsourcing development of less critical
omponents could save the most knowledgeable internal development
esources for differentiating features [3] . Moreover, it is increasingly
ommon that software components can be reused within software
cosystems [4] . In this work, our interpretation of the term component
s inclusive, i.e., a component is any separable software part of a system,
rom the database to “traditional ” components as usually considered
n CBSE, e.g., a software package, a web service, a web resource, or a
odule that encapsulates a set of related functions.
∗ Corresponding author.
E-mail address: markus.borg@ri.se (M. Borg).

ttps://doi.org/10.1016/j.infsof.2019.03.015
eceived 14 July 2018; Received in revised form 13 December 2018; Accepted 28 M
vailable online 29 March 2019
950-5849/© 2019 Elsevier B.V. All rights reserved.
A recurring strategic consideration for organizations evolving
omponent-based systems is the make-or-buy decision, i.e., whether to
evelop the components internally or to acquire them from external
ources. Numerous studies from decisions in the manufacturing sec-
or exist, e.g., structuring the decision process by providing support
or cost identification and break-even analysis [5] . However, research
n strategic decision making conducted in “traditional ” manufactur-
ng contexts does not necessarily apply to R&D projects, e.g., devel-
pment of software-intensive systems. Kurokawa points out two main
easons [6] : First, as opposed to manufacturing projects, not only costs
alculations are required for R&D projects, but also benefit calcula-
ions, i.e., an R&D organization can use acquired knowledge to gener-
te revenue later. Second, in comparison to manufacturing, analyses of
&D make-or-buy options are subject to higher degrees of uncertainty,

.e., decisions must be made with less accurate estimates of costs and
enefits.

In software engineering, the make-or-buy decisions are more com-
lex as both making and buying are represented by several sourcing
arch 2019

https://doi.org/10.1016/j.infsof.2019.03.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.03.015&domain=pdf
mailto:markus.borg@ri.se
https://doi.org/10.1016/j.infsof.2019.03.015

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

o

t

m

(

t

r

a

F

(

a

e

a

[

e

h

s

p

B

a

a

a

w

l

i

b

f

m

i

e

b

s

t

a

q

c

t

s

p

t

c

e

n

l

s

o

q

d

p

2

i

2

a

t

e

o

s

(

q

(

o

e

m

B

t

b

t

e

(

e

p

i

i

e

t

s

e

t

t

a

a

p

P

a

f

d

l

a

t

e

d

f

i

a

o

q

n

o

l

e

i

p

t

h

t
ptions [7] . “Making ” a software component can be interpreted as
raditional in-house software development. However, making can also
ean developing the component as part of an open source software

OSS) strategy, making the source code available from the start with
he goal to establish a community. An alternative is to carefully specify
equirements and to outsource the development of the source code to
n external organization, i.e., an option between “make ” and “buy ”.
inally, strict “buying ” means purchasing a commercial-off-the-shelf
COTS) software component [8] . However, an increasingly common
lternative to buying a COTS component is to instead integrate an
xisting OSS component [9] , e.g., in operating systems [10] , mobile
pplications [11] , and even in safety-critical development contexts
12] .

Deciding which component sourcing option (CSO) to use when
volving a software-intensive system is difficult. Often several stake-
olders are involved in the decision making, and they might repre-
ent conflicting viewpoints [13] . Several highly advanced decision sup-
ort systems have been proposed in software engineering research, e.g.,
ayesian networks [14] , formalism through modeling languages [15] ,
nd process simulation models [16] . Unfortunately, there is little avail-
ble research on how practitioners make software engineering decisions,
nd even less on how sourcing decisions are made [17] . To address this,
e present an industrial survey on practitioners’ decision making in re-

ation to choosing between CSOs when integrating components in evolv-
ng software-intensive systems. Analogous to the case survey reported
y Petersen et al. [18] , we simplify CSO decisions to selecting one of the
our alternatives:

• In-house: The company develops the component internally. In
line with the work by Badampudi et al. [17] , in-house includes
any distributed development (incl. offshoring) and internal de-
velopment by external consultants.

• Outsource: The company acquires the component from an exter-
nal development organization, e.g., after bilateral contract nego-
tiation or procurement via a competitive bidding process. Often
the source code is part of the deal.

• COTS: The company buys an existing component from a software
vendor or publisher. Typically the source code is not included in
the deal.

• OSS: The company integrates an existing component that has
been developed as open source software, possibly by a commu-
nity. The source code is publicly available and the company might
have to adapt it to fit the rest of the system.

We obtained 188 responses from various roles, across different do-
ains, confirming that the phenomenon under study indeed exists in

ndustry, i.e., CSO selection is a recurring decision point in software
ngineering. Furthermore, we show that CSO decisions are dominated
y expert judgment, both in the actual decision making and in the as-
essment of component qualities. Finally, regarding component selec-
ion, we identified that functional suitability acts as an initial filter
mong candidate components, then reliability is the most important
uality. Our main recommendation for industry practitioners is to in-
rease awareness of how decisions are made internally in their organiza-
ions. Hopefully, our survey can let organizations benchmark against the
tate-of-practice in CSO decisions – thus enabling identification of im-
rovements in the internal decision making processes. Finally, to meet
he needs of industry practice, we call for academic researchers to fo-
us efforts on how to support decision making that is mainly driven by
xpert judgment, rather than developing decision support of esoteric
ature with limited practical value.

The rest of the paper is structured as follows: Section 2 presents re-
ated work on decision making in software engineering. Section 3 de-
cribes how we conducted the industrial survey. In Section 4 , we present
ur results in the light of previous work. Section 5 answers the research
uestions and reports from a more thorough analysis. In Section 6 , we
19
iscuss the primary threats to validity. Finally, Section 7 concludes our
aper and presents our plans for future work.

. Related work

This section reviews related work on two types of decision making
n software engineering: CSOs selection and component selection.

.1. CSO selection

Badampudi et al. [17] conducted a systematic literature review on
pproaches to choose between architectural assets, i.e., how to make
rade-offs between different sourcing options. The investigation cov-
red decision criteria, methods for decision making, and evaluations
f the decision result. Through snowballing and systematic literature
earch, three types of solutions were identified to support the selection:
1) usage of decision methods, e.g., simulation models, analysis of re-
uirements dependencies, components clustering, and decision tables,
2) usage of alternative criteria such as quality criteria, and (3) usage
f alternative CSOs. The review highlighted that no systematic reviews
xist on the topic of CSO selection whereas the CSOs compared were
ainly focused on In-house vs. COTS and COTS vs. OSS. Furthermore,
adampudi et al. [17] analyzed the factors that are used in CSO selec-
ion, but they did not discuss the decision process involved – motivated
y the limited number of case studies identified in the literature. In con-
rast, our survey captures a broad picture of decision making and we
xplicitly target the decision process in one of the research questions
cf. RQ2 in Section 3.1).

As only a limited number of reported case studies exist, Petersen
t al. recently presented a case survey studying 22 case studies of how
ractitioners choose between CSOs [18] . The CSOs identified were: (1)
n-house, (2) outsource, (3) COTS, (4) OSS, and (5) services, i.e., mak-
ng use of services that are pre-built and can be invoked over a network,
.g., web services. One of the conclusions was that the most frequent
rade-offs are carried out between in-house vs. COTS, in-house vs. out-
ource, and COTS vs. OSS, partly confirming the result of the Badampudi
t al. study [17] , and bringing forward the in-house vs. outsource op-
ion. Based on the outcome of the decisions made in Petersen et al. [18] ,
he CSO in-house was the favorable decision option, however, the evalu-
tion of the decision showed that many of the decisions were perceived
s suboptimal, indicating the need for optimizing the decision making
rocess and outcomes. This survey has been designed to partly overlap
etersen et al.’s case survey. The two studies differ in scope and detail,
nd enable both method and data triangulation – a recommended basis
or knowledge discovery in software engineering [19] . The case survey
iscusses 22 decision cases in detail, whereas this survey collects high-
evel empirical data from a broad variety of respondents. Still, the RQs
re similar enough to allow direct comparisons, and generalization from
he 22 cases.

Several primary studies explored in-house vs. COTS CSO decisions,
.g., Brownsworth et al. [20] , discussed the changes resulting from intro-
ucing COTS into the development process and presented a new process
ramework. These changes occur through simultaneous definition and
nevitable trade-offs considering the requirements, marketplace, as well
s architecture and design. The changes require not just an engineering
r technical change to the typical (in-house) development process of re-
uirements, architecture, and implementation, but also a business, orga-
izational, and cultural change. Many new activities need to be carried
ut, e.g., vendor relationships establishment, COTS cost estimation, and
icense negotiation to leverage the benefits of a COTS marketplace. Li
t al. [21] empirically identified new COTS-specific activities and roles
ntegrated to traditional development to reduce risks and provide CSO
rocess improvement. Two CSO processes were found popular in prac-
ice: (1) familiarity-based selection, and (2) Internet-based search with
ands-on trials. In Cortellessa et al. [22] , a framework was presented
o support the decision to buy components or build them in-house for

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

s

c

d

o

t

t

O

r

e

t

w

s

f

s

t

l

m

o

(

s

r

t

l

a

p

d

a

t

2

t

i

h

O

c

l

a

c

p

C

c

t

l

a

l

u

i

a

w

t

m

i

t

v

p

s

h

i

h

[

i

G

p

m

m

p

i

O

t

c

b

v

t

t

e

i

s

t

t

n

F

T

t

L

e

I

p

A

o

s

o

w

p

s

o

o

3

v

s

3

c

k

g

l

Q

[39] .
oftware architects. The framework presented is based on a non-linear
ost/quality optimization model. A set of quality constraints related to
elivery time and product reliability are used to estimate the amount
f unit testing to be performed to build components. The main limita-
ion of the approach is the difficult instantiation of the general model
o specific cases.

Li et al. [23] studied decisions made during integration of COTS vs.
SS and showed significant differences and commonalities. The main

ationale was to obtain shorter time to market and reduced development
ffort. COTS was expected to have higher quality and vendor support
han OSS, whereas the no acquisition cost needed for the source code
as the main motivation for choosing OSS, as well as the open-access

ource code benefit. On the other hand, maintenance costs were higher
or COTS, as well as the required selection effort. For OSS the level of
upport was found questionable.

Considering in-house vs. outsource, Daneshgar et al. [24] discussed
he factors affecting the decision process for CSOs for both SMEs and
arge organizations: requirements fit, cost, scale and complexity, com-
oditization/flexibility, time, in-house experts, support structure, and

perational factors. The study further distinguished the factors for SMEs
ubiquitous systems, availability of free download, and customizable to
pecific government/tax regulations) and large organizations (strategic
ole of the software, intellectual property concerns, and risk). However,
he small sample of companies investigated in the study (8 companies),
imits generalizability. Wider-scope studies are needed, including SMEs
cross various industries and countries. The survey presented in this pa-
er aims to collect data from more practitioners and companies, i.e.,
irect data that are current rather than based on historical cases, to
ttempt confirmation of recent work by Badampudi et al. [17] and Pe-
ersen et al. [18] as well as previous studies by other researchers.

.2. Component selection

Once a component sourcing strategy has been selected, the organiza-
ion needs to concretize the particular component to use. If the strategy
s to do new development (either in-house or outsourcing), this will be
andled in the development process chosen. However, in the case of
SS or COTS, there could be several different candidate component to
hoose between. In practice, a particular component could fit more or
ess well into the overall system architecture, and hence there is also
n element of architecture decision making involved. In this section, we
over first results about architecture decisions with relevance to com-
onent selection. Then, the two particular cases of choosing OSS and
OTS will be detailed.

