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Abstract

Background. With the introduction of the compute shader, followed by the ap-
plication programming interface (API) DirectX 12, the modern GPU is now going
through a transformation. Previously the GPU was used as a massive computational
tool for running a single task at unparalleled speed. The compute shader made it
possible to run CPU like programs on the GPU, DirectX 12 takes this even further
by introducing a multi-engine architecture. Multi-engine architecture unlocks the
possibility of running the compute shader alongside the regular graphical stages, this
concept is called asynchronous compute.
Objectives. This thesis aims to investigate if asynchronous compute can be used to
increase the performance of particle simulations. The key metrics being studied are
total frame time, rendered frames per second, and overlap time. The �rst two are
used to determine if asynchronous compute improves performance or not, while the
last is used to determine if the particle simulation is running asynchronous compute
or not.
Methods. For this thesis, the particle simulation used is the N-body particle simu-
lation. The N-body particle simulation is implemented using a compute shader and
is part of a larger DirectX 12 framework. One application is implemented that runs
two di�erent execution models, one is the standard sequential execution model and
one is the asynchronous compute model. The main di�erence between the two execu-
tion models is that the sequential execution model will be using only one command
queue, this being a 3D command queue. The asynchronous compute model will be
running a separate compute command queue alongside the 3D command queue. The
performance metrics being studied are all collected using a custom-built GPU pro-
�ler.
Results. The results indicate that it is possible to increase the performance of
particle simulations using asynchronous compute. The registered performance gain
reaches as high as 34% on hardware that supports asynchronous compute while hard-
ware that according to NVIDIA does not support asynchronous compute registered
performance gains up towards 11%. In terms of overlap time between the compute
workload and the graphical workload, the AMD GPU showed an overlap time that
matched the frame time. However, NVIDIA GPUs did not show the expected over-
lap time.
Conclusions. It can be determined that asynchronous compute provide bene�ts
when compared to the sequential execution model, it can be used to increase the
performance of particle simulations. However, since the research in this thesis only
made use of a single particle simulation, more work needs to be done, for example,
work to test if the performance gain can be improved even further using di�erent
methods like, workload pairing or utilizing multiple GPUs, however that kind of work
requires the use of a larger-scale application that consists of multiple di�erent tasks
other than just a single particle simulation.

Keywords: Asynchronous Compute, Particle Simulation, Multi-Engine, Command
Queue
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Sammanfattning

Bakgrund. I och med Introduktionen av compute shadern, tätt följd av DirectX
12, så genomgår den moderna GPUn en förvandling. Tidigare användes GPUn som
ett massivt uträkningsverktyg ämnat att utföra en enda uppgift med en enastående
hastighet. Compute shadern gjorde det möjligt at köra CPU liknande program
på GPUn, DirectX 12 tar detta ett steg längre genom att introducera en multi-
engine arkitektur. Denna arkitektur låser upp möjligheten att köra compute shadern
samtidigt som de vanliga graphiska shader stadigerna, detta konceptet kallas asyn-
chronous compute.
Syfte. Syftet med denna avhandling är att undersöka om asynchronous compute kan
användas för att öka prestandan på en partikel simulering. Den viktigaste data som
kommer studeras är den totala frame tiden, antalet renderade frames varje sekund
och överlapp tiden. Den totala frame tiden och antalet renderade frames varje sekund
används för att bestämma om asynchronous compute faktiskt ökar prestandan eller
inte, medan överlapp tiden används för att bestämma om partikel simuleringen kör
asynchronous compute eller inte.
Metod. Partikel simuleringen som används i denna avhandling är en N-body par-
tikel simulering. N-body partikel simuleringen är implementerad i en compute shader
och är en del av en större DirectX 12 applikation. En applikation implementeras som
kör två olika exekverings modeller, den ena är den vanliga sekventiella exekverings
modellen och den andra är asynchronous compute modellen. Den primära skillnaden
mellan exekverings modellerna är att den sekventiella exekverings modellen bara
använder sig av en kommando kö, vilken är en 3D kommando kö. Asynchronous
compute modellen kommer använda sig av en separat compute kommando kö till-
sammans med 3D kommando kön. Den metriska datan samlas in med hjälp av en
egen byggd GPU pro�lerare.
Resultat. Resultatet indikerar att det är möjligt att öka prestandan hos en partikel
simulering som använder sig av asynchronous compute. Den registrerade prestanda
ökningen når så högt som till 34% på hårdvara som stödjer asynchronous compute,
medan hårdvara som inte stödjer asynchronous compute registrerade en prestanda
ökning upp till 11%. När det kommer till överlapp tiden mellan compute delen och
den gra�ska delen så visar GPUn från AMD en överlapp tid som matchar frame
tiden. När det kommer till GPUerna från NVIDIA så visade dessa inte en förväntad
överlapp tid.
Slutsatser. Det kan fastställas att asynchronous compute har vissa fördelar jämfört
med den sekventiella exekverings modellen. Asynchronous compute kan användas för
att öka prestanda hos partikel simuleringar, men eftersom undersökningen i denna
avhandling bara använder en enda partikel simulering så krävs ännu mera forskning.
Exempelvis forskning som undersöker om prestanda ökningen kan bli ännu bättre,
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genom att applicera olika metoder som workload pairing och användingen av �era
GPUer, detta krväver också att en större application för testing används, som består
av �era olika typer av simuleringar och inte bara en enda partikel simuleing.

Nyckelord: Asynchronous Compute, Partikel Simulering, Multi-Engine, Kommando
Kö
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Chapter 1

Introduction

The �rst chapter of this thesis introduces the reader to relevant background informa-
tion on the modern GPU and the main di�erence between sequential execution and
asynchronous execution. It also introduces the theory behind how modern GPUs
handle asynchronous execution, as well as the main di�erence between the use of
multiple GPUs for asynchronous execution and running asynchronous execution on
a single GPU. This is then followed by an introduction to particle simulations in
general and a more detailed introduction into the N-body particle simulation and
some of the algorithms. After the main introduction, the research questions, the
aim, and purpose of this thesis is presented. Together with the objectives needed to
provide an answer to the presented questions.

Following the introduction is a small chapter presenting the relevant works that
this thesis contributes to. Chapter 3 presents the methods used and how the theory
is applied in practice to complete the objectives and eventually answer the research
questions. In chapter 4, the reader is introduced to the results of the experiments.
Which in turn is discussed in more detail in chapter 5. Chapter 5 also discusses po-
tential improvements and di�erent ways on how to further proceed with the research
of this thesis. The thesis is then concluded with chapter 6, in which a conclusion is
drawn together with some thoughts on the future of asynchronous compute execu-
tion.

1.0.1 Background

The need to create applications that not just support a high performance but also
takes the GPU power consumption into consideration [1], is important to create state
of the art applications that can make the best use of the resources at its disposal.
With new graphics �application programming interfaces� (APIs), such as DirectX 12
and the creation of more parallel programs now being favored, together with the fact
that modern GPUs are highly parallel processing units and the fact that they can run
single tasks at a high speed [6], understanding the hardware becomes increasingly
more important. The extreme parallel nature and the demand for adding more and
more resources to the GPU [7], modern GPUs should now be able to run multiple
tasks in parallel as well.
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4 Chapter 1. Introduction

1.1 The modern GPU and DirectX 12

Most Modern general-purpose GPUs consists of two di�erent types of pipelines, one
graphical and one compute.

1.1.1 Graphics pipeline

The graphical pipeline in turn consists of multiple di�erent stages, such as the vertex
shader, hull shader, domain shader, and pixel shader, these shader stages are what is
called programmable stages. Programmable means that these stages can be modi�ed
by the developers or programmers. A shader is a program that is executed on the
GPU. There are also what is called non-programmable stages, such as the input

assembler, tessellator, rasterizer, and output merger, These stages are hardwired into
the GPU and can not be modi�ed by the developer or programmer. Not all of the
programmable shader stages need be used for a graphical application to work, as an
example, this thesis only makes use of the vertex, geometry, and pixel shader stages.

