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1. Introduction

An associative ring R is called von Neumann regular if a ∈ aRa holds for every a ∈ R. 
This type of ring was first considered by von Neumann in the study of operator algebras 
and has since then been extensively studied (see e.g. Goodearl’s monograph [14]). There 
are several well-known equivalent statements for a unital ring to be von Neumann regular. 
Notably, a unital ring R is von Neumann regular if and only if every finitely generated 
left (right) ideal of R is generated by an idempotent. Examples of von Neumann regular 
rings are plentiful. For instance, any field is von Neumann regular. On the other hand, 
the ring of integers Z (or any non-field integral domain) is not von Neumann regular.

Let G be a group with neutral element e and let S =
⊕

g∈G Sg be a G-graded ring (see 
Section 2.2). The ring S is called graded von Neumann regular if, for every g ∈ G and a ∈
Sg, the relation a ∈ aSa holds. In the case of unital rings, this notation was introduced 
by Năstăsescu and van Oystaeyen [21] and has been further studied in [9,17,26,27]. In 
this article, we will continue the study initiated by Hazrat [16] of non-unital graded von 
Neumann regular rings. There are results on the graded ideal structure of graded von 
Neumann regular rings (see [16, Prop. 1-2] and Proposition 2.5) which make this class 
of rings interesting to us. For the special class of unital strongly group graded rings, the 
following result highlights a connection between von Neumann regularity and graded von 
Neumann regularity:

Theorem 1.1 (Năstăsescu and van Oystaeyen [21, Cor. C.I.1.5.3]). Let S =
⊕

g∈G Sg be 
a unital strongly G-graded ring. Then S is graded von Neumann regular if and only if 
Se is von Neumann regular.

Theorem 1.1 was originally proved by Năstăsescu and van Oystaeyen using Dade’s 
theorem (see e.g. [17, Thm. 1.5.1]). An elementwise proof of Theorem 1.1 was later given 
by Yahya [27, Thm. 3]. In this article, we recover Theorem 1.1 as a special case of our 
characterization of general graded von Neumann regular rings (see Theorem 1.2).

The notion of an epsilon-strongly graded ring (see Definition 2.6) was introduced by 
Nystedt, Öinert and Pinedo [24] as a generalization of unital strongly graded rings. This 
class of graded rings includes: unital partial crossed products (see [24, pg. 2]), corner 
skew Laurent polynomial rings (see [19, Thm. 8.1]) and Leavitt path algebras of finite 
graphs (see [23, Thm. 1.2]). The further generalization to nearly epsilon-strongly graded 
rings (see Definition 2.9) was recently introduced by Nystedt and Öinert [23]. In this 
article, we study the relation between these two recently introduced classes of graded 
rings and the classical notion of graded von Neumann regular rings. Our main result is 
the following characterization:

Theorem 1.2. Let S =
⊕

g∈G Sg be a G-graded ring. Then S is graded von Neumann reg-
ular if and only if S is nearly epsilon-strongly G-graded and Se is von Neumann regular.

By applying Theorem 1.2, we generalize Theorem 1.1 to the class of epsilon-strongly 
graded rings (see Corollary 3.11). This allows us to characterize when unital partial 
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crossed products (see Corollary 6.1), corner skew Laurent polynomial rings (see Corol-
lary 6.2) and Leavitt path algebras over unital rings (see Theorem 1.4) are graded von 
Neumann regular.

1.1. Applications to Leavitt path algebras

Given a directed graph E and a field K, the Leavitt path algebra LK(E) is an associa-
tive Z-graded K-algebra. These algebras were introduced by Ara, Moreno and Pardo [7]
and independently by Abrams and Aranda Pino [2]. In the 15 years since their introduc-
tion, Leavitt path algebras have found applications in general ring theory and matured 
into a research topic of their own (see e.g. [1]). There are many results in the literature 
relating properties of the graph E with algebraic properties of LK(E). For instance, 
LK(E) is von Neumann regular if and only if E is an acyclic directed graph (see [4]). 
For graded von Neumann regularity, Hazrat has obtained the following result:

Theorem 1.3 (Hazrat [16]). Let K be a field and let E be a directed graph. Then the 
Z-graded Leavitt path algebra LK(E) is graded von Neumann regular.

Tomforde [25] introduced Leavitt path algebras over commutative unital rings and 
proved that many results carry over to his generalized setting. Leavitt path algebras 
over Z were considered by Johansen and Sørensen [18] in connection to the classification 
program of Leavitt path algebras. In this article, we follow Hazrat [15] and consider 
Leavitt path algebras LR(E) where R is a general, possibly non-commutative associative 
ring. We want to relate algebraic properties of the ring R to algebraic properties of 
LR(E). In that vein, we will establish the following generalization of Theorem 1.3:

Theorem 1.4. Let R be a unital ring and let E be a directed graph. Then the Z-graded 
Leavitt path algebra LR(E) is graded von Neumann regular if and only if R is von Neu-
mann regular.

Remark 1.5. The statement of Theorem 1.4 does not hold if E is the null graph, i.e. the 
graph without any vertices or edges (see Remark 4.7).

Hazrat [16] outlines an approach where Theorem 1.1 is used to prove Theorem 1.3
for the proper subclass of strongly graded Leavitt path algebras. For the general case, 
however, he uses a more involved technique based on corner skew Laurent polynomial 
rings. In this article, we employ Theorem 1.2 together with Hazrat’s original proof idea 
to establish Theorem 1.4.

The rest of this article is organized as follows:
In Section 2, we recall some preliminaries on non-unital von Neumann regular rings 

(Section 2.1), group graded rings (Section 2.2), epsilon-strongly and nearly epsilon-
strongly graded rings (Section 2.3) and direct limits of graded rings (Section 2.4).
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In Section 3 and Section 4, we prove Theorem 1.2 respectively Theorem 1.4.
In Section 5, we show that a Leavitt path algebra over a von Neumann regular ring 

is both semiprimitive and semiprime (see Corollary 5.4). Our result generalizes a well-
known result by Abrams and Aranda Pino [3] for Leavitt path algebras over fields.

In Section 6, we apply our results to unital partial crossed products (Corollary 6.1) 
and corner skew Laurent polynomial rings (Corollary 6.2 and Corollary 6.3).

2. Preliminaries

Throughout this article, all rings are assumed to be associative but not necessarily 
unital.

2.1. Non-unital von Neumann regular rings

A ring R is called s-unital if x ∈ xR ∩ Rx for every x ∈ R. Equivalently, a ring R is 
s-unital if, for every x ∈ R, there exist some e, e′ ∈ R such that x = ex = xe′. A ring is 
called unital if it is equipped with a non-zero multiplicative identity element. A subset 
E of R is called a set of local units for R if E consists of commuting idempotents such 
that for every x ∈ R there exists some e ∈ E such that x = ex = xe. Note that a ring 
with a set of local units is s-unital. For more details about s-unital rings and rings with 
local units, we refer the reader to the survey article [22].

