
On the Design and Performance of Chinese
OSCCA-approved Cryptographic Algorithms

Louise Bergman Martinkauppi∗, Qiuping He† and Dragos Ilie‡

Dept. of Computer Science
Blekinge Institute of Technology (BTH), Karlskrona, Sweden

∗louisemartinkauppi@hotmail.com, †ping95 @hotmail.com, ‡dragos.ilie@bth.se

Abstract—SM2, SM3, and SM4 are cryptographic standards
authorized to be used in China. To comply with Chinese cryp-
tography laws, standard cryptographic algorithms in products
targeting the Chinese market may need to be replaced with the
algorithms mentioned above. It is important to know beforehand
if the replaced algorithms impact performance. Bad performance
may degrade user experience and increase future system costs.

We present a performance study of the standard cryptographic
algorithms (RSA, ECDSA, SHA-256, and AES-128) and corre-
sponding Chinese cryptographic algorithms.

Our results indicate that the digital signature algorithms
SM2 and ECDSA have similar design and also similar perfor-
mance. SM2 and RSA have fundamentally different designs.
SM2 performs better than RSA when generating keys and
signatures. Hash algorithms SM3 and SHA-256 have many design
similarities, but SHA-256 performs slightly better than SM3.
AES-128 and SM4 share some similarities in the design. In
the controlled experiment, AES-128 outperforms SM4 with a
significant margin.

I. INTRODUCTION

The Chinese IT industry has grown dramatically over the
past two decades and the value of e-commerce in China
accounts for more than 40% of all worldwide e-commerce
today [1]. If a company wants to establish itself in China,
they need to follow Chinese law. Legislation concerning the
use of cryptography is defined by the State Cryptography
Administration (SCA). Commercial encryption is handled by
the Office of State Commercial Cryptography Administration
(OSCCA), which is managed by SCA.

Until recently, China was regulating the import, export,
sale, use, and research of commercial encryption based on
legislation issued in 1999 [2]. The regulations prohibited
foreign encryption products and required all companies or
individuals selling or producing commercial encryption prod-
ucts to gain the OSCCA’s approval. The OSCCA-published
algorithms SM2, SM3, SM4, SM9, and ZUC are commercial
cryptographic algorithms mandated by the SCA to be used
within China [3].

In 2019, China has adopted the Cryptography Law, which
regulates the use of encryption methods1 to protect digital data

‡Corresponding author.
1The law does not address specifically decryption of encrypted data or key

management.

in transit and at rest [4]. The law, which came into effect
on January 1, 2020, divides encryption into three different
categories: core, ordinary and commercial.

Core and ordinary encryption are used for protecting
China’s state secrets at different classification levels. Both
core and ordinary encryption are considered state secrets and
thus are strictly regulated by the SCA. It is therefore likely
that these types of encryption will be based on the national
algorithms mentioned above, so that SCA can exercise full
control over standards and implementations.

Commercial encryption is used to protect information that
is not considered a state secret. The new law removes many
restrictions from the 1999 regulations. In particular, it allows
use of foreign commercial encryption products that have
completed a certification process. The goal is to verify that
the products comply with Chinese national standards and
regulations. Critical infrastructure operators who use com-
mercial encryption products are required to perform security
assessments on their use of encryption, and in some cases even
undergo national security reviews. Unfortunately, currently
there is no clear definition of what technologies fall under
”commercial encryption”. Also, the details of the certification
process are not available yet [5].

Given the current state, it may be easier for a company
to modify their products for the Chinese market to use the
OSCCA-approved encryption algorithms. The problem is that
the stakeholders do not know how the replacing algorithms
will affect the performance of their products. They may
increase response times, energy consumption, and memory uti-
lization, which may increase capital and operational expenses.

In this paper, we provide an overview of the design of Chi-
nese OSCCA-approved algorithms. In addition, we quantify
the performance impact, in terms of execution time and mem-
ory usage, when replacing standard cryptographic algorithms
with corresponding Chinese cryptographic algorithms.

