
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 1st IEEE International Conference on
Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2020, Virtual,
Washington, United States, 17 August 2020 through 21 August 2020.

Citation for the original published paper:

Ahmadi Mehri, V., Arlos, P., Casalicchio, E. (2020)
Normalization of Severity Rating for Automated Context-aware Vulnerability Risk
Management
In: Proceedings - 2020 IEEE International Conference on Autonomic Computing
and Self-Organizing Systems Companion, ACSOS-C 2020, 9196350 (pp. 200-205).
Institute of Electrical and Electronics Engineers (IEEE)
https://doi.org/10.1109/ACSOS-C51401.2020.00056

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20302

Normalization of Severity Rating for Automated
Context-aware Vulnerability Risk Management

Vida Ahmadi
Dept. of Computer Science

Blekinge Institute of Technology
City Network International AB

Karlskrona, Sweden
email: vida.ahmadi@citynetwork.eu

Patrik Arlos
Dept. of Computer Science

Blekinge Institute of Technology
Karlskrona, Sweden

email: patrik.arlos@bth.se

Emiliano Casalicchio
Dept. of Computer Science

Blekinge Institute of Technology, Sweden
Sapienza University of Rome, Italy
email: emiliano.casalicchio@bth.se

Abstract—In the last three years, the unprecedented increase
in discovered vulnerabilities ranked with critical and high
severity raise new challenges in Vulnerability Risk Management
(VRM). Indeed, identifying, analyzing and remediating this
high rate of vulnerabilities is labour intensive, especially for
enterprises dealing with complex computing infrastructures such
as Infrastructure-as-a-Service providers. Hence there is a demand
for new criteria to prioritize vulnerabilities remediation and new
automated/autonomic approaches to VRM.

In this paper, we address the above challenge proposing an
Automated Context-aware Vulnerability Risk Management (AC-
VRM) methodology that aims: to reduce the labour intensive
tasks of security experts; to prioritize vulnerability remediation
on the basis of the organization context rather than risk severity
only. The proposed solution considers multiple vulnerabilities
databases to have a great coverage on known vulnerabilities and
to determine the vulnerability rank. After the description of the
new VRM methodology, we focus on the problem of obtaining a
single vulnerability score by normalization and fusion of ranks
obtained from multiple vulnerabilities databases. Our solution
is a parametric normalization that accounts for organization
needs/specifications.

Index Terms—vulnerability, automation, Risk Assessment, self-
protection

I. INTRODUCTION

VRM is a method to reduce the probability of exploitation
and severity of damage in a system. Continuous VRM is
ranked third of among critical security controls by the Center
for Internet Security (CIS) [1]. Today, VRM is facing new
complex challenges to remediate vulnerabilities, that are most
critical for a specific organization context, on the proper
time and sequence. The number of new vulnerabilities have
increased enormously during the last three years, from 6,447 in
2016 to 17,306 unique vulnerabilities in 2019 [2]. According
to the NIST National Vulnerability Database (NVD) [2],
57.17% of the new vulnerabilities reported in 2019 ranked with
critical and high severity (41.82% high severity and 15.35%
critical severity). Vulnerabilities with a higher probability of
exploit need to be patched in a certain time-window regarding
the organization context. For example, the federal agencies in
U.S. have to patch the critical vulnerabilities within 15 days
and the vulnerability with high severity within 30 days due to
binding operational directive 1. Hence, an autonomic VRM is

1https://cyber.dhs.gov/bod/19-02/

vital to support decision makers by reducing labour intensive
tasks and to address the large number of vulnerabilities within
the specific deadlines.

Current VRM methods, used in production environments,
prioritize vulnerability patching based on the severity score,
thus vulnerabilities with critical and high severity are patched
first. D. Dey et al. [3] compares several practical patch policies
and concludes that patch policies relying on a single metric
such as severity level are not optimal. Indeed, if the severity
level of a vulnerability is high but the risk of exploitation is
low, it can be patched in a later time. V. Katos et al. [4] reports
that 8.65% of known vulnerabilities are exploitable, hence the
current VRM practices should be changed to account for the
exploitation probability, when prioritize patching.

Furthermore, the risk and impact of exploit of vulnerabilities
depends on the organization’s assets, security requirements and
security policies (the organization context hereafter). Hence
the vulnerabilities should not be analyzed in an isolated
manner, but within the organization context; and also the risk
of exploitation should be evaluated in the context of the orga-
nization to efficiently plan and to prioritize the vulnerability
patching [5].

