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ABSTRACT
Code reviewing is a commonly used practice in software develop-
ment. It refers to the process of reviewing new code changes before
they aremergedwith the code base. However, to perform the review,
developers are mostly assigned manually to code changes. This may
lead to problems such as: a time-consuming selection process, lim-
ited pool of known candidates and risk of over-allocation of a few
reviewers. To address the above problems, we developed Carrot,
a machine learning-based tool to recommend code reviewers. We
conducted an improvement case study at Ericsson. We evaluated
Carrot using a mixed approach. we evaluated the prediction accu-
racy using historical data and the metrical Mean Reciprocal Rank
(MRR). Furthermore, we deployed the tool in one Ericsson project
and evaluated how adequate the recommendations were from the
point of view of the tool users and the recommended reviewers. We
also asked the opinion of senior developers about the usefulness
of the tool. The results show that Carrot can help identify relevant
non-obvious reviewers and be of great assistance to new developers.
However, there were mixed opinions on Carrot’s ability to assist
with workload balancing and the decrease code review lead time.
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1 INTRODUCTION
Code review is one of the central activities in assuring quality of the
code in most software development environments [17, 19, 23, 24].
Modern code review (MCR) is a lightweigth approach wherein the
review process is conducted with the support of dedicated tools,
such as Gerrit and GitHub.
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In MCR, the code is reviewed before it is pushed to a repository.
Integrating MCR in the development process improves maintain-
ability of the software and also helps in reducing bugs [19, 24].
It also helps to share knowledge among the involved developers
[3, 17, 19, 21].

Selecting a suitable reviewer in a large project can be both chal-
lenging and time-consuming [6, 19, 24, 27]. In general, developers
select reviewers from a small pool of people they know [23]. If they
are not sure about who should review a given code change, they
spend more time trying to identify a suitable review. This is even
more critical in the case of newcomers, who do not know everyone
in a project and may require even more time to identify adequate
reviewers [7].

The limited knowledge about existing code in a project limits the
extent to which newcomers can review code. If a newcomer without
enough knowledge is asked to review a given code change, it may let
defects slip through the review process. Although this may happen
even with the experienced reviewers, the more knowledge, the
lower the risk of defects not being captured during a code review
session [27].

Another consequence of inadequate code reviewer selection
is unbalanced review load. When selecting code reviewers from
a small group of known developers, it is possible that the same
reviewers are selected repeatedly. The repeated assignment of code
changes to the same reviewers may lead to a situation wherein just
a few developers review most of the code changes.

The previouslymentioned problems have twomain consequences:
i) the time spent finding a reviewer not only costs development
time but can also increase the lead time in the review process. A
delay in the review process can be seen as a minor inconvenience,
but many occurrences could delay the entire project; ii) the risk of
choosing unsuitable reviewers may result in more post-delivery
defects, due to unsatisfactory code making it through the review
process [3, 18].

One way to mitigate the aforementioned problems is by fully
or partially automating the code reviewer selection process. This
may lead to more effective and efficient code review processes.
Furthermore, it may foster balanced review load by considering
more developers as potential reviewers.

In this paper, we report the findings from developing, deploying,
using, and validating a tool called Carrot, which partially automates
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the code reviewer selection process. Carrot recommends code re-
viewers using a machine learning-based approach (context-aware
collaborative filtering).

The following research questions are answered in this paper:

• RQ1 - What are the factors that relate to the suitability of a
developer to review a given code change?

• RQ2 - How well does Carrot perform recommendations?
– RQ2.1 - What is the predictive performance?
– RQ2.2 - How accurate are the recommendations?

• RQ3 - What is the developer’s perception of the feasibility
of using Carrot to recommend code reviewers in large-scale
projects?
– RQ3.1 - How useful is Carrot to recommended reviewers?
– RQ3.2 - What is Carrot’s ability to help decrease the lead
time for reviews?

– RQ3.3 - What is Carrot’s ability to help balance workload?

We have contributed in the following ways:

• We have deployed Carrot in a real project and used the input
from real users to validate its predictive performance and
usefulness.

• Carrot is the first code reviewer recommendation tool that
uses context-aware collaborative filtering, which has out per-
formed other recommendation approaches in other domains.

• Finally, Carrot is the first code reviewer recommendation tool
that accounts for reviewer workload and makes an attempt
to foster balanced review load.