The reminder of this paper is organized as follows. Sec-
tion II compares the design of standard cryptographic algo-
rithms with Chinese counterparts. Related work is presented
in Section III. In Section IV we describe the testbed and the
experiments used for investigating the algorithm performance.
The analysis of the results from the experiment is presented
in Section V and Section VI shares our concluding remarks.c©2020 IEEE. Published paper will be available on IEEE Xplore Digital Library



TABLE I
SM2, ECDSA, AND RSA PROPERTIES.

ECDSA SM2 RSA

Type Asymmetric key
algorithm Asymmetric cryptosystem Asymmetric cryptosystem

Based on Elliptic curve discrete
logarithm problem

Elliptic curve discrete
logarithm problem

Integer factorization
problem

Used for Digital signatures
Digital signatures
Encryption & decryption
Key exchange

Digital signatures
Encryption & decryption
Key exchange

Public key Q = d×G P = d×G 〈N, e〉, N = p · q
Private key d (random integer) d (random integer) 〈N, d〉, N = p · q

Recommended
key length (bits)

P-256
Private key: 256
Public key: 512
P-384
Private key: 384
Public key: 768

SM2 curve
Private key: 256
Public key: 512

2048

Digital signature
auxiliary functions

Hash function (SHA-1
or SHA-2)
Random number
generator

Hash function (SM3)
Random number
generator

PSS
Prime number generator

II. OVERVIEW OF CRYPTOGRAPHIC ALGORITHMS

This section presents a comparison of the design of the
algorithms included in this study. The algorithms are grouped
into public-key schemes, hashing algorithms, and algorithms
for symmetric encryption. A more detailed description of the
characteristics of these algorithms can be found in [6].

A. Public-key schemes: SM2, ECDSA, and RSA

SM2, ECDSA, and RSA are all based on asymmetric
encryptions. The ECDSA and SM2 public key, Q and P ,
are points on a selected elliptic curve, while RSA’s public
key is a pair of two positive integers 〈N, e〉. In ECDSA and
SM2, the private key is a random integer which satisfies either
d ∈ [1, n − 1] (ECDSA) or d ∈ [1, n − 2] (SM2). The RSA
private key is a pair of positive integers 〈N, d〉. The design
details of these algorithms are summarized in Table I.

The RSA decryption and signature generation operations
tend to be computationally heavy because both d and N
are large integers. The workloads for encryption/signature
verification and decryption/signature generation are therefore
often unbalanced in RSA. Although RSA is expected to
perform worse than elliptic curve cryptography (ECC) based
algorithms, we included it in our study for two reasons. The
first one is that it provides a baseline from which to measure
performance gains when using ECC. The second reason is
that ECC performance results similar to or lower than those
for RSA would indicate an implementation issue.

The ECC key generation consists of choosing a point G
on the elliptic curve, generating a random integer d, and
calculating P = d × G, where × is a point multiplication
operator defined specifically for ECC. The point multiplication
operation has higher time complexity than other operation in
ECC [7], requiring the largest execution time [8]. Since the
signature verification for both ECDSA and SM2 performs two
point multiplications, compared with one point multiplication
in the signature generation, the verification is slower.

B. Hashing algorithms: SM3 and SHA-256

Both algorithms take an input M with length l, where
0 ≤ l ≤ 264, as shown in Table II. The message is padded
using Merkle-Damgård construction. It is then divided into

TABLE II
SM3 AND SHA-256 PROPERTIES.

SM3 SHA-256
Structure Merkle-Damgård Merkle-Damgård
Compression
function Davies-Meyer Davies-Meyer (based on)

Input (bits) 0 ≤ l ≤ 264 0 ≤ l ≤ 264

Output (bits) 256 256
Rounds 64 64

Operations
ADD, XOR, NOT, OR,
ADD (mod 232),
Concatenation, ROTL

ADD, XOR, NOT,
ADD (mod 232) , SHR,
Concatenation, ROTR

Constants
(words) 2 64

TABLE III
SM4 AND AES-128 PROPERTIES.