In this study, we address the aforementioned challenges by
proposing AC-VRM. AC-VRM leverages knowledge about
organization context to support a security decision-maker
in prioritizing vulnerability patching. AC-VRM aims: 1) to
reduce the labour intensive tasks of security experts; 2) to
prioritize vulnerability remediation on the basis of the orga-
nization context rather than risk severity only; 3) it considers
multiple vulnerabilities databases to have a great coverage on
known vulnerabilities and to determine the vulnerability rank.
AC-VRM is the first step towards the development of a self
vulnerabilities assessment and remediation manager. The self
assessment and remediation manager is shown in Fig. 1(b)
and is compared with the self-protecting system manager for
response and mitigation of cyber-attacks (widely investigated
in literature [6]). A self-protecting system manager is a com-
plex software that autonomously: monitor a system to collect
information on its status; analyze the monitored data to detect
anomalies (e.g. cyber-attacks or vulnerabilities); plan actions
to bring the system back to normal operating conditions (e.g.

Fig. 1: (a) The self-response & mitigation manager; and (b)
the self-vulnerability assessment & remediation manager.

attack response or mitigation actions, or vulnerabilities reme-
diation actions); execute the planned actions. In this paper,
we describe AC-VRM and we propose a normalization of
vulnerability severity score based on the chosen vulnerability
management mode by organization. That is we focus on the
analysis phase in Fig. 1(b).

The remaining of this paper is organized as in what follows.
Section II describes related scientific work and vulnerability
management tools. The insight to VRM is described in Section
III. Our proposed solution for an AC-VRM is presented in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

In this section: firstly, we briefly review the literature
about automated VRM and self-protection. Then, we describe
the widely used tools for vulnerability management and we
compare their features

A. Literature review

According with the taxonomy proposed in [6] AC-VRM
could be classified as a self-protecting system that: 1) offers
the planning and prevention self-protection level; 2) it is
independent from the system layer to protect; 3) it addresses
the confidentiality, integrity, and availability goals; and it
focuses on development and deployment time.

Today, most research on self protecting systems mainly pro-
posed solutions for self response and mitigation, e.g. [7], [8].
Only a few work has focused on self-vulnerability assessment
and remediation [9].

Most of the literature on automated VRM address the
problem of automated penetration testing (e.g. [10] [11])
or other form of automated vulnerability discovery
(e.g. [12] [13] [14] [15]). In this work we assume that
the organization has its own well tested methodology to

discover vulnerabilities. Moreover, in complex production
environments, like a Infrastructure-as-a-Service cloud
provider, it is almost impossible to apply active vulnerability
discovery methods [16].

In [17] the authors propose the Cyber Risk Scoring and
Mitigation (CRISM) tool to estimate cyber-attack probabilities.
CRISM directly monitors and scores cyber risk based on assets
at risk and continuously updated software vulnerabilities.
CRISM also produces risk scores that allows organizations
to optimally choose mitigation policies that can potentially
reduce insurance premiums. The approach used in CRISM is
similar to the context-aware assessment proposed in our AC-
VRM. However, CRISM uses only one database (NVD) as
a source for known vulnerabilities. Moreover, the scoring is
determined on the basis of a Byesian attack graph, that in
case of a IaaS cloud provider could be extremely complex to
generate and analyze.

In [18] the authors propose a framework for automated risk
assessment and mitigation, that accounts for the user perceived
risk. That proposed framework is tailored to a smart home
system and does not take into account the problem of ranking
and prioritizing vulnerabilities patching, like AC-VRM does.

In [15] the authors address the problem of zero-day vulner-
abilities by proposing a method for risk assessment of zero-
day vulnerabilities and attack vectors. Their method builds on
a zero-day attack graph, analysis of pre- and post-conditions,
and on the attack complexity score, and impact score obtained
from the NVD database. As mentioned in the introduction and
explained later in the paper, using only a single vulnerability
database is a limitation. On the contrary, the limitation of
the AC-VRM approach is to not consider explicitly zero-day
vulnerabilities.

In [9] the authors propose a predictive machine learning
model that can identify exploitable vulnerabilities, and that
allows prioritization of patching by leveraging coverage (of
vulnerabilities discovered) and efficiency (i.e. patching only
what is at high exploitation risk for the organization). The ma-
chine learning model is trained on the vulnerabilities extracted
from the CVE [19] database, while the NVD database is used
to determine severity score. As we argue in this paper, consid-
ering only a single database to extract vulnerability score pose
some risks, hence AC-VRM proposes to use different score
and to normalize them on the basis of organization preferences
(Vulnerability Management Mode, cf. Section IV).

