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Abstract

Boring bars with tuned mass dampers have a passive damper tuned with respect to the frequency of the first bending mode of the tool. When the
tool is clamped into the machine tool there is a stiffness loss that lowers the natural frequency of the bar compared to ideal clamping conditions.
For large tools the difference can be more than 35%, depending on clamping structure, tool size and overhang. In this paper we investigate a
simple two-degree-of-freedom model for the tool-machine interaction consisting of a bending mode coupled with a rotational stiff mode. The
model gives good insight into the system behavior and fits well with measurements.
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1. Background

Boring bars with tuned mass dampers (TMD) have proved
very successful in suppressing chatter in various internal
turning operations. The damper increases process stability and
allows for stable machining with slender tools in deep holes [1].
The especially big boring bars we are addressing in this paper
are typically used for various forged hydraulic cylinders and
tubes for the oil and gas industry. Here the turning tool can
become large and heavy compared to the machine-tool
clamping and the whole system must be considered in the
design of the damped tool. The largest bar delivered to date
weighs 6000kg, has a diameter D=500mm and is clamped at an
overhang of Sm in a big flatbed lathe.

When designing a damped boring bar, the main challenge is
to find the right tuning of the TMD with respect to the vibration
frequency of the bar, usually the natural frequency of the first
bending mode. The frequency of the bar itself can be easily
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found from the CAD files by an eigenfrequency simulation in
an FE program like ANSYS.

The optimal damper frequency will depend on the frequency
and modal mass of the bar as well as the mass and damping
coefficient of the TMD. Maximum chatter stability is then
obtained by tuning the damper to a frequency that minimizes
the negative real part of the frequency response function [2].
This task is quite straightforward for smaller tools in rigid
clamping because the frequency of the cutting tool will be close
to the natural frequency found by ideal clamping by FEM
simulation. The problem arises when the tool is mounted in a
weak clamping because in this case the measured natural
frequency can be considerably lower than the ideal natural
frequency found by FEM. A simple but naive way to account
for this is to assume that the frequency change is caused by a
stiffness loss in the clamping and introduce a stiffness ratio, SR,
in the design given by:
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Where Kacwat and ficwar refers to stiffness and natural
frequency from experimental measurements on the tool
mounted in the machine. And krem and frem refers to the
stiffness and natural frequency predicted by FE-modeling of the
cutting tool with fixed support.

Finding SR for the design usually involves both a significant
amount of experience and some qualified guessing. Small tools
in stiff machines leads to SR close to 1, while large tools in
weak machines can have SR less than 0.5.

Another possibility is to completely model the modes of the
machine-tool and the cutting-tool and find the actual frequency
of the first bending mode. This requires an accurate model of
the machine-tool which is not often available. An alternative
approach is to use substructuring techniques to couple models
of the cutting tool and the machine tool together. However,
substructuring of continuous systems requires information
about the rotational degrees of freedom which are not easily
acquired by experimental techniques as shown in e.g. [3].
Another approach suggested by Park et al., [4], is to combine
numerical models of the cutting tool with experimental
measurements of the machine tool to estimate the rotational
degrees of freedom in the coupling nodes and perform
substructuring using receptance coupling techniques, [5]. The
substructuring approach will require a substantial amount of
measurements of high accuracy to be successfully applied to
this specific problem. Therefore, a need for a faster, more
simplistic, approach to obtain a prediction of the resonance
frequency of the cutting tool in this specific application is of
interest within the industry.

The purpose of this paper is to develop a simplified dynamic
model that considers only the most prominent coupled modes,
and to show by experiment that the frequency behavior of the
system can be adequately explained.

2. Model development

We will keep the parameter SR as a measure of the deviation
of the modeled system from the ideal rigid clamping, but we
abandon the idea that the SR is a static characteristic of the
weak clamping alone. Instead we will look at the tool body and
clamping unit as a dynamic system with two degrees-of-
freedom (DOF). We will use our Giana Lathe as a test bench,
and we will focus on lateral vibrations since these are in the
most critical (radial) direction of the cutting process.

2.1. Initial modal measurements

To get an idea of how to build our model we mount a large
tool body in our Giana lathe and do a “roving hammer”
frequency response function (FRF) measurement. Here an
accelerometer is placed at the front of the tool while the FRF is
recorded by hitting with the hammer in several positions along
the z-axis of the tool and clamping shown in Fig 3.

Fig. 1 shows the FRF of a 3200mm long tool body with a
diameter of 200mm, clamped at an overhang of 152 1mm. Two
distinct resonance peaks are present at 63 and 105 Hz.
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Fig. 1. Imaginary part of an impulse hammer FRF measurement
showing two resonance peaks.