SM4 AES-128
Type Block cipher Block cipher

Structure Unbalanced Feistel
Network (UFN)

Substitution–permutation
network (SPN)

Field(s) GF (28) and GF (2) GF (28) and GF (2)
Block size (bits) 128 128
Key length (bits) 128 128
Round keys 32 keys á 32 bits 11 keys á 128 bits
Number of rounds 32 10
S-box Inversion-based mapping Inversion-based mapping
Number of S-box
lookups 128 160

Operations XOR, Sbox, cyclic bit shifts XOR, Sbox, cyclic bit shifts,
modular multiplication

blocks of the same block length. These blocks are processed
one at a time by a compression function, where the output
serves as input to the compression of the next block. The
compression function operates 64 rounds for each message
blocks and outputs a 256 bits message digest.

SM3 uses a Davies-Meyer compression function while
SHA-256 uses a compression function similar to Davies-
Meyer. The difference lies in how the chaining value is
combined with the block cipher output to create the next
chaining value. In SM3 an XOR operation is used, and in
SHA-256 an ADD operation is used [6].

The compression function of SM3 is more complicated than
compression functions in other common hash algorithms. The
SM3 compression function limits the algorithm’s throughput,
because of the rotational shift, ADD, and XOR operations
which leads to a long circuit delay [9].

C. Symmetric encryption: SM4 and AES-128

As shown in Table III, SM4 is based on a Unbalanced
Feistel Network (UFN) while AES is based on a Substitution-
Permutation Network (SPN). In general, SPNs have more
built-in parallelism [10]. AES implementations that can exploit
this property can be potentially faster than SM4, especially if
one considers that AES requires fewer rounds.

SM4 has identical encryption and decryption algorithms.
Only the order of the round keys has to be reversed for
decryption. For AES, the differences in the encryption and
decryption processes require the encryption and decryption
algorithms to be implemented separately.

Most modern Intel processors support Intel Advanced En-
cryption Standard (AES) New Instructions (AES-NI). These



instructions are designed to accelerate the performance of the
AES algorithm by 3–10 times over a complete software imple-
mentation [11]. This type of acceleration is not available for
SM4. However, there are scenarios (e. g. , embedded devices,
IoT) where other processors are used and AES cannot benefit
from acceleration capabilities. Therefore, when comparing the
performance of SM4 and AES-128, we look at both cases
(with and without AES-NI instructions).

III. RELATED WORK

Due to space restritions, we only focus on work related to
the Chinese encryption algorithms.

Bai et al. [12] did a theoretical comparative study of SM2
and the international standard ECC algorithm (which seems
to refer to ECDSA, although this is not clearly mentioned),
with regards to efficiency and security. They concluded that the
SM2 algorithm is better than the international standard ECC
algorithm, because the SM2 signature covers ECC parameters
that can be used to verify the correctness of the plaintext.
However, no practical experiments were performed.

Feng et al. [13] designed and implemented a testing and
evaluation system for trusted computing (TC) platforms. As
part of this work they tested the correctness and performance
of cryptographic algorithms used inside the secure chips and
trusted software stacks. Their test cases included RSA, SM2,
SM3, SM4, and HMAC. The authors conclude that SM2 is
faster than RSA. However, no data is presented, and the
reproducibility is limited.

Bai and Zhao [14] investigated the speed limit of SM2 point
multiplication in serial and parallel architectures without con-
sidering any resource constraints. The authors also compared
the performance difference between non-adjacent form (NAF)
and w-NAF encoding to get more detailed information about
the SM2 speed limit. Thus, the results of this study apply only
to a subpart of the SM2 algorithm.

Zhao and Bai [8] presented a high-performance point mul-
tiplication scheme for SM2. This operation was optimized
through the use of a one-cycle full-precision multiplier. During
hardware evaluation, their SM2 architecture performed over
49000 point multiplications per seconds, which was the highest
known single core performance, according to the authors.