B. Vulnerability Management Tools (VMT)

VMTs are used to discover vulnerabilities in network,
software and hardware. Most of the VMTs are network vul-
nerability scanners [20]–[24]. However, some tools, cf. [25],
rely on identification of vulnerabilities based on the system
documentation. The output of VMT varies, but most generate
a report. This report lists the detected vulnerabilities, and pri-
oritizes based on their Common Vulnerability Scoring System
(CVSS) score. Some of the more advanced VMTs include
suggestions for mitigation, in the report [20]–[22].

Table I summarizes features of (some) common VMTs. That
features are the following: scan network, i.e. the capability to
scan the computer network of the organization; identification,
that is the capability to detect existing vulnerabilities; analysis,
i.e. the ability to rank the vulnerabilities by security score;
evaluation, i.e. patching prioritization capacity; and treatment,
that is the ability of patching the vulnerabilities (automatically
or providing remediation plans). Supported features by tools
are marked with a X, and the � sign represents missing or
limited support for a feature in Table I. From the table it is
clear, that none of the tools provide a treatment that would
immunize the systems by patching them. Furthermore, from
our experience there is a lack of tools that can operate in
a context of an organization and cover all aforementioned
features.

III. VULNERABILITY RISK MANAGEMENT (VRM)

VRM is a procedure each organization should practice to
maintain proactive cyber defence. Step one is identifying
the vulnerability in the organization. The security team in
an organization should regularly execute penetration testing
(e.g. nmap) and vulnerability scanning (e.g. OpenVAS) on
their systems to detect vulnerabilities and flaw in a system
configuration, e.g. open ports and outdated software. The result
of such a test is a list of detected vulnerabilities and their
severity score, which is calculated by Vulnerability Database
(VD). Therefore, VDs are a key components in any VRM
method. The second step is analysing and ranking the detected
vulnerabilities by using the security score obtained from the
VD.

However, to properly and effectively analyze the detected
vulnerabilities we need knowledge about the organization’s
security policy, exploitation probabilities, and impact of
exploit on the system to plan the appropriate response.
Considering only CVSS score to prioritize the patching
mislead the security decision-maker. For example, a
vulnerability with medium severity score, being actively
exploited in the wild should be marked with a higher priority.
As it might pose a greater risk, compare to a vulnerability
with critical score, that has no known exploit [26]. Hence,
the VRT process should be enhanced by adding a third
step that prioritizes the patching and resolution of analyzed
vulnerabilities based on the organization context.
Analyses and evaluation steps often rely on domain experts,
who manually develop the protection mechanisms and
define the time and order for patching. The evaluation
of domain experts might leave unpatched some of the
detected vulnerabilities due to the limited attack vector in the
organization context or the high cost of patching compared
to the exploit’s cost. The aforementioned VRM process is
resource intensive and slow due to the number of published
and the rate that new vulnerabilities are discovered [27], [28].
Hence, the urgent demand for AC-VRM (or self vulnerability
assessment and remediation controller).

The last step in VRM is patching the right vulnerabilities
and verification of the procedure. As mentioned, the com-
monly used criteria in VRMs are the severity score of the
vulnerability, CVSS described in the section III-B. The VDs
are repositories that record the Common Vulnerabilities and
Exposures (CVE) ID and provide a CVSS score for each CVE.
Some of the VDs provide the remediation or workarounds to
address that vulnerabilities.

A. Vulnerability Database (VD)

VDs are repositories that contain lists of publicly known
vulnerabilities. VDs are usually hosted by organizations with
certain regions of interests. For example, RedHat hosts a VD
for tracking vulnerabilities affecting their products. However,
thanks to CVE [19], each publicly known vulnerability is
assigned an Identification Number (ID), the CVE ID. VDs
creates entries in their internal system corresponding to the
CVE IDs, based on the VDs’ naming system, severity rating,
and patch instruction. Therefore, the severity score might
be different for a CVE ID in different VDs. Some of the
commonly used VDs are described in what follows:

i) NIST National Vulnerability Database (NVD) is one
of the largest vulnerability databases that contains all
published CVEs. NVD operated by NIST as a part of
the US Department of Commerce. NVD provides the
security-related software flaw, effected products name,
impact metrics and CVSS for each CVE [2].