Fig. 2 shows the corresponding mode shapes found by modal
analysis of FRF measurements in 8 positions along the cutting
tool, where z=0 corresponds to the front of the clamping
structure while the tip of the tool is at 1.52 m. The two curves
are found by plotting the peak values of the imaginary part of
the FRF at the two resonance frequencies 63 Hz and 105 Hz.
The curves pass through zero at a point close to the position of
the x-axis lead screw of the tool holder. These mode shapes
indicate that the modes we see are a superposition of a bending
mode of the bar and a rotational rigid body mode of the
clamping unit. Thus, in the following, we restrict our model to
these two degrees of freedom.
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Fig. 2. Mode shapes found by plotting the peak values of the
imaginary part of the FRF as a function of measurement position.

2.2. Theory

The first DOF is the first bending mode of the tool body,
ideally clamped in an infinitely rigid tool holder as shown in
Fig. 3. This is the fundamental mode of our FEM model, for
which we know both stiffness, ki, and eigenfrequency, fi. From
these we can calculate the equivalent modal mass, m;, and
model this mode as a mass-spring-damper system, with a small
damping, ci, due to material loss. The frequency of this DOF is
given by:
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Fig. 3. First DOF - bending mode of the boring bar.

The second DOF is a rotational mode of the tool and
clamping unit as shown in Fig. 4. This mode is modelled as a
rigid body with a moment of inertia, Jror, determined by the
tool plus the clamping unit rotating around a point close to the
x-axis lead screw of the tool holder. A rotational spring, k;, is
used to model the restoring force, and a moderate damping, c:,
is also present due to friction in the lead screw and the guide
rails. The frequency of this DOF is given by:
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Fig. 4. Second DOF — angular rotation of the tool and clamping unit.

We now combine the rotational mode with the bending mode
into the simplified model shown in Fig. 5. The bending of the
bar, due to external forces, or inertial forces from the mass m;,
corresponds to an elongation of the spring x;-xo.

Fig. 5. The tool body with its first bending mode modeled as a mass-
spring-damper (mkc) coupled with a rotational stiff body mode.

Ju is the moment of inertia of the tool holder relative the
center of rotation, J; is the moment of inertia of the tool relative
its mass center, and m; is the mass of the tool. The position of
the tool tip is given by the superposition of bending and rotation
which corresponds to the position x;, of the mass m; in the
figure. With only two DOFs it is straightforward to state the

differential equations for the system and find the frequency
response. The two second order coupled mode equations can be
written as:

m¥, =—cx, —kx, +kr0+cr+F(t)
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In Eq. (4) we have assumed small angular deviations
meaning that xo~=r6, where r=L;+a, is the distance from tool
tip to the point of rotation as indicated in Fig. 5. The total
moment of inertia, Jror, depends on the distance from the center
of mass to the point of rotation, and is given by:

Jtot = Ja + Js + ms (Lcm - (Lsk - Ls - Cl))2 (5)

From Eq. (4) we can find the eigenfrequencies, f, and f, of
the coupled undamped (c;=c,=0) system. We express these as
a function of the two natural frequencies f; and f. from Eq. (2)
and Eq. (3):
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Here £, is the lowest frequency corresponding to the minus
sign in Eq. (6). The amount of coupling between the modes is
determined by, x4, corresponding to a ratio of two moments of
inertia:
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Fig. 6 shows how the two modal frequencies f; and f, depend
on f, f and .. The mutual interaction between the modes, tend
to push the modal frequencies away from each other. The
interaction is largest when f; equals f,, and y. is large.
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Fig. 6. Eigenfrequencies of the coupled modes as a function of
frequency ratio f/fi, and the moment of inertia ratio, ., of the two
uncoupled modes.
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The lowest frequency, f, is the critical frequency we are
looking for, and an equivalent “dynamic stiffness ratio”, DSR,
can be found by dividing Eq. (6). by the square of the natural
frequency of the pure bending mode, f;°. If we also introduce
the normalised frequency ratio, g=f,/fi, between the rotational
mode and the bending mode, we find:

DSR:%{HM*‘QZ_\/(“M+q2)2_4q2} ®)

We note that the term “stiffness ratio” is somewhat
misleading but we choose to keep it as a measure of the quality
of the clamping that we can relate to earlier work. Fig. 7 shows
DSR as a function of the normalised frequency, ¢, and the
inertial ratio, 4. We have assumed that the natural frequency of
the tool holder is higher than the bending frequency of the tool
itself, £, > f;, which is usually the case for large slender tools.
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Overhang L, 2118 1521 mm
Modal frequency fi 45 89 Hz
Static stiffness k1 4.2-10° 11-10° N/m
Modal mass ml 52 36 Kg

Fig. 8 shows the measured FRFs in both horizontal and
vertical direction for three different overhang lengths 2118 mm,
1916 mm and 1521 mm. Comparing the ANSYS frequencies
from table 1 with the measured response we find as expected
that the measured frequencies are lower and that the relative
difference is largest for the shortest overhang. At 1521 mm we
should have a resonance at 89 Hz if the clamping was ideal, but
we measure 63 Hz, corresponding to SR=0.5.