Mendel et al. [15] concluded that the design of SM3 is
very similar to SHA-256, extended the methods for collision
attacks on SHA-256 and applied them to SM3. They produced
two collision attacks on round-reduced SM3 with practical
complexity. The authors managed to construct collisions for up
to 20 rounds of SM3. Free-start collisions (collisions where the
attacker decides the initialisation vector IV) were constructed
for up to 24 rounds of SM3.

Ao et al. [16] presented a compact hardware implemen-
tation of SM3 using SRAM instead of shift registers for
the message expansion function. The authors compared the
throughput of their hardware implementation with a SHA-256
and SM3 hardware implementation from other studies. The
compact architecture which they implemented can be used in
a resource-constrained system due to its low-cost and low-
power consumption.

Ma et al. [17] evaluated and optimized the hardware per-
formance of the hash algorithm SM3 on Field-Programmable
Gate Array (FPGA) circuits. They proposed new optimization
techniques for SM3 since existing optimization techniques are
not applicable to SM3. Their study focuses on the hardware
performance of FPGA and the optimization techniques pro-
posed by Ma et al. can be used for the implementation of
other hash algorithms, such as SHA-2.

Liu et al. [18] analyzed the SM4 algorithm and investigated
the origin of the SM4 S-box. They concluded that the design
of SM4 is influenced by Rijndael (i. e. , AES), mostly because
both algorithms use an inversion-based mapping. Although the
major focus of the paper is the origin of the SM4 S-box, the
authors are indirectly comparing SM4 with AES.

Cheng and Ding [19] described the block ciphers DES,
AES, and SM4, as well as the overall design theory and
the structure of block ciphers. They also reviewed common
cryptoanalysis methods related to block ciphers. However,
no outright comparisons of the block cipher algorithms are
described in the paper.

Ji et al. [20] examined algebraic attacks against SM4 and
compared the resistances of SM4 with that of AES. Their
result indicate that SM4 seems stronger than AES.

Li et al. [21] implemented a new encryption and authentica-
tion scheme SM4-GCM on FPGA circuits. The authors proved
that the new design of encryption and authentication scheme
has a higher throughput and lower resource consumption than
AES-GCM by conducting a hardware performance evaluation.

IV. EXPERIMENTAL SETUP

The aim of our experiments is to compare the performance
of the standard cryptographic algorithms to the performance
of corresponding Chinese algorithms in the following applica-
tions:

Experiment 1: key generation, digital signature, signature
verification (SM2 vs. ECDSA vs. RSA)

Experiment 2: hashing (SM3 vs. SHA-256)
Experiment 3: symmetric encryption and decryption

(SM4 vs. AES-128 vs. AES-128-NI).
For symmetric encryption and decryption we considered

the following modes: Electronic Code Book (ECB), Cipher
Block Chaining (CBC), and Counter (CTR) [22]. Although
ECB is considered unsafe, it can still be used as a baseline for
benchmarking. Due to time constraints we have not considered
more advanced methods, such as authenticated encryption.

We have used the following cryptographic libraries for
our experiments: OpenSSL v1.1.1b2, GmSSL v2.5.03, and
Botan v2.11.04. Originally, the Chinese algorithms where
implemented in GmSSL, which is a fork of OpenSSL v1.1.0d.
They were later implemented in OpenSSL.

We strived to use the most recent algorithm implementations
in order to benefit from any potential bug fixes and code
optimizations. However, we replaced OpenSSL with GmSSL
in the digital signature experiments. The reason is that the

2https://www.openssl.org
3http://gmssl.org
4https://botan.randombit.net



command-line tools from OpenSSL at the time when the
experiment was performed lacked the possibility to specify
which signature algorithm to use (only ECDSA was sup-
ported). Botan is a C++ library that is linked to a C++ program
we wrote. The program implements all functionality required
to execute the tests we used for OpenSSL/GmSSL. How-
ever, our program has less overhead than OpenSSL/GmSSL
command-line tool because it only implements the bare nec-
essary functionality for the tests. Therefore a comparison
between the two is not fair. The aim is instead to explore if the
relative performance of the algorithms (standard vs. Chinese)
is the same under both frameworks.