1.1.2 Compute pipeline

The compute pipeline, as opposed to the graphical pipeline, only consists of one
shader stage. This is the compute shader. In the graphical pipeline, the input for
each of the shader stages was dictated by the shape of the data that was output by
the previous stage in the pipeline. Since the compute shader works by itself, inde-
pendently of any other shader stage, the only input to a compute shader, aside from
external resources sent by the application on the CPU side, is their thread index.
The main di�erence between compute shader threads and the threads dispatched by
the operating system is that compute shader threads have their own identity and
memory register, they also lack their own program counters and stacks, they are
also not scheduled individually. Instead, they are grouped into a warp on NVIDIA
hardware or wavefront on AMD hardware. The warp or wavefront is then scheduled
to execute a speci�c task and each thread inside this warp or wavefront then exe-
cutes the same set of instructions. As an example, if one thread inside the warp or
wavefront wants to execute a speci�c set of instructions, all the threads inside the
warp or wavefront must execute the speci�ed set of instructions. Even if it means
that the result returned by one or more threads are discarded.

Above the thread level and warp or wavefront level lies the thread group level. A
thread group is a group of an arbitrary number of threads between 1 and 1024. The
size is decided by a three-dimensional array in terms of x, y, and z, this numbering
scheme is used to specify if the shader will be working with 1D, 2D, or 3D data sets.
This thesis uses a 1D data set, thus the total thread group size is speci�ed by the x
component only. This is also true for the maximum number of threads groups used.
Each thread also has it's own unique identi�er, this too is in three dimensions and
is the only input that is not the same for all threads. The identi�er is mainly used
to keep track of which thread is doing what. Finally, One of the most important
factors of using thread groups is what is called group shared memory, the bene�ts of
using group shared memory is faster access to the data stored in the memory. Shared
memory is not described in great detail in this thesis, as it is outside of it's scope.
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However, it is important to know that only the threads within the same group have
access to it and it is faster than accessing global device memory on the GPU.

1.1.3 The DirectX 12 capable GPU

Most general-purpose GPUs today contain di�erent types of dedicated engines, such
as a one or more copy engines, compute engines and 3D engines. These engines
can execute commands in parallel with each other. Developers of applications that
utilize DirectX 12, gain access to these engines via the use of command queues and
lists. Figure 1 show it is possible to submit command lists to each speci�c queue and
that queue will then initiate either the compute, copy or 3D engine. A 3D queue
can drive all three engines while the compute queue can only drive the compute and
copy engines and the copy queue can only drive the copy engine. In turn, this means
that submitting a 3D command list and a compute command list to the 3D queue
would result in the 3D queue initiating both the 3D engine and compute engine, but
not at the same time, instead in a sequential order. The other way of doing this is
to submit one 3D command list to the 3D queue and a compute command list to
the compute queue, instead of to the 3D queue. This will result in the 3D queue
driving the 3D engine while the compute queue will drive the compute engine. This
behavior is called asynchronous compute or just async compute [12].

Previously, graphics APIs like DirectX 11 used a sequential execution strategy via
the use of an Immediate context. It meant that developers of graphical applications
issued a command for example a draw call. This command was then immediately
sent to the GPU and put in a queue. The GPU then executed each command in said
queue in a sequential fashion [12].
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Figure 1.1: Multi-Engine Architecture of Modern GPUs [12]

DirectX 12 encourages the use of asynchronous execution of workloads, similar
to that of asynchronous compute, this has been possible for some time by running
a multi-GPU setup. Even though it is now possible for programmers to explicitly
control the behavior of both GPUs, earlier the GPU driver handled this implicitly
in the GPU, this however was only possible if both GPUs were identical. Running
asynchronous compute on a single GPU has previously been impossible, however,
according to GPU manufacturers AMD and NVIDIA, they have both developed
GPUs that o�er hardware support for running asynchronous compute on a single
GPU.

1.2 Asynchronous compute

Even when doing intensive graphical tasks a signi�cant part of the GPU is sitting
idle. This behavior presents an excellent opportunity for improvements through
advances in the GPU architecture. Asynchronous compute is the next step [3]. The
concept of asynchronous compute is to run compute workloads separate from 3D
workloads. Essentially using one 3D queue alongside one compute queue to utilize
the compute engine and 3D engine at the same time. The opposite of this would be
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using one single 3D queue to utilize both the 3D engine and compute engine, just
not at the same time and potentially leaving parts of the GPU idle. An example of a
type of simulation that would be ideal for asynchronous compute would be a particle
simulation. The compute queue will update the simulation data while the 3D queue
will use the same data to render the particles correctly on the screen. But instead of
the 3D engine just sitting idle and waiting for the compute engine to �nish and vice
verse. The 3D engine will use the most recent data and begin the rendering process
while at the same time the compute engine will be working on updating the data for
the next stage of the simulation. This is trivial on multi-GPU setups, one GPU can
be used for 3D workloads and a second GPU can be used for compute workloads.
However, doing this on a single GPU setup is not so easy. Simply because even
though DirectX 12 allows developers to take control of the GPU engines via the use
of multiple command queues it is still up to the GPU driver if the GPU will run
asynchronously or not.

1.2.1 AMD and asynchronous compute

For most of the GPU history, GPUs have only been able to execute multiple tasks
in sequential order. Dealing with multiple tasks at the same time increases the com-
plexity signi�cantly of the GPU architecture. If two tasks want to execute at the
same time while sharing the available resources, which one goes �rst? An example of
how this could be done is shown in Figure 1.2. Two di�erent tra�c streams want to
enter the freeway. The tra�c light periodically switches to allow one tra�c lane to
enter the freeway, in the meantime the other one waits. Another way of handling this
could be via preemption. Preemption essentially means that tasks of higher priority
can execute before lower priority tasks are �nished. Figure 1.3 show preemption for
handling multiple tasks. None of the ways of handling multiple task execution men-
tioned can be considered asynchronous since both rely on having to suspend one task
in order to have another one execute. Instead, AMD introduced another approach
together with their GPU architecture called GCN "Graphics Core Next" these GPUs
have what they call ACE �Asynchronous Compute Engine�, every time their GPU
needs to run asynchronous compute, these ACE units activate. This creates a hyper-
threading scenario making every resource behave like two logical resources instead of
a single physical resource. Essentially enabling multiple workloads to be scheduled
to use the resource instead of one. It works to reduces the need to suspend one task
in order to execute another. Figure 1.4 shows how two tasks can execute without
having to suspend either one of them. Via the use of ACEs, small compute work can
be overlapped with more heavy graphical work to �ll the gaps in the execution were
the GPU would otherwise be idle [3][4].
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Figure 1.2: Synchronous task switching scheme [3]

Figure 1.3: Pre-emption task switching scheme [3]

Figure 1.4: Hyper-threaded task scheduling [3]
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1.2.2 NVIDIA and asynchronous compute

With modern gaming becoming more and more complex, via the use of multiple
independent workloads like compute and graphics contributing to the �nal frame,
modern GPU architecture must be able to handle these types of scenarios. There
are two types of these scenarios, This paper only brings up one. This one being
overlapping of the di�erent workloads in their execution. For this scenario, NVIDIA
introduced "dynamic load balancing" with their GPU architecture called Pascal.
Earlier architectures Maxwell and Maxwell 2 used "static partitioning". This does
not provide any performance issues if the di�erent workloads match each other. It
does provide performance issues however if they do not match up well. If the compute
workload takes a longer period of time to �nish executing than the graphical workload
and both must �nish before any new work can be executed on the GPU. Dynamic load
balancing addresses this issue. The way it works is that when the graphical workload
�nishes all of the resources that would otherwise go idle will instead be redistributed
towards the compute workload in order for it �nish faster than it would otherwise do.
This will reduce the GPU idle time and result in a reduction of the total execution
time as seen in �gure 1.5[15][4].
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Figure 1.5: Di�erence between Static partitioning and Dynamic load balancing [15]

1.2.3 Multi-GPU setup

With DirectX 12 the usage and control of multiple GPUs are handed to the user.
Previously multiple GPUs were handled implicitly by the GPUs themselves, devel-
opers had to understand how the GPUs worked internally to provide the GPU with
hints of how to execute e�ciently, DirectX 12 gives explicit control to the developer.
There are two di�erent ways of handling multiple GPUs using DirectX 12, one way
is multiple adapters, the other way is via linked nodes.