ii) Ubuntu Security Notice (USN) collects all CVEs that
affect different releases of Ubuntu. USN has its own
naming method that uses four digits after USN as main
ID followed by the version (i.e. USN-4295-1). The USN
database provides a patch instruction, security score and
CVE ID reference or references [29].

iii) RedHat Security Advisories (RHSA) reports the vulnera-
bilities that affect Redhat releases. Their naming system
is the database name followed the year that vulnerability
was published and four digits identifying the vulnerability
in the database (i.e. RHSA-2020:2404). RHSA database
describes each vulnerability, the affected release or re-
leases, patch instruction, severity score, and the reference
CVE [30].

iv) Cisco Security Advisories provides information about
affected Cisco products by different CVEs. Cisco names
each vulnerability by their product name and type of the
exploit (i.e. Cisco IOS and IOS XE Software Tcl Denial
of Service Vulnerability). Cisco Security Advisories de-
scribes each vulnerability and provides patch instruction,
severity score, and reference CVE [31].

B. Severity Score

The Common Vulnerability Scoring System (CVSS) was
created by FIRST.org, Inc. [32] and it aims to transfer the
vulnerability characteristics to a numeric score, and help with
the quantitative analysis in vulnerability management. CVSS is
an open framework to communicate attributes and the severity
for each vulnerability. The current version of CVSS is 3.1 and

TABLE I: The vulnerability management tools and supported features

Vulnerability Management Features
Name Scan Network Identification Analysis Evaluation Treatment

OpenVAS [20] X X X � �
Rapid7 Nexpose [22] X X X X �
Vulnerability Manager Plus [24] X X X � �
Tripwire IP360 [23] X X X � �
Qualys Vulnerability Management [21] X X X � �
Skybox Vulnerability Management [25] � X X X �

TABLE II: Mapping CVSS score to the qualitative rating in
some vulnerability databases [2], [29]–[31], [33]

CVSS Score Qualitative rating
0.0 None

0.1-3.9 Low
4.0-6.9 Medium/Moderate
7.0-8.9 High/Important
9.0-10.0 Critical

has three metrics; Base, Temporal and Environmental. The
base metric consists of attributes that remains unchanged over
time, while the temporal metric contains characteristics that
change over time. Environmental metrics are attributes which
are unique to the environment. All metrics have a score range
from 0 to 10. Out of the metrics, the base metric is considered
as the primary score, while the other two are optional in the
scoring process.
Table II gives an example of how a CVSS score can be mapped
to a qualitative rating used in some VDs. Due to the difference
in scoring/ratings among VDs, the same vulnerability can
obtain a different score depending on the used VD. Table III
provides an example for CVE-2020-8130 in some VDs which
describes in section IV-A in details.

IV. PROPOSED SOLUTION

We think a vulnerability should not analyse in isolation.
Therefore, organizational knowledge plays a vital role during
the analysis, evaluation and treatment steps in a VRM. The
VMTs in Table I provide reports that are based on the severity
rating of each detected vulnerability, possible remediation
method and reference to the CVE ID. Those reports provide
general view of vulnerabilities, and need a domain expert
to review and prioritize patching (within the organization).
Hence, existing solutions lack the capability to adjust for
organizational requirements and automatic patching.

The proposed AC-VRM is aware of the organizational
context, and thus provides more relevant (risk) metrics to
the organization. Our solution aims to address the complete
VRM method in in an automated manner to minimize the
time between vulnerability detection and patching. This will be
achieved by more efficient vulnerability detection, evaluation,
prioritization and automatic patching.

Fig. 2 presents the AC-VRM workflow. The left box labeled
Generic is related with the process of collection, organization
and adaptation of information from multiple VDs. The box
labeled Organization deals with tasks that are organizational

aware, i.e. the self-vulnerability assessment and remediation
part of AC-VRM. A short description of AC-VRM workflow
follows:

• Collect data: this task collects and updates the informa-
tion of known vulnerabilities from multiple VDs. This to
have as wide knowledge base as possible.

• Pre-process: the information from each VD needs to
be adapted into an internal format. Since each VD has
its own naming format, we use this step to list the
vulnerabilities based on the CVE ID.

• Normalization: this task normalizes the ratings obtained
from the used VDs. Depending on VMM setting (basic,
standard or restrictive), the normalization from a VD
rating to a numeric value can be influenced.