During the experiments we collected the following per-
formance metrics for the executing tool: elapsed real-time,
CPU time, CPU cycles, and resident set size (RSS). Real-time
is actual wall clock time required for the execution of the
process, including waiting for any I/O activities to complete.
CPU time is time spent in executing on one or multiple CPUs
without taking I/O into account. This can also be expressed
as CPU cycles, which makes the values easier to compare
between CPUs with different clock rates. RSS shows how
much memory a process is currently using in RAM.

Real-time and RSS measurements were collected using the
command time(1) [23]. The command perf-stat(1)
was used for collecting CPU time and cycles [24].

We have created a file of size 1 GB with random content
from /dev/surandom to be used for our experiments. This
file and any additional files required or created by the three
experiments were placed on a ramdisk created with the RAM
block disk device driver in Linux. The purpose of the ramdisk
was to alleviate the effects of disk I/O on the measurements.

For each experiment we used a sample size of 100 measure-
ments which strikes a reasonable balance between sample size
and experiment duration. All experiments were replicated 120
times and the first 20 samples were thrown away, to ensure fair
cache advantages for each experiment. For each sample, we
have computed the following statistics: minimum, maximum,
mean, median, and standard deviation.

The experiments were carried out on a host equipped with
Intel Core i7-8650U CPU, 32 GB RAM and Ubuntu 16.04
LTS 64-bit OS. All scripts and C++ programs developed for
this project are available from our GitHub repository5. The
commands were all executed at the highest scheduling priority
in user space in order to alleviate the effect of other processes
competing for the CPU.

V. PEFORMANCE RESULTS AND ANALYSIS

The following sections present the results from the experi-
ments described in Section IV. The bar graphs in every section
present the mean of the metrics of each algorithm. The bar
whiskers indicate the standard deviation.

In general, our results show that the real-time measure-
ments match almost identically the CPU time and cycles
measurements. Most likely, this happens because the ramdisk
diminishes the effects of disk I/O. Furthermore, memory usage
in all cases was in the range 4–5 MB. Due to space constraints,

5https://github.com/qiupinghe/BTH-TE2502-MasterThesis

 0

 1

 2

 3

 4

 5

 6

 7

 8

Key gen.

Sign
Verify

 250

 300

 350

 400

 450

R
e
a
l 
tim

e
 (
m
s
)

Botan

ECDSA
SM2
RSA

 0

 1

 2

 3

 4

 5

 6

Key gen.

Sign
Verify

 160
 180
 200
 220
 240
 260
 280
 300

R
e
a
l 
tim

e
 (
m
s
)

GmSSL

ECDSA
SM2
RSA

Fig. 1. Digital signature real-time in Botan and GmSSL.

we have chosen to show only results for real-time CPU usage.
However, a complete record of all statistics is available in [6].

A. Experiment 1: Digital Signature Algorithms

Fig. 1 shows the real-time CPU usage required to generate
a key, sign a 256-bit message and verify the signature for
ECDSA, SM2, and RSA. It is important to mention that the
results for signing or verifying a message include the time
required to compute a 256-bit hash values over the message
(SHA-256 for ECDSA and RSA, SM3 for SM2).

Key generation and signing operations for RSA takes sub-
stantially longer time than for SM2 and ECDSA, both in Botan
and GmSSL. More specifically, in Botan SM2 key genera-
tion required approximately 40% longer time than ECDSA
key generation. Further, in GmSSL, signing with RSA takes
approximately double the time compared to signing with SM2
and ECDSA, while in Botan the difference is 30–40 times
larger. Verification with RSA takes almost twice as long time
than verification with SM2 in Botan, while in GmSSL the RSA
verification is slightly faster than that of SM2. Apart from
small deviations, SM2 and ECDSA show similar performance
both in Botan and GmSSL.

The key generation of RSA is substantially slower than
SM2 because of the operations required to generate a key is
more complex. RSA key generation requires two large prime
integers to be generated. This results in very dispersed time
values since several integers may have to go through the
primality tests before a integer passes and is considered a
prime. Working with large integers also adds to the time taken
for RSA key generation. SM2 and ECDSA key generation is
much faster since the only operations required is one random
number generation and one point multiplication.