Architectural decision making contains many challenges, as dis-
ussed by Tofan et al. [25] . Based on a survey with architects in industry,
hey identified that dependencies between different decisions and the
arge business impact are major difficulties. Decisions are often unique,
nd the analysis requires a large effort. van Vliet and Tang [26] col-
ected literature related to the actual decision process that architects
se, and they put perspectives on the rationality of that decision mak-
ng, contrasting it with naturalistic decisions that are more contextu-
lly embedded. They conclude that the strategy chosen depends on how
ell-structured the problem is. They also identified sources of bias in

he decision making, and discussed the phases of architectural decision
aking, including problem framing, design exploration, and solution

dentification. Axelsson [27] described a case study from the automo-
ive industry, where the evolution of the system architecture was in-
estigated as a result of a number of change requests. It shows how two
rocesses interact, namely the revolutionary architecting of a brand new
olution for future product lines, and the evolutionary architecting that
andles smaller adaptations. The inclusion of a component into an ex-
sting architecture would be an example of an evolutionary step, which
as a strong focus on interface alignment.

Relating to component selection, Ayala et al. [28] and Gerea
29] found that common steps are identification, evaluation, learn-
20
ng and knowledge management, use of the component, and choosing.
erea also found that the process of selection is impacted by the com-
onent size. Larger components were selected earlier in the develop-
ent life-cycle. For OSS, identification is a challenge, since there is a
ultitude of different places to look. Kokkoras et al. [30] attacked this
roblem using a federated search engine that queries a number of ex-
sting open source search facilities and aggregates the result. Once an
SS candidate has been identified, one type of analysis is to look at

he business value [31] . In this approach, the net present value of the
omponent can be compared to the discounted costs, where the value is
ased on the assessment of a number of non-functional properties rele-
ant to the situation. However, this does not take into account the uncer-
ainties that result from the ecosystem nature of OSS development, and
herefore the approach is extended with a real-options analysis. Hauge
t al. [32] interviewed software companies about the integration of OSS
nto systems. They concluded that project specific factors are more deci-
ive than general evaluation criteria, thereby emphasizing the relation
o architecture described in the previous paragraph. Also, the decisions
end to be satisficing rather than optimizing.

For COTS, Ayala et al. [28] found a gap in the processes for compo-
ent selection proposed in the literature versus what is used in practice.
or example, component repositories are proposed, but not often used.
he process used for selection is rarely formal and rather ad hoc in na-
ure, which has been reported by multiple authors (cf. Ayala et al. [28] ;
i et al. [33] ; and Torchiano and Morisio [34]). For COTS selection Li
t al. [33] found that companies use prototyping to learn about COTS.
n line with Tofan et al. [25] , our survey reports the major challenges
ractitioners face when making architectural decisions, and, similar to
yala et al. [28] and Gerea [29] , we also attempt to capture the nature
f the decision process. However, our work is primarily targeting CSO
election rather than component selection.

Finally, Jadhav and Sonar conducted a systematic literature review
n selection of software packages [35] , largely overlapping with what
e refer to as COTS components. They report that the analytic hierarchy
rocess has frequently been proposed as a solution to tackle package
election in industry, but that the main obstacle has been the challenge
f defining clear evaluation criteria – which we specifically address in
ur related tool PROMOpedia [36] .

. Research methodology

This section describes the research questions, the design of the sur-
ey, the instrument evaluation, the data collection, and the data analy-
is.

.1. Research questions

The goal of our survey is to understand how CSOs and individual
omponents are selected in industry. More specifically, we contribute
nowledge to architectural decision making [25] , by decomposing the
oal into the three specific Research Questions (RQs) listed below. In the
ist, we also present the mapping between the RQs and the questionnaire
uestions (Q) described in Section 3.2 .

RQ1 Which CSOs are typically considered in industry? Q9–Q13
investigates the main CSOs considered in industry according to
previous work [17,18] .

RQ2 What is the decision process when selecting CSOs and com-

ponents? Influenced by previous work, Q14 explores the roles
involved in decision making [13,37] and Q17+Q20–Q23 address
the nature of the decision process [38] .

RQ3 What component qualities are the most important input to

the decision process? In Q18, we use the classification of soft-
ware quality from the international standard ISO/IEC 25010

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 1. Overview of the questionnaire. The numbers
under the closed questions show whether one, three,
or any number of options could be selected. The in-
dividual questions are listed in the appendix. Note
that Q15–Q16 are not part of the analysis in this pa-
per.

3

i

a

d

a

b

w

M

(

t

u

d

a

p

q

t
o

r

s

a

p

d

t

n

m

a

i

s

l

m

c

t

p

w

h

o

c

y

b

b

a

q

t

i

l

l
o

F

r

3

e

v

g

s

i

A

s

p

o

a

n

f

t

s

d
.2. Survey design

We designed a structured cross-sectional web-based survey [40] and
mplemented it using the Querous Survey Platform

1 . A survey method
llows for reaching a large number of respondents from geographically
iverse locations [41] and enables both automation in data collection
nd flexibility in analysis [42] . We selected the Querous Survey Platform
ecause it supports a more advanced question control flow compared to
hat is offered by simpler solutions such as Google Forms and Survey-
onkey.

The questionnaire consisted of a mix of closed-end and open-end
free-text) questions. The closed-end questions were of the following
ypes: (1) select one option, (2) select multiple options (any number,
p to three options, or up to five options), and (3) Likert scales. To
istinguish between type (1) and (2) in Section 4 , we present the former
s vertical bar plots with percentages, and the latter as horizontal bar
lots.

Definitions and clarifications were provided for those parts of the
uestionnaire for which there was a risk of misinterpretations. All ques-
ions included either an “Other ” option with a free-text field or an “N/A ”
ption. The final version of the questionnaire, containing 26 questions
eferred to as Q1–Q26, is available in the Appendix. Note that we de-
igned the survey to allow also partial answers, i.e., any dropouts that
t least answered Q9 contributed data to the subsequent data analysis
hase.

Fig. 1 shows an overview of the questionnaire. Our target respon-
ents were practitioners involved in CSO decision making in indus-
ry, including roles in strategic management (e.g., CTOs), product plan-
ing (e.g., product managers), operational management (e.g., project
anager), and software architecture. As the target population is large

nd highly heterogeneous, we included a relatively large demograph-
cs section (Q1– Q8) to enable a detailed characterization of the re-
pondents. We collected (1) the role, (2) working experience, and (3)
evel of education of the individual respondents, and (1) domain, (2)
aturity and (3) size of the respondents’ organizations, as well as

haracteristics of their software development processes, i.e., whether
hey use traditional plan-driven processes or rather adhere to agile
ractices.
1 http://www.querous.com/ .

q

21
The demographics section was followed by a pivotal question on
hich CSOs respondents consider (Q9), i.e., which of the four CSOs (In-
ouse, outsource, COTS, and OSS). The subsequent questions Q10–Q13
nly appeared to the respondent as a clarifying free-text question if the
orresponding CSO was not selected, e.g., “What is the main reason for
ou not to consider the option OSS? ” (cf. “optional path ” in Fig. 1).

The next section of the questionnaire (Q14–Q22) collected the back-
one data of the study. Q14 is a closed-end question for which any num-
er of options could be selected. Q15 and Q16 have been analyzed in
 separate publication [43] , but for transparency and completeness the
uestions can be found in the appendix. Q17–Q19 are closed-end ques-
ions with up to three, any, and one possible selection, respectively. Q20
s a mandatory free-text question regarding the most important chal-
enge involved in CSO decisions. Finally, Q21 is a single Likert item fol-
owed by Q22 as a free-text clarification if (and only if) “Strongly agree ”
r “Strongly disagree ” is selected (i.e., an “optional path ” in Fig. 1).
inally, the questionnaire concluded by a section of closing questions
elated to contact information and follow-up studies (Q23–Q25).

.3. Survey instrument evaluation

We evaluated the questionnaire in two stages. In the first stage, the
ntire Orion research team

2 reviewed the questions. In addition, we in-
ited an external senior software engineering researcher, a native En-
lish speaker, to particularly review the questions from a language per-
pective. We refined the survey instrument based on the feedback, cover-
ng wording, readability, understandability, and potential ambiguities.
fter the first stage, the questionnaire was implemented in the Querous
urvey platform.

In the second evaluation stage, we invited 15 colleagues from our
artner networks to act as test pilots. We asked these pilot respondents,
f which a handful had worked as senior product developers or man-
gers in industry, to measure the time needed to complete the question-
aire, and to provide feedback on any unclear questions. The feedback
rom the pilot respondents led to the removal of 2 questions to ensure
hat 10–15 min would be sufficient to complete the survey. Moreover,
ome of the replies entered in “Other ” categories by the pilot respon-
ents were used to refine the answer options. The final version of the
uestionnaire consisted of the 26 questions presented in Fig. 1 .
2 http://orion-research.se/participants.html .

http://www.querous.com/
http://orion-research.se/participants.html

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

3

p

p

c

i

i

m

e

t

c

c

r

g

J

r

p

l

s

g

t

r

B

f

T

g

T

b

s

d

a

f

3

s

a

s

f

t

p

w

o

T

q

w

q

a

t

s

(

b

i

v

a

t

t

p

t

T

Fig. 2. The five steps of the qualitative analysis. The person icons reflect how

four different researchers were involved.

a

s

v

t

a

a

fi

o

o

o

c

h

a

t

o

d

a

a

1

1

K

i

4

t

4

r

fl

d

(

a

r

s

a

t

m

m

c

o

W

i

(

T

O

i

d
.4. Data collection

We opted for an inclusive approach and used convenience sam-
ling [44] to elicit as much information from industry practitioners as
ossible in relation to CSO and component selection. Previous empiri-
al studies have suggested that both technical and management roles are
nvolved in the decisions under study [13,18,37] . The roles identified
n our previous work include: software management, software develop-
ent, external support, software testing or quality control, customers,

xperts, legal, sales, software design and architecture, and subcontrac-
ors (component providers). The multitude of roles confirms that an in-
lusive approach is the most suitable for this survey, as our aim is to
ollect opinions from a broad spectrum of decision makers and industry
epresentatives, i.e., the target population [45] .

Data collection started on January 14th of 2016 and finished on Au-
ust 31st of 2016. The majority of the responses was collected during
anuary and February. The Orion research team was tasked to send di-
ect invitations to industry partners, focusing on software architects and
roduct managers, but we also asked those industry partners to circu-
ate invitations within their organizations. Moreover, we advertised the
urvey on social media, e.g., Twitter and several LinkedIn and Facebook
roups related to software engineering and in particular software archi-
ecture.

We kept track of the origin of the responses by sharing five sepa-
ate invitation links, i.e., one per academic partner in the Orion project:
lekinge Institute of Technology, RISE, and Mälardalen University, one
or the pilot responses, and one link for open invitations, e.g., LinkedIn,
witter, and Facebook. The advantages of using LinkedIn in software en-
ineering surveys have been discussed in the literature, e.g., Galster and
ofan [46] , and include increased subject heterogeneity and the possi-
ility to reach a population for which no centralized bodies of profes-
ionals exist. In total we collected 353 responses; 296 responses through
irect invitations and 39 through open invitations, 15 pilot responses,
nd three undefined responses, i.e., responses that the Querous platform
ailed to track.

.5. Data analysis

We started the analysis by filtering out invalid answers, i.e., non-
ense or careless responses. All filtering steps were done by the first
uthor and validated by the third author. In total we obtained 353 re-
ponses, of which 152 were complete (43%). As most of the responses
rom the test pilots were collected from respondents belonging to the
arget population, we agreed to keep all but two (collected from test
ilots mainly inspecting the language). Regarding the partial responses,
e decided to keep all that at least completed Q9, i.e., the question
n which CSOs are considered, resulting in 188 remaining responses.
he average completion time for respondents who completed the whole
uestionnaire was 20min and 2s (SD = 19 min 44 s) – 87% completed it
ithin half an hour.