The reminder of this paper is organized as follows: Section 2
contains the related work. Section 3 presents the research design
employed in our research. Section 4 contains the description of
Carrot. Section 5 presents and discusses the results of Carrot’s
validation. Section 6 presents threats to the validity of our results.
Finally, Section 7 presents our conclusions and vision on future
work.

2 RELATEDWORK
Recently, Badampudi et al. [4] conducted a systematic mapping
study on the state of modern code review. While they identified
that different topics are covered by existing literature, many papers
address the problem of recommending code reviewers. Most papers
focus on proposing tools to recommend reviewers (often using
machine learning techniques) and validate their approaches using
historical data extracted from open source projects.

For example, Thongtanunam et al. [23] proposed an algorithm
(FPS) for selecting appropriate reviewers by calculating a similarity
value of file paths from previous reviews [23]. In a later paper,
Thongtanunam et al. [24] extended their previous work with an
improved comparison-functionality and developed a tool called
RevFinder.

Xin et al. [25] proposed a tool that uses file’s location as input.
They proposed analyzing the available description field to get a
better understanding of what a code change is about. Additionally,
their approach compares the identical number of components in
the file-path string independent of its order.

With a focus on the time it might take to review a patch, Zanjani
et al. [27] developed the tool cHRev. Their tool combines the rele-
vance of similar files, with the frequency and recency of previous
reviews.

Xia et al. [26] proposed an approach to catch implicit relations
between reviewers and changes. The basis of the algorithm is to
replace a new change request with several similar closed change
requests. An explicit score is calculated using the replacements
per reviewers based on their participation. Additionally, a score is
evaluated from the implicit connection to relevant reviews through
what they call an Singular Value Decomposition-like (SVD) lower
rank decomposition approach.

Ouni et al. [19] focused on social connections. They the connec-
tions between a submitter and reviewer and a reviewer’s knowledge
associated with similar code snippets as input. Then, the recommen-
dations are done using a search-based approach (genetic algorithms)
to recommend reviewers.

Jiang et al. [10] developed CoreDevRec, a tool that uses file paths
as input and a Support Vector Machine-based approach to recom-
mend code reviewers. Their approach is only able to recommend
core members of a given project.

A different approach using set operations is suggested byMikolaj
et al. [8] proposed a profile-based approach. A developer’s profile
is a set that contains all folders and files that the developer has
interacted. To make the recommendations for a given code change,
all existing profiles are compared (using Jaccard coefficient and
Tversky index) with the files and folders of the change, which
results in a score for each developer.

Kovalenko et al. [14] implemented an Information retrieval-
based recommendation system that was deployed in two compa-
nies (Microsoft and Jetbrains). They analyzed the performance of
their approach using data from production environments. Further-
more, they evaluated the usefulness of their approach through
semi-structured interviews and questionnaires. The results indicate
that the recommendations are often perceived as relevant and effort
saving.

Peng et al. [20] extracted data associated with open source
projects through archival research, interviews, and questionnaires
to identify the usefulness of Facebook Mention bot, a code reviewer
recommendation tool. They found that most developers that the
tool help them saving time to identify adequate reviewers. However,
they also found that most developers believe that the tool leads to
unbalanced review work load.

The main limitations of existing literature can be summarized
as follows:

• Existing literature only uses data from open source projects
to validate code reviewer recommendation approaches (the
only exception is Kovalenko et al. [14]).

• Most studies have not validated their code reviewer recom-
mendation approaches in production or collected the opinion
of developers about those approaches (the exceptions are
Kovalenko et al. [14] and Peng et al. [20]).

• The validation of existing approaches are done using accu-
racy metrics such as precision, recall, and Mean Recipro-
cal Rank (MRR). They compare a list of reviewers recom-
mended by their proposed approach with the list of actual
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reviewers in the extracted data (from open source projects
in most cases). If this type of validation is not possible to
know whether the actual reviewers were adequate to review
the pushed code or if a recommended reviewer not part of
the actual reviewers’ list was adequate or not.

• Most approaches focus on getting the best reviewer “on
paper” and rarely take into account the workload of potential
reviewers. A possible implication of this greedy approach is
the high review workload of a few developers. Furthermore,
the more reviews a developer does, the better match for
future reviews a developer will be, leading to a “vicious
circle”.