The discovery that the signing operation is slower for RSA
than for SM2 and ECDSA corroborate results from other
studies [25], [26] comparing RSA with ECDSA. The two
studies also found that signature verification with RSA is faster
than with ECDSA. However, our results on this matter are not
consistent as RSA verification is slower than SM2 in Botan,
but faster in GmSSL.

We inspected the Botan source code in search of causes for
the 40% longer time for SM2 key generation. We discovered



 0

 1000

 2000

 3000

 4000

 5000

SM3 SHA-256

R
e
a
l 
tim

e
 (
m
s
)

Botan

 0

 1000

 2000

 3000

 4000

 5000

SM3 SHA-256

R
e
a
l 
tim

e
 (
m
s
)

OpenSSL

Fig. 2. Hash algorithms real-time in Botan and OpenSSL.

that during SM2 key generation, Botan computes another value
that is used later during signing. We think these computations
may account for the key generation performance. The pre-
computed value may also be the reason why in Botan SM2
signing is faster than ECDSA signing. Unfortunately, due to
time constraints we have not followed this avenue any further.

B. Experiment 2: Hashing Algorithms

In Fig. 2 it can be seen that the CPU real-time usage
required to hash a 1GB file is greater for SM3 than SHA-
256 in both Botan and OpenSSL. In OpenSSL, the real-time
taken to hash the file using SM3 is twice as large than for
SHA-256, while in Botan the difference is smaller.

The experiment result showed that SM3 is 81% slower than
SHA-256 in OpenSSL, while SM3 is 16% slower than SHA-
256 in Botan. As described in Section II-B, SHA-256 and
SM3 have a very similar design. However, SM3 requires 128
additional assignment operations compared to SHA-256 [6].
This characteristic may have a tiny effect when hashing small
files, but for larger files, it could bring a significant impact
on the performance, since there are 128 more assignment
instructions per 64 bytes of data.

In addition, SHA-256 is a more mature hashing algorithm
that OpenSSL has been supporting since version 0.9.8o from
2010 [27]. OpenSSL has added support for SM3 in version
1.1.1b in 2018 [28]. Therefore, the OpenSSL code for SHA-
256 is probably better optimized for performance.

C. Experiment 3: Symmetric Encryption Algorithms

The results from all block cipher tests showed that SM4
is much slower than AES-128 and AES-128-NI regardless of
operation or mode.

Figure 3 shows that AES-128-NI is the fastest algorithm
in Botan, much thanks to hardware acceleration from the
CPU. Even without hardware acceleration, AES-128 is still
faster than SM4. Botan ECB and CTR mode show similar
performance, while CBC mode is consistently slower.

The AES algorithms are faster than SM4 in the OpenSSL
tests as well. Rather surprisingly, CBC mode outperforms the
other modes for decryption.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

EC
B Encryption

C
BC encryption

C
TR encryption

EC
B D
ecryption

C
BC D

ecryption

C
TR D

ecryption

R
e
a
l 
tim

e
 (
m
s
)

Botan

AES-128-NI
AES-128

SM4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

EC
B Encryption

C
BC encryption

C
TR encryption

EC
B D
ecryption

C
BC D

ecryption

C
TR D

ecryption

R
e
a
l 
tim

e
 (
m
s
)

OpenSSL

AES-128-NI
AES-128

SM4

Fig. 3. Block Ciphers real-time graphs in Botan and OpenSSL.

In our experiments, the observed performance differences do
not depend on the parallelism ability inherent in SPNs, because
all block cipher tests ran on a single CPU core. However,
because the block cipher tests were executed on a processor
with x86 64-bit architecture, this may have worked towards
AES’s advantage. AES may have been able to use registers
more optimally since the round key size of AES is 128 bits
long, while round keys of SM4 are 32 bits long.