• Vulnerability Management Mode (VMM): is used when
translating a VDs qualitative rating to a numeric CVSS
score. There are three levels; basic, standard and restric-
tive. For basic, the lower value in the range is used,
standard uses the center value, while restrictive uses the
upper range value cf. II.

• Filter: this step is identified the vulnerabilities that effect
the organization. The vulnerability will be filtered based
on organizational assets.

• Evaluation: vulnerabilities that influences systems in the
organization are evaluated according to the organizational
knowledge and normalized score (usually done by se-
curity experts). The evaluation will generate an initial
patch prioritization. AC-VRM uses four priority levels;
0, 1, 2, and 3 which correspond to: ignore vulnerability,
immediate patching (within 7 days), patch within 30 days
and mitigate with other action.

• Organization knowledge: is the core source of inputs
for the workflow. It includes organization system man-
agement documents such as information system policies,
infrastructure setup, asset inventory and installed software
inventory. It could even include reports from VMTs. This
information is usually obtained from databases or text
files.

• Sort for organization: this task schedule the patching in
an order that is as time efficient as possible. It identifies
patches for each asset (i.e. infrastructure) and group them
together. It could recognize patches that may influence
each other, and sequence them in the least disruptive
order.

• Patching prioritization: assign due date for each vulner-
ability in scheduled patching. For example vulnerability

X with priority 1 should be patched in asset Y within 7
days. This step sets a patching deadline for each priority,
which is the main criteria in automated patching. It also
activates the notification alert for each vulnerability in
case the patch deadline passed (e.g. the patching fails or
is delayed).

• Automated patching: this task is in charge of patching
the vulnerable assets in the organization. The asset under
patch will be taken out of production.

• Verification: in this phase, the effected assets are verified
to be immune against vulnerabilities (priority 1, and 2).
This is done using a verification script or a scanner. If the
patch failed to address the vulnerability, the patch priority
component is notified and the asset will not be back to
production.

• Update: this task in the feedback loop allows to learn the
new published vulnerabilities that effects organization.
Update step is used to revise the patch priority list when
the vulnerability with higher impact are detected or new
update of listed vulnerability arrived.

As show in Fig. 2, the major contribution of our solution
is additional steps introduced into a VRM, i.e normalization,
evaluation, patch priority and automated patching. This paper
focuses on the normalization phase as an important prereq-
uisite for comprehensive scoring of vulnerability when using
multiple VDs.

A. Normalization

As we mentioned when describing VDs in Sec. III-A, CVE
ID is used as a reference by VDs and each VD is updated when
new vulnerabilities are published. Furthermore, each VD has
its own method to name vulnerabilities, describes the impact
and qualitative rating.

To be proactive in protection, we need to collect the
updated information from the VDs. This cause some issues,
c.f. different CVSS score for the same CVE ID or different
scoring method. As an example the CVE-2020-8130, see Table
III, scored 8.1 in NVD and medium in USN. The reason for
this difference is that USN calculates CVSS qualitative rating
of the vulnerability in Ubuntu releases (average of base and
environment metrics) while NVD considers CVSS numerical
score of the base metrics in its calculation. Therefore, we need
to normalize the severity rate of vulnerabilities.

The normalization procedure is provided in Algorithm 1.
The normalizeScore procedure gets as input the CVE ID of
a vulnerability, the set of VDs used and the value of VMM.
Then, for each VD in the set it extracts the severity score for
the vulnerability (lines 4 - 7) and finally it returns the average
value (line 8). The severity score for a vulnerability given
the VMM is computed by the getSeverityValue procedure.
getSeverityValue extracts the severity score for the vulnera-
bility, using getSecScore, from V Di (line 12) and check if
it is qualitative or quantitative. In the first case the score
is mapped into a numeric value as defined in Table II and,
depending on the value of VMM, is taken the lower bound,
the center value or the upper bound of the CVSS score range

Algorithm 1 Normalization Algorithm

1: procedure normalizeScore(CVE ID, VMM, VDset)
2: /* VDset is the set of VDs considered */
3: score = 0;
4: for each V Di in VDset do
5: sv = getSeverityValue(CVE ID, V Di, VMM);
6: score += sv;
7: end for
8: return (score = score / VDset.numVDs);
9: end procedure