Using multiple adapters means that two completely di�erent GPUs can be used.
This could be very bene�cial for smaller asynchronous compute scenarios, like particle
simulations. The downside of multiple adapters is that resources like particle bu�ers
cannot directly be copied from one GPU to another. Instead, the particle bu�er has
to be copied to CPU memory �rst, then it can be copied to the other GPU. Doing
this could potentially reduce the performance of the simulation, as the data transfer
rate might be slow, depending on the capability of the secondary GPU. One reason
for this is because the two GPUs cannot share resources, this means that one GPU
cannot access the other GPU's memory directly.

Using the linked node model resembles the use of asynchronous compute on a
single GPU, in the sense that the secondary GPU only extends the resources and
memory of the primary GPU. The one restriction of linked nodes is that both GPUs
have to be identical. Essentially linked node means that the secondary GPU act as an
extension of the primary GPU. The two GPUs can share resources as well as memory.
Enabling copy operations directly between the two GPUs via the use of copy engines,
without having to go through the CPU. However, it is not recommended to have only
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one physical copy of the resources because of the caching behavior of the GPU. It
is not guaranteed that a copy operation do not occur each time the secondary GPU
must access a resource that resides in the memory of the primary GPU. Instead, it
is recommended to have one copy for each GPU.

1.3 Particle simulations

Particle simulations exist in almost every major game today, they are highly parallel
workloads [18] since every particle that is part of the simulation can be updated
independently of the rest of the particles. Thus they are especially suited for asyn-
chronous compute. The GPU usually uses the compute engine to update every
particle in parallel and then sends all of them to the 3D engine for drawing. Depend-
ing on the number of particles and the complexity of the simulation, these particle
simulations can be a heavy task even for modern GPUs. However, using the power of
asynchronous computing, speeding up these particles could potentially be possible.
The way this could be done is by letting the compute engine process and update
the particles while at the same time having the 3D engine do some graphical work
instead of waiting idly for the compute engine to �nish executing.

1.3.1 The N-body particle simulation

The N-body simulation is a simulation that uses a numerical approximation to ap-
proximate the evolution of a system of bodies where each and every body is con-
tinuously interacting with each and every other body. An example of an N-body
is an astrophysical simulation where each and every body represents a galaxy or
individual star. The bodies attract each other through gravitational forces, �gure
1.6. The N-body simulation is used in many di�erent scienti�c problems such as
protein folding, in which the N-body simulation is used to calculate electrostatic van
der Waals forces, which is an important component in our understanding of disease
and drug discovery. Others examples are Turbulent �uid �ow simulation and global
illumination computation in the �eld of computer graphics are other problems in
which the N-body simulation is used [10].

1.3.2 All-pairs N-body particle simulation

The all-pairs approach to N-body simulation is what is known as a brute-force tech-
nique. It involves calculating the force between each and every pair of elements and
then adding up the resulting forces on each element. The computational part of a
simulation that uses an N-body is usually split into two parts, �rst, calculate the
force a�ecting each and every element, then move each and every element based on
the calculation. The all-pairs approach is a relatively simple approach to an N-body
simulation. However, it is not generally used for large particle simulations on its own,
this is because it is computationally complex. The all-pairs approach is usually used
together with a faster method based using the far-�eld approximation of longer-range
forces. However, this is only valid between the parts of the N-body that are well sep-
arated. Multiple algorithms of this form are presented by the Barnes-Hut method
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Figure 1.6: N-body particle simulation

[5], fast multipole method [9] as well as the particle-mesh method [8]. Gravitational
potential is used to illustrate the basic form of computation in the all-pairs N-body
simulation. Given an N-body particle simulation with N bodies, all with the initial
position xi as well as velocity vi for 1 ≤ i ≤ N . The force vector fij, on the body i
is given through the gravitational attraction it has to the body j, which is shown by
the following equation.

fij = G ∗ mimj

‖rij‖2
∗ rij
‖rij‖

(1.1)

In equation 1.1 the mi and mj are the masses of the body i and the body j, respec-
tively, while rij = xj −xj is the vector between the body i and the body j. The G is
the gravitational constant. The left factor which is depicted by fij is the magnitude
of the force, this factor is proportional to the product of the masses mi and mj and
it diminishes with the square of the distance between the body i and the body j.
The right factor

rij
‖rij‖ , is the direction of the force from the body i to the body j,

The reason for this is because of the fact that the gravitational force is an attractive
force [10].

The total force Fi that a�ects the body i is obtained by summing up all of the
interactions occurring between the body i an every other body N − 1, as shown by
equation 1.2 [10].

Fi =
∑

1≤j≤N :j 6=i

fij = G ∗mi ∗
∑

1≤j≤N :j 6=i

mj ∗ rij
‖rij‖3

(1.2)
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When two or more bodies approach each other, the force between them becomes
larger without boundaries and results in undesirable situations for numerical integra-
tion. When using an N-body particle simulation in astrophysics, collisions between
the di�erent bodies are generally avoided if possible. Because of this, a softening
factor ε2 > 0 is introduced into equation 1.2, which results in the denominator being
rewritten as shown by the following equation [10].

Fi ≈ G ∗mi ∗
∑

1≤j≤N

mj ∗ rij
‖rij‖2 + ε2

3
2

(1.3)

With the modi�cation to equation 1.2 via the introduction of the softening factor
ε2 > 0 the condition j 6= i is not needed any longer in the sum and can be removed,
this is shown in equation 1.3. The reason for this, is because fii = 0 when ε ∗ 2 > 0.
The use of the softening factor is to model the interaction between two Plummer
point masses, these are masses that behave like spherical galaxies [17]. The result of
using the softening factor is that it puts a restraint onto the magnitude of the force
between two bodies, which in turn is desirable for numerical integration of N-body
simulation state [10].

In order to perform integration over time, the total acceleration ai =
Fi

mi
is needed

for the purpose of updating the position and velocity of the body i. The equation
for doing this is as follows [10].

ai ≈ G ∗
∑

1≤j≤N

mj ∗ rij
‖rij‖2 + ε2

3
2

(1.4)
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1.4 Formulating Objectives & Research Questions

The purpose of this thesis is to investigate if asynchronous compute can be used to
increase the performance of particle simulations, while running on one single GPU,
from both AMD and NVIDIA.

The aim of this thesis is to show if there is any di�erence in frame time perfor-
mance as well as the number of rendered frames per second, between running particle
simulations using asynchronous compute and sequential execution on one single GPU
from both AMD and NVIDIA.

� RQ1: Can the use of asynchronous compute reduce the frame time and increase
the number of rendered frames per second for a particle simulation on one single
NVIDIA GPU?

What is the di�erence in frame time?

What is the di�erence in the number of frames that can be rendered every
second?

� RQ2: Can the use of asynchronous compute reduce the frame time and increase
the number of rendered frames per second for a particle simulation on one single
AMD GPU?

What is the di�erence in frame time?

What is the di�erence in the number of frames that can be rendered every
second?

In order to answer the research questions, the following objectives need to be
completed. Objectives 4, 5, and 6 need to be repeated for NVIDIA and AMD
hardware respectively.

1. Implement an N-body particle simulation that runs sequential execution.

2. Implement support for the use of asynchronous compute.

3. Implement a GPU pro�ler for retrieval of performance metrics, such as frame
time and rendered frames per second.

4. Run the N-body simulation both using sequential execution and asynchronous
compute.

5. Extract performance metrics from both test cases, in terms of frame time and
rendered frames per second.

6. Calculate the percentage di�erence between sequential execution and asyn-
chronous compute.

If asynchronous compute shows a lower frame time than sequential execution,
this means that asynchronous compute can be used to increase the performance of a
particle simulation. Otherwise, if asynchronous compute shows a higher frame time
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or no change in frame time at all, this means that asynchronous compute can not be
used to increase the performance of a particle simulation.