VI. CONCLUDING REMARKS

The aim of this study was to provide a quantitative measure
of the performance gain or loss when replacing standard
cryptographic algorithms with Chinese counterparts. To do so,
we have computed a relative statistic related to mean CPU real-
time usage, for each metric presented in Section V. Given a
metric M , the statistic is computed as (Mc −Ms) ∗ 100/Ms

where Ms and Mc are the metric values (i. e. , mean CPU
real-time) for the standard algorithm and Chinese algorithm,
respectively. The results are shown in Table IV.

The results are marked with three colours, red, yellow, and
green, that have the following meaning:

• Red: Relative percentage change is higher than +20%.
Fields marked with red mean that replacement of the stan-
dard algorithm will impact the performance negatively.

• Yellow: Relative percentage change is between -20%
— +20%. Fields marked with yellow mean that the
replacement with SM algorithms will cause a relatively
small performance impact.

• Green: Relative percentage change lower than -20%.
Fields marked with green mean that the replacement of
the standard algorithm will improve the performance.

A rather blunt observation is that although the Chinese
algorithms perform better or equally well for digital signature
operations, their performance during symmetric encryption
operations is significantly worse with performance hits in
the range the 85 – 915%, compared to standard algorithms.
Whether this type of performance loss (related specifically to
CPU real-time usage) for symmetric encryption is acceptable,
depends on the specific type of application considered.

We believe the results presented here are valuable to anyone
who wants to establish a product in China or integrate their



TABLE IV
RELATIVE PERFORMANCE OF ALGORITHMS IN THE STUDY.

product with a Chinese system since it can be necessary to
replace an existing cryptographic algorithm with a Chinese
correspondence. Organizations looking to replace standard
algorithms with Chinese algorithms will need to perform
additional analysis studies specific to their products and make
an informed decision.

We would have liked to provide a comparison with SHA-
3, the newer hashing algorithm gaining support with many
applications. However, the GmSSL library that was used for
our tests did not have SHA-3 support at the time the study was
carried out. Thus, we decided to postpone this comparison for
future work.

REFERENCES

[1] K. W. Wang, J. Woetzel, J. Seong, J. Manyika,
M. Chui, and W. Wong. (2017, Dec.) Digital China:
Powering the economy to global competitiveness. [On-
line]. Available: https://www.mckinsey.com/featured-insights/china/
digital-china-powering-the-economy-to-global-competitiveness

[2] Covington. (2017, May) China releases draft en-
cryption law for public comment. [Online].
Available: https://www.cov.com/en/news-and-insights/insights/2017/05/
china-releases-draft-encryption-law-for-public-comment

[3] D. Li and Y. Liu, “Introduction to the commercial cryptography scheme
in china,” https://icmconference.org/wp-content/uploads/C03b-Li.pptx.
pdf, May 2016.

[4] L. Dong. (2019, Oct.) Cryptography law of the people’s republic of
china. [Online]. Available: http://www.npc.gov.cn/npc/c30834/201910/
6f7be7dd5ae5459a8de8baf36296bc74.shtml

[5] S. Dickinson. (2019, Nov.) China’s new cryptography law: Still no place
to hide. China Law Blog. [Online]. Available: https://www.chinalawblog.
com/2019/11/chinas-new-cryptography-law-still-no-place-to-hide.html

[6] L. B. Martinkauppi and Q. He, “Performance evaluation and comparison
of standard cryptographic algorithms and Chinese cryptographic
algorithms,” MSc. thesis, 2019. [Online]. Available: http://urn.kb.se/
resolve?urn=urn:nbn:se:bth-18234

[7] A. Sakthivel and R. Nedunchezhian, “Analyzing the point multiplication
operation of elliptic curve cryptosystem over prime field for parallel
processing,” The International Arab Journal of Information Technology,
vol. 11, no. 4, Jul. 2014.

[8] Z. Zhao and G. Bai, “Ultra high-speed SM2 ASIC implementation,” in
Proceedings of IEEE TrustCom, Beijing, China, Sep. 2014.

[9] X. Du and S. Li, “The ASIC implementation of SM3 hash algorithm for
high throughput,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E99.A, no. 7, pp. 1481–
1487, 2016.