After the filtering, we analyzed all “Other ” answers from closed-end
uestions, i.e., answers containing free-text, to investigate whether any
nswers should be consolidated with the existing possible options for
he questions (i.e., Q1–Q4, Q9, Q14 and Q18–Q20). We decided to con-
olidate 13 answers for Q1 (respondents’ roles), three answers for Q4
respondents’ domains), and two answers for Q18 (quality attributes),
ut this did not introduce any new answer options. As for the filter-
ng steps, all merging operations were suggested by the first author and
alidated by the third author.

We conducted a number of statistical analyses within this study to
nswer the RQs. For the demographics section (Q1– Q8) contingency
ables were used to explore frequency data [47] . All the results from the
ables were depicted with bar charts. Chi-square of independence was
erformed to test the variety of the sizes of the different contingency
ables, as well as more than one type of null or alternative hypotheses.
he threshold value for p was 0.05 [48] . To examine the strength of
22
ssociations we used Cramér’s V test. Cramér’s V is a measure of the
trength of association of a nominal by nominal relationship, ranging in
alue from 0 to +1 representing no association and complete associa-
ion, respectively. A value more than 0.5 indicates strong association,
s suggested by Cohen’s guidelines for interpreting Cramér’s V [49] .

For the free-text survey results (Q10–Q13, Q21, and Q23), coding
nalysis was performed, inspired by grounded theory [50] through the
ve step process depicted in Fig. 2 . Step 1 was an exploratory analysis
f collected quotes performed by one researcher, resulting in extraction
f 125 relevant quotes. Step 2 was coding of the extracted quotes by
ne researcher, an incremental process with the goal summarize key
oncepts that resulted in 37 codes. During this process, instructions on
ow to interpret and apply the codes were captured in a coding scheme.

Steps 3–5 involved validation of the codes and the instructions for
pplication. Step 3 was a validation of the codes, conducted by two au-
hors other than the original creator of the codes, by analyzing a subset
f quotes – resulting in the removal of one single code. Step 4 was a vali-
ation of how the codes should be applied according to the instructions,
lso conducted by the two authors involved in Step 3. Finally, Step 5 was
 validation of the overall coding conducted by the researcher in Step
. The final step was done by letting yet another author code a subset of
0 quotes, and we obtained an acceptable inter-rater reliability (Cohen’s
appa value of 0.62). All details of the qualitative analysis are reported

n the accompanying technical report [51] .

. Results and discussion

This section presents the results from our survey and a discussion in
he light of previous work.

.1. Demographics

Fig. 3 shows the roles of the individual respondents. A third of the
espondents primarily associate themselves as product developers, re-
ecting that the number of developers outnumbers other roles in in-
ustry. The second largest group of respondents are software architects
20.7%), which appears promising given our goal to better understand
rchitectural decision making. Other roles represented by ten or more
espondents are strategic management, product planning, quality as-
urance, and end-user perspective. Overall, the respondents represent
 wide variety of roles involved in decision making.

Fig. 4 shows the respondents’ working experience (a) and educa-
ion level (b), respectively. A majority of the respondents reported 10 or
ore years of working experience (72.3%). Twenty-six respondents had
ore than 25 years of working experience and 10.6% of the respondents

an be considered juniors with 0–4 years of working experience. Most
f the respondents had received degrees from postgraduate education.
e conclude that our survey covers the viewpoints of senior engineers

n the software engineering industry.
Fig. 5 illustrates the wide variety of domains covered by the survey

note, however, that respondents could select any number of domains).
he domain selected most frequently is by far “Computer [Software] ”.
ther well-represented domains include telecommunications, engineer-

ng/architecture, automotive, and mobile applications.
The final part of the demographics section addressed the respon-

ents’ organizations. As a proxy for the maturity, Q6 asked for how

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 3. Roles of the respondents.

Fig. 4. Working experience (a) and education level (b) of the respondents.

m

t

y

a

m

u

s

d

s

o

r

p

o

a

o

d

c

e

a

4

t

s

t

o

n

r

f

3 Note that more than one CSO could be selected, thus the percentages in this
paragraph do not sum up to 100%.
any years the respondents’ companies had offered products or services
o the market. Fig. 6 (a) shows that 31.9% of the respondents stated “25
ears or over ”. On the other side of the scale, 23.4% of the respondents
nswered “0-4 years ”, representing companies new to the market. The
edian answer was “10–14 years ”. Fig. 7 depicts the size of the business
nits in which the respondents work. The most common size of the re-
pondents’ units is 5–19 co-workers (28.7%), but as many as 39 respon-
ents (20.7%) work in companies that do not appear to break down to
maller business units, i.e., they have more than 500 co-workers.

Finally, our questionnaire gauged whether the respondents’ devel-
pment organizations adhere to an agile development methodology or
ather traditional process models, e.g., waterfall development. As re-
orted in Fig. 6 (b), Q8 requested the respondents to select the level
f agreement to the statement “My development organization is more
gile than plan-driven ”. A majority of the respondents (58.0%) agreed
r strongly agreed to the statement, while 26.6% disagreed or strongly
isagreed. However, note that only 10 respondents strongly disagreed
23
ompared to 43 that strongly agreed. While our survey covers all lev-
ls of agility, we acknowledge that a larger fraction of the respondents
dhere to agile practices.

.2. Which CSOs are typically considered in industry? (RQ1)

Fig. 8 shows which CSOs are typically considered in industry, i.e.,
he answers to the branching question Q9 3 . A strong majority of the re-
pondents (87.2%) consider in-house development when choosing be-
ween CSOs. The second and third most common CSOs are OSS (113
ut of 188, 60.2%) and COTS (99 out of 188, 52.7%), respectively. We
ote that both OSS and COTS are considered in more than half of the
esponses. Outsourcing is the least commonly considered CSO, but still
requently considered as a viable option (68 out of 188, 36.2%).

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 5. Overview of the respondents’ do-
mains. Note that any number of domains
could be selected.

Fig. 6. Organizations’ time on the market (a) and self-reported agility of the respondentsâ development organizations (b).

Fig. 7. Number of co-workers in the respondents’
business unit.

24

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 8. The CSOs considered by the respondents.
Number of CSOs selected by the respondents: One
CSO = 51, Two CSOs = 51, Three CSOs = 53, and
Four CSOs = 33.

s

C

w

o

c

O

c

m

o

m

a

(

o

d

3

n

C

t

c

t

C

e

d

s

e

i

r

c

y

i

e

(

a

i

t
a

h

w

[

n

a

t
a

s

o

s

s

a

s

r

c

t

i

c

a
a

t

p

o

c

r

i

m

r

s

o

4
(

s

o

p

(

t

e

i

p

c

t

d

v
In contrast to the case survey by Petersen et al. [18] , our study
uggests that OSS often is considered when practitioners compare
SOs when evolving a software-intensive system, i.e., we report 60.2%
hereas Petersen et al. reported 11.3%. A possible explanation is that
ur sample has a larger representation from the domains mobile appli-
ations and Internet/e-commerce, which are known to frequently use
SS [52,53] . Another explanation, partly related, is that the previous
ase survey draws conclusions on older decision cases, whereas OSS has
atured considerably in the last decade.

A majority of the respondents report that they typically consider two
r more CSOs when adding new components (72.9%). The two CSOs that
ost frequently co-occur in decisions are in-house and OSS (97 times)

nd in-house and COTS (92 times), followed by in-house and outsource
59 times). Roughly a quarter of the respondents typically consider only
ne CSO, i.e., 51 respondents state that there is no decision between
ifferent CSOs in their organizations. Among these 51 respondents,
3 respond only in-house development, 12 respond only OSS compo-
ents, five respond only outsourcing, and one respondent answered only
OTS.

Each time a respondent did not select one of the CSOs, the ques-
ionnaire proceeded with a free-text question on why the CSO was not
onsidered. For the four CSOs, we received 243 such motivations dis-
ributed as 14, 100, 70, and 59 corresponding to in-house, outsource,
OTS, and OSS, respectively. In the next paragraphs, for each CSO, we
xplicitly enumerate the most common motivations. The minority who
id not select the in-house option tend to refer to strategic decisions
uch as (1) only OSS should be used and (2) the organization does not
mploy any internal developers at all.

Several respondents shared strong negative opinions about outsourc-
ng development. The most common arguments against outsourcing are
elated to low return on investment, i.e., (1) poor quality despite (2) high
osts. Examples include “[our] experience of outsourcing doesn’t mean
ou get better developers ”, “it takes more time to write a detailed spec-
fication than it takes to write the code yourself ”, and “outsourcing is
xpensive as it requires huge control ”. Two other important reasons are
3) the reluctance to decrease the low-level control of the development,
nd (4) the importance of keeping the knowledge of the source code
n-house – supported by comments such as “we need direct control over
he software and cannot compartmentalize it to an outsourceable task ”
nd “previous outsourced modules / —/ created knowledge silos which
ampered internal maintainability and extendability ”. Our findings are
ell in line with previous research listing challenges of outsourcing

3,54] .
The main reasons why organizations do not consider COTS compo-

ents appear to be that they are (1) costly, but still (2) do not fulfill
25
ll requirements. Several respondents express that their needs require
ailored solutions, e.g., “COTS typically has a bad fit with our offerings ”
nd “we need rather specialized parts ” Another frequently reported is-
ue with COTS is that due to the high costs involved, there is a (3) threat
f vendor lock-in. Finally, analogous to arguments against outsourcing,
everal respondents highlight (4) the risks of future maintainability is-
ues when the source code is not managed within the organization, i.e.,
 lack of low-level control.

It appears that (1) lack of OSS alternatives is the main reason for not
electing OSS components. Our study does not reveal to what extent the
espondents have explored the OSS landscape before coming to this con-
lusion, but it motivates research on solutions that support practitioners
o identify OSS components [30] . Several respondents explain that OSS
s not an option for (2) regulatory and legal reasons, e.g., strict pro-
ess requirements on security and safety, supported by statements such
s “[a] strict development process must be demonstrated to authorities ”
nd “legal aspects together with the lack of responsibility are challenges
hat need to be overcome. ” Furthermore, issues with (3) licensing incom-
atible with business models are mentioned, e.g., “the licenses around
pen source may prevent us from charging our customers ”, and (4) un-
ertainties in long-term maintainability of OSS components – the same
eluctance to lose low-level control as is reported for COTS. In general,
t appears that the reasons why organizations do not consider OSS re-
ain the same as reported a decade ago [55] . Our findings thus contrast

ecent work by Ayala et al., who reported that licensing was not an is-
ue for organizations considering OSS components, but rather the lack
f available documentation [56] .

.3. What is the decision process when selecting CSOs and components?
RQ2)

Fig. 9 shows the roles (or perspectives) involved in the CSO deci-
ion process. The two roles most frequently involved are product devel-
pment (62.8%) and system view/architecture (61.2%). Also product
lanning perspectives (48.4%) and maintenance/evolution perspectives
45.2%) are often involved in the decisions. Our results show that all of
he roles presented as options to Q14 are relevant to CSO decisions, as
ven the least frequent answer (internal business perspective) is selected
n 18.1% of the answers. Furthermore, our list appears to be rather com-
rehensive as the number of “Other ” answers is low.

Q17 is a Likert scale consisting of five Likert items related to the
haracter of the CSO decision process. Fig. 10 presents the answer dis-
ribution of the 164 remaining respondents, i.e., 24 respondents had
ropped out. While the CSO decision processes in industry appear to
ary, some general trends can be seen. Roughly the same amount of

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 9. Roles involved in the CSO decision
process. Note that any number of roles could
be selected.

Fig. 10. Likert scale on the CSO decision process.