A ring R is called von Neumann regular if for every x ∈ R there is some y ∈ R such 
that x = xyx. In fact, every von Neumann regular ring is s-unital:

Proposition 2.1. (cf. [22, Prop. 20]) Let R be a ring. If R is von Neumann regular, then 
R is s-unital.

Proof. Take an arbitrary x ∈ R. Then there exists some y ∈ R such that x = xyx. Letting 
e := xy and e′ := yx, we see that x = xyx = ex = xe′ and hence R is s-unital. �

One of the famous classical characterizations of von Neumann regularity for unital 
rings generalizes to s-unital rings verbatim. We include parts of the proof for the conve-
nience of the reader:

Proposition 2.2. Let R be an s-unital ring. Then the following assertions are equivalent:

(a) R is von Neumann regular;
(b) every principal right (left) ideal of R is generated by an idempotent;
(c) every finitely generated right (left) ideal of R is generated by an idempotent.

Proof. (a) ⇒ (b): Take an arbitrary x ∈ R and let y ∈ R such that x = xyx. Consider 
the right ideal xR. Then xy ∈ R is an idempotent such that xR = xyR.
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(b) ⇒ (c): See [14, Thm. 1.1].
(c) ⇒ (a): Take an arbitrary x ∈ R. Then xR = fR for some idempotent f ∈ R. Since 

R is s-unital, f ∈ fR = xR and hence f = xy for some y ∈ R. Similarly, x ∈ xR = fR

and hence x = fr for some r ∈ R. Then x = fr = f2r = f(fr) = fx = xyx. �
2.2. Group graded rings

Let G be a group with neutral element e. A G-grading of a ring S is a collection 
{Sg}g∈G of additive subsets of S such that S =

⊕
g∈G Sg and SgSh ⊆ Sgh for all 

g, h ∈ G. The ring S is then called G-graded. If the stronger condition SgSh = Sgh holds 
for all g, h ∈ G, then the grading is called strong and S is called strongly G-graded. The 
subsets Sg are called the homogeneous components of S. The principal component, Se, 
is a subring of S. A homogeneous element s ∈ S is an element such that s ∈ Sg for some 
g ∈ G. Every element of S decomposes uniquely into a sum of homogeneous elements. 
A left/right/two-sided ideal I of S is called a left/right/two-sided graded ideal of S if 
I =

⊕
g∈G(I ∩ Sg).

Recall that a G-graded ring S is graded von Neumann regular if and only if a ∈ aSa

for every homogeneous element a ∈ S. However, it is possible to make this condition 
more precise. The following result is well-known, but we have chosen to include a proof 
for the convenience of the reader.

Proposition 2.3. A G-graded ring S is graded von Neumann regular if and only if, for 
every homogeneous a ∈ Sg there is some homogeneous b ∈ Sg−1 such that a = aba.

Proof. The ‘if’ direction is clear. Conversely, take an arbitrary homogeneous element 
a ∈ Sg. By assumption, there exists some b ∈ S such that a = aba. Let b =

∑
h∈G bh

be the decomposition of b. Note that a = aba =
∑

h∈G abha. Since the decomposition is 
unique, it follows that b = bg−1 ∈ Sg−1 . �

A G-graded ring that is von Neumann regular is graded von Neumann regular. On 
the other hand, the following is an example of a graded von Neumann regular ring which 
is not von Neumann regular:

Example 2.4. Let K be a field and consider the Laurent polynomial ring K[x, x−1] with 
its canonical Z-grading, i.e. K[x, x−1] =

⊕
i∈ZKxi. A routine check shows that this gives 

a strong Z-grading. Since K is von Neumann regular, it follows by Theorem 1.1 that 
K[x, x−1] is graded von Neumann regular. On the other hand, K[x, x−1] is an integral 
domain which is not a field. Therefore, K[x, x−1] is not von Neumann regular.

Let S =
⊕

g∈G Sg be a G-graded ring and suppose that E is a set of local units for S. If 
E consists of homogeneous idempotents, then E is called a set of homogeneous local units. 
Notably, every Leavitt path algebra has a set of homogeneous local units (see Section 5). 
Moreover, Hazrat has established the following ‘graded version’ of Proposition 2.2:
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Proposition 2.5. ([16, Prop. 1]) Let S =
⊕

g∈G Sg be a G-graded ring. Suppose that S
has a set of homogeneous local units. Then the following three assertions are equivalent:

(a) S is graded von Neumann regular;
(b) every principal right (left) graded ideal of S is generated by a homogeneous idempo-

tent;
(c) every finitely generated right (left) graded ideal of S is generated by a homogeneous 

idempotent.

2.3. Nearly epsilon-strongly graded rings

Next, we recall two special types of group graded rings generalizing the classical 
notion of unital strongly group graded rings. Nystedt, Öinert and Pinedo [24] recently 
introduced the class of epsilon-strongly G-graded rings:

Definition 2.6. ([24, Prop. 7(iii)]) Let S =
⊕

g∈G Sg be a G-graded ring. Suppose that 
for every g ∈ G there is an element εg ∈ SgSg−1 such that for every s ∈ Sg the relations 
εgs = s = sεg−1 hold. Then S is called epsilon-strongly G-graded.

Remark 2.7. Let S =
⊕

g∈G Sg be a G-graded ring. We make the following two remarks:

(a) If S is a unital strongly G-graded ring, then 1 ∈ SgSg−1 for every g ∈ G (see 
e.g. [21, Prop. 1.1.1]). In this case, S is epsilon-strongly G-graded with εg := 1 for 
every g ∈ G. This proves that unital strongly G-graded rings are epsilon-strongly 
G-graded.

(b) If S is an epsilon-strongly G-graded ring, then S is a unital ring (see [20, Prop. 3.8]). 
In other words, only unital rings admit epsilon-strong G-gradings.

The following is an example of a Z-graded ring that is epsilon-strongly Z-graded but 
not strongly Z-graded:

Example 2.8. Let R be a unital ring and consider the following Z-grading of the full 
matrix ring M2(R):

(M2(R))0 :=
(
R 0
0 R

)
, (M2(R))−1 :=

(
0 0
R 0

)
, (M2(R))1 :=

(
0 R
0 0

)
,

and (M2(R))i :=
{( 0 0

0 0

)}
for |i| > 1. Note that,

(M2(R))1(M2(R))−1 =
(
R 0
0 0

)
, (M2(R))−1(M2(R))1 =

(
0 0
0 R

)
.

A routine check shows that M2(R) is epsilon-strongly Z-graded with,
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ε1 :=
(

1R 0
0 0

)
, ε−1 :=

(
0 0
0 1R

)
, ε0 :=

(
1R 0
0 1R

)
and εi :=

(
0 0
0 0

)
for |i| > 1.

However, since an epsilon-strong Z-grading is strong if and only if εi = 1 for every i ∈ Z

(see [23, Prop. 3.2]), it follows that the above Z-grading of M2(R) is not strong.

Crucial to our investigation, Nystedt and Öinert have shown that a Leavitt path 
algebra associated to a finite directed graph is epsilon-strongly Z-graded (see [23, Thm. 
1.2]). Seeking to generalize their result to include any Leavitt path algebra (i.e. possibly 
non-finite graphs), they introduced nearly epsilon-strongly graded rings.