The use of both frame time and rendered frames per second as performance
metrics are for the bene�t of providing two di�erent views on the same result, while
also making the result appealing to a wider range of readers. Rendered frames per
second is a more well-known performance metric while frame time is more accurate
as a measurement.





Chapter 2

Related Work

This chapter presents some previously completed works regarding asynchronous ex-
ecution. This thesis contributes to the works presented here while also pointing out
the di�erences and between this thesis these other works.

Steps have been taken in order to improve the speed of particle simulations, such
as the fast N-body simulation presented by [10]. It presents an optimized version
of the all-pairs N-body algorithm. Other scienti�c research that include the one by
[16], in which the author is investigating if the GPU is better suited to run particle
simulations than the CPU. Before the introduction of GPGPU, the CPU was the only
option for running particle simulations. Similar, before the introduction of DirectX
12 the GPU was only able to run one single task at a time. Therefore, there has
been work done to try and create asynchronous algorithms for particle simulations
on the CPU that can run on a single CPU core [2]. Still, with modern graphics APIs
and modern GPUs, asynchronous compute should now be able to utilize the power of
parallel computing on the GPU to update each particle in a particle simulation, while
at the same time render each particle on the screen, thus, running asynchronously on
the GPU. Regarding asynchronous compute on the GPU, research has also been done
in order to investigate if there are any performance bene�ts of using asynchronous
compute on volumetric rendering algorithms such as the marching cubes algorithm
for terrain generation [11]. This thesis contributes to that work in the sense that
if there is a bene�t for volumetric rendering, the same might hold true for particle
simulations as well. In fact, there has even been some work done to show the potential
of asynchronous compute when running particles on a multiple GPU setup [19] that
uses the multiple adapter approach introduced in section 1.2.3 of this thesis. The
author of that thesis, aim to show the di�erence in performance between multiple
GPUs and using one single GPU for the purpose of running asynchronous compute.
However, there is a problem with that thesis, it lacks a solid proof that the single GPU
setup used in the thesis is actually running asynchronous compute, other than the
authors claim that it does. It does, however, show that there are potential bene�ts
of running asynchronous compute on a multiple GPU setup. This thesis contributes
to that work though, through a proper analysis of asynchronous compute on a single
GPU setup.
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Chapter 3

Method

This chapter presents a more detailed description of how the N-body algorithm was
implemented together with some code snippets. An explanation of the practical
di�erences between sequential execution and how to apply asynchronous compute to
a sequentially run program is also presented. Lastly, the custom-built GPU pro�ler is
presented and how it is utilized to capture the data necessary to answer the research
questions presented in chapter 1. The chapter is then concluded with a description
of how the test cases were constructed and how the test data was validated.

To evaluate the performance increase from asynchronous compute an N-body par-
ticle simulation was implemented using DirectX 12, this implementation was used
for all of the experiments. The use of an N-body simulation is a good choice, this
is because each particle can be updated individually by di�erent computing threads.
In turn, this gives the programmer control over the increasing and decreasing of the
workload. All experiments in this thesis were run on one AMD Radeon RX 560 graph-
ics card that according to AMD supports asynchronous compute [9], one NVIDIA
Geforce GTX 1060 graphics card that according to NVIDIA supports asynchronous
compute [4], as well as one NVIDIA Geforce GTX 960 graphics card that according
to NVIDA does not support asynchronous compute [4]. The values extracted from
the experiments were frame time, frames per second, and overlap time. The frame
time and frames per second values were used to measure the performance di�erence
between sequential execution and asynchronous compute. The overlap time was used
to determine if the di�erent graphical cards could indeed run asynchronous compute.
To the best of the author's knowledge, there are no other methods for implementing
asynchronous compute other than the one used in this thesis, this does not include
anything else other than then way to apply asynchronous compute on an application
running sequential execution.

3.1 Implementation of The N-body simulation

The all-pairs algorithm can be thought of as a series of calculations in order to
calculate each entry fij in the NxN grid of pair-wise forces. The total force Fi or
acceleration ai on the body i can then be obtained by summing up all entries in row
i. However, since this approach requires a lot of memory, the memory bandwidth can
impose some restrictions. Because of the memory issue, this approach is therefore
not favorable. Instead, some of the computations are serialized, resulting in the
introduction of what is called a computational tile. A computational tile is a square
region of the grid of pair-wise forces mentioned earlier and consists of p rows and p

19
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columns, this enables a smaller amount of descriptors to be stored in shared memory.
Thus, it is more memory e�cient [10].

3.1.1 Force calculation

The calculation and interaction between two bodies which was described in chapter
1 is implemented as a series of computations. The code snippet in the listing below
describes and calculates the force applied to the body i when it interacts with the
body j, this, in turn, updates the acceleration ai or force fi of the body i as a results
of it interaction with the body j. In the code note the multiplication of a variable
called particles in the equation s = bj.w ∗ invDist ∗ particles. This variable is used
to make sure that the correct number of particle contributes to the �nal acceleration
or force of each particle. Each individual body is stored in �oat4 data types where
the �rst 3 components x, y, and z make up the positional data of the body. The
fourth component w is used to store the mass of the body. The full source code for
the force calculation can be viewed in the appendix [10].

1 float3 BodyBodyInteraction(float4 bi, float4 bj, int particles)

2 {

3 float3 r = bj - bi;

4

5 float distSqr = dot(r, r);

6 distSqr += g_softeningSquared;

7

8 float invDist = 1.0f / sqrt(distSqr);

9 float invDistCube = invDist * invDist * invDist;

10

11 float s = bj.w * invDistCube * particles;

12

13 return r * s;

14 }

Listing 3.1: Force calculation between a pair of bodies

3.1.2 Calculation of gravity within a tile

When updating the gravity or acceleration ai for p number of bodies, one tile is
evaluated at a time. Resulting in one tile being loaded into shared memory at a
time. To evaluate the entire tile p number of threads are executed to perform a
number of calculations on the corresponding p number of bodies. Each thread then
calculates the acceleration or gravity of one single body, based on its interaction with
the other bodies within the tile. P number of body descriptions are loaded from the
GPU device memory into the collective shared memory of each tile. Each thread
calculates p interactions which result in p number of updated body accelerations.
The code snippet below shows the code for calculating the interaction between a
body and every other body within the same tile. The full source code can be viewed
in the appendix. Input parameter myPos contains the positional data for the body
of the executing thread. The array sharedPos contains a list of body descriptions.
All p number of threads execute the function in parallel with each other, they all
then iterate over the same p number of body descriptions contained in sharedPos.
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All of the descriptions contained in sharedPos reside in shared memory, for the sake
of calculating the resulting acceleration of its own body as a result of its interaction
with every other p number of bodies [10].