26

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 11. Lead-time needed to reach CSO decisions.

r

d

s

s

n

C

[

b

s

s

i

h

c

o

f

e

t

t

a

a

i

F

t

a

i

p

t

t

f

e

r

l

l

o

m

i

l

t

d

1

l

u

i

w

p

d

q

c

a

a

e

c

c

p

t

s

p

i

c

i

o

k

c

w
espondents agrees (29.3%) and disagrees (25.0%) to whether the CSO
ecision process is systematic (cf. Fig. 10 a). Only 26 respondents have
trong opinions on the statement. Consequently, our results suggest that
ome organizations have a decision process in place while others do
ot, but few companies appear to have rigid processes established for
SO decisions, in line with previous studies on component selection
28,33,34] .

Fig. 10 b shows that CSO decision processes in industry are mainly
ased on expert judgment, as a clear majority agrees; 43.9% of the re-
pondents agree and 26.8% strongly agree, but only 7.3% disagree or
trongly disagree. In line with several other software engineering stud-
es [18,57,58] , expert judgment is the dominant approach. On the other
and, Fig. 10 c shows a contrasting view: almost half of the respondents
onsider the decision process to be based on collected data – 47.0%
f the respondents agree and 9.1% strongly agree. We interpret this as
ollows: expert judgment dominates CSO decisions in industry, but the
xperts inform themselves based on data collected within the organiza-
ions. Consequently, the typical CSO decision process in industry seems
o be based on a data-driven approach to expert judgment.

Fig. 10 d shows that CSO decision processes can be both democratic
nd authoritarian – the same number of respondents agreed (or strongly
greed) and disagreed (or strongly disagreed) to the statement. Regard-
ng the transparency of the decision process, there is a positive tendency;
ig. 10 e shows that 47.0% of the respondents agree (or strongly agree)
hat decisions are transparent, whereas 22.6% disagree (or strongly dis-
gree). Clearly, the perception of group involvement and transparency
n CSO decision processes is diverse.

Fig. 11 shows the lead-time needed to reach a CSO decision. The sub-
lots represent answers from the 153 remaining respondents concerning
he minimum time, the average time, and the maximum time, respec-
ively. Fifty-one respondents (33.3%) report that the average lead-time
or a CSO decision is less than one month. Both longer and shorter av-
rage times are common in industry though; 45.1% of the respondents
eport less than three months or longer lead-times, and 19.0% answered
ess than a week – or even less than one day.
27
Most respondents (55.6%) answer that the minimum lead-time is
ess than one week, 30.7% even say the minimum time is less than
ne day. Regarding the maximum lead-time, more than one year is the
ost frequent answer, reported by 27.5% of the respondents. A major-

ty of the respondents (52.9%) selected alternatives corresponding to
ead-times of the magnitude of months, i.e., less than three months, less
han six months, or less than one year. Seventeen percent of the respon-
ents claim that the maximum lead-time for CSO decisions is less than
 month, possibly explained by less complex system development or
eaner decision processes, as previous work report that increased prod-
ct complexity lead to longer decision lead-times [59] .

Q20 is free-text question about what makes CSO decisions challeng-
ng. We received 125 answers, and find that these challenges are aligned
ith the reasons why certain CSOs are not chosen, i.e., Q10–Q13 re-
orted in Section 4.2 . The results show a variety of reasons that could be
ivided into three key aspects: (1) management, (2) functional, and (3)
uality-oriented, i.e., aspects that affect the feasibility of the candidate
omponents, and in turn what CSOs were considered. Aspects associ-
ted with management include the cost of the component, the cost of its
doption and cost of component management, but also political factors,
.g., that OSS may not be allowed due to licensing issues. This con-
lusion is supported by statements like: “mostly legal issues regarding
ontracts, sourcing partners and SLA ”, “We don’t know quality of com-
lex open source. We don’t know how long open source will be main-
ained ”, and “it can be hard to compare the time and costs in developing
omething of our own with the monetary costs in purchasing a finished
roduct ”.

Next, the functional aspects of a component seem to be particularly
mportant for a decision maker to consider. This analysis varies from
omponent to component and can prohibit the use of a certain CSO
f the functionality is not good enough or if the component is not
pen source. This conclusion is supported by statements such as: “Our
ey factor is to correctly determine the strategic importance of the
omponent, e.g., deciding where in the life-cycle it is and how quickly
e believe the functionality will be commodity vs. differentiating ” and

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 12. Likert item on agreement between analysis and decision.

“

a

t

t

t

i

c

q

s

t

c

i

a

t

p

b

m

t

o

c

n

t

i

C

v

v

c

w

s

c

b

a

n

t

r

r

t

t

t

c

a

t

t

s

u

4
(

I

l

6

a

o

t

(

c

e

p

(

s

m

r

c

a

fi

b

acquiring technical knowledge needed to evaluate alternatives, and
llocate resources to prototype concept proofs of concept or prototypes
o test alternatives ”, which refers to the technical knowledge required
o understand the viability of a certain asset.

Finally, the quality-oriented aspects are crucial since they are used
o determine which component is chosen in the end, mentioned explic-
tly by 40 out of 188 respondents (21.3%). Hence, in the selection pro-
ess, components of similar functionality are first identified and then the
ualities of these components are compared to determine which one to
elect. As expected, the functionality is considered first to ensure that
he component truly fulfills the needs of the decision maker. This con-
lusion is supported by statements like: “We test the product (asset) by
ntegrating it with our product and calculate different function points
nd check performance. On the basis of the data collected from such
ests a decision is made. ” and “Is it reliable and compatible with our
roduct or not? ”

Based on our findings, a general chain of decision making steps can
e inferred, namely: (1) identification of components that follow the
anagerial and political guidelines of the organization, (2) identifica-

ion of components of suitable functionality to fulfill the need of the
rganization, and, finally, (3) comparison of the quality aspects of the
andidate components to acquire the one with the best fit for the orga-
izational needs. Our results suggest that the component selection and
he CSO selection are intertwined, i.e., any candidate component that
s identified through the three steps can be selected, regardless of its
SO.

Our survey identifies many challenges, but they are diverse and
ary across different types of companies and domains. Due to the di-
ersity, it is difficult to determine any general challenges for certain
ontexts, which will instead require more detailed research in future
ork.

Fig. 12 shows 152 responses to the Likert item addressing the
tatement “The final decision you make in your company on which
omponent to select agrees with what your analysis showed to be the
est option. ” A majority of the respondents (63.2%) agree or strongly
gree that the decision follows the analysis. While several respondents
either agree nor disagree to the statement, only 9.2% disagree with
28
he statement. Also, not a single respondent strongly disagrees. Our
esults indicate that decisions indeed are made in line with what is
ecommended by analyses.

For respondents selecting “Strongly agree ” to Q21, a free-text ques-
ion appeared, requesting a motivation. We received 23 such motiva-
ions, and conclude that most companies have agreement because of
heir structured decision-process and often some type of democratic de-
ision, supported by quotes such as “it has not been any big debates
bout it ”, “We prepared the choice through a formal process with a form
hat assists the decision. This form removes personal aspects and puts
echnical requirements that support in fact a complex decision ”, “unless
omeone can make a spectacular argument for an alternative, the team
sually goes with what was democratic-ishly selected. ”

.4. What qualities are the most important when selecting components?
RQ3)

Fig. 13 shows the most important quality attributes, as defined by
SO/IEC 25010 [39] , when making CSO decisions and component se-
ection. Functional suitability is of the highest importance, selected by
0.1% of the respondents, followed by reliability (42.0%) and maintain-
bility (34.0%). On the contrary, portability was only selected by 7.4%
f the respondents.

Fig. 14 presents how the ISO quality attributes are estimated prior
o CSO decisions. Most organizations use internal expert judgment
68.1%), clearly the dominant approach used in industry. Five other
ommon estimation methods appear to be equally common: previous
xperience (47.3%), perform measurements (44.1%), prototype com-
onent (43.1%), perform pre-study (42.6%), and read up on subject
42.0%). Considerably less frequent estimations methods are asking
ource providers, asking component users, and external expert judg-
ent – all selected in less than 25% of the responses. As only three

espondents selected “Other ”, the options provided by Q19 appear to be
omprehensive. Moreover, our results show that all estimation methods
re actually used in industry. Our study both corroborates and expands
ndings from Li et al. [33] , i.e., prototyping is used in COTS selection,
ut also in component selection from other CSOs.

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

Fig. 13. The most important quality attributes in
the CSO decision process. Note that up to three qual-
ity attributes could be selected.

Fig. 14. How quality attributes are estimated prior
to CSO decisions. Note that any number of estima-
tion methods could be selected.

5

s

5

e

m

s

i

p

a

C

H

o

i

d

p

t

n

t

m

c

l

c

o

a

t

t

C

u

t

. Statistical analysis and synthesis

This section presents additional statistical analyses of the results and
ynthesizes our findings to answer the RQs.

.1. Which CSOs are typically considered in industry? (RQ1)

Most importantly, our results confirm the presence of the software
ngineering phenomenon under study: CSO selection, i.e., an extended
ake-or-buy decision. As reported in Section 4.1 , most companies con-

ider more than one CSO when evolving component-based systems – and
f only one CSO is considered, the company typically develops all com-
onents in-house. Furthermore, our survey indicates that OSS and COTS
re equally common CSOs in component-based software evolution.

Our findings confirm Badampudi et al.’s conclusion that the four
SOs in-house, outsource, OSS, and COTS are compared in practice [17] .
owever, while their work showed that the academic literature focuses
n in-house vs. COTS and COTS vs. OSS, our work suggests that both
29
n-house vs. COTS and in-house vs. OSS are frequently compared in in-
ustry. Also compared to Petersen et al. [18] , our survey reveals a higher
revalence of OSS in industry.

On top of these findings, we identify a number of patterns among
he respondents; all of the findings reported below are statistically sig-
ificant, but we remind the reader that “agility ” was self assessed by
he respondents, as discussed in Section 6 . First, agile companies are
ore likely to consider more than one CSO compared to plan-driven

ompanies (p < 0.01, Cramér’s V = 0.336). However, agile companies
ess frequently consider outsourcing (p < 0.05, Cramér’s V = 0.250),
oncurring with the analysis provided by Turk et al. [60] : “agile devel-
pment provides limited support for subcontracting ”. In contrast, Jalali
nd Wohlin [61] presented a more recent systematic literature study
hat shows that outsourcing indeed is used in agile development con-
exts. Our survey shows that outsourcing is instead a more common
SO alternative for companies with mature products and large business
nits – as one could expect, small organizations appear to rarely have
he resources to orchestrate outsourcing initiatives.

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

O

n

p

N

p

p

W

v

5
(

i

d

a

e

o

a

j

c

b

n

e

m

p

d

c

j

i

F

i

i

n

s

a

c

e

m

o

s

o

c

b

d

o

a

o

a

t

t

e

p

t

t

d

l

a

s

o

i

a

a

e

t

S

c

c

d

a

(

n

m

5
(

q

p

t

r

t

m

l

q

i

l

t

i

W

I

q

i

5

i

f

fi

s

p

s

w

o

c

m

s

i

p

m

i

d

e

t

T

w

i

a

V

l

u

b

F

t

(
On the other hand, agile companies are more inclined to consider
SS (p < 0.05, Cramér’s V = 0.352). The tendency to consider OSS is
ot restricted to agile organizations though, as OSS is generally more
opular in companies with product offerings less than a decade old.
ote, however, that our survey also suggests that many mature com-
anies consider OSS – 22 out of 60 respondents from companies with
roducts on the market for 25+ years reported considering this CSO.
e conclude that OSS has permeated software engineering contexts of

arious nature, attracting both young start-ups and mature companies.