Definition 2.9. ([23, Prop. 3.3]) Let S =
⊕

g∈G Sg be a G-graded ring. Suppose that for 
every g ∈ G and s ∈ Sg there are elements εg(s) ∈ SgSg−1 , ε′g(s) ∈ Sg−1Sg such that the 
relations εg(s)s = s = sε′g(s) hold. Then S is called nearly epsilon-strongly G-graded.

Every Leavitt path algebra is indeed nearly epsilon-strongly Z-graded (see [23, Thm. 
1.3]). The following is a trivial example of a nearly epsilon-strongly G-graded ring:

Example 2.10. Let G be a group and let R be an s-unital ring that is not unital (for 
instance, let R := Cc(R) with pointwise multiplication). Put Re := R and Rg := {0} for 
every g �= e. This gives a G-grading of R called the trivial G-grading. For every x ∈ R

there are some e, e′ ∈ R such that x = ex = xe′. Letting εe(x) := e ∈ R = R2 = ReRe

and ε′e(x) = e′ ∈ R = R2 = ReRe in Definition 2.9, we see that R is nearly epsilon-
strongly G-graded. On the other hand, since R is not unital, it follows from Remark 2.7(b) 
that R cannot be epsilon-strongly G-graded.

2.4. Direct limits in the category of graded rings

We will recall some properties of the category of group graded rings. Let S =
⊕

g∈G Sg

and T =
⊕

g∈G Tg be two G-graded rings. A ring homomorphism φ : S → T is called 

graded if φ(Sg) ⊆ Tg for every g ∈ G. If φ : S ∼−→ T is a graded ring isomorphism, 
then we write S ∼=gr T and say that S and T are graded isomorphic. Note that two 
graded isomorphic rings are also isomorphic but the reverse implication does not hold 
in general. If S ∼=gr T , then S is graded von Neumann regular if and only if T is graded 
von Neumann regular.

The category of G-graded rings will be denoted by G-RING. The objects of this 
category are pairs (S, {Sg}g∈G) where S is a ring and {Sg}g∈G is a G-grading of S. 
The morphisms of G-RING are the G-graded ring homomorphisms. Next, we consider 
direct limits in G-RING. Let {Ai | i ∈ I} be a directed system of G-graded rings. For 
every i ∈ I, we have that Ai =

⊕
g∈G(Ai)g. Recall (see [11, II, §11.3, Rem. 3]) that 

B = lim−−→i∈I
Ai is a G-graded ring with homogeneous components Bg = lim−−→i∈I

(Ai)g. In 
other words, the category G-RING has arbitrary direct limits. The following lemma is a 
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graded version of a well-known result (see [10, Prop. 5.2.14]). We include a proof for the 
convenience of the reader.

Lemma 2.11. Let {Ai | i ∈ I} be a directed system of G-graded rings. Suppose that Ai is 
graded von Neumann regular for every i ∈ I. Then B = lim−−→i

Ai is graded von Neumann 
regular.

Proof. Let (B = lim−−→i
Ai, φi) be the direct limit of {Ai | i ∈ I}. Recall that the canonical 

functions φi : Ai → B = lim−−→i
Ai are graded ring homomorphisms. Take an arbitrary 

g ∈ G and bg ∈ Bg = lim−−→i∈I
(Ai)g. Then, bg = φk(ag) for some ag ∈ (Ak)g and k ∈ I. 

Since Ak is graded von Neumann regular by assumption, it follows that there is some 
s ∈ Ak such that ag = agsag. Applying φk to both sides yields, bg = bgφk(s)bg for 
φk(s) ∈ B. Thus, B is graded von Neumann regular. �
3. Main result

In this section, we prove our main result: Theorem 1.2. We first show that there are G-
graded rings S such that Se is von Neumann regular while S is not graded von Neumann 
regular.

Example 3.1. Let R be a von Neumann regular ring (e.g. a field) and consider the poly-
nomial ring R[x] =

⊕
i≥0 Rxi. By putting Si := Rxi for i ≥ 0 and Si := {0} for i < 0, 

we get a Z-grading of R[x]. Note that x2 /∈ (x2)R[x](x2). Hence, R[x] is not graded von 
Neumann regular. This example shows that the conclusion of Theorem 1.1 does not hold 
for a general group graded ring.

We now consider necessary conditions for a ring to be graded von Neumann regular. 
The following result is well-known and follows from Proposition 2.3:

Lemma 3.2. Let S =
⊕

g∈G Sg be a G-graded ring. If S is graded von Neumann regular, 
then Se is von Neumann regular.

We show that all graded von Neumann regular rings are nearly epsilon-strongly graded 
(cf. Proposition 2.1).

Proposition 3.3. Let S =
⊕

g∈G Sg be a G-graded ring. If S is graded von Neumann 
regular, then S is nearly epsilon-strongly G-graded.

Proof. Take an arbitrary g ∈ G and s ∈ Sg. To prove that S is nearly epsilon-strongly 
G-graded, we need to show that there exist elements εg(s) ∈ SgSg−1 and ε′g(s) ∈ Sg−1Sg

such that εg(s)s = s = sε′g(s). Since S is graded von Neumann regular, it follows by 
Proposition 2.3 that there is some b ∈ Sg−1 such that s = sbs. Then, εg(s) := sb ∈ SgSg−1
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and ε′g(s) := bs ∈ Sg−1Sg satisfy the requirement. Hence, S is nearly epsilon-strongly 
G-graded. �
Remark 3.4. Theorem 1.3 together with Proposition 3.3 implies that every Leavitt path 
algebra over a field is nearly epsilon-strongly Z-graded. The stronger statement that 
every Leavitt path algebra over a general unital ring is nearly epsilon-strongly Z-graded 
has been proved by Nystedt and Öinert [23, Thm. 1.3].

The following definition was introduced by Clark, Exel and Pardo [12] in the context 
of Steinberg algebras:

Definition 3.5. ([12, Def. 4.5]) Let S =
⊕

g∈G Sg be a G-graded ring. If Sg = SgSg−1Sg

for every g ∈ G, then we say that S is symmetrically G-graded.

Moreover, Nystedt and Öinert [23, Prop. 3.3] proved that every nearly epsilon-strongly 
G-graded ring is symmetrically G-graded. In conclusion, the following relationship holds 
between the mentioned classes of group graded rings:

Remark 3.6. The following implications hold for an arbitrary G-grading {Sg}g∈G of S:

unital strong =⇒ epsilon-strong =⇒ nearly epsilon-strong =⇒ symmetrical

The following corollary is a direct consequence of Proposition 3.3 and Remark 3.6:

Corollary 3.7. Let S =
⊕

g∈G Sg be a G-graded ring. If S is graded von Neumann regular, 
then S is symmetrically G-graded.