10:
11: procedure getSeverityValue(CVE ID, V Di, VMM)
12: ss = getSecScore(CVE ID, V Di,)
13: if isString(ss) then
14: switch VMM do
15: case basic: ss = CVSSmap.lower(ss);
16: case standard: ss = CVSSmap.center(ss);
17: case restricted: ss = CVSSmap.upper(ss);
18: end if
19: return (ss); /* in case ss is numeric it is returned

directly */
20: end procedure

TABLE III: Compare CVSS score of CVE-2020-8130 in
different VDs [2], [29], [30], [34]

Database Name CVSS Score/Qualitative rating
NVD 8.1
USN Medium

RHSA Moderate
DSA 9

(lines 14 - 17). The function CVSSmap() is responsible for
the mapping and implement also the lower bound, center
and upper bound methods. In case the vulnerability score is
numeric, it is returned directly without any mapping operated
by CVSSmap. For example high qualitative rating corresponds
the interval [7.0-8.9] in CVSS score, hence the lower boundary
is 7.0 as shows in the Table II.

Table III shows the information retrieves for CVE-2020-
8130 in different VDs and Table IV represents the output of
normalization step in our solution for the same vulnerability
ID. V. CONCLUSION

In this paper we presented the AC-VRM method.
This augments the current state-of-the-art of VRM, by
adding support for organizational knowledge that directs
its behavior to generate patching priorities optimal for the
organization. AC-VRM operates automatically, thus reducing
the discovery/identification-remediation time. Furthermore, as
to maximize AC-VRM’s coverage, we propose to use input
from multiple VDs that is normalized to a VD independent
format, while retaining links back to the VD’s and the CVE
ID. During the normalization process, an organization can
choose what level it want to operate via VMM parameter.
This gives the method maximum flexibility and adaptability,

Fig. 2: The AC-VRM workflow. The tasks in the Organization specific part are mapped, using the same colour code, on phases
of the self-vulnerability assessment and remediation controller presented in Fig. 1.

TABLE IV: The output of normalization step for given vul-
nerability ID in basic setting

Vulnerability ID Normalization Score Normalization Setting
CVE-2020-8130 6.3 Basic

to find solutions suitable to the organization.

Acknowledgment: The work of E.Casalicchio is partially
funded by the SmartDefense project n. RG11916B88C838E8.

REFERENCES

[1] CIS Controls . http://www.cisecurity.org/controls/. [Online; accessed
5-April-2020].

[2] NIST National Vulnerability Database. https://nvd.nist.gov/. [Online;
accessed 8-March-2020].

[3] Debabrata Dey, Atanu Lahiri, and Guoying Zhang. Optimal policies
for security patch management. INFORMS Journal on Computing,
27(3):462–477, 2015.

[4] V. Katos, S. Rostami, P. Bellonias, N. Davies, A. Kleszcz, S. Faily,
A. Spyros, A. Papanikolaou, C. Ilioudis, and K. Rantos. State of
vulnerabilities 2018/2019. Technical report, Skybox Security, 2020.

[5] Gary L Guzie. Vulnerability risk assessment. Technical report, ARMY
RESEARCH LAB WHITE SANDS MISSILE RANGE NM, 2000.

[6] Eric Yuan, Naeem Esfahani, and Sam Malek. A systematic survey of
self-protecting software systems. ACM Trans. Auton. Adapt. Syst., 8(4),
January 2014.

[7] Eric Yuan, Sam Malek, Bradley Schmerl, David Garlan, and Jeff
Gennari. Architecture-based self-protecting software systems. In
Proceedings of the 9th international ACM Sigsoft conference on Quality
of software architectures, pages 33–42, 2013.

[8] Alberto Huertas Celdrán, Manuel Gil Pérez, Félix J Garcı́a Clemente,
and Gregorio Martı́nez Pérez. Towards the autonomous provision of self-
protection capabilities in 5g networks. Journal of Ambient Intelligence
and Humanized Computing, 10(12):4707–4720, 2019.

[9] Jay Jacobs, Sasha Romanosky, Idris Adjerid, and Wade Baker. Improv-
ing vulnerability remediation through better exploit prediction. In 2019
Workshop on the Economics of Information Security, 2019.

[10] Seungsoo Lee, Jinwoo Kim, Seungwon Woo, Changhoon Yoon, Sandra
Scott-Hayward, Vinod Yegneswaran, Phillip Porras, and Seungwon Shin.
A comprehensive security assessment framework for software-defined
networks. Computers & Security, 91:101720, 2020.