.2. What is the decision process when selecting CSOs and components?
RQ2)

Our results show that the process for CSO and component selection
n industry varies considerably. Roughly the same proportion of respon-
ents report an ad hoc decision process as a decision process of a system-
tic nature. On the same note, CSO decisions in industry are driven by
xpert judgment, corroborating findings from Petersen et al. [18] . Not
nly does expert judgment dominate the actual decision process, but
lso the assessment of the alternative options. On the other hand, a ma-
ority of the respondents also claim that the decision process is based on
ollected data, adhering to calls to make software engineering decisions
ased on empirical evidence [62] . Note, however, that our work does
ot organize decision making into phases as proposed by Badampudi
t al. [38] , i.e., decision preparation, decision initiation, and decision
aking. Thus, it is possible that certain phases of the decision making
rocess are more data-oriented than others. Moreover, while the respon-
ents’ emphasis on both expert judgment and data at first might appear
ontradictory, we argue that it motivates efforts to complement expert
udgment-based decision processes with historical data, e.g., by provid-
ng easy access to analogous cases stored in a knowledge repository [63] .
uture work should take into consideration the nature of decision mak-
ng in industry, and propose applicable decision support that can be
ntegrated in contemporary ways of working – otherwise there will be
o industry adoption.

We highlight a number of findings related to involvement in deci-
ion processes. First, in line with the distribution of answers for the
d hoc/systematic question, roughly the same number of respondents
laim that the decisions are democratic as authoritarian. As one could
xpect, agile organizations with developers involved in the decision
aking more frequently perceive their process as democratic. On the

ther hand, developers’ self-perception of involvement does not neces-
arily reflect reality. We observed that developers are more likely than
ther respondent roles to report that “developers are involved in the de-
ision making ” (p < 0.05, Cramér’s V = 0.362). One explanation could
e that the developers tend to overestimate their involvement in CSO
ecisions, i.e., that developers experience an illusion of democracy. An-
ther possible explanation is that the developers feel involved as they
re active in collecting information during the decision preparation, but
ther roles do not believe that activity qualifies as involvement in the
ctual decision making. A third explanation, partly related, could be
hat developers and the other roles are involved in different phases of
he decision making, thus other roles are not fully aware of the develop-
rs’ involvement. The last two explanations are in line with the different
hases of decision making described by Badampudi et al. [38] , but fu-
ure work is needed to confirm whether developers’ involvement tends
o be restricted to early phases.

While not statistically significant, we notice a tendency that respon-
ents from agile development organizations report longer CSO decision
ead-times. As faster time-to-market is one of the expected benefits of
gile development methods [64,65] , the slower decision processes are
omewhat counter-intuitive. On the other hand, researchers have previ-
usly highlighted that software architecture might deteriorate when ag-
le development is introduced [66,67] – which could explain the slower
rchitectural decision making identified in our survey.
30
Another finding we want to highlight in relation to RQ2 regards the
greement between the preparatory analysis and the final decision. We
xpected to find a discrepancy, i.e., many respondents reporting that
he suggestions from analyses are not followed in the actual decision.
uch a discrepancy would resonate with previous work stressing politi-
al factors in software engineering [68] , e.g., in cost estimation [69] and
omplex systems engineering [70] . Instead, we found that most respon-
ents agree that the final decisions follow the recommendations from
nalyses – again developers stand out by agreeing more than other roles
 p < 0.05, Cramér’s V = 0.341). Our conclusion is that CSO decisions are
ot held back by internal politics, it appears that organizations indeed
ake decisions in line with the results from the analyses.

.3. What qualities are the most important input to the decision process?
RQ3)

We conclude that functional suitability is the single most important
uality in CSO decisions, essentially acting as the deal-breaker. Com-
onents must serve their functional purpose. This finding was consis-
ent across all respondents, i.e., no matter which CSOs are considered,
egardless of organization size, development methods, and maturity of
he company: functional suitability acts as an initial filter in the decision
aking.

After the initial screening phase based on functional suitability, re-
iability is the second most important quality in CSO decisions. Other
ualities that typically are central to CSO decisions are maintainabil-
ty, performance, and security. Our findings corroborate results from a
iterature study by Sentilles et al. [71] , investigating the most impor-
ant qualities in the automotive domain. The authors report that cost
s the most important, followed by performance and reliability/safety.

hile we do not consider cost in our survey, as it is not part of the
SO 25010 quality model, our respondents report a similar ranking of
ualities. Moreover, two recent surveys have ranked quality attributes
n OSS. The 2017 GitHub Open Source Survey [72] , collecting data from
500 randomly sampled respondents representing 3800 GitHub repos-
tories, reports that developers primarily value stability and security,
ollowed by user experience, compatibility, and transparency. LibreOf-
ce replicated the survey among their users, collecting 1330 answers,
howing that the most important quality is stability, followed by com-
atibility, user experience, and security. We note that neither of the OSS
urveys presented performance as an alternative option, that reliability
as referred to as stability, and that maintainability was captured in
ther terms such as customizability and support. Taking all results into
onsideration, we conclude that reliability appears to be the universally
ost important quality of software regardless of domain. Furthermore,

ecurity awareness permeates software engineering in general, although
t was not ranked as high by Sentilles et al. [71] .

We show that component qualities are primarily estimated using ex-
ert judgment. The least common estimation methods both require hu-
an interaction: interviewing users of the component and directly ask-

ng the source provider. In general, software engineering recommen-
ations on how to evaluate software components are technically ori-
nted rather than human-oriented, i.e., more guidelines for experimen-
ation and mathematical modelling such as Go š eva-Popstojanova and
rivedi [73] have been published than high-level assessment frame-
orks such as Kontio [74] . Our survey shows that respondents work-

ng in large business units more frequently ask the source providers
bout the quality characteristics of a component (p < 0.05, Cramér’s
 = 0.332). This indicates that there is a higher degree of trust between

arge development organizations and their suppliers. As large business
nits typically exist in mature companies, it is likely that long-lasting
usiness relations enable more direct and transparent communication.
urthermore, companies that recently released products or services to
he market more often use prototyping to estimate component qualities
 p < 0.05, Cramér’s V = 0.278). One possible explanation is that young

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

c

w

p

t

T

c

w

p

6

t

l

s

t

W

p

l

m

a

t

i

p

t

m

c

o

l

e

b

o

p

p

e

a

m

p

i

t

d

t

C

w

i

p

c

t

f

O

b

w

q

s

q

p

b

a

s

d

a

r

7

c

d

s

c

o

i

f

m

(

(

i

i

o

s

C

e

t

w

c

a

i

r

a

a

o

t

e

c

f

n

s

r

b

o

i

e

t
ompanies already are used to develop prototypes, thus prototyping also
ith candidate components is a natural approach.

Finally, we report that organizations that estimate components’ (1)
erformance and/or (2) reliability on average have longer decision lead-
imes (p < 0.05, Cramér’s V equals to 0.323 and 0.352 correspondingly).
hese are reasonable findings, as performance testing is known to be
hallenging [75] and the reliability of a component inevitably grows
ith increased testing times [76] – a high reliability target, necessitates
rolonged time in the testing phase.

. Limitations and threats to validity

The population under study, i.e., practitioners involved in archi-
ectural decision making in component-based software evolution, is
arge and highly heterogeneous. Our survey was not designed to make
trong quantitative conclusions about the general population of practi-
ioners involved in CSO decisions, but rather to identify larger trends.

e relied on a non-probabilistic method referred to as accidental sam-
ling [77] , i.e., we recruited respondents based on convenience – in
ine with most software engineering surveys [78] . While we took nor-
al precautions to collect answers from valid respondents, and filtered

ll answers as described in Section 3.5 , we can never be certain that
he respondents actually are knowledgeable about CSO decisions in
ndustry.

We continue by discussing three types of threats to survey validity
resented by Kitchenham and Pfleger [40] . For further details, we refer
he reader to the technical report [51] . Content validity concerns how
uch a measure represents every single element of a construct. In our

ase, we needed to ensure that our questionnaire covered all aspects
f CSO decisions in industry. However, there is a trade-off between the
ength of the questionnaire and the coverage. We used an instrument
valuation with pilot runs, as described in Section 3.1 , to find a feasible
alance. Some aspects related to CSO decisions were intentionally left
ut, as well as combinations of the four CSOs. Among the excluded as-
ects, we list three aspects whose influence on CSO decisions would be
articularly interesting to study in future work: offshoring, product-line
ngineering, and software ecosystems.

Construct validity refers to how an operational definition of a vari-
ble actually reflects the true theoretical meaning of a concept. The
ajor threat to our study is whether our inquiry about previously ex-
erienced CSO decisions truly reflects a phenomenon in industry. Our
nitial construct captured CSO decisions and component selection as
wo separate activities, but our construct evolved during the study. Our
ata analysis suggested that in many cases the two decisions are in-
ertwined; the most appropriate component is selected regardless of its
SO. To mitigate this threat, we let RQ1 address CSO decisions and
e opened up RQ2 and RQ3 to instead discuss component selection

n more general terms. Another threat to construct validity is our sim-
lified description of the OSS option, i.e., integrating an existing OSS
omponent. It could be argued that this reflects a naïve and imma-
ure view on open source development, as it is increasingly common
or organizations to develop new components in-house, but under an
SS license from the start [79] – such development would qualify as
oth in-house and OSS in our questionnaire. However, we believe that
e captured all such examples through the mix of closed and open
uestions.

Finally, criterion validity deals with the ability of a measurement in-
trument to distinguish respondents belonging to different groups. Our
uestionnaire collected self-reported assessments and opinions, an ap-
roach that might introduce certain biases. In our questionnaire, we
elieve that the biggest threat is related to the self-assessment of agility,
 phenomenon that is known to be hard to evaluate [80] . We use the
tatement in Q8 (“My organization is more agile than plan-driven ”) to
istinguish respondents, but we did not triangulate this self-reported
gility assessment beyond analyzing the respondents’ open question
eplies.
31
. Conclusion and future work

A recurring strategic consideration for organizations evolving
omponent-based systems is the make-or-buy decision, i.e., whether to
evelop the components internally or to acquire them from external
ources. In software engineering, make-or-buy decisions are more
omplex than in traditional manufacturing, as both the make and buy
ptions are represented by several sourcing options and have long-term
mplications in terms of maintenance and evolvability. In this work, we
ocus on four component sourcing options (CSO): (1) in-house develop-
ent, (2) outsourced development, (3) buying commercial-off-the-shelf

COTS) software, and (4) integrating existing open source software
OSS).

We present an industrial survey on practitioners’ decision making
n relation to choosing between CSOs for adding components in evolv-
ng software-intensive systems. We obtained 188 responses from vari-
us roles involved in development of software-intensive products and
ervices across different domains. As there are few previous studies on
SO selection, we contribute novel input to an understudied software
ngineering challenge, manifested in the answers to the research ques-
ions below.

RQ1 Our survey confirms that CSO selection constitutes a recurring
decision point in software engineering. All four CSOs are fre-
quently considered in industry; in-house is the most common,
in turn followed by OSS, COTS, and outsourcing. Furthermore,
most companies consider more than one CSO when evolving
component-based systems.

RQ2 We show that the processes for CSO and component selection
in industry vary considerably. Ad hoc decision processes are
about as common as systematic counterparts. Irrespective of
systematism, component decisions in industry are driven by
expert judgment. On the other hand, most decision processes are
complemented by collected data. Moreover, authoritarian and
democratic decision processes appear to be equally common in
industry, but many different roles are involved in both cases.

RQ3 We conclude that functional suitability is the single most im-
portant quality in component decisions. Once a component’s
functional suitability has been determined, other qualities are
estimated. Reliability is the second most important quality,
followed by maintainability, performance, and security. Due to
consistency across domains and contexts, our results suggest that
functional suitability and reliability are universal qualities that
make components more likely to be selected.