Remark 3.8. By Corollary 3.7, the elementwise condition of graded von Neumann regu-
larity (cf. Proposition 2.3) implies the componentwise condition of symmetrical gradings, 
that is Sg = SgSg−1Sg for every g ∈ G. However, the reverse implication does not hold 
in general (see Example 4.2(b)).

Before proving our characterization, we need the following lemma:

Lemma 3.9. Let S =
⊕

g∈G Sg be a nearly epsilon-strongly G-graded ring and suppose 
that Se is von Neumann regular. Then, for every g ∈ G and x ∈ Sg, the left Se-ideal 
Sg−1x is generated by an idempotent in Se.

Proof. Take an arbitrary g ∈ G and x ∈ Sg. Since S is nearly epsilon-strongly G-graded, 
there exists some εg(x) ∈ SgSg−1 such that εg(x)x = x. We can write εg(x) =

∑k
i=1 aibi

for some elements a1, a2, . . . , ak ∈ Sg and b1, b2, . . . , bk ∈ Sg−1 . Let ci := bix ∈ Sg−1x for 
i ∈ {1, 2, . . . , k}. We claim that Sg−1x = Sec1 +Sec2 + · · ·+Seck. Indeed, let sx ∈ Sg−1x

be an arbitrary element. Then,
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sx = s(εg(x)x) = s
( k∑

i=1
aibi

)
x =

k∑
i=1

(sai)(bix) =
k∑

i=1
(sai)ci.

Since sai ∈ Sg−1Sg ⊆ Se, it follows that Sg−1x is finitely generated by {c1, c2, . . . , ck} as 
a left Se-ideal. Moreover, since Se is von Neumann regular, Proposition 2.1 implies that 
Se is s-unital. By Proposition 2.2, we have that Sg−1x is generated by an idempotent in 
Se. �

The following proposition generalizes Yahya’s proof (see [27, Thm. 3]) of Theorem 1.1:

Proposition 3.10. Let S =
⊕

g∈G Sg be a nearly epsilon-strongly G-graded ring. If Se is 
von Neumann regular, then S is graded von Neumann regular.

Proof. Suppose that Se is von Neumann regular. Take an arbitrary g ∈ G and 0 �=
x ∈ Sg. By Proposition 2.3, we need to show that there exists some r ∈ Sg−1 such that 
x = xrx. By Lemma 3.9, there is some idempotent y ∈ Se such that Sg−1x = Sey. Note 
that y = y2 ∈ Sey = Sg−1x. Hence, there is some r ∈ Sg−1 such that y = rx. Also note 
that,

SgSg−1x = Sg(Sg−1x) = Sg(Sey) = SgSey ⊆ Sgy. (1)

Since S is assumed to be nearly epsilon-strongly G-graded, there exists some εg(x) ∈
SgSg−1 such that εg(x)x = x. Now, using (1), we have that x = εg(x)x ∈ SgSg−1x ⊆ Sgy, 
and hence there exists some x′ ∈ Sg such that x = x′y. But then xy = (x′y)y = x′(yy) =
x′y = x. Thus, x = xy = xrx. Hence, S is graded von Neumann regular. �

Now we can prove our characterization of graded von Neumann regular rings:

Proof of Theorem 1.2. Let S =
⊕

g∈G Sg be a G-graded ring. Suppose that S is graded 
von Neumann regular. Then Proposition 3.3 and Lemma 3.2 establish that S is nearly 
epsilon-strongly G-graded and that Se is von Neumann regular, respectively. Conversely, 
suppose that S is nearly epsilon-strongly G-graded and that Se is von Neumann regular. 
Then Proposition 3.10 implies that S is graded von Neumann regular. �

Since epsilon-strongly G-graded rings are nearly epsilon-strongly G-graded (see Re-
mark 3.6), the following result is a consequence of Theorem 1.2.

Corollary 3.11. Let S =
⊕

g∈G Sg be an epsilon-strongly G-graded ring. Then S is graded 
von Neumann regular if and only if Se is von Neumann regular.

Remark 3.12. The above result is a generalization of Theorem 1.1. Indeed, by applying 
Corollary 3.11 to unital strongly group graded rings, which by Remark 3.6 are epsilon-
strongly graded, we immediately recover Theorem 1.1.
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4. Proof of Theorem 1.4

In this section, we prove that a Leavitt path algebra LR(E) is graded von Neumann 
regular if and only if R is von Neumann regular (see Theorem 1.4).

Let E = (E0, E1, s, r) be a directed graph consisting of a vertex set E0, an edge set 
E1 and maps s : E1 → E0 and r : E1 → E0 specifying the source vertex s(f) respectively 
range vertex r(f) for each edge f ∈ E1. A directed graph E is called finite if the sets 
E0 and E1 are finite. Note that we allow the null-graph which has no vertices and no 
edges. If E is not the null-graph, i.e. E0 �= ∅, then we write E �= ∅. A sink is a vertex 
v ∈ E0 such that s−1(v) = ∅. An infinite emitter is a vertex v ∈ E0 such that s−1(v)
is an infinite set. A vertex is called regular if it is neither a sink nor an infinite emitter. 
The set of regular vertices of E is denoted by Reg(E).

For technical reasons we will consider a generalization of Leavitt path algebras intro-
duced by Ara and Goodearl [6]:

Definition 4.1. Let R be a unital ring and let E = (E0, E1, s, r) be a directed graph. 
Moreover, let X be any subset of Reg(E). The Cohn path algebra relative to X, denoted 
by CX

R (E), is the free R-algebra generated by the symbols,

{v | v ∈ E0} ∪ {f | f ∈ E1} ∪ {f∗ | f ∈ E1},

subject to the following relations:

(i) vv′ = δv,v′v for all v, v′ ∈ E0,
(ii) s(f)f = f = fr(f) for all f ∈ E1,
(iii) r(f)f∗ = f∗ = f∗s(f) for all f ∈ E1,
(iv) f∗f ′ = δf,f ′r(f) for all f, f ′ ∈ E1,
(v) v =

∑
f∈s−1(v) ff

∗ for all v ∈ X.

We let R commute with the generators.
Taking X = Reg(E), we obtain the Leavitt path algebra of E over R. In other words, 

we have that LR(E) = C
Reg(E)
R (E).

Recall that a path is a sequence of edges α = f1f2 . . . fn such that r(fi) = s(fi+1)
for 1 ≤ i ≤ n − 1. The length of α is equal to n and we write len(α) = n. We also 
write s(α) = s(f1) and r(α) = r(fn). By convention, a vertex v ∈ E0 is considered to be 
a path of length 0. Moreover, there is an anti-graded involution on CX

R (E) defined by 
f → f∗ for every f ∈ E1 and v → v∗ = v for every v ∈ E0. This involution extends to 
paths by putting α∗ = f∗

nf
∗
n−1 . . . f

∗
1 . The element α ∈ CX

R (E) is called a real path and 
α∗ ∈ CX

R (E) is called a ghost path. Let Path(E) be the set of paths in E. In particular, 
Path(E) includes the vertices of E since they are considered zero length paths. Elements 
of the form αβ∗ ∈ CX

R (E) for α, β ∈ Path(E) are called monomials. It can be shown 
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that any element of CX
R (E) can be written as a finite sum 

∑
riαiβ

∗
i where ri ∈ R

and αi, βi ∈ Path(E). Furthermore, there is a natural Z-grading of relative Cohn path 
algebras given by,

(CX
R (E))i = SpanR{αβ∗ | α, β ∈ Path(E), len(α) − len(β) = i}, (2)

for every i ∈ Z. This Z-grading is called the canonical Z-grading of CX
R (E).