1 float3 Gravitation(float4 myPos , float3 accel)

2 {

3 uint i = 0;

4

5 [unroll]

6 for (uint counter = 0; counter < BLOCK_SIZE; counter ++)

7 accel += BodyBodyInteraction(myPos , sharedPos[i++] , 1);

8

9 const int tooManyParticles = g_numBlocks * BLOCK_SIZE -

g_numParticles;

10 accel += BodyBodyInteraction(myPos , float4 (0.0f, 0.0f, 0.0f, 0.0

f), -tooManyParticles);

11

12 return accel;

13 }

Listing 3.2: Calculating the acceleration of a body from its interaction with p other
bodies within one tile

3.1.3 Grouping tiles and de�ning thread blocks

A thread block is de�ned by p number of threads executing any arbitrary number of
tiles. The size of each individual tile is determined by two main factors, parallelism
and data reuse. The level of parallelism used is determined in such a way that multi-
ple thread warps can be interleaved to hide latency issues in evaluating body to body
interactions. The data reuse is determined in such a way as to balance the number
of body descriptors that is fetched from device global memory and put into shared
memory at one time. Before a tile is evaluated, each thread is responsible for fetching
one body descriptor from device global memory into shared memory. Each of the
threads are then being synchronized before they begin execution. When the threads
are done executing they are again synchronized before they begin evaluation of a new
tile. As a result, each tile is evaluated with p body descriptors residing in shared
memory. The code snippet in the listing below shows the method just described. The
entire source code can be viewed in the appendix. The input parameter bodyPos
is the position of a body in device global memory. Inside the loop of tiles, are two
synchronization barriers. These are the synchronization stages described previously
in this section. The �rst of these ensures that all executing threads have �nished
fetching data from device global memory before the computation of the gravitation
can begin, while the second ensures that no thread is advancing to the next tile
before the every other thread is �nished computing the gravitation. Thus, writing
to a position in shared memory that is currently being read by another thread. The
function just described is invoked on a grid of an arbitrary number of thread blocks
that computes the acceleration of an N number of bodies. There a p number of
threads for each thread block and one thread for each body. The number of thread
blocks needed for this task to complete is calculated by N/p. The result is N threads
performing N force calculations each [10].



22 Chapter 3. Method

1 float3 ComputeBodyAccel(float4 bodyPos , uint threadId , uint blockId)

2 {

3 float3 acceleration = {0.0f, 0.0f, 0.0f};

4 uint p = BLOCK_SIZE;

5 uint n = g_numParticles;

6 uint numTiles = n / p;

7

8 for (uint tile = 0; tile < numTiles; tile ++)

9 {

10 sharedPos[threadId] = oldParticles[tile * p + threadId ].pos;

11

12 GroupMemoryBarrierWithGroupSync ();

13 acceleration = Gravitation(bodyPos , acceleration);

14 GroupMemoryBarrierWithGroupSync ();

15 }

16

17 return acceleration;

18 }

Listing 3.3: Calculating the acceleration for a body from its interaction with every
other body in the system

3.2 Implementing the framework

The framework used in this thesis consists of two di�erent execution models. The �rst
one is standard sequential execution and the second one is asynchronous compute.
The framework also consists of one custom-built GPU pro�ler, this pro�ler is built
exclusively for the application and is tailored thereafter. The framework also makes
use of one or two particle bu�ers, all of the particle bu�ers used for this thesis contain
the positional data and the velocity data for each particle that make up the N-body.
These bu�ers reside in GPU device memory, thus eliminating the need to read any
data back to the CPU when a write operation is completed. It also makes sure that
the GPU never has to wait for the CPU before it can begin any reading operation.
During initialize time all of the bu�ers are �lled with initial data by the CPU which
then copies these bu�er to GPU memory, where they reside for the duration of the
simulation.

3.2.1 Sequential execution

The Initial implementation of the N-body simulation uses the sequential execution
model. Sequential execution means that one single command queue is used along with
one single particle bu�er. Inside the command queue, two di�erent command lists
reside. One list holds the compute workload, that is, the workload that is responsible
for updating every particle in the particle bu�er. The second command list holds the
3D workload, the workload which is responsible for rendering every particle in the
particle bu�er. The reason only one particle bu�er is needed for sequential execution
is the fact that each and every command list that reside in the same command queue
is executed sequentially by the GPU, this means that no explicit synchronization
between the di�erent command lists is needed.
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Figure 3.1: Use of signal and wait for synchronizing access to multiple bu�ers between
multiple workloads

3.2.2 Applying asynchronous compute

Applying asynchronous compute to sequential execution, results in one extra com-
mand queue being needed along with one extra particle bu�er. One command queue
is dedicated toward the use of command lists containing compute workloads. The
other command queue is dedicated toward the use of command lists containing 3D
workloads. Since asynchronous compute implies that multiple workloads are executed
in parallel of asynchronous on the GPU, two particle bu�ers are needed instead of
one. In some cases more than two particle bu�ers could be used, however, this thesis
makes use of only two. One bu�er is written to by the compute queue, while the
other bu�er is read from by the 3D queue. Using multiple bu�ers also means that
the programmer is responsible for synchronizing access to each bu�er, in order to
prevent race condition between the di�erent workloads. Since all of the bu�ers used
in this thesis reside in GPU memory the GPU is responsible for both reading and
writing to each of the bu�ers, as well as synchronizing access to them. This in turn
is done via the use of signal and wait, one other method would be to let the CPU
synchronize access to the bu�ers. Signal is used by each workload to signal that a
read or write operation has just been completed. Wait, in turn, waits for a signal
to come before a read or write operation can begin. Figure 3.1 shows how the GPU
makes use of signal and wait when it is working with multiple bu�ers.
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3.2.3 GPU pro�ler

A custom GPU pro�ler was implemented in order to capture the frame time and ren-
dered frames per second. As well as the overlap time between the compute workload
and the graphical workload. In order to get accurate measurements the CPU latency
needs to be taken into consideration and handled when calculating performance met-
rics. CPU latency refers to the time it takes for the CPU to process two consecutive
CPU commands, in this case, the commands ExecuteComputeCommandQueue and
ExecuteCommandQueue. The two commands refer to sending compute workloads
and graphical workloads to the GPU.

The GPU pro�ler uses queries to read performance metrics back form the GPU.
Queries is a tool available in the DirectX 12 API. Queries reside in a Query heap,
which is an array of queries. Each query heap must specify what type of data to
extract from the GPU. The type that is used in this thesis is �timestamp� [13].
When extracting timestamps from the GPU, the CPU will use the query to request
a timestamp from the GPU. In order to get data that is readable from the GPU,
two concepts are needed. These are timestamp frequency and timestamp calibration.
To receive an accurate measurement of the frame time, the frequency from each
command queue must be obtained on a per command queue basis. The frequency
is measured in ticks/second, thus, it must be transformed to milliseconds to obtain
readable data. The reason for this is because each of the command queues run on
di�erent frequencies [14]. A timestamp is extracted at the start of execution and
end of execution for each of the two workloads. In other words, when the GPU
beginnings execution and end execution of a workload every frame. This results in
four timestamps in total, that is extracted from the GPU. The di�erence between the
smallest and largest of these four make up the total frame time. When calculating
the overlap time the CPU latency needs to be handled as mentioned earlier in this
section. The overlap time itself is calculated by comparing the two begin timestamps
and choosing the largest of the two, while also comparing the two end timestamps
and choosing the smallest. Then the di�erence between the largest begin stamp and
the smallest end stamp is the overlap time. In order words, the duration in which the
two workloads overlapped in their execution. The Overlap then shows if the GPU
run asynchronously or not. The code for calculating frame time, rendered frames per
second, and overlap time can be seen in the appendix.

3.3 Creating test cases

The purpose of this thesis is to test whether or not asynchronous compute can be
used to increase the performance of particle simulations. To do this, Two di�erent
GPUs from two di�erent manufacturers were used along with two di�erent test sce-
narios running on both respective GPUs, one sequential execution, and one using
asynchronous compute. The primary metrics for testing are the overall frame time
performance and the number of rendered frames per second, for each test scenario.
However, in order to get reliable test data, each scenario was split into smaller test
cases. Each test case was created based on di�erent amounts of particles, beginning
with 1024 number of particles. The reason the number 1024 was chosen as the de-
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fault test case is because the maximum amount of compute threads per thread group
in the compute shader is 1024. Each successive test case was then a multiple of
1024, this was to prevent any out of bound reads by any executing compute thread,
as out of bound reads will result in ghost particles generating false gravity at the
origin. All of the test cases were executed over the course of 5000 frames, collect-
ing the desired performance metrics at the end of each frame. After 5000 frames
have been successfully completed an average value of frame time performance and
rendered frames per second was calculated. The number of test cases depended on
the di�erence between two successive test cases. If two successive test cases yielded
similar results it meant that the GPU was utilized to its maximum capacity and
further testing would not contribute anything new to the results. The di�erent GPU
were all run on three di�erent computers, this however should not a�ect the results
in any way as the aim and purpose of this thesis is not to compare the GPUs to each
other and �nd out which of them performed the best. The aim and purpose of this
thesis is to investigate whether or not the GPUs could execute faster when running
asynchronous compute than sequential execution.