Our research has several implications for research and practice. First,
e show that any solution-oriented work on decision support has to ac-

ount for the dominance of expert judgment in industry – or end up
s yet another academic construct collecting imaginary dust in a dig-
tal library. Note that we do not argue that researchers must incorpo-
ate expert judgment in their solutions, we rather ask researchers to
cknowledge how state-of-practice CSO decisions are made and adapt
ny deployment plans accordingly. Academic solution proposals, e.g.,
bjective decision support tools, might appear exotic to industry and
hus need to be gradually introduced. Second, we observe a wide vari-
ty of decision processes – not at all surprising given the heterogeneous
ontexts experienced by the survey respondents. Future research should
urther explore contextual differences, as a single decision process will
ot rule them all. Instead, to really make an impact in industry, re-
earchers should focus efforts on solutions tailored for specific contexts
ather than global solutions. Third, our survey shows that decisions are
ased on data, but further research is needed to understand what types
f data are used, how they are used, and how the data are translated
nto the actual decisions.

From the perspective of an industrial practitioner, our survey might
ncourage self-reflection. Hopefully, our study can motivate organiza-
ions to take a step back and consider their own decision processes. We

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

b

a

a

e

a

t

n

m

p

r

a

d

e

F

c

s

d

m

s

t

e

M

b

d

p

v

w

s

S

A

p

o

i

C

A

q

L

T

T

Table 2

The main part of the questionnaire, Q9–Q24.

Q9 What options do you typically compare when
choosing to add/replace a new component to your
product? [Inhouse, Outsource, COTS, OSS]

Multiple choice,
select one or more

Q10–Q13 What is the main reason for you not considering
the option < from Q9 > ?

Free-text

Q14 When choosing between the options < from Q9 > ,
which roles/perspectives are involved in the
decision making?

Multiple choice,
select one or more

Q15 When choosing between the options < from Q9 > ,
what information is the most important input to
the decision process?

Multiple choice,
select one to five

Q16 Given the options you selected as the most
important in the previous question, please indicate
their relative importance by distributing 100
points across the alternatives.

Distribute $100

a) “... we follow a systematic decision process. ”
b) “... our decision process is mainly based on
expert judgment. ”

Q17 c) “... our decision process is based on data we
collect. ”

Likert scale

d) “... the final decision is democratic rather than
authoritarian. ”
e) “... the decision process is transparent. ”

Q18 When choosing between the options < from Q9 > ,
which quality attributes are the most important to
consider?

Multiple choice,
select one to three

Q19 Regarding the quality attributes < from Q18 > ,
what methods do you use to collect or estimate
information about them?

Multiple choice,
select one or more

How long is the typical lead-time needed to reach
a decision in selecting a component (i.e., choosing
between < from Q9 >) for your product?

Q20 a) Minimum lead-time Multiple choice,
select one

b) Typical lead-time
c) Maximum lead-time

Q21 When choosing between the options < from Q9 > ,
what are the main factors that make a decision
challenging?

Free-text

Q22 “The final decision you make in your company on
which component to select agrees with what your
analysis showed to be the best option. ”

Likert item

Q23 (If strongly agree/disagree to Q22) Please explain
the reason for your answer to the previous
question.

Free-text

Q24 If you would like to receive our final report at the
end of the study, please provide your email
address.

Free-text

Table 3

The concluding part of the questionnaire, Q25–Q26.

Q25 If you entered an email address in the previous question, would
you be willing to answer follow-up questions related to the topic

Yes/No
elieve there is a value in simply increasing awareness of how decisions
re made, and our survey can enable a benchmarking against the over-
ll community. Along the same lines, we recommend organizations to
xplicitly cover CSO and component decisions in retrospective meetings
nd post-mortem analyses. Only by bringing the decision processes to
he surface, assessment and improvement activities can commence. Fi-
ally, also related to process improvement, development organizations
ight benefit from augmenting internal metrics initiatives to encom-
ass also CSO and component decisions, incl. lead-times and decision
ationales. While it by no means is trivial, software reuse will remain
n engine for software engineering projects – thus CSO and component
ecisions will inevitably be key concepts.

In the Orion project, we will continue our research on efficient and
ffective decision making in component-based software engineering.
irst, we aim to help organizations improve their decisions-making pro-
esses by collecting data or evidence relevant to their architectural deci-
ions with the GRADE taxonomy [37] and canvas [81] , possibly through
irect interaction with partner companies during agile retrospective
eetings in the field, or through focus groups in more controlled

ettings. Second, we will continue developing COACH [82] , with a par-
icular focus on creating a lightweight decision support tool that can be
asily integrated into a decision process dominated by expert judgment.
oreover, since we now know that decisions are also complemented

y data (cf. Fig. 10 c), we will continue our efforts to make previous
ecisions useful [63] , either by case-based reasoning or more advanced
attern matching techniques. Finally, we have initiated detailed in-
estigations of a handful of development contexts. At the moment,
e study component selection in the automotive domain and sourcing

trategies in public sector development at government agencies in
weden [83] .

cknowledgement

The work is partially supported by a research grant for the ORION
roject (reference number 20140218) from The Stiftelsen för Kunskaps-
ch Kompetensutveckling in Sweden. The authors have no competing
nterests to declare.

onflict of interest

None.

ppendix

Tables 1–3 show the questions of the web-based questionnaire. The
uestions were either closed, i.e., multiple choice, Likert scale (or single
ikert item), distribute $100 or open-ended, i.e., with free-text answers.
able 1

he demographics section of the questionnaire, Q1–Q8.

ID Question Type

Q1 Which of the following best describes your current
role?

Multiple choice, select
one

Q2 How many years of working experience do you
have?

Multiple choice, select
one

Q3 What is the highest level of formal education you
have received?

Multiple choice, select
one

Q4 In which domain(s) do you primarily work? Multiple choice, select
one or more

Q5 Please provide a brief description of the product or
service that is the principal focus of your work.

Free-text

Q6 For how many years has your company had this
product or service category on the market?

Multiple choice, select
one

Q7 How many co-workers do you have in the business
unit in which you work?

Multiple choice, select
one

Q8 “My development organization is more agile than
plan-driven. ”

Likert item

of this survey?
Q26 Finally, is there anything else you would like to add before

submitting the survey?
Free-text

N

t

R

32
ote that Q15 and Q16 are presented for the sake of completeness, and
he findings are reported in a separate publication [43] .

eferences

[1] T. Vale, I. Crnkovic, E.S. de Almeida, P.A.d.M. Silveira Neto, Y.C. Cavalcanti,
S.R.d.L. Meira, Twenty-eight years of component-based software engineering, J.
Syst. Softw. 111 (2016) 128–148, doi: 10.1016/j.jss.2015.09.019 .

[2] P. Ulkuniemi, V. Seppanen, COTS component acquisition in an emerging market,
IEEE Softw. 21 (6) (2004) 76–82, doi: 10.1109/MS.2004.38 .

[3] D. Š mite, C. Wohlin, T. Gorschek, R. Feldt, Empirical evidence in global soft-
ware engineering: a systematic review, Empir. Softw. Eng. 15 (1) (2010) 91–118,
doi: 10.1007/s10664-009-9123-y .

[4] K. Manikas, K.M. Hansen, Software ecosystems - a systematic literature review, J.
Syst. Softw. 86 (5) (2013) 1294–1306, doi: 10.1016/j.jss.2012.12.026 .

[5] P. Kraljic , Purchasing must become supply management, Harv. Bus. Rev. 61 (5)
(1983) 109–117 .

https://doi.org/10.13039/501100003170
https://doi.org/10.1016/j.jss.2015.09.019
https://doi.org/10.1109/MS.2004.38
https://doi.org/10.1007/s10664-009-9123-y
https://doi.org/10.1016/j.jss.2012.12.026
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0005

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[
[6] S. Kurokawa, Make-or-buy decisions in R&D: small technology based firms in
the United States and Japan, IEEE Trans. Eng. Manage. 44 (2) (1997) 124–134,
doi: 10.1109/17.584921 .

[7] C. Wohlin, K. Wnuk, D. Š mite, U. Franke, D. Badampudi, A. Cicchetti, Supporting
strategic decision-making for selection of software assets, in: Proc. of the Interna-
tional Conference of Software Business, in: Lecture Notes in Business Information
Processing, Springer, Cham, 2016, pp. 1–15, doi: 10.1007/978-3-319-40515-5_1 .

[8] K. Wallnau , S.A. Hissam , R.C. Seacord , Building Systems from Commerical Compo-
nents, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002 .

[9] C. Ruffin, C. Ebert, Using open source software in product development: a primer,
IEEE Softw. 21 (1) (2004) 82–86, doi: 10.1109/MS.2004.1259227 .

10] B. Adams, R. Kavanagh, A. Hassan, D.M. German, An empirical study of integration
activities in distributions of open source software, Empir. Softw. Eng. 21 (3) (2016)
960–1001, doi: 10.1007/s10664-015-9371-y .

11] A. Holzer, J. Ondrus, Trends in mobile application development, in: Proc. of the
Mobile Wireless Middleware, Operating Systems, and Applications - Workshops,
Springer, Berlin, 2009, pp. 55–64, doi: 10.1007/978-3-642-03569-2_6 .

12] S.M. Sulaman, A. Orucevic-Alagic, M. Borg, K. Wnuk, M. Höst, J.L. de la Vara, Devel-
opment of safety-critical software systems using open source software - a systematic
map, in: Proc. of the 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, 2014, pp. 17–24, doi: 10.1109/SEAA.2014.25 .

13] K. Wnuk, Involving relevant stakeholders into the decision process about software
components, in: Proc. of the IEEE International Conference on Software Architecture
Workshops (ICSAW), 2017, pp. 129–132, doi: 10.1109/ICSAW.2017.68 .

14] N.E. Fenton, M. Neil, Decision support software for probabilistic risk assess-
ment using bayesian networks, IEEE Softw. 31 (2) (2014) 21–26. https://doi.org/
10.1109/MS.2014.32 .

15] S.A. Busari, E. Letier, RADAR: a lightweight tool for requirements and architec-
ture decision analysis, in: Proc. of the 39th International Conference on Software
Engineering Companion, IEEE Press, Piscataway, NJ, USA, 2017, pp. 552–562,
doi: 10.1109/ICSE.2017.57 .

16] Z. Sahaf, V. Garousi, D. Pfahl, R. Irving, Y. Amannejad, When to automate software
testing? Decision support based on system dynamics: an industrial case study, in:
Proc. of the 2014 International Conference on Software and System Process, 2014,
pp. 149–158, doi: 10.1145/2600821.2600832 .

17] D. Badampudi, C. Wohlin, K. Petersen, Software component decision-making: in-
house, OSS, COTS or outsourcing - a systematic literature review, J. Syst. Softw.
121 (2016) 105–124, doi: 10.1016/j.jss.2016.07.027 .

18] K. Petersen, D. Badampudi, S.M.A. Shah, K. Wnuk, T. Gorschek, E. Papatheocharous,
J. Axelsson, S. Sentilles, I. Crnkovic, A. Cicchetti, Choosing component origins for
software intensive systems: in-house, COTS, OSS or outsourcing? - a case survey,
IEEE Trans. Softw. Eng. 44 (3) (2018) 237–261, doi: 10.1109/TSE.2017.2677909 .

19] J. Miller, Triangulation as a basis for knowledge discovery in software engineering,
Empir. Softw. Eng. 13 (2) (2008) 223–228, doi: 10.1007/s10664-008-9063-y .

20] L. Brownsword, T. Oberndorf, C.A. Sledge, Developing new processes for COTS-
based systems, IEEE Softw. 17 (4) (2000) 48–55, doi: 10.1109/52.854068 .

21] J. Li, F.O. Bjørnson, R. Conradi, V.B. Kampenes, An empirical study of variations in
COTS-based software development processes in the Norwegian IT industry, Empir.
Softw. Eng. 11 (3) (2006) 433–461, doi: 10.1007/s10664-006-9005-5 .

22] V. Cortellessa, F. Marinelli, P. Potena, An optimization framework for ǣbuild-or-
buy ǥ decisions in software architecture, Comput. Oper. Res. 35 (10) (2008) 3090–
3106, doi: 10.1016/j.cor.2007.01.011 .