The canonical Z-grading of Leavitt path algebras was studied by Hazrat [16]. Among 
other results, he proved that if E is a finite graph, then LR(E) is strongly Z-graded if and 
only if E has no sinks (see [16, Thm. 3.15]). Nystedt and Öinert established that LR(E)
is epsilon-strongly Z-graded if E is finite ([23, Thm. 1.2]) and that LR(E) is nearly 
epsilon-strongly Z-graded for any graph E (see [23, Thm. 1.3]). For more details about 
Cohn path algebras and Leavitt path algebras, we refer the reader to the monograph by 
Abrams, Ara and Siles Molina [1].

We now consider graded von Neumann regular Leavitt path algebras. The following 
example shows that graded von Neumann regularity of LR(E) is dependent on R. Recall 
that any ring S is trivially G-graded by any group G by putting Se = S and Sg = {0}
for every g �= e.

Example 4.2. Let R be a unital ring and consider the following directed graph:

A1 : •v

Note that since A1 does not contain any edges, we have that the canonical Z-grading 
(cf. (2)) of LR(A1) is given by LR(A1)i = {0} for i �= 0 and LR(A1)0 = SpanR{v}.

(a) The Z-graded ring LR(A1) is graded isomorphic to the coefficient ring R equipped 
with the trivial Z-grading via the map defined by r → rv for every r ∈ R. With 
this grading, every element is homogeneous. Hence, LR(A1) is graded von Neumann 
regular if and only if R is von Neumann regular.

(b) Furthermore, since A1 is a finite graph, it follows by [23, Thm. 1.2] that LR(A1)
is epsilon-strongly Z-graded and therefore, in particular, symmetrically Z-graded 
(see Remark 3.6). If R is not von Neumann regular, then LR(A1) is not graded 
von Neumann regular by (a). However, LR(A1) is symmetrically Z-graded. This 
shows that not all symmetrically graded rings are graded von Neumann regular (cf. 
Corollary 3.7).

Let us now briefly discuss our method for proving Theorem 1.4. Let R be a unital 
ring and let E be a directed graph. By [23, Thm. 1.3], LR(E) is nearly epsilon-strongly 
Z-graded. It follows from Theorem 1.2 that LR(E) is graded von Neumann regular if and 
only if (LR(E))0 is von Neumann regular. If E is a finite graph, then we can explicitly 
describe (LR(E))0 which allows us to lift von Neumann regularity from R to (LR(E))0
(see Theorem 4.3). However, if E is not finite, then this approach does not seem to work.
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Instead, the proof of Theorem 1.4 proceeds as follows: We first prove the theorem 
in the special case of finite graphs using Corollary 3.11 (see Corollary 4.6). Secondly, 
we reduce the general case to the finite case by writing any Leavitt path algebra as a 
direct limit of Leavitt path algebras of finite graphs (see Proposition 4.12). This latter 
reduction step is similar to the technique used by Hazrat [16, Steps (II)-(IV)] to establish 
Theorem 1.3.

4.1. Finite graphs

Let R be a unital ring and let E be a finite graph. The principal component (LR(E))0
is a unital subring of LR(E) with multiplicative identity element 1(LR(E))0 =

∑
v∈E0 v

(see e.g. [1, Lem. 1.2.12(iv)]). We begin by characterizing when (LR(E))0 is von Neumann 
regular. This will follow from a more general structure theorem. For Leavitt path algebras 
over fields, this result was showed by Ara, Moreno and Pardo (see the proof of [7, Thm. 
5.3]). However, their proof generalizes to Leavitt path algebras over unital rings in a 
straightforward manner. Define a filtration of (LR(E))0 as follows. For n ≥ 0, put,

Dn = SpanR{αβ∗ | len(α) = len(β) ≤ n}.

It is straightforward to show that Dn is an R-subalgebra of (LR(E))0. For v ∈ E0 and 
n > 0 let P (n, v) denote the set of paths γ with len(γ) = n and r(γ) = v. Let Sink(E)
denote the set of sinks in E. Moreover, recall that a matricial ring is a finite product of 
full matrix rings.

Theorem 4.3. ([1, Cor. 2.1.16]) Let R be a unital ring and let E be a finite directed 
graph. For a non-negative integer n, let Mn(R) denote the full n ×n-matrix ring. Then,

(LR(E))0 =
⋃
n≥0

Dn.

Moreover, we have that,

D0 ∼=
∏

v∈E0

R,

Dn
∼=

∏
0≤i≤n−1
v∈Sink(E)

M|P (i,v)|(R) ×
∏

v∈E0

M|P (n,v)|(R),

as R-algebras. In particular, (LR(E))0 is a direct limit of matricial rings over R (as an 
object in the category of unital rings).

We can now establish the following lemma:
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Lemma 4.4. Let R be a unital ring and let E be a finite directed graph. If R is von 
Neumann regular, then (LR(E))0 is von Neumann regular.

Proof. The principal component (LR(E))0 is the direct limit of matricial rings over R by 
Theorem 4.3. A full matrix ring over R is von Neumann regular if and only if R is von 
Neumann regular. Moreover, recall that unital von Neumann regular rings are closed 
under direct limits (see [10, Prop. 5.2.14]). It follows that (LR(E))0 is von Neumann 
regular if R von Neumann is regular. �

For the converse statement, we do not need the assumption that E is a finite graph, 
but E cannot be the null-graph (see Remark 4.7).

Lemma 4.5. Let R be a unital ring and let E �= ∅ be a directed graph. If (LR(E))0 is von 
Neumann regular, then R is von Neumann regular.