[11] R. Vibhandik and A. K. Bose. Vulnerability assessment of web
applications - a testing approach. In 2015 Forth International Conference
on e-Technologies and Networks for Development (ICeND), pages 1–6,
2015.

[12] Y. Tatarinova. Avia: Automatic vulnerability impact assessment on the
target system. In 2018 IEEE Second International Conference on Data
Stream Mining Processing (DSMP), pages 364–368, 2018.

[13] Zhenkai Liang and R. Sekar. Fast and automated generation of attack
signatures: A basis for building self-protecting servers. In Proceedings of
the 12th ACM Conference on Computer and Communications Security,
CCS ’05, page 213–222, New York, NY, USA, 2005. Association for
Computing Machinery.

[14] Saad Khan and Simon Parkinson. Review into state of the art of
vulnerability assessment using artificial intelligence. In Guide to
Vulnerability Analysis for Computer Networks and Systems, pages 3–
32. Springer, 2018.

[15] Ziwei Ye, Yuanbo Guo, and Ankang Ju. Zero-day vulnerability risk
assessment and attack path analysis using security metric. In Xingming
Sun, Zhaoqing Pan, and Elisa Bertino, editors, Artificial Intelligence and
Security, pages 266–278, Cham, 2019. Springer International Publishing.

[16] R. Negi, P. Kumar, S. Ghosh, S. K. Shukla, and A. Gahlot. Vulnerability
assessment and mitigation for industrial critical infrastructures with
cyber physical test bed. In 2019 IEEE International Conference on
Industrial Cyber Physical Systems (ICPS), pages 145–152, 2019.

[17] Sachin Shetty, Michael McShane, Linfeng Zhang, Jay P Kesan,
Charles A Kamhoua, Kevin Kwiat, and Laurent L Njilla. Reducing
informational disadvantages to improve cyber risk management. The
Geneva Papers on Risk and Insurance-Issues and Practice, 43(2):224–
238, 2018.

[18] Pankaj Pandey, Anastasija Collen, Niels Nijdam, Marios Anagnostopou-
los, Sokratis Katsikas, and Dimitri Konstantas. Towards automated
threat-based risk assessment for cyber security in smarthomes, 07 2019.
Copyright - Copyright Academic Conferences International Limited Jul
2019; Last updated - 2020-03-04.

[19] Common Vulnerabilities and Exposures(CVE). https://cve.mitre.org/.
[Online; accessed 1-June-2020].

[20] Open Vulnerability Assessment Scanner(OpenVAS). https://www.
openvas.org/. [Online; accessed 12-May-2020].

[21] Qualys Vulnerability Management. https://community.qualys.com/
vulnerability-management/. [Online; accessed 12-May-2020].

[22] Rapid7 Nexpose Vulnerability scanner. https://www.rapid7.com/
products/nexpose/. [Online; accessed 12-May-2020].

[23] Tripwire Vulnerability Management. https://www.tripwire.com/products/
tripwire-ip360. [Online; accessed 12-May-2020].

[24] Vulnerability Manager Plus. https://www.manageengine.com/
vulnerability-management/. [Online; accessed 12-May-2020].

[25] SkyBox Vulnerability Management. https://www.skyboxsecurity.com/
vulnerability-management/. [Online; accessed 12-May-2020].

[26] 2020 vulnerability and threat trends. Technical report, SkyBox Security,
2020.

[27] Saad Khan and Simon Parkinson. Towards automated vulnerability
assessment. 2017.

[28] James A Kupsch and Barton P Miller. Manual vs. automated vulner-
ability assessment: A case study. In First International Workshop on
Managing Insider Security Threats (MIST), pages 83–97, 2009.

[29] Ubuntu Security Notice. https://usn.ubuntu.com/. [Online; accessed 8-
March-2020].

[30] RedHat Security Advisories. https://access.redhat.com/security/
security-updates/#/. [Online; accessed 8-March-2020].

[31] Cisco Security Advisories. https://tools.cisco.com/security/center/
mpublicationListingDetails.x?docType=CiscoSecurityAdvisory. [On-
line; accessed 8-March-2020].

[32] Common Vulnerability Scoring System(CVSS). https://www.first.org/
cvss/. [Online; accessed 9-March-2020].

[33] First.ORG Inc. Common vulnerability scoring system v3.1: Specification
document. 2019.

[34] Debian Security Tracker. https://www.debian.org/security/#DSAS. [On-
line; accessed 29-April-2020].