23] J. Li, R. Conradi, O.P.N. Slyngstad, C. Bunse, M. Torchiano, M. Morisio, An empirical
study on decision making in off-the-shelf component-based development, in: Proc of
the 28th International Conference on Software Engineering, ACM, New York, NY,
USA, 2006, pp. 897–900, doi: 10.1145/1134285.1134446 .

24] F. Daneshgar, G.C. Low, L. Worasinchai, An investigation of build vs. buy decision
for software acquisition by small to medium enterprises, Inf. Softw. Technol. 55 (10)
(2013) 1741–1750, doi: 10.1016/j.infsof.2013.03.009 .

25] D. Tofan, M. Galster, P. Avgeriou, Difficulty of architectural decisions - a survey
with professional architects, in: Proc. of the 5th European Conference on Software
Architecture, in: Lecture Notes in Computer Science, Springer, Berlin, 2013, pp. 192–
199, doi: 10.1007/978-3-642-39031-9_17 .

26] H. van Vliet, A. Tang, Decision making in software architecture, J. Syst. Softw. 117
(2016) 638–644, doi: 10.1016/j.jss.2016.01.017 .

27] J. Axelsson, Evolutionary architecting of embedded automotive product lines: an in-
dustrial case study, in: Proc. of the Joint Working IEEE/IFIP Conference on Software
Architecture & 3rd European Conference on Software Architecture, 2009, pp. 101–
110, doi: 10.1109/WICSA.2009.5290796 .

28] C. Ayala, O. Hauge, R. Conradi, X. Franch, J. Li, Selection of third party software in
Off-The-Shelf-based software development - a interview study with industrial prac-
titioners, J. Syst. Softw. 84 (4) (2011) 620–637, doi: 10.1016/j.jss.2010.10.019 .

29] M.M. Gerea , Selection of Open Source Components - A Qualitative Survey in Nor-
wegian IT Industry, Technical Report, Norwegian University of Science and Tech-
nology, 2007 .

30] F. Kokkoras, K. Ntonas, A. Kritikos, G. Kakarontzas, I. Stamelos, Federated search
for open source software reuse, in: Proc. of the 38th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, 2012, pp. 200–203,
doi: 10.1109/SEAA.2012.55 .

31] A. Mavridis, I. Stamelos, Real options as tool enhancing rationale of OSS components
selection, in: Proc. of the 3rd IEEE International Conference on Digital Ecosystems
and Technologies, 2009, pp. 613–618, doi: 10.1109/DEST.2009.5276768 .

32] O. Hauge, T. Osterlie, C.-F. Sorensen, M. Gerea, An empirical study on selec-
tion of open source software - preliminary results, in: Proc. of the 2nd ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
33
Development, IEEE Computer Society, Washington, DC, USA, 2009, pp. 42–47,
doi: 10.1109/FLOSS.2009.5071359 .

33] J. Li, R. Conradi, C. Bunse, M. Torchiano, O.P.N. Slyngstad, M. Morisio, Develop-
ment with off-the-shelf components: 10 facts, IEEE Softw. 26 (2) (2009) 80–87,
doi: 10.1109/MS.2009.33 .

34] M. Torchiano, M. Morisio, Overlooked aspects of COTS-based development, IEEE
Softw. 21 (2) (2004) 88–93, doi: 10.1109/MS.2004.1270770 .

35] A.S. Jadhav , R.M. Sonar , Evaluating and selecting software packages: a review, Inf.
Softw. Technol. 51 (3) (2009) 555–563 .

36] S. Sentilles, F. Ciccozzi, E. Papatheocharous, Promopedia: a web-content
management-based encyclopedia of software property models, in: Proceedings of
the 40th International Conference on Software Engineering: Companion Proceeed-
ings, in: ICSE ’18, ACM, New York, NY, USA, 2018, pp. 45–48, doi: 10.1145/
3183440.3183482 .

37] E. Papatheocharous, K. Wnuk, K. Petersen, S. Sentilles, A. Cicchetti, T. Gorschek,
S.M.A. Shah, The GRADE taxonomy for supporting decision making asset se-
lection in software-intensive system development, Inf. Softw. Technol. (2018),
doi: 10.1016/j.infsof.2018.02.007 .

38] D. Badampudi, K. Wnuk, C. Wohlin, U. Franke, D. Š mite, A. Cicchetti, A decision-
making process-line for selection of software asset origins and components, J. Syst.
Softw. 135 (2018) 88–104, doi: 10.1016/j.jss.2017.09.033 .

39] International Organization for Standardization , Systems and Software Engineering -
Systems and Software Quality Requirements and Evaluation (SquaRE) - System and
Software Quality Models, 2011 .

40] B. Kitchenham, S. Pfleeger, Personal opinion surveys, in: Guide to Advanced
Empirical Software Engineering, Springer, London, 2008, pp. 63–92 . 00168 doi:
10.1007/978-1-84800-044-5_3 .

41] J. Singer , S. Sim , T. Lethbridge , Software engineering data collection for field stud-
ies, in: F. Shull, J. Singer, D. Sjoberg (Eds.), Guide to Advanced Empirical Software
Engineering, Springer, 2008, pp. 9–34 .

42] S. Easterbrook , J. Singer , M. Storey , D. Damian , Selecting empirical methods for
software engineering research, in: F. Shull, J. Singer, D. Sjoberg (Eds.), Guide to
Advanced Empirical Software Engineering, Springer, London, 2008, pp. 285–311 .

43] P. Chatzipetrou , E. Alégroth , E. Papatheocharous , M. Borg , T. Gorschek , K. Wnuk ,
Component selection in software engineering-which attributes are the most impor-
tant in the decision process? in: Proc. of the 44th Euromicro Conference on Software
Engineering and Advanced Applications, IEEE, 2018, pp. 198–205 .

44] L.M. Rea , R.A. Parker , Designing and Conducting Survey Research: A Comprehensive
Guide, fourth ed., Jossey-Bass, San Francisco, CA, United states, 2014 .

45] R.M. de Mello, G.H. Travassos, Surveys in software engineering: identifying
representative samples, in: Proc. of the 10th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, 2016, pp. 55:1–55:6,
doi: 10.1145/2961111.2962632 .

46] M. Galster, D. Tofan, Exploring web advertising to attract industry profession-
als for software engineering surveys, in: Proc. of the 2nd International Work-
shop on Conducting Empirical Studies in Industry, 2014, pp. 5–8, doi: 10.1145/
2593690.2593695 .

47] A. Field , Discovering Statistics using SPSS, third ed., SAGE Publications, Thousand
Oaks, CA, US, 2009 .

48] A. Agresti , Categorical Data Analysis, third ed., Wiley, 2013 .
49] J. Cohen , Statistical Power Analysis for the Behavioral Sciences, second ed., Rout-

ledge, London, UK, 1988 .
50] A. Strauss , J. Corbin , Grounded theory methodology - an overview, in: N.K. Denzin,

Y.S. Lincoln (Eds.), Handbook of Qualitative Research, SAGE Publications, Thousand
Oaks, CA, US, 1994, pp. 273–285 .

51] M. Borg , P. Chatzipetrou , K. Wnuk , E. Alegroth , T. Gorschek , E. Papatheocharous ,
S. Muhammad Ali Shah , J. Axelsson , Selecting Software Component Sourcing Op-
tions - Detailed Survey Description and Analysis, Technical Report, RISE Report
2018:71, ISBN 978-91-88907-15-8 RISE Research Institutes of Sweden AB, 2018 .

52] I.J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, A.E. Hassan, A large-scale
empirical study on software reuse in mobile apps, IEEE Softw. 31 (2) (2014) 78–86,
doi: 10.1109/MS.2013.142 .

53] D.A. Botwe , J.G. Davis , A comparative study of web development technologies using
open source and proprietary software, Int. J. Comput. Sci. Mob. Comput. 4 (2) (2015)
154–165 .

54] N.B. Moe , D. Š mite , G.K. Hanssen , H. Barney , From offshore outsourcing to insourc-
ing and partnerships: four failed outsourcing attempts, Empir. Softw. Eng. 19 (5)
(2014) 1225–1258 .

55] S. Goode , Something for nothing: management rejection of open source software in
Australias top firms, Inf. Manag. 42 (5) (2005) 669–681 .

56] C. Ayala , A. Nguyen-Duc , X. Franch , M. Höst , R. Conradi , D. Cruzes , M.A. Babar ,
System requirements-oss components: matching and mismatch resolution practices
– an empirical study, Empir. Softw. Eng. (2018) 1–56 .

57] A. Aurum, C. Wohlin, The fundamental nature of requirements engineering activ-
ities as a decision-making process, Inf. Softw. Technol. 45 (14) (2003) 945–954,
doi: 10.1016/S0950-5849(03)00096-X .

58] M. Jørgensen, Forecasting of software development work effort: evidence on
expert judgement and formal models, Int. J. Forecas. 23 (3) (2007) 449–462,
doi: 10.1016/j.ijforecast.2007.05.008 .

59] K. Wnuk, T. Gorschek, D. Callele, E.A. Karlsson, E. Ahlin, B. Regnell, Support-
ing scope tracking and visualization for very large-scale requirements engineering-
utilizing FSC+, decision patterns, and atomic decision visualizations, IEEE Trans.
Softw. Eng. 42 (1) (2016) 47–74, doi: 10.1109/TSE.2015.2445347 .

60] D. Turk , R. France , B. Rumpe , Assumptions underlying agile software development
processes, J. Database Manag. 16 (4) (2005) 62–87 .

https://doi.org/10.1109/17.584921
https://doi.org/10.1007/978-3-319-40515-5_1
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0008
https://doi.org/10.1109/MS.2004.1259227
https://doi.org/10.1007/s10664-015-9371-y
https://doi.org/10.1007/978-3-642-03569-2_6
https://doi.org/10.1109/SEAA.2014.25
https://doi.org/10.1109/ICSAW.2017.68
https://doi.org/10.1109/MS.2014.32
https://doi.org/10.1109/ICSE.2017.57
https://doi.org/10.1145/2600821.2600832
https://doi.org/10.1016/j.jss.2016.07.027
https://doi.org/10.1109/TSE.2017.2677909
https://doi.org/10.1007/s10664-008-9063-y
https://doi.org/10.1109/52.854068
https://doi.org/10.1007/s10664-006-9005-5
https://doi.org/10.1016/j.cor.2007.01.011
https://doi.org/10.1145/1134285.1134446
https://doi.org/10.1016/j.infsof.2013.03.009
https://doi.org/10.1007/978-3-642-39031-9_17
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1109/WICSA.2009.5290796
https://doi.org/10.1016/j.jss.2010.10.019
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0029
https://doi.org/10.1109/SEAA.2012.55
https://doi.org/10.1109/DEST.2009.5276768
https://doi.org/10.1109/FLOSS.2009.5071359
https://doi.org/10.1109/MS.2009.33
https://doi.org/10.1109/MS.2004.1270770
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0035
https://doi.org/10.1145/\penalty -\@M 3183440.3183482
https://doi.org/10.1016/j.infsof.2018.02.007
https://doi.org/10.1016/j.jss.2017.09.033
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0039
http://dx.doi.org/10.1007/978-1-84800-044-5_3
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0044
https://doi.org/10.1145/2961111.2962632
https://doi.org/10.1145/\penalty -\@M 2593690.2593695
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0051
https://doi.org/10.1109/MS.2013.142
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0054
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0055
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0056
https://doi.org/10.1016/S0950-5849(03)00096-X
https://doi.org/10.1016/j.ijforecast.2007.05.008
https://doi.org/10.1109/TSE.2015.2445347
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0060
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0060

M. Borg, P. Chatzipetrou and K. Wnuk et al. Information and Software Technology 112 (2019) 18–34

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

M

r

U

L

s

P

b

e

E

r

t

e

i

n

a

t

t

v

K

(

d

d

m

s

c

E

a

H

n

o

T

o

p

u

i

t

s

u

d

E

S

e

m

s

s

n

S

P

i

p

w

q

J

t

i

U

S

t

a

61] S. Jalali, C. Wohlin, Global software engineering and agile practices: a systematic
review, J. Softw. 24 (6) (2011) 643–659, doi: 10.1002/smr.561 .