Proof. Suppose that (LR(E))0 is von Neumann regular and fix an arbitrary vertex v0 ∈
E0, whose existence is guaranteed by the assumption that E �= ∅. Note that R ↪−→
(LR(E))0 via the map r → rv0. Take an arbitrary element 0 �= t ∈ R. By the assumption 
there is some x ∈ (LR(E))0 such that tv0 = (tv0)x(tv0). Let x =

∑
i riαiβ

∗
i for some 

αi, βi ∈ Path(E) satisfying len(αi) = len(βi), r(αi) = r(βi) and ri ∈ R for each index i. 
Then,

tv0 = (tv0)
(∑

i

riαiβ
∗
i

)
(tv0) =

∑
j

trjtαjβ
∗
j , (3)

where the sum goes over all indices j such that s(αj) = s(βj) = v0. Consider the finite 
set M = {αj} of αj ’s appearing in right hand sum of (3). Let αm be a fixed path of 
maximal length appearing in M . Multiplying both sides of (3) with α∗

m from the left 
yields,

α∗
m(tv0) = α∗

m

(∑
j

trjtαjβ
∗
j

)
=

∑
j

trjtα
∗
mαjβ

∗
j =

∑
j

trjt(α∗
mαj)β∗

j . (4)

Since s(αm) = v0, we have that r(α∗
m) = v0 and hence α∗

m(tv0) = tα∗
m �= 0. Recall (see 

[1, Lem. 1.2.12(i)]) that for any paths δ, μ ∈ Path(E) we have that,

δ∗μ =

⎧⎪⎪⎨
⎪⎪⎩
κ if μ = δκ for some κ

σ∗ if δ = μσ for some σ

0 otherwise.
(5)

Using (5) and the assumption that αm is of maximal length it follows that if αm = αjα
′
j

then α∗
mαj = (α′

j)∗. Otherwise, i.e. if αj is not an initial segment of αm, we have that 
α∗
mαj = 0. Hence, (4) simplifies to,
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0 �= tα∗
m =

∑
k

trkt(β′
k)∗,

for some paths β′
k. Since ghost paths are R-linearly independent (see [25, Prop. 4.9]), it 

follows that tα∗
m = trktα

∗
m for some index k. Hence, t = trkt and thus R is von Neumann 

regular. �
Hazrat proved that if K is a field and E a finite directed graph, then LK(E) is a 

graded von Neumann regular ring (see [16, pg. 5]). His proof is based on a reduction to 
corner skew Laurent polynomial rings. Here, we obtain a generalization of his result:

Corollary 4.6. Let R be a unital ring and let E �= ∅ be a finite directed graph. Then 
LR(E) is graded von Neumann regular if and only if R is von Neumann regular.

Proof. By [23, Thm. 1.2], LR(E) is epsilon-strongly Z-graded. It follows from Corol-
lary 3.11 that LR(E) is graded von Neumann regular if and only if (LR(E))0 is von 
Neumann regular. By Lemma 4.4 and Lemma 4.5, (LR(E))0 is von Neumann regular if 
and only if R is von Neumann regular. The statement now follows. �
Remark 4.7. The null-graph is a degenerate case that needs to be excluded in Corol-
lary 4.6. Let R be a unital ring and let ∅ be the null-graph, i.e. the graph without any 
vertices or edges. In this case, LR(∅) is the zero ring which is trivially von Neumann 
regular and hence also graded von Neumann regular. In other words, the Leavitt path 
algebra LR(∅) is graded von Neumann regular for any unital ring R.

For the rest of this section, we will reduce the general case of Theorem 1.4 to the finite 
case dealt with in Corollary 4.6. For Leavitt path algebras over a field, it is known that 
any Leavitt path algebra is the direct limit of Leavitt path algebras associated to finite 
graphs (see [1, Cor. 1.6.11]). We will show that this property generalizes to Leavitt path 
algebras over general unital rings.

4.2. Cohn path algebras as Leavitt path algebras

A surprising but well-known result is that any relative Cohn path algebra with coef-
ficients in a field is graded isomorphic to a Leavitt path algebra over the same field. We 
recall the construction from [1, Def. 1.5.16]. Consider a pair (E, X) where X ⊆ Reg(E). 
Define a new graph E(X) in the following way. Let Y := Reg(E) \ X and add new 
vertices Y ′ = {v′ | v ∈ Y }. The new graph E(X) is given by:

(E(X))0 = E0 � Y ′ and (E(X))1 = E1 � {e′ | r(e) ∈ Y },

where e′ is a new edge going from s(e) to the new vertex r(e)′.
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Proposition 4.8. (cf. [1, Thm. 1.5.18]) Let R be a unital ring and let E be a directed 
graph. Let E(X) denote the directed graph defined above. Then,

CX
R (E) ∼=gr LR(E(X)).

Proof. Let Y = Reg(E) \ X. Define a map φ : CX
R (E) → LR(E(X)). For v ∈ E0, let 

φ(v) = v + v′ if v ∈ Y and φ(v) = v otherwise. For f ∈ E1, let φ(f) = f + f ′ if r(f) ∈ Y

and φ(f) = f otherwise. Moreover, let φ(f∗) = φ(f)∗ for all f ∈ E1. Using the same 
arguments as in [1, Thm. 1.5.18], it follows that φ is a well-defined ring isomorphism. 
Furthermore, it is clear from the definition that φ is Z-graded. �
4.3. The Cohn path algebra functor

Let E and F be directed graphs. A graph homomorphism φ : E → F is a pair of 
maps (φ0 : E0 → F 0, φ1 : E1 → F 1) satisfying the conditions s(φ1(f)) = φ0(s(f)) and 
r(φ1(f)) = φ0(r(f)) for every f ∈ E1. Recall (see [1, Def. 1.6.2]) that the category G
consists of objects of the form (E, X) where E is a directed graph and X ⊆ Reg(E) is a 
subset of regular vertices. If (F, Y ), (E, X) ∈ Ob(G ), then ψ = (ψ0, ψ1) is a morphism 
in G if the following conditions are satisfied:

(a) ψ : F → E is a graph homomorphism such that ψ0 and ψ1 are injective;
(b) ψ0(Y ) ⊆ X;
(c) For every v ∈ Y , the restriction ψ1 : s−1

F (v) → s−1
E (ψ0(v)) is a bijection.

The category G has arbitrary direct limits (see [1, Prop. 1.6.4]). We will define a 
functor CR from G to Z-RING for any unital ring R.

Lemma 4.9. (cf. [1, Lem. 1.6.3]) Let ψ : (F, Y ) → (E, X) be a morphism in G . Then 
there is an induced Z-graded ring homomorphism ψ̄ : CY

R (F ) → CX
R (E).

Proof. Put ψ̄(v) = ψ0(v), ψ̄(f) = ψ1(f) and ψ̄(f∗) = ψ1(f)∗ for all v ∈ F 0, f ∈ F 1. We 
show that ψ̄ respects the relations (i)-(v) in Definition 4.1.

(i): Take arbitrary vertices u, v ∈ F 0 such that u �= v. Then, since ψ0 is injective by 
(a), it follows that ψ̄(u)ψ̄(v) = ψ0(u)ψ0(v) = 0. Furthermore, ψ̄(u)ψ̄(u) = ψ0(u)ψ0(u) =
ψ0(u) = ψ̄(u). This shows that ψ̄ preserves (i).

(ii)-(iii): The assumption in (a) that ψ is a graph homomorphism implies that (ii) and 
(iii) are preserved.

(iv): Follows by injectivity of ψ1 similarly to (i).
(v): Let v ∈ F 0 with s−1

F (v) �= ∅. By (c), ψ1 maps s−1
F (v) bijectively onto s−1

E (ψ0(v)). 
Hence,

ψ̄(v) = ψ0(v) =
∑

−1 0

ff∗ =
∑
−1

ψ1(f)ψ1(f)∗ =
∑
−1

ψ̄(f)ψ̄(f).

f∈sE (ψ (v)) f∈sF (v) f∈sF (v)
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Thus, ψ̄ extends to a well-defined ring homomorphism CY
R (F ) → CX

R (E). Furthermore, 
it follows directly from the definition that ψ̄ is Z-graded. �

The following functor has previously only been considered in the case of coefficients in 
a field. But in fact, the properties we need also hold true for arbitrary coefficient rings.