3.4 Ensuring valid results

To ensure valid test results, various things have been taken into account and steps
have been made to mitigate any possible anomalies. First in the code itself, a vari-
able called particles which can be seen in listing 3.1 and in 3.2 where it is called
tooManyPrticles is needed to make sure that any out of bound particles are removed
from the simulation in case the total number of particles is not a multiple of the
thread block size. As mentioned earlier, any such particles would result in false grav-
ity being generated at the origin. All synchronization between the di�erent workloads
are done on the GPU instead of the CPU, (this was described earlier in this chapter)
the reason for this is to make sure that the CPU is not a�ecting the frame time in
that regard and also to make sure that the GPU stays active for the duration of the
test. A custom GPU pro�ler is used to extract performance metrics instead of a 3rd
party pro�ler to remove any possible in�uence it could have on the GPU. A third
GPU is added to the testing, this GPU is one that according to its manufacturer
does not have the ability to support asynchronous compute, this is important for the
sake of validation because it will show how the GPU would behave and what the
results would look like if the GPU could not run asynchronous compute.





Chapter 4

Results

This chapter presents the results of the experiments in terms of frame time per-
formance, rendered frames per second and the overlap time between the di�erent
workloads. All the performance metrics were captured using the custom-built GPU
pro�ler.

To the answer the research questions three di�erent performance metrics have
been extracted from the N-body particle simulation framework presented in section
3. These are frame time performance, rendered frames per second and overlap time
between the compute workload and graphical workload. To establish the di�erence
between asynchronous compute and sequential execution a percentage di�erence has
been calculated.

4.1 Recording frame time performance

The results of the experiments regarding frame time from AMD Radeon RX 560,
NVIDIA Geforce GTX 1060 and NVIDIA Geforce GTX 960 can be seen in �gure 4.1,
�gure 4.2 and �gure 4.3 respectively. The results for the frame time performance show
a that asynchronous compute performs better than sequential execution on both the
AMD Radeon RX 560 and NVIDIA Geforce GTX 1060, however the NVIDIA Geforce
GTX 960 does not show signs of improvement regarding frame time performance, in
some cases the 960 GPU show a decrease in frame time performance compared to
sequential execution.

4.2 Recording rendered frames per second FPS

The results of the experiments regarding frames per second FPS from AMD Radeon
RX 560, NVIDIA Geforce GTX 1060 and NVIDIA Geforce GTX 960 can be seen in
�gure 4.4, �gure 4.5 and �gure 4.6 respectively. Much like the frame time performance
the number of rendered frames per second show an improvement for AMD Radeon
RX 560 and NVIDIA Geforce GTX 1060, yet again, the NVIDIA Geforce GTX 960
does not show signs of an increase in the number of renderd frame per second.

4.3 Di�erence in performance

In �gure 4.7 a percentage di�erence between sequential execution and asynchronous
compute in terms of frame time performance can be seen, while 4.8 depict the per-
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Figure 4.1: Frame time performance di�erence between sequential execution and
asynchronous compute on AMD Radeon RX 560

Figure 4.2: Frame time performance di�erence between sequential execution and
asynchronous compute on NVIDIA Geforce GTX 1060
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Figure 4.3: Frame time performance di�erence between sequential execution and
asynchronous compute on NVIDIA Geforce GTX 960

Figure 4.4: Frames per second di�erence between sequential execution and asyn-
chronous compute on AMD Radeon RX 560
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Figure 4.5: Frames per second di�erence between sequential execution and asyn-
chronous compute on NVIDIA Geforce GTX 1060

Figure 4.6: Frames per second di�erence between sequential execution and asyn-
chronous compute on NVIDIA Geforce GTX 960
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Figure 4.7: Percantage gain in terms of frame time performance between asyn-
chronous compute and sequential execution

centage gain in terms of rendered frames per second. The di�erences seen in �gure
4.7 and �gure 4.8 shows that the claims from NVIDIA and AMD are correct, AMD
GPUs as well as NVIDIA GPUs following the 10 series can take advantage of asyn-
chronous compute to increase the performance of particle simulations. NVIDIA
GPUs manufactured prior to the 10 series cannot however take advantage of asyn-
chronous compute to increase performance.

4.4 Overlap time and proof

In order to prove and make sure the GPU is running asynchronous compute, the over-
lap time between the compute workload and graphical workload should be above zero
percent of the total frame time. Overlap time means that the GPU is currently han-
dling the compute workload and the graphical workload at the same time. Table 4.1
shows the overlap times between the compute workload and the graphical workload
on AMD Radeon RX 560, NVIDIA Geforce GTX 1060 and NVIDIA Geforce GTX
960. 4.2 instead show the overlap time between the compute workload and graph-
ical workload on AMD Radeon RX 560, NVIDIA Geforce GTX 1060 and NVIDIA
Geforce GTX 960 with the multithreading disabled on the AMD Radeon RX 560.
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Figure 4.8: Percantage gain in terms of rendered frames per second between asyn-
chronous compute and sequential execution

Overlap Time

Particles AMD Radeon RX 560 NVIDIA Geforce GTX 1060 NVIDIA Geforce GTX 960

Particle
Amount

Frame
Time

Overlap
Time Percentage %

Frame
Time

Overlap
Time Percentage %

Frame
Time

Overlap
Time Percentage %

1024 0.157703 0.144 91.3 0.073586 0.008 10.8 0.116753 0.016 13.7

4096 0.67843 0.648 95.5 0.304754 0.010 3.3 0.507491 0.020 3.94

8192 1.736792 1.579 90.0 0.700755 0.006 0.9 1.801457 0.191 10.6

14336 3.850408 3.704 96.1 1.90302 0.049 2.6 5.112376 0.266 5.2

16384 5.303035 5.176 97.6 2.53495 0.044 1.7 6.322352 0.311 4.9

28627 15.45527 15.296 98.9 7.96002 0.029 0.4 19.912757 0.399 2.0

30720 17.532101 17.396 99.2 9.06808 0.029 0.32 22.871039 0.413 1.8

32768 20.701101 20.627 99.6 10.1988 0.023 0.23 25.755637 0.411 1.6

57344 58.70048 58.430 99.5 30.4893 0.030 0.1 80.950013 0.468 0.6

61440 69.805596 69.280 97.8 34.119 0.031 0.1 91.791888 0.491 0.5

65536 77.98724 77.800 99.7 41.2504 0.027 0.1 103.183022 0.487 0.47

Table 4.1: Frame time, overlap time and percentage showing overlap time as part of
the total frame time
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Overlap Time

Particles AMD Radeon RX 560 NVIDIA Geforce GTX 1060 NVIDIA Geforce GTX 960

Particle
Amount

Frame
Time

Overlap
Time Percentage %

Frame
Time

Overlap
Time Percentage %

Frame
Time

Overlap
Time Percentage %

1024 0.157703 0.085 53.9 0.073586 0.008 10.8 0.116753 0.016 13.7

4096 0.67843 0.144 21.2 0.304754 0.010 3.3 0.507491 0.020 3.94

8192 1.736792 0.211 12.1 0.700755 0.006 0.9 1.801457 0.191 10.6

14336 3.850408 0.306 7.9 1.90302 0.049 2.6 5.112376 0.266 5.2

16384 5.303035 0.401 18.9 2.53495 0.044 1.7 6.322352 0.311 4.9

28627 15.45527 0.905 6.5 7.96002 0.029 0.4 19.912757 0.399 2.0

30720 17.532101 1.014 5.8 9.06808 0.029 0.32 22.871039 0.413 1.8

32768 20.701101 0.717 3.5 10.1988 0.023 0.23 25.755637 0.411 1.6

57344 58.70048 1.495 2.5 30.4893 0.030 0.1 80.950013 0.468 0.6

61440 69.805596 0.589 0.8 34.119 0.031 0.1 91.791888 0.491 0.5

65536 77.98724 0.456 0.6 41.2504 0.027 0.1 103.183022 0.487 0.47

Table 4.2: Frame time, overlap time and percentage showing overlap time as part of
the total frame time





Chapter 5

Analysis and Discussion

In this chapter, the bene�ts of asynchronous execution are discussed together with
di�erent ways to potentially improve the results, while also discussing the main dif-
ferences between di�erent GPUs. Various ways on how to proceed with the research
done in this thesis are also discussed.