• Context-aware approaches have not be used to recommend
code reviewers. This type of approach is able to handle the
limitations of traditional recommendation systems (e.g., the
cold start problem). It has also been successfully used in
other domains (e.g., fashion recommendation [15]).

With the investigation reported in this paper, we aimed at ad-
dress the aforementioned limitations of existing research. Carrot is
recommendation tool that uses a context-aware approach to recom-
mend code reviewers. Our tool also makes an attempt to balance the
workload of code reviewers. Furthermore, we have deployed Carrot
in a real project in Ericsson. Finally, we evaluated Carrot’s perfor-
mance, usefulness, and feasibility by means of feedback provided
by Ericsson developers.

3 RESEARCH DESIGN
In this section, we describe the research design used to conduct the
research. We conducted an improvement case study [22], which
involved a literature review, semi-structured interviews and ques-
tionnaires as data collection methods.

3.1 The case and unit of analysis
The case company is Ericsson1. The case product is BSS (Business
Support System) comprising 30 subsystems/products. The system
was deployed in production for the first time in the second semester
of 2018 but have been in development for more than half a decade.
The development of this product involves more than 1000 employ-
ees distributed in centers of excellence located in Sweden, India,
Canada, and Brazil.

The products are developed by multiple teams with different
responsibilities, often directly connected to a few repositories. The
same repository can be owned by multiple teams. The teams have
from 5 to 8 members and use agile practices in their daily work.
There are many differences in how the teams operate in regards to
Gerrit changes. The most impacting difference is the way they cur-
rently add reviewers; some teams have the policy to add the entire
team as reviewers; some go by areas of responsibility (sometimes
unknown by a developer); and others choose reviewers more freely
inside the same community, (a large pool of developers). Another
difference is the specific role of the design lead and how involved
they are in all aspects of the code base. In some cases, anyone can
review the change, and the design lead just gets involved if there is
a need. For other cases, a design lead should (very much preferred)

1www.ericsson.com

review a particular part. Depending on how critical a repository is
and what the specific change entails, it might be necessary or not.

Additionally, some teams have implemented Gerrit hooks that
when triggered, add a pre-made review list. This is often by adding
+1 review themselves to tell the other developers the change is ready
for review. The different review processes are the main reason that
some of the evaluations are split into two for the two subsystems.

3.2 Research Approach
We used the following six step approach to carry out the reported
research:

(1) Factor identification - consists of the literature review as
well as the complementary interviews with experienced de-
velopers to discuss and find suitable factors.

(2) Factor selection - is the process of filtering the identified
factors, looking at the availability and complexity; which is
based on an exploratory analysis of the available data includ-
ing the thoughts and ideas collected from the experienced
developers.

(3) Approach selection - consists of finding a suitable recom-
mendation approach that can work with the desired factors
previously identified. This consists of identifying possible
machine learning approaches that are viable and can accept
the data.

(4) Predictive performance - it is calculated with the help of
Mean Reciprocal Rank (MRR) to give an early sanity check
of the chosen algorithm.

(5) Recommendation suitability - it is the feedback collected
through a questionnaire when the developer request a rec-
ommendation. The developers provide their feedback on the
suitability of the recommended candidates.

(6) Questionnaire (candidate) - it is a set of questions asking
the recommended candidate reviewers if they see themselves
as suitable reviewers for the given change.

(7) Questionnaire (feasibility) - it is the questions for the
static validation [9] of the tool, which is used to evaluate the
real feasibility of Carrot.

MRR is calculated with the following Equation , whereQ means the
number of times recommendations were requested (queries) and
ranki refers to the position wherein the first relevant recommended
item appears for for the i-th query. The result is between 1.0 and 0.0,
where 1.0 means that all recommendations had an actual reviewer
on the first position and 0.0 means that they did not present any
actual reviewer.

MRRscore =
1
|Q |

∗

|Q |∑
i=1

1
ranki

(1)

3.3 Data Collection
We used multiple data collection methods in this study including
a literature review, semi-structured interviews, repository mining
and two questionnaires (see Table 1 for more details).

We describe the details of the interviewees and questionnaire
participants in the following:
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• Interviews - We conducted six semi-structured face-to-face
on-site interviews of experienced software developers. The
interviewees were selected by the Unit Manager. The average
length of the interviews was about half-hour. The experience
of the interviewed developers varied from four to ten years
(average experience of 7.5 years).

• Questionnaire (accuracy) - To see how the developers using
Carrot view its recommendations with regards to accuracy,
we administered a questionnaire inside the Carrot tool (see
likert scale options against recommended candidates in Fig-
ure 1). Through this questionnaire, we collected the opin-
ion of the developers to see how strongly they (dis)agree
with Carrot’s recommendations. During the validation pe-
riod consisting of two weeks, Carrot was used to make 47
recommendation requests.

• Questionnaire (candidate) - It was aimed to collect the feed-
back of the candidates recommended by Carrot as reviewers
to ascertain the suitability of the recommendations. After
deployment and testing of Carrot, this questionnaire was
sent to a sample of 36 developers that were recommended by
Carrot as reviewers for the ten randomly selected changes.
In response, 26 developers answered the questionnaire.

• Questionnaire (feasibility) - To test the feasibility of the Car-
rot as a recommendation tool, the developers who used Car-
rot during the testing period were asked to provide their
feedback. This questionnaire was answered by 8 developers.

3.4 Data Analysis
To analyze our data, we compiled a factor list for RQ1 from the
literature review and the interviews. We used historical data to
control Carrot’s recommendation for RQ2.1. Lastly, we used basic
descriptive statistics to identify the trends in the questionnaires’
responses corresponding to RQ2.2 and RQ3.

4 CARROT OVERVIEW
Carrot is a recommendation system that utilizes a hybrid approach
(context aware) for performing recommendations. To use it, the
user provides a valid code change id. As a result, Carrot provides a
list with the top 5 reviewers and their respective reviewworkload. It
also allows the users to provide feedback on the recommendations.
In the remainder of this section, we provide more details about
Carrot architecture and its associated micro services.

4.1 Architecture
Carrot was developed using python 3.6 and is composed by five
microservices, which are deployed using Docker containers, uWSGI,
and Nginx. The tool can be used either via the available Flask-based
GUI (see Figure 1) or REST API calls.

Figure 2 shows an overview of Carrot’s architecture. The dotted
lines represent data channels, and the other lines are bi-directional
communication channels for requests and response data. The blue
boxes represent the microservices, while the red box represents
the intermediate storage where the ML model is located (a pickle
object2).

2docs.python.org/3/library/pickle.html

Figure 1: The Carrot web interface.

The Core microservice orchestrates the operation of the other
services. It also handles the functionality used to obtain the feedback
from Carrot’s users about the recommendations.

The ETL microservice performs the data extraction, transforma-
tion and loading of the data. It has two responsibilities: i) extract
data (code changes and the associated authors and reviewers) from
the version control system (Gerrit in our case) every day and stores
it in a database; ii) extract the data (from Gerrit) associated with
an input code change that a user expects recommendations from
Carrot. Note that this module also transforms the data to the format
required by the ML microservice.

The ML microservice uses the data extracted by the ETL mi-
croservice and trains (once per day) a model to recommend code
reviewers (see Section for more details). The trained model is stored
as a pickle file. Note that Carrot considers both code changes and
code reviews to train the model. Carrot accounts for code review
data explicitly since the ETL microservice extracts this type of data
through the Gerrit API. Code changes are accounted for by means
of the self-reviews done by the developers. In the studied case, the
author of a given code change is required to review its own code in
addition to other developers. As a consequence, even if a developer
has not reviewed a file modified by some other developer, if s/he has
modified the file before, it will have self-reviewed his/her change
and this will be considered when training the ML model.

Recommend is the microservice that loads the trained model
to perform a recommendation for a given code change. It loads
the trained model and requests the ETL (via the Core) to obtain
the data (file paths and repository) associated with the given code
change id. After, it splits the file paths into directories and file
extensions. The repository name, along with the folders and file
extensions are provided as input to the trained model. As a result,

4
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Table 1: Data collection methods used in the study

Data source Description Questions
Literature review Code review factors identified in related and previous

work.
RQ1

Semi-structured
interviews

Complementary information on the factor identification
from literature. Includes additional identified factors as
well as ideas and limitations on the already discovered
ones.

RQ1

Repository mining The data from Gerrit required to perform the initial ex-
ploratory analysis, but also the factor selection for Carrot.
This data is also responsible for training the recommenda-
tion model.

RQ2.1

Questionnaire
(candidate)

Feedback on the suitability of the recommendation from
the candidate’s point of view.

RQ2.2

Questionnaire
(accuracy)

A scale of the suitability of the recommendations from
the developer requesting the recommendation.

RQ2.2

Questionnaire
(feasibility)

Feedback on the usefulness of Carrot from the developer’s
point of view.

RQ3

Figure 2: Carrot’s architecture.

the trained model predicts a score for each developer. This score
reflects the suitability of each developer to review the given code
change. Then, the developers are sorted by the calculated scores
(descending order).

The final step carried out by Recommend is the calculation of the
code review workload associated with the developers. The work-
load is measured in two ways: i) the number of reviews conducted

in the last 30 days by each developer; ii) how many standard de-
viations the number of reviews conducted by a developer is from
the mean number of reviews conducted by all developers in the
last six months. Candidates with less than 0 reviews in the last 30
days are removed from the list. This is done to avoid recommend-
ing someone that may be on vacation or on leave. Finally, Carrot
recommends the top five developers from the resulting list.
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The Carrot-Front microservice provides the front-end of Car-
rot. This microservice enables the users to request code reviewer
recommendations, along with an indication of their respective re-
view workloads (a review counter and a color indicator). The color
indicator can have three different values: i) red, if the review work-
load is equal or above three standard deviations from the mean
(high load); yellow, if the review workload is between two and three
standard deviations from the mean (medium load); iii) green other-
wise (low load). These thresholds are commonly used to identify
abnormalities in data.

Another responsibility of Carrot-Front is to provide a feedback
form for Carrot’s users. The users can grade the correctness of each
recommended reviewer using a 5-point scale, wherein 1 means
strongly disagree and 5 means strongly agree. The users can also
provide free text-feedback. Note that we used the data gathered
through this feedback form to evaluate Carrot.

4.2 Recommendation Engine
The recommendations provided by Carrot are calculated using a
context-aware approach. More specifically, we implemented the
LightFM algorithm [15] using the python library provided by the
author3. LightFM combines both collaborative filtering [1] and
context-based filtering [1]. We decided to implement this hybrid
approach because it handles well the so-called cold start problem
and sparse interactions [15]. Furthermore, it has presented good
performance [15] in recommendation contexts similar to the one ad-
dressed in this paper. When recommending code reviewers, the cold
start problem happens when new files are added to the repositories,
i.e. it is not possible to directly link the new files to the potential
reviewers. Furthermore, the interaction between files and potential
reviewers is sparse since not all files are modified or reviewed by
all reviewers.

Collaborative filtering uses the collaborative power of the interac-
tions between users (code changes in our case) and items (potential
reviewers in our case provided by to make recommendations. It is
often the case that not all developers have reviewed all files in a
repository. This means that the matrix that relates code changes
and developers is sparse (there are many empty cells/relationships).
The matrix, called interaction matrix, has dimension c x d, where
c means the number of unique changes and d means the number
of unique developers who have interacted with at least one of the
files in the changes.

Collaborative filtering methods are able to obtain the missing
interactions because the existing interactions are frequently highly
correlated. The interactions can be obtained via memory-based
methods [1] or model-based methods [1]. LightFM uses model-
based latent factor collaborative featuring, wherein where the inter-
action matrix is factorized into two matrices (change latent vector
and developer latent vector).

Pure collaborative filtering struggles with the code start problem.
LightFM handles this problem by accounting for the meta-data
associated with the changes. In Carrot, we used the following meta-
data features: directory, repositories, and file extension (see Section
5). The changes are related to the meta-data through a binary matrix
of dimension c x (d + r + e), where c means the number of unique

3github.com/lyst/lightfm

changes, d means the number of unique directories, r means the
number of unique repositories, and e means the number of unique
file extensions. In this matrix, 1 means that a given feature is present
in a change, while 0 means the absence.

To calculate the score (ŝik ) that reflects how suitable is a devel-
oper k to review code change i , LightFM uses Equation , where qi
means the latent representation of change i , pk means the latent
representation of developer k , bi represents the bias term of code
change i , andbk means the bias term of developerk . The parameters
of this equation are obtained by by an optimization approach (more
specifically, stochastic gradient descent), which aims at maximising
the likelihood of the data conditional on the parameters.

ŝik = qi .pk + bi + bk (2)
LightFM has eight hyperparameters. Table 2 shows the hyper-

parameter values we used in Carrot, which are the default values
recommended by Kula [15].

Table 2: The hyperparameters used in Carrot.

Hyperparameter Value
Epsilon 1.09e-08
Learning rate 0.02
Learning sched-
ule

adadelta

Loss warp
Max sampled 22
No components 40
Rho 5.51e-09
User alpha 8.24e-09

5 RESULTS AND DISCUSSION
In this section, we show the results associated with our research
questions.

5.1 RQ1 - Review Factors
Table 3 summarizes the data collected through the literature review
and the interviews. The results show that the two prominent factors
are: path usage and repository activity. The usage of time and
activeness is also cited in multiple studies and interviews. The
categorization used for the factors is fairly rough, since it would
not be viable to use every single option as it’s own category. For
example the path similarity under file consists of simple character
count, common directory count and more advanced algorithms.
The category and factor is a bucket for types that in some way
analyze the file paths.

The factors used as input for Carrot are in bold letters in Table 3.
To select these factors, we used the following criteria:

C1 - Is explicitly discussed in the interviews.
C2 - Is talked about in reviewed literature.
C3 - Is available through automated extraction (does not require

manual input).
C4 - The extraction complexity is reasonable (extracting the

required data is not a non trivial task).
6
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Table 3: Factors from literature review, exploratory analysis and interviews.

Category Factor Description
Int.
Freq

Lit.
Freq Source

Time Time limit Limit length of history analyzed and used. 3 2 [16, 25]

Freshness Consider new as higher weight or other
way around.

1 3 [12, 13,
26]

Activeness Time period First and last day the developer have been
active.

2 [11, 27]

Frequency. How often comments are made. 2 [19, 27]
Recency How recent comments are. 3 3 [12, 19,

27]

File Path Path comparison or usage in one way or
another.

4 7 [11, 12, 16,
23–26]

Modifications Who have changed the line previously. 4 1 [5]

Commit Title Semantic analysis of commit title. 1 [11]
Description Semantic analysis of commit message. 1 [25]
Change type Is it a bug, a re-factoring, how complex is

it. All these things affect who should make
the review.

2

Social Network Build network with comments. 1 2 [11, 19]
Feedback Find developers that give helpful and pos-

itive feedback.
1 2 [2, 12]

Repository Activity The contribution made, number of com-
mits, comments and reviews.

4 4 [12, 13, 16,
27]

C5 - The analysis complexity is reasonable (data size and com-
parison is within reason).

C6 - Is a non punishing attribute (relatively unbiased).
C7 - The data is reliable (the meaning of the data is trustworthy

and does not change).

5.2 RQ2 - Carrot Performance Evaluation
In this section, we present the results associated with RQ2.

5.2.1 RQ2.1: Evaluation using historical data. To answer RQ2.1, we
calculated the MRR. The calculation was performed on the last six
months of data (up until 2019-05-03). The model was trained on
two years of data with the end date before the testing data. The
training and testing data were strictly separated, with both sets
being represented in the format of an interaction matrix. The inter-
actions in the testing matrix are the changes that recommendations
are performed on with an actual interaction being counted as a
positive value in the MRR.

The MRR score of the recommendation system was calculated as
0.37 on the historical data of six months. This score is equivalent to
an average rank of 2.7 in the recommendation list. In other words,
on average Carrot presents an actual reviewer in rank 2 or 3 of the
list of recommendations.

While it is clear that the tool could be improved in terms of
MRR, the goal is not to aim for only a good MRR (instead also
consider non-obvious candidates). The score can be seen as a form
of baseline or sanity check to establish that the algorithm is on the
right track.

5.2.2 RQ2.2: Perceived accuracy. We evaluated the perceived accu-
racy of Carrot from two perspectives: developers who used Carrot
to find relevant reviewers and candidates recommended by Carrot.

The results (see Table 4) show that the developers, who used Car-
rot to find relevant reviewers, are in agreement with 78% (strongly
agree - 53%, agree - 23%) of Carrot’s first recommendations. The
results also show that the strong agreement reduces as we move
from the first to the fifth recommendation. The higher agreement
with the first recommendation is understandable as the tool aims
to recommend the best suitable candidate as the top candidate. The
results also show a noticeable level of disagreement with Carrot
recommendations. The disagreement may be due to the difficulty in
recommending the relevant candidate for specialized components.
Carrot may not have found the relevant reviewer due to faulty
implicit relations used by the algorithm or a failure to draw some
connection.

7
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Table 4: Developers’ perceptions regarding Carrot’s recommendations.

Survey question Strongly agree Agree Neutral Disagree Strongly disagree
RQ2.3: How accurate are the recommendations? - perception of developers selecting code reviewers (N = 47)

Agreement with Carrot’s first recommendation 53% 23% 13% 9% 2%
Agreement with Carrot’s second recommendation 47% 19% 13% 17% 4%
Agreement with Carrot’s third recommendation 28% 26% 23% 21% 2%
Agreement with Carrot’s fourth recommendation 34% 19% 21% 23% 2%
Agreement with Carrot’s fifth recommendation 43% 15% 23% 17% 2%
Percentages in the table are rounded off to the nearest ten.

Table 5 presents the perceptions of the candidates recommended
by Carrot. The results show that a majority of the recommended
candidates in our questionnaire sample (96% in total) felt comfort-
able in reviewing the given change, indicating a very high suitability
of the recommendations. To further elaborate, the candidates were
also asked to inform if they have previously worked on the same
file. The results show that 74% of the candidates shared that they
had worked with the same file before. For example, see some quotes
below:

“Already worked in this part of code.”
“It is in the repository that I am the owner of.”
“It’s front-end related code and it’s the area I sit most
with.”

It is important to note that when files are added for the first time,
they would not have direct dependencies at that stage. Therefore,
besides experience of working in the same file, we also asked can-
didates to share if they have previously worked on similar files. We
found that 89% of the candidates in our sample had worked with
similar files before the given change. Furthermore, all candidates
noted (both strongly agree and agree responses together) that they
were familiar with the language used in the change, and they could
also understand what the code aimed to do. See, for example, some
quotes from the recommended candidates:

“I’m familiar with the use case, and I have a good un-
derstanding of the contents of the change.”
“I’m familiar with the background and understand the
contents of the change.”
“I’m very familiar with the code area affected by the
change.”

Looking at the candidates responses together, the results show
that majority of the respondents had positive perception about
Carrot’s recommendations.

5.3 RQ3 - Carrot feasibility
The question aims to validate the feasibility of Carrot as a suitable
code reviewer recommendation tool. We performed this validation
by sending a questionnaire (see Table 6) to experienced reviewers.
Eight reviewers ranked Carrot with regards to its usefulness and
ability to improve the lead time and workload.

5.3.1 RQ3.1. The results (see Table 6) show that the majority of
the respondents (75%) agree or strongly agree that Carrot is useful
to select relevant reviewers. Some reviewers may not be obvious,
but are still relevant to review the change. It is relatively more
difficult to find such reviewers. We asked the participants to judge

Carrot’s ability to find such non-obvious but relevant reviewers. The
results show that over 60% respondents think that Carrot helped in
identifying non-obvious reviewers that are still relevant to review
the change. Furthermore, about 87% of the respondents have a
positive perception (both agree and strongly agree) about Carrot’s
ability to help new developers in finding the relevant reviewers.

5.3.2 RQ3.2. The results (see Table 6) show that the majority of the
respondents do not think that Carrot helps in decreasing the lead
time for code reviews. There is currently no known explanation
for this sentiment. An important note is that the tool in its current
use requires a developer to manually enter the web page, copy and
past the change ID and then copy one or more names into Gerrit
to add them as reviewers.

5.3.3 RQ3.3. The results (see Table 6) show that only half of the
respondents agree that Carrot is helpful in balancing the workload
of reviewers. No direct explanations were provided in the answers,
but comments like the following one indicate that some changes
need to be reviewed by a specific set of developers (i.e. not many
developers to balance among).

“Bumps are primarily handled by build masters, unless
they contain special changes.”

Each team has a design lead, who is an experienced developer hav-
ing good knowledge about the product’s architecture. It would not
be possible to balance for the changes that needed to be reviewed
by the design leads (similar to build masters).

6 THREATS TO VALIDITY AND LIMITATIONS
The validity threats associated with our investigation are discussed
using the categories reliability, internal, construct and external
validity described by Runeson and Höst [22].

Reliability is about the extent to which the collected data and
analysis are dependent on the specific researchers[22]. We involved
multiple researchers during all phases of the study to minimize
the potential reliability related validity concerns. The first two
authors developed the case study protocol, interview guide and
questionnaire iteratively based on the feedback of the third author.
Data collection was performed by the first two authors. The fourth
author reviewed and contributed to the data analysis, which was
also lead by the first two authors.

Internal validity relates to the confounding factors that could
impact the validity of the result [22]. We identified the factors using
a literature review and interviews. It is possible that we missed out
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Table 5: Recommended candidates’ perceptions regarding Carrot’s recommendations.

Survey question Strongly agree Agree Disagree Strongly disagree
RQ2.3: How accurate are the recommendations? - perception of reviewers recommended by Carrot (N = 26)

I feel comfortable reviewing the given change 63% 33% - 4%
I have previously worked with the files in the change N/A 74% 26% N/A
I have previously worked with files similar to the ones in the change N/A 89% 11% N/A
I am familiar with the language used in the change 74% 26% - -
I understand what the code aims to do in the change 67% 33% - -
Percentages in the table are rounded off to the nearest ten.
N/A means the response option (i.e., strongly agree or disagree) is not relevant for this question.

Table 6: Experienced reviewers’ perception regarding Carrot’s feasibility.

Survey question Strongly agree Agree Neutral Disagree Strongly disagree
RQ3.1: How useful is Carrot to recommend reviewers? (N=8)

Carrot is useful to select adequate code reviewers 25% 50% - 12.5% 12.5%
Carrot can recommend non-obvious relevant reviewers - 62.5% - 37.5% -
Carrot will help new developers to find relevant reviewers 12.5% 75% - 12.5% -

RQ3.2: What is Carrot’s ability to help decrease the lead time for reviews? (N=8)
Carrot will help reduce lead time for the code reviews 0 37.5% 0 50% 12.5%

RQ3.3: What is Carrot’s ability to help balance the workload of reviewers? (N=8)
Carrot will help to balance the reviewers’ workload 0 50% 0 37.5% 12.5%

some relevant studies in the literature review. We performed inter-
views of six developers having varying experience level to gather as
many relevant factors as possible. We used three questionnaires to
collect data from the study participants during the study. Further-
more, the questionnaires were sent to only relevant respondents
to avoid getting incorrect answers. For example, the questionnaire
about recommended candidate’s perceptions about Carrot’s feasi-
bility, was only sent to the candidates that were recommended by
Carrot.

External validity concerns the extent that the findings can be
generalized and how interesting they are to people outside of the
investigated case [22]. We performed the case study in a partic-
ular context (i.e., at Ericsson), and therefore the results are not
generalizeable beyond the studied case. However, our empirical
approach that we used to evaluate Carrot would be interesting to
other researchers working in the same area.

Construct validity concerns the extent of how well the opera-
tional measures represent and answer the research questions [22].
A possible threat is the misinterpretation of the questions in the
interviews. At the start of the interviews we clarified the purpose
of the interview and how the information will be used. Regarding
the questionnaire, We used an iterative process to design and im-
prove the questionnaires instrument in order to avoid ambiguities.
However, it is still possible that some respondents misunderstood
some parts in our questionnaires.

7 CONCLUSIONS AND FUTUREWORK
In this work, we conducted an improvement case study to address
challenges associated with identifying relevant code reviewers. We
developed a recommendation tool Carrot using a machine learning
based approach (context aware collaborative filtering). We deployed

the tool for a testing period of two week during which Carrot was
used to recommend reviewers for a total of 47 changes. For major-
ity of these changes, the involved developers were in agreement
with Carrot’s first recommendations. Furthermore, most of the rec-
ommended candidates shared that they have either worked in the
same or similar file before or understand what the code aims to
do. Overall, most of them felt comfortable in reviewing the change.
During the static validation with 8 experienced code reviewers,
Carrot was not found to be helpful in reducing the lead time and
balancing the workload of the reviewers. In our future work we
aim to conduct a long-term study to investigate the impact of using
Carrot on the lead time of the code reviews and also its ability to