Definition 4.10. Let R be a unital ring. Define the Cohn path algebra functor by,

CR : G → Z-RING,

(E,X) → CX
R (E)

ψ → ψ̄,

for all objects (E, X) ∈ Ob(G ) and morphisms ψ in G .

Lemma 4.11. (cf. [1, Prop. 1.6.4]) The functor CR preserves direct limits.

Proof. Let ((Ei, Xi), (φji)i,j∈I,j≥i) be a directed system in G with direct limit ((E, X),
ψi). We show that (CX

R (E), ψ̄i) is the direct limit of the directed system (CXi

R (Ei), φ̄ji). 
Let A be a Z-graded ring and γi : CXi

R (Ei) → A be a family of compatible morphisms. 
We need to show that there is a Z-graded ring homomorphism γ : CX

R (E) → A making 
the following diagram commute:

CXi

R (Ei)
φ̄ij

ψ̄i

γi

C
Xj

R (Ej)

ψ̄j

γj

CX
R (E)

γ

A

Define γ : CX
R (E) → A by,

γ(ψs
i (α)) = γi(α), γ(ψs

i (α)∗) = γi(α∗),

for all α ∈ Es
i , i ∈ I, and s ∈ {0, 1}. It remains to show that this gives a well-defined 

Z-graded ring homomorphism. We show that γ preserves the relations (i)-(v) in Defini-
tion 4.1.

(i): Let u ∈ E0. Then there is some i ∈ I and u0 ∈ E0
i satisfying ψi(u0) = u. Hence, 

by definition,
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γ(u)2 = γ(ψ0
i (u0))2 = γi(u0)2 = γi(u2

0) = γi(u0) = γ(u).

Let u �= v ∈ E0 and take some i ∈ I such that u0, v0 ∈ E0
i and ψ0

i (u0) = u, ψ0
i (v0) = v. 

Since u0 �= v0, it follows that γ(u)γ(v) = γi(u0)γi(v0) = γi(u0v0) = γi(0) = 0.
(ii): Let f ∈ E1. Then there is some i ∈ I such that there are f0 ∈ E1

i and v0 ∈ E0
i

satisfying ψ1
i (f0) = f and ψ0

i (v0) = s(f). By assumption (a), ψi is an injective graph 
homomorphism, which implies that v0 = s(f0). Then,

γ(s(f))γ(f) = γ(ψ0
i (v0))γ(ψ1

i (f0)) = γi(v0)γi(f0) = γi(v0f0) = γi(s(f0)f0) =

= γi(f0) = γ(ψ1
i (f0)) = γ(f).

(iii): Analogous to (ii).
(iv): Let f ∈ E1 and take i ∈ I such that there is some f0 ∈ E1

i and v0 ∈ E0
i

satisfying ψ1
i (f0) = f and ψ0

i (v0) = r(f). By assumption (a), ψi is an injective graph 
homomorphism, which implies that v0 = r(f0). Then,

γ(f∗)γ(f) = γ(ψ1
i (f∗

0 ))γ(ψ1
i (f0)) = γi(f∗

0 )γi(f0) = γi(f∗
0 f0) = γi(r(f0) =

= γi(v0) = γ(ψ0
i (v0)) = γ(v).

(v): Let v ∈ E0 and take i ∈ I such that there is some v0 ∈ E0
i satisfying ψ0

i (v0) = v. 
Since, ψ1

i maps s−1
Ei

(v0) bijectively onto s−1
E (ψ0

i (v0)) = s−1
E (v), it follows that,

γ(v) = γ(ψ0
i (v0)) = γi(v0) =

∑
f∈s−1

Ei
(v0)

γi(f)γi(f∗) =
∑

f∈s−1
Ei

(v0)

γ(ψ1
i (f))γ(ψ1

i (f∗)) =

=
∑

f ′∈S−1
E (v)

γ(f ′)γ((f ′)∗).

Thus, γ is a well-defined ring homomorphism. Moreover, it follows directly from the 
definition that it is Z-graded. Since γi and γ ◦ ψ̄i agree on the generators E0

i ∪E1
i ∪(E1

i )∗
of CX

R (E), it follows that γi = γ◦ψ̄i. Hence, the diagram commutes and we are done. �
Proposition 4.12. (cf. [1, Cor. 1.6.11]) Let R be a unital ring and let E be a graph. Then 
there exists a directed system {(Fi, Yi) | i ∈ I} in G such that the following assertions 
hold:

(a) every Fi is a finite directed graph;
(b) LR(E) ∼=gr lim−−→i

CYi

R (Fi) ∼=gr lim−−→i
LR(Fi(Yi)).

In other words, LR(E) is graded isomorphic to the direct limit of Leavitt path algebras 
associated to the finite graphs Fi(Yi).
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Proof. By [1, Lem. 1.6.9], we have that (E, Reg(E)) is the direct limit of some di-
rected system {(Fi, Yi) | i ∈ I} where every Fi is a finite graph. Since the functor 
CR preserves direct limits by Lemma 4.11, we have that LR(E) ∼=gr lim−−→i

CYi

R (Fi). 
By Proposition 4.8, it follows that CYi

R (Fi) ∼=gr LR(Fi(Yi)) for each i ∈ I. Hence, 
lim−−→i

CYi

R (Fi) ∼=gr lim−−→i
LR(Fi(Yi)). �

The following proposition establishes the difficult direction of Theorem 1.4:

Proposition 4.13. Let R be a unital ring and let E be a directed graph. If R is von 
Neumann regular, then LR(E) is graded von Neumann regular.

Proof. If E = ∅ is the null-graph, then LR(E) is trivially graded von Neumann regular 
(see Remark 4.7). Next, suppose that E �= ∅. Since R is von Neumann regular, Corol-
lary 4.6 implies that LR(F ) is graded von Neumann regular for any finite graph F . By 
Proposition 4.12, LR(E) is graded isomorphic to a direct limit of Leavitt path algebras 
associated to finite graphs. Thus, by Lemma 2.11, we have that LR(E) is graded von 
Neumann regular. �

We are now ready to give a complete proof of Theorem 1.4.

Proof of Theorem 1.4. Let E �= ∅ be a directed graph. First suppose that R is von 
Neumann regular. Then Proposition 4.13 implies that LR(E) is graded von Neumann 
regular.

Conversely, suppose that LR(E) is graded von Neumann regular. Then, by Lemma 3.2, 
it follows that (LR(E))0 is von Neumann regular. Moreover, by Lemma 4.5, this implies 
that R is von Neumann regular. �
Remark 4.14. Let E be an arbitrary graph. Since C is von Neumann regular it follows 
from Theorem 1.4 that LC(E) is graded von Neumann regular. On the other hand, since 
Z is not von Neumann regular, we conclude that LZ(E) is not graded von Neumann 
regular. Hence, Theorem 1.4, in particular, algebraically differentiate Leavitt path alge-
bras with coefficients in C respectively Z. The author feels that this differentiation is 
especially interesting considering the strange behaviour of Leavitt path algebras with 
coefficients in Z observed by Johansen and Sørensen [18].