The results of the experiments presented in the previous chapter showed that
asynchronous compute can increase the performance of particle simulations. It also
showed that there was a di�erence in frame time performance and rendered frames
per second, however, the di�erence depended on the number of particles that was part
of the simulation. A smaller amount of particles showed a much higher percentage
gain than a larger amount of particles. At the same time though, a larger amount of
particles showed a larger di�erence in frame time performance between asynchronous
compute and sequential execution.

5.1 Asynchronous compute on one single GPU

The results are as expected, when running the N-body particle simulation with asyn-
chronous compute there is always a performance gain no matter the workload. This
might not always be the case though. What if the number of particles in the simula-
tion would have increased even further? To a point where there were no longer any
resources available to run the computational workload.

Since the GPU have to share it's resources between graphical workloads and
compute workloads there might exist a case when the percentage gain is going to
be 0%. The percentage gain showed in �gure 4.7 shows a trend towards increasing
workloads resulting in a lower percentage gain. However, since the GPU is responsible
for distributing resources between di�erent workloads and not the application itself,
it is not certain that the percentage gain would ever reach 0%. It is possible tough
for the percentage gain to fall below what is shown in this thesis, as shown in [3],
where the percentage gain between asynchronous compute and sequential execution
fell as low as 0.12%.

5.1.1 Di�erences between AMD GPUs and NVIDIA GPUs

As mentioned in chapter 1 of this thesis, AMD GPUs have what AMD calls ACE
units, which enables the use of multithreading to accomplish asynchronous behavior
on the GPU. While NVIDIA introduced what they call dynamic load balancing.
The di�erence between AMD and NVIDIA is the fact that on AMD GPUs, the
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GPU does not have to suspend one task in order to schedule another onto the same
resource, thus performing a so called context switch. NVIDIA GPUs do not have this
capability, instead, NVIDIA GPUs rely on one single thread to handle scheduling of
multiple tasks onto the same resource. This fact could be the explanation for the
small overlap time shown in table 4.1, by both NVIDIA Geforce GTX 1060 and 960
GPUs. While AMD Radeon RX 560 shows a clear overlap time spanning almost the
entire frame time. If instead, the multithreading capability of the AMD GPU was
disabled, the overlap time would almost be the same as the overlap time shown from
NVIDIA GPUs. This is shown in table 4.2.

5.2 Improving the result

The results show that smaller workloads result in a larger performance gain, this
makes sense as previously stated, all di�erent workloads share hardware resources
and at smaller workloads, there are a larger amount of GPU resources that are idling
compared to heavier workloads. However, there are a number of possible ways the
results regarding asynchronous compute performance could potentially be improved.

5.2.1 Workload pairing

When executing multiple workloads such as graphical workloads and computational
workloads on one single GPU, the number one thing to watch out for is the fact that
both of these workloads are going to contend for the available GPU resources. The
distribution of the resources is mainly handled by the GPU itself. However, via the
use of something called workload pairing the application can control which graphical
and computational tasks the GPU should process at the same time, this can be
achieved with the use of signal and wait. These two concepts were introduced in
chapter 3 of this thesis, as a synchronization method for particle bu�er access. They
can however be used as a means of pairing di�erent workloads together to potentially
increase the execution of asynchronous compute. There are three di�erent types
of workload pairing introduced by NVIDIA and AMD [15], Fire and forget, CPU
latency, and handshake. Fire and forget uses signal and wait to make sure that the
desired workloads begin synchronized on the GPU. However, if one or more of these
workloads span across multiple frames �re and forget introduces frame variance, this
can lead to less bene�cial workload pairing and impact performance of asynchronous
compute in a negative way. CPU latency refers to the time the CPU takes between
consecutive calls to ExecuteCommandQueue in other words, the times the CPU sends
work to the GPU. The CPU latency translates to the GPU and could result in less
bene�cial workload pairing. Handshake implies that workloads both begin and end
synchronized, as opposed to �re and forget where workloads only begin synchronized.
Using handshake workload pairing results in the application taking complete control
over which workloads are paired together, however, it can also result in any number
of GPU resources becoming idle and lead to a larger overall frame time.
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5.2.2 Multiple GPUs

There are two ways of using multiple GPUs for asynchronous compute, multiple
adapter and linked node, both of these were introduced in chapter 1 of this thesis.
How these methods would a�ect the performance is di�cult to say, however multiple
adapter GPUs was used by [5] to actually show the di�erence in performance between
one single GPU and multiple adapter GPUs, the results of that research showed a
signi�cant increase in performance between one single GPU and multiple adapter
GPUs. However, as stated in chapter 2 of this thesis, the research showed no proof
of asynchronous activity on the one single GPU used for the experiments and the
reader is supposed to accept that asynchronous activity took place, even though,
the one single GPU that was used could have been running sequential execution
instead. Despite that fact, it still provides an insight into what the di�erence might
be between one single GPU and multiple adapter GPUs. When it comes to linked
node GPUs, no research has been done to identify what the di�erence in performance
might be between one single GPU and linked node GPUs. However, since linked node
GPUs means that two identical GPUs are connected to each other, as opposed to
multiple adapter GPUs which means two independent GPUs, linked node GPUs
could be seen as just extending the capacity of one single GPU, this should result in
a signi�cant increase in performance, as opposed to using one single GPU, similar to
using multiple adapter GPUs.

5.3 Validity threats

As mentioned in chapter 3 section 3.4 titled Ensuring validity there are some validity
threats to the research presented in this thesis. One of them was adding a third
GPU that does not support asynchronous compute to validate that results from
the two GPUs that does support asynchronous compute. However, even if this
does mitigate the validity threat it doesn't solve it. It would have been better to
include one fourth GPU that does not support asynchronous compute from the other
manufacturer AMD, as the GPU that does not support asynchronous compute used
is from NVIDIA. Had a fourth GPU that does not support asynchronous compute
manufactured by AMD been included, it would have made sure to validate the results
even further. Another validity threat stems from the fact that a custom GPU pro�ler
was used, even if the custom pro�ler was used for the purpose of making sure that
no third party program would run alongside the application of this thesis, the fact
that the GPU pro�ler does not measure the all of the GPU cores as a whole is a
clear validity threat. The pro�ler measures the overlap time on a core to core basis,
this means that it only measures the time the di�erent workloads are in �ight on
the same GPU core, this, in turn, explains why the overlap times seen in 4.1 and in
4.2 is so huge on the AMD GPU while multithreading is enabled and so small on
the NVIDIA GPU and the AMD GPU when multithreading is instead disabled. It
would, therefore, have been bene�cial to have a third party pro�ler for the purpose
of validating the GPU pro�ler used in the thesis.





Chapter 6

Conclusions and Future Work

In this last chapter di�erent conclusions are drawn regarding the real bene�ts of
asynchronous execution and whether the research questions were answered or not.
A message to think about for the future is presented and lastly, the future of asyn-
chronous execution is disused and ideas for future work presented.

6.1 Conclusions

To answer research question RQ1 asked in section 1.4 of this thesis, yes, asynchronous
compute can be used to reduce the frame time of a particle simulation, as opposed
to sequential execution on one single NVIDIA GPU that does support asynchronous
compute. Further, to answer RQ2 asked in section 1.4 of this thesis, the answer is
the same as for RQ1. That is, yes, asynchronous compute can be used to reduce the
frame time of a particle simulation, as opposed to sequential execution on one single
AMD GPU that does support asynchronous compute. Asynchronous compute can
also increase the number of rendered frames per second, as a result of the reduced
frame time. By how much? That depends on the amount of work submitted to the
GPU a one time, as discussed in the previous chapter.