62] T. Dybå, B.A. Kitchenham, M. Jørgensen, Evidence-based software engineering for
practitioners, IEEE Softw. 22 (1) (2005) 58–65, doi: 10.1109/MS.2005.6 .

63] A. Cicchetti , M. Borg , S. Sentilles , K. Wnuk , J. Carlsson , E. Papatheocharous , Towards
software assets origin selection supported by a knowledge repository, in: Proc. of the
1st International Workshop on Decision Making in Software Architecture, 2016 .

64] N. Dzamashvili Fogelström, T. Gorschek, M. Svahnberg, P. Olsson, The impact of
agile principles on market? Driven software product development, J. Softw. Mainten.
Evol. 22 (1) (2010) 53–80, doi: 10.1002/spip.420 .

65] H. Holmström Olsson, H. Alahyari, J. Bosch, Climbing the “Stairway to Heaven ” -
a mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software, in: Proc. of the 38th EUROMICRO Con-
ference on Software Engineering and Advanced Applications, 2012, pp. 392–399,
doi: 10.1109/SEAA.2012.54 .

66] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a sys-
tematic review, Inf. Softw. Technol. 50 (9) (2008) 833–859, doi: 10.1016/
j.infsof.2008.01.006 .

67] P. Abrahamsson, M. Babar, P. Kruchten, Agility and architecture: can they coexist?
IEEE Softw. 27 (2) (2010) 16–22, doi: 10.1109/MS.2010.36 .

68] M. Lavallee, P.N. Robillard, Why good developers write bad code: an observational
case study of the impacts of organizational factors on software quality, in: Proc. of
the 37th IEEE International Conference on Software Engineering, 2015, pp. 677–
687, doi: 10.1109/ICSE.2015.83 .

69] A. Magazinius, S. Börjesson, R. Feldt, Investigating intentional distortions in software
cost estimation - an exploratory study, J. Syst. Softw. 85 (8) (2012) 1770–1781,
doi: 10.1016/j.jss.2012.03.026 .

70] P.F. Katina, C.B. Keating, R.M. Jaradat, System requirements engineering in complex
situations, Require. Eng. 19 (1) (2014) 45–62, doi: 10.1007/s00766-012-0157-0 .

71] S. Sentilles , E. Papatheocharous , F. Ciccozzi , K. Petersen , A property model ontol-
ogy, in: Proc. of the 42th EUROMICRO Conference on Software Engineering and
Advanced Applications, 2016, pp. 165–172 .

72] R.S. Geiger, Summary analysis of the 2017 GitHub open source survey,
arXiv: 1706.02777 [cs] (2017). https://github.com/github/open- source- survey .

73] K. Goseva-Popstojanova, K.S. Trivedi, Architecture-based approach to reliabil-
ity assessment of software systems, Perform. Eval. 45 (2) (2001) 179–204,
doi: 10.1016/S0166-5316(01)00034-7 .

74] J. Kontio , A case study in applying a systematic method for COTS selection, in:
Proc. of the 18th International Conference on Software Engineering, IEEE Computer
Society, Washington, DC, USA, 1996, pp. 201–209 .

75] M. Woodside, G. Franks, D.C. Petriu, The future of software performance engineer-
ing, in: Proc. of the Future of Software Engineering, IEEE Computer Society, 2007,
pp. 171–187, doi: 10.1109/FOSE.2007.32 .

76] M.R. Lyu, Software reliability engineering: a roadmap, in: Proc. of the 1st Future of
Software Engineering, IEEE Computer Society, Washington, DC, USA, 2007, pp. 153–
170, doi: 10.1109/FOSE.2007.24 .

77] J. Linåker , S.M. Sulaman , R.M. de Mello , M. Höst , Guidelines for Conducting Surveys
in Software Engineering, Technical Report, Lund University, 2015 .

78] R.M. de Mello, P.C. da Silva, G.H. Travassos, Investigating probabilistic sampling
approaches for large-scale surveys in software engineering, J. Softw. Eng. Res.Dev.
3 (1) (2015) 1–26 . 00017 doi: 10.1186/s40411-015-0023-0 .

79] O. Alexy, J. Henkel, M.W. Wallin, From closed to open: job role changes, individual
predispositions, and the adoption of commercial open source software development,
Res. Policy 42 (8) (2013) 1325–1340, doi: 10.1016/j.respol.2013.04.007 .

80] S. Jalali, C. Wohlin, L. Angelis, Investigating the applicability of agility assess-
ment surveys: a case study, J. Syst. Softw. 98 (2014) 172–190, doi: 10.1016/
j.jss.2014.08.067 .

81] E. Papatheocharous , K. Petersen , J. Axelsson , C. Wohlin , J. Carlson , F. Ciccozzi ,
S. Sentilles , A. Cicchetti , The GRADE Decision Canvas for Classification and Reflec-
tion on Architecture Decisions, 2017, pp. 187–194 .

82] J. Axelsson, U. Franke, J. Carlson, S. Sentilles, A. Cicchetti, Towards the ar-
chitecture of a decision support ecosystem for system component selection, in:
Proc. of the 11th Annual IEEE International Systems Conference, 2017, pp. 1–7,
doi: 10.1109/SYSCON.2017.7934757 .

83] M. Borg, T. Olsson, U. Franke, S. Assar, Digitalization of swedish government agen-
cies: aperspective through the lens of a software development census, in: Proc.
of the 40th International Conference on Software Engineering: Software Engineer-
ing in Society, in: ICSE-SEIS ’18, ACM, New York, NY, USA, 2018, pp. 37–46,
doi: 10.1145/3183428.3183434 .
34
arkus Borg is a senior researcher with the Software and Systems Engineering Labo-
atory, RISE Research Institutes of Sweden AB and an adjunct senior lecturer at Lund
niversity, Sweden. Dr. Borg received a PhD degree in software engineering in 2015 from
und University, Sweden. His research interests include software testing, safety-critical
ystems, and machine learning.

anagiota Chatzipetrou is an assistant professor at the department of Informatics at Öre-
ro University School of Business in Örebro Sweden where she belongs to the Centre for
mpirical research on information systems (CERIS) . She is also part of the Software Research
ngineering Lab (SERL) at Blekinge Institute of Technology in Karlskrona, Sweden. She
eceived her BSc, MSc and PhD in Informatics from the Department of Informatics, Aris-
otle University of Thessaloniki (AUTh), Greece. As a researcher, she mainly focuses on
mpirical studies under the different perspectives of software development. Her research
nterests include applications of statistical methods to quality problems in software engi-
eering and especially to requirements engineering and the exploitation of human factor
nd the different views that ultimately determine the quality of a software product and
he product development. Also, she has been working with decision support systems for
he development of software-intensive systems, large-scale agile (and global) software de-
elopment, and behavioural software engineering.

rzysztof Wnuk is an associate professor at the Software Engineering Research Group
SERL), Blekinge Institute of Technology, Sweden. His research interests include market-
riven software development, requirements engineering, software product management,
ecision making in requirements engineering, large-scale software, system and require-
ents engineering and management and empirical research methods. He is interested in

oftware business, open innovation, and open source software. He works as an expert
onsultant in software engineering for the Swedish software industry.

mil Alégroth finished his PhD in 2015 at Chalmers University of Technology, Sweden,
nd has since then worked as a researcher at Blekinge Institute of Technology, Sweden.
is research interests include software decision making, human-factors in software engi-
eering, and automated software verification and validation. Emil also has several years
f industrial experience as the CEO of a small service and product development company.

ony Gorschek is a professor of software engineering at Blekinge Institute of Technol-
gy, Sweden – where he works as a research scientist in close collaboration with industrial
artners. Dr. Gorschek has over fifteen years industrial experience as a CTO, senior exec-
tive consultant, and engineer. In addition, he is a serial entrepreneur – with five startups
n fields ranging from logistics to Internet-based services and database register optimiza-
ion. At present, he works as a research leader and in several research projects developing
calable, efficient and effective solutions in the areas of requirements engineering, prod-
ct management, value-based product development, and Real Agile TM and lean product
evelopment and evolution.

fi Papatheocharous is a senior researcher at RISE Research Institutes of Sweden AB.
he received a BSc degree in computer science from the Department of Computer Sci-
nce, University of Cyprus, in 2004, a MSc degree in advanced computer science with ICT
anagement from the University of Manchester, in 2005, and a PhD degree in computer

cience from the University of Cyprus, in 2012. Her primary research interests include
oftware and systems architecture decision making and agile methods in software engi-
eering.

yed Muhammad Ali Shah is a software quality specialist at iZettle AB. He received his
hD in software engineering from Politecnico di Torino, Italy. He was a senior researcher
n the Software and Systems Engineering (SSE) Laboratory at the Swedish Institute of Com-
uter Science (SICS). Prior to this, he was an ERCIM (Marie-Curie) post-doctoral fellow
ith SICS. His research focus is on empirical software engineering, software testing, and
uality.

akob Axelsson received an MSc in computer science in 1993, and a PhD in computer sys-
ems in 1997, both from Linköping University, Sweden. He was with Volvo and Volvo Cars
n Göteborg from 1997 to 2010. In 2004, he became a part-time professor at Mälardalen
niversity, Västerås. Since 2010, he has also been with the Swedish Institute of Computer
cience (SICS) in Kista, where he founded the Software and Systems Engineering Labora-
ory. He is the author of around 100 research publications. His current research interests
re focused on system-of-systems engineering.

https://doi.org/10.1002/smr.561
https://doi.org/10.1109/MS.2005.6
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0063
https://doi.org/10.1002/spip.420
https://doi.org/10.1109/SEAA.2012.54
https://doi.org/10.1016/\penalty -\@M j.infsof.2008.01.006
https://doi.org/10.1109/MS.2010.36
https://doi.org/10.1109/ICSE.2015.83
https://doi.org/10.1016/j.jss.2012.03.026
https://doi.org/10.1007/s00766-012-0157-0
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0071
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0071
http://arxiv.org/abs/1706.02777
https://github.com/github/open-source-survey
https://doi.org/10.1016/S0166-5316(01)00034-7
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0073
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0073
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1109/FOSE.2007.24
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0076
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0076
http://dx.doi.org/10.1186/s40411-015-0023-0
https://doi.org/10.1016/j.respol.2013.04.007
https://doi.org/10.1016/\penalty -\@M j.jss.2014.08.067
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
http://refhub.elsevier.com/S0950-5849(19)30071-0/sbref0080
https://doi.org/10.1109/SYSCON.2017.7934757
https://doi.org/10.1145/3183428.3183434

	Selecting component sourcing options: A survey of software engineering’s broader make-or-buy decisions
	1 Introduction
	2 Related work
	2.1 CSO selection
	2.2 Component selection

	3 Research methodology
	3.1 Research questions
	3.2 Survey design
	3.3 Survey instrument evaluation
	3.4 Data collection
	3.5 Data analysis

	4 Results and discussion
	4.1 Demographics
	4.2 Which CSOs are typically considered in industry? (RQ1)
	4.3 What is the decision process when selecting CSOs and components? (RQ2)
	4.4 What qualities are the most important when selecting components? (RQ3)

	5 Statistical analysis and synthesis
	5.1 Which CSOs are typically considered in industry? (RQ1)
	5.2 What is the decision process when selecting CSOs and components? (RQ2)
	5.3 What qualities are the most important input to the decision process? (RQ3)

	6 Limitations and threats to validity
	7 Conclusion and future work
	Acknowledgement
	Conflict of interest
	Appendix
	References