5. Semiprime and semiprimitive Leavitt path algebras

In this section, we apply our results to obtain sufficient conditions for a Leavitt path 
algebra over a unital ring to be semiprimitive and semiprime.

Abrams and Aranda Pino showed that if K is a field and E is a graph, then the 
Leavitt path algebra LK(E) is both semiprime and semiprimitive (see [3, Prop. 6.1-
6.3]). However, Leavitt path algebras over non-field rings are not always semiprime nor 
semiprimitive. Indeed, for the graph A1 in Example 4.2, we have that LR(A1) ∼= R
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for any unital ring R. Hence, LR(A1) is semiprime/semiprimitive if and only if R is 
semiprime/semiprimitive.

Let R be a ring. Recall that an ideal I of R is called semiprime if aRa ⊆ I implies 
that a ∈ I for every a ∈ R. A ring is called semiprime if its zero ideal is semiprime. 
Moreover, recall that R is called semiprimitive if the Jacobson radical J(R) = 0. Let S
be a G-graded ring and recall that S is said to have homogeneous local units if there is a 
set of local units E for S consisting of homogeneous idempotents. The following lemma 
by Abrams and Arando Pino generalizes Bergman’s famous result that if S is a unital 
Z-graded ring, then J(S) is a graded ideal of S (see [21, Cor. A.I.7.15]):

Lemma 5.1. ([3, Lem. 6.2]) Let S be a Z-graded ring. Suppose that S has a set of homo-
geneous local units. Then J(S) is a graded ideal of S.

Remark 5.2. Let S be a unital Z-graded ring. Then E = {1S} is a set of local units 
for S. Moreover, note that 1S ∈ Se is a homogeneous element. Hence, it follows from 
Lemma 5.1 that J(S) is a graded ideal of S.

We have Leavitt path algebras in mind when we state the following result, but we will 
also need it in the next section.

Proposition 5.3. (cf. [16, Prop. 2(4)], [3, Prop. 6.3]) Let S be a Z-graded ring. Suppose 
that S is graded von Neumann regular and that S has a set of homogeneous local units. 
Then S is semiprimitive and semiprime.

Proof. By Lemma 5.1, J(S) is a graded ideal. Let x ∈ J(S) be a homogeneous element 
and consider the graded left ideal Sx ⊆ J(S). It follows from Proposition 2.5 that there 
is some idempotent f such that Sx = Sf . Recall that the Jacobian radical does not 
contain any non-zero idempotents. But f = f2 ∈ Sf = Sx ⊆ J(S), which implies that 
f = 0. Since S has a set of local units, it follows that x ∈ Sx = Sf = 0 and hence x = 0. 
Thus, J(S) = 0 and hence S is semiprimitive.

By [16, Prop. 2(2)], every graded ideal of a non-unital graded von Neumann regular 
ring is semiprime. Thus, the zero ideal of S is semiprime and hence S is semiprime. �

Finally, we prove that Leavitt path algebras with coefficients in a von Neumann regular 
ring are semiprimitive and semiprime.

Corollary 5.4. Let R be a unital ring and let E be a directed graph. If R is von Neumann 
regular, then LR(E) is semiprimitive and semiprime.

Proof. Note that E = {v | v ∈ E0} is a set of local units for LR(E) consisting of 
homogeneous elements. Suppose that R is von Neumann regular. Then, by Theorem 1.4, 
LR(E) is graded von Neumann regular. It follows from Proposition 5.3 that LR(E) is 
semiprimitive and semiprime. �
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Remark 5.5. Since a field is von Neumann regular, it follows that Corollary 5.4 generalizes 
Abrams and Aranda Pino’s result that Leavitt path algebras over fields are semiprimitive 
and semiprime (see [3, Prop. 6.1-6.3]).

6. More applications

In this last section, we apply our results to unital partial crossed products and corner 
skew Laurent polynomial rings. Partial crossed products were introduced as a generaliza-
tion of the classical crossed products (see [13]). Among these, the unital partial crossed 
products were shown to be especially well-behaved (see e.g. [8]). Let R be a unital ring 
and let G be a group with neutral element e. A unital twisted partial action of G on R (see 
[24, pg. 2]) is a triple ({αg}g∈G, {Dg}g∈G, {wg,h}(g,h)∈G×G) satisfying certain technical 
relations. To this triple, it is possible to associate an epsilon-strongly G-graded algebra 
R �ωα G called the unital partial crossed product. The following result shows that unital 
partial crossed products behave similarly to classical crossed products with regards to 
graded von Neumann regularity.

Corollary 6.1. Let G be a group, let R be a unital ring and let R �ωα G be a unital partial 
crossed product. Then the unital partial crossed product R �ωα G is graded von Neumann 
regular if and only if R is von Neumann regular.

Proof. The ring R �ωα G is epsilon-strongly G-graded (see [24, pg. 2]) with principal 
component R. The statement now follows from Corollary 3.11. �

The general construction of fractional skew monoid rings was introduced by Ara, 
Gonzalez-Barroso, Goodearl and Pardo in [5]. We consider the special case of a fractional 
skew monoid ring by a corner isomorphism which is also called a corner skew Laurent 
polynomial ring. Let R be a unital ring and let α : R → eRe be a corner ring isomorphism 
where e is an idempotent of R. The corner skew Laurent polynomial ring, denoted by 
R[t+, t−; α], is a unital epsilon-strongly Z-graded ring (see [19, Prop. 8.1]).

The following result was proved by Hazrat using direct methods. We recover it as a 
special case of Corollary 3.11.

Corollary 6.2 (cf. [16, Prop. 8]). Let R be a unital ring, let e be an idempotent of R
and let φ : R → eRe be a corner isomorphism. The corner skew Laurent polynomial ring 
R[t+, t−, φ] is graded von Neumann regular if and only if R is a von Neumann regular 
ring.

Proof. By [19, Prop. 8.1], R[t+, t−, φ] is epsilon-strongly Z-graded with principal com-
ponent R. The desired conclusion now follows from Corollary 3.11. �

We end this article by given sufficient conditions for a corner skew Laurent polynomial 
ring to be semiprimitive and semiprime.
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Corollary 6.3. Let R be a unital ring, let e be an idempotent of R and let φ : R → eRe be 
a corner isomorphism. If R is a von Neumann regular ring, then the corner skew Laurent 
polynomial ring R[t+, t−, φ] is semiprimitive and semiprime.

Proof. Since R[t+, t−, φ] is a unital Z-graded ring, it follows that E = {1R} is a set 
of local units (see Remark 5.2). Suppose that R is von Neumann regular. Then, by 
Corollary 6.2, it follows that R[t+, t−, φ] is graded von Neumann regular. The conclusion 
now follows by Proposition 5.3. �
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