To answer the sub-questions of RQ2 listed in section 1.4, at the most the di�erence
is approximately 33.9% and at the least approximately 1.4% for one single AMD
GPU, this translates to a reduction of frame time by approximately 1 millisecond.
In terms of rendered frames per second, the di�erence is at most 34% and at the
least 1.5%, this translates to at the most 2155 extra frames every second, while at
least 1 extra frame every second.

To answer the sub-questions of RQ1, while looking at the numbers from NVIDIA
GPUs, this thesis performed tests on two di�erent GPUs, one that supposedly sup-
ports asynchronous compute and one that supposedly does not. For the one single
NVIDIA GPU that supposedly supports asynchronous compute, the di�erence in
frame time is at the most 33.2% and at the least 3.4% which translates to approxi-
mately a reduction of frame time by 1 millisecond. Regarding the rendered frames
per second aspect, the di�erence is at the most 33.2% and the least 4.2% which trans-
lates to at the most 4512 extra frames every second and at the least 1 extra frame
every second. For the one single NVIDIA GPU that supposedly does not support
asynchronous compute, the di�erence in frame time is at the most 11.3% and the
least 0%. However, the worst case scenario is a decrease in performance of -3.2%
which translates to an increase of frame time by 0.02 milliseconds. Regarding the
rendered frames per second aspect, The best case scenario is an increase in rendered
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frames per second by 952 extra frames every second, while the worst case scenario is
a decrease in rendered frame per second by 63 frames every second

To summarize the results and reached conclusion of this thesis. It is possible to
utilize asynchronous compute to increase the performance of a particle simulation.
However, the performance increase is small when the amount of work submitted to
the GPU is large, while smaller amounts of work result in a higher overall perfor-
mance gain. Therefore asynchronous compute is best suited to use when the GPU
is not being fully utilized and the GPU has resources to spare. Since this is the
future of graphics APIs and thus game engines and GPUs it is still bene�cial to
apply asynchronous compute execution to a sequentially run application, even if the
performance gain is low, it will result in more �exibility for developers and program-
mers.

6.2 Future Work

In terms of future work, it would be interesting to test the various forms of workload
pairing discussed in the previous chapter to see if the pairing of workloads could have
an a�ect on the overall performance gain and how signi�cant it would be. Doing this,
however, implies that the particle simulation is implemented as part of a much larger
application together with multiple di�erent rendering techniques. It would also be of
interest to test the two di�erent types of multiple GPU setups, also discussed in this
thesis. In [19], the author tests the multiple adapter setup. However, as mentioned
previously in this thesis, although the numbers are probably correct, the lack of
proof of asynchronous compute activity for the single GPU setup used in that thesis
is disturbing.

Even though this thesis is mainly focused on asynchronous compute, it can still
be used as a foundation for future work more focused on improving the N-body
algorithm itself in order to test if it has any impact on the e�ciency of asynchronous
compute. The algorithm used in this thesis is adapted from [10] and described in
detail along with the complete source code.
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Appendix A

Supplemental Information

Full source code for the compute shader,

used for updating every particle in the system

#define BLOCK_SIZE 256

cbuffer cbUpdate : register(b0)

{

float g_timestep;

float g_softeningSquared;

uint g_numParticles;

uint g_numBlocks;

};

struct BodyData

{

float4 pos;

float4 velocity;

};

StructuredBuffer<BodyData> oldParticles : register(t0);

RWStructuredBuffer<BodyData> particles : register(u0);

float3 BodyBodyInteraction(float4 bi, float4 bj, int particles)

{

float3 r = bj - bi;

float distSqr = dot(r, r);

distSqr += g_softeningSquared;

float invDist = 1.0f / sqrt(distSqr);

float invDistCube = invDist * invDist * invDist;

float s = bj.w * invDistCube * particles;

return r * s;

}
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groupshared float4 sharedPos[BLOCK_SIZE];

float3 Gravitation(float4 myPos, float3 accel)

{

uint i = 0;

[unroll]

for (uint counter = 0; counter < BLOCK_SIZE; counter++)

accel += BodyBodyInteraction(myPos, sharedPos[i++], 1);

const int tooManyParticles = g_numBlocks * BLOCK_SIZE - g_numParticles;

accel += BodyBodyInteraction(myPos, float4(0.0f, 0.0f, 0.0f, 0.0f),

-tooManyParticles);

return accel;

}

float3 ComputeBodyAccel(float4 bodyPos, uint threadId, uint blockId)

{

float3 acceleration = {0.0f, 0.0f, 0.0f};

uint p = BLOCK_SIZE;

uint n = g_numParticles;

uint numTiles = n / p;

for (uint tile = 0; tile < numTiles; tile++)

{

sharedPos[threadId] = oldParticles[tile * p + threadId].pos;

GroupMemoryBarrierWithGroupSync();

acceleration = Gravitation(bodyPos, acceleration);

GroupMemoryBarrierWithGroupSync();

}

return acceleration;

}

[numthreads(BLOCK_SIZE, 1 ,1)]

void CS_MAIN(uint threadId : SV_GroupIndex, uint3 groupId :

SV_GroupID, uint3 globalThreadId : SV_DispatchThreadID)

{

float4 pos = oldParticles[globalThreadId.x].pos;

float4 vel = oldParticles[globalThreadId.x].velocity;

float3 accel = ComputeBodyAccel(pos, threadId, groupId.x);

vel.xyz += accel * g_timestep;

pos.xyz += vel * g_timestep;
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particles[globalThreadId.x].pos = pos;

particles[globalThreadId.x].velocity = vel;

}

Code used for calculating frame time,

rendered frames per second and overlap time between multiple queues

void D3D::CalculateComputeTime()

{

m_computeCommandQueue->GetClockCalibration(&m_computeGPUCalibration,

&m_computeCPUCalibration);

m_computeTimer->CalculateTime();

m_computeCommandQueue->GetTimestampFrequency(&m_computeFreq);

m_computeSec = m_computeCPUCalibration / (double)m_cpuFreq.QuadPart;

m_gpuComputeSec = m_computeGPUCalibration / (double)m_computeFreq;

m_computeBegin = m_computeTimer->GetBeginTime() / (double)m_computeFreq;

m_computeEnd = m_computeTimer->GetEndTime() / (double)m_computeFreq;

}

void D3D::CalculateRenderTime()

{

m_commandQueue->GetClockCalibration(&m_GPUCalibration, &m_CPUCalibration);

m_timer->CalculateTime();

m_commandQueue->GetTimestampFrequency(&m_freq);

m_sec = m_CPUCalibration / (double)m_cpuFreq.QuadPart;

m_gpuSec = m_GPUCalibration / (double)m_freq;

m_begin = m_timer->GetBeginTime() / (double)m_freq;

m_end = m_timer->GetEndTime() / (double)m_freq;

}

void D3D::CalculateFrameTimeAndFPS()

{

double diff = m_sec - m_computeSec;

m_gpuComputeSec += diff;

m_computeBegin += diff;

m_computeEnd += diff;

if (m_computeBegin < m_begin)

{

if (m_computeEnd > m_end)

m_averageDiffMs = m_computeEnd - m_computeBegin;

else
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m_averageDiffMs = m_end - m_computeBegin;

}

else

{

if (m_computeEnd > m_end)

m_averageDiffMs = m_computeEnd - m_begin;

else

m_averageDiffMs = m_end - m_begin;

}

if (m_frameCount < 5000)

{

m_frame += m_averageDiffMs;

m_overlap += m_computeEnd - m_begin;

}

if (m_frameCount > 5000 && m_frameCount < 5002)

{

double avrageFrameTime = (m_frame * 1000) / 5000;

double avrageOverlap = (m_overlap * 1000) / 5000;

}

m_averageDiffMs *= 1000.0;

++m_frameCount;

}
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