[10] B. Preneel, V. Rijmen, and A. Bosselaers. (1998, Dec.) Algorithm
alley. [Online]. Available: http://www.drdobbs.com/algorithm-alley/
184410756

[11] J. Rott. (2012, Feb.) Intel R© Advanced Encryption Standard Instructions
(AES-NI). [Online]. Available: https://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni

[12] L. Bai, Y. Zhang, and G. Yang, “SM2 cryptographic algorithm based
on discrete logarithm problem and prospect,” in Proceedings of IEEE
CECNet, Three Gorges, China, Apr. 2012.

[13] D. Feng, Y. Qin, W. Feng, and J. Shao, “The theory and practice
in the evolution of trusted computing,” Chinese Science Bulletin,
vol. 59, no. 32, pp. 4173–4189, August 2014. [Online]. Available:
https://doi.org/10.1007/s11434-014-0578-x

[14] Z. Zhao and G. Bai, “Exploring the speed limit of SM2,” in Proceedings
of IEEE CCIS, Shenzhen and Hong Kong, China, Nov. 2014.

[15] F. Mendel, T. Nad, and M. Schläffer, “Finding collisions for
round-reduced SM3,” in Topics in Cryptology – CT-RSA 2013.
Springer Berlin Heidelberg, 2013, pp. 174–188. [Online]. Available:
https://doi.org/10.1007/978-3-642-36095-4 12

[16] T. Ao, Z. He, J. Rao, K. Dai, and X. Zou, “A compact hardware imple-
mentation of SM3 hash function,” in Proceedings of IEEE TrustCom,
Beijing, China, Sep. 2014.

[17] Y. Ma, L. Xia, J. Lin, J. Jing, Z. Liu, and X. Yu, “Hardware perfor-
mance optimization and evaluation of SM3 hash algorithm on FPGA,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7618
LNCS, pp. 105–118, 2012.

[18] F. Liu, W. Ji, L. Hu, J. Ding, S. Lv, A. Pyshkin, and R.-P. Weinmann,
“Analysis of the SMS4 block cipher,” in Information Security and
Privacy. Springer Berlin Heidelberg, pp. 158–170. [Online]. Available:
https://doi.org/10.1007/978-3-540-73458-1 13

[19] H. Cheng and Q. Ding, “Overview of the block cipher,” in Proceedings
of IEEE IMCCC, Harbin, China, Dec. 2012.

[20] W. Ji, L. Hu, and H. Ou, “Algebraic attack to SMS4 and the comparison
with AES,” in Proceedings of ISDF, Thessaloniki, Greece, Nov. 2009.

[21] L. Li, F. Yang, Y. Pan, W. Mao, and C. Liu, “An implementation method
for SM4-GCM on FPGA,” in Proceedings of IEEE IAEAC, Chongqing,
China, Mar. 2017.

[22] M. Dworkin, “Recommendation for block cipher modes of operation:
Methods and techniques,” NIST, Special Publication 800-38A, Dec.
2001. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38a.pdf

[23] “TIME(1) Linux User’s Manual,” http://man7.org/linux/man-pages/
man1/time.1.html, March 2019.

[24] “PERF-STAT(1) perf Manual,” http://man7.org/linux/man-pages/man1/
perf-stat.1.html, March 2019.

[25] N. Jansma and B. Arrendondo, “Performance Comparison
of Elliptic Curve and RSA Digital Signatures,” 2004,
http://www.nicj.net/files/performance comparison of elliptic curve
and rsa digital signatures.pdf.

[26] A. I. Ali, “Comparison and evaluation of digital signature schemes
employed in NDN network,” International Journal of Embedded Systems
and Applications, vol. 5, no. 2, pp. 15–29, Jun. 2015, https://doi.org/10.
5121/ijesa.2015.5202.

[27] OpenSSL. SSL library init. [Online]. Available: https://www.openssl.
org/docs/man1.0.2/man3/SSL library init.html

[28] ——. Changelog. [Online]. Available: https://www.openssl.org/news/
changelog.html#x44