Note the large damping of the 2118-x measurement in Fig.
8. A large loss at a specific resonance frequency is typical for
complex machines where loss can occur at specific excitations.
Ignoring this anomaly does not affect the results.
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Fig. 7. Dynamic stiffness ratio as a function of frequency ratio fi/f1,
and the moment of inertia ratio, u, of the two uncoupled modes.

From Fig. 7 we see, as expected, that increasing y., reduces
the frequency f, leading to a lower DSR. We note especially
the strong dependence on the ratio between the bending
frequency and the rotational frequency. As they approach each
other, the DSR drops rapidly.

2.3. Experiment

To test our model, we mount the tool body (without damper
inside) in our Giana test lathe and clamp it at different overhang
lengths. From ANSYS FE-software, we get the following
parameters for the bar:

Table 1. FEM parameters for the tool body ideally clamped at two different
overhang lengths.

Diameter (4] 200 mm
Length Lsk 3200 mm
Mass ms 474 Kg
Center of mass Lem 1250 mm
Moment of inertia Is 334 kg-m?
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Fig 8. FRF measurements for the tool body, measured in horizontal,
(x), and vertical, (y), direction at three overhang lengths (1521mm,
1916mm and 2118mm).

If we compare the 1521-x measurement in Fig. 2 with the
measurements at longer overhangs in Fig. 8, we find that the
higher frequency mode becomes less pronounced at longer
overhangs.

This behavior becomes clear when we insert the ANSYS
results for the bending modes of the ideally clamped tool body
into Eq. (4) and from this simulate and plot the magnitude of
the FRF. But first we must find some parameters for the
clamping unit. The peak at 110 Hz in Fig. 2, makes us guess
that the frequency f;, of the rotational mode is close to this. The
low DSR-value that we measure for the shortest overhang, tells
us that the moments of inertia ratio, 4, cannot be very small.
By trying J,=300 kgm?, f,=107 Hz and 1=0.05, we get the
simulated FRFs shown in Fig. 9. In the simulation we have
varied the overhang from 1521 mm to 2118 mm in 5 steps. The
curves have been offset slightly to increase the visibility. The
general behavior fits well with what we observe in our
measurements in Fig. 8 and Fig. 2.
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Fig. 9. Simulated FRF curves for the tool body clamped at 5 different
overhang lengths from 1521mm to 2118mm. The curves have been
offset to increase visibility. The uppermost curve corresponds to the
longest overhang.

The two peaks in the simulated responses in Fig. 9
correspond to our coupled modes with frequencies f;, and f;. Of
these, it is the lowest frequency f; that is critical with respect to
tool stability.

Fig. 10 shows a plot of this frequency, which is based on our
model (f;, solid line), together with the FEM frequency (fi,
dashed line) corresponding to ideal, rigid, clamping conditions,
and the actual frequencies (circles) found from the FRF
measurements in Fig. 8. It should be noted that the FEM
frequency corresponds to the bending mode in Fig. 3, while our
model includes also the rotation of the tool and clamping unit,
which in this case is necessary to describe the frequency
behavior correctly. From Fig. 10 it is clear, that the deviation
from ideal clamping changes with the tool overhang in a way
that we can predict if we know the characteristics of the tool
and clamping unit. The fact that the deviation is larger for the
short overhang than it is for the long, is explained by the
increased coupling that occurs when the bending frequency of
the tool, f, approaches the rotational frequency of the tool and
clamping unit, f;, as shown in Fig. 7.

90 ~
\\ ----- Ideal clamping
30 k- \\ Model
RN O Measured

70

60

Tool frequency (Hz)

50

30 r r r I
1.5 1.6 1.7 1.8 1.9 2 2.1 22

Tool overhang (m)

Fig. 10. Comparison of measured tool frequencies with frequencies
from the 2-DOF model and from ideal rigid clamping in ANSYS.

3. Conclusions

A simplified approach to capture and model the change in
dynamics caused by the clamping of a big boring bar into a
machine tools has been presented. The modeling approach
described capture, quite accurately, the behavior of the boring
bar and explains why and how the stiffness ratio varies with
overhang length. This type of model can be a useful tool for
predicting the critical frequency that a certain tool body will
have in a specific machine. The measured stiffness ratio is not
only dependent on the machine clamping stiffness, but on the
length, frequency and mass of the tool as well as stiffness and
moment of inertia of the clamping unit. The next step will be
to develop a method to characterize the clamping unit
separately by modelling and/or measuring to provide better
estimates of the dynamics in the machine-tool/tool-holder.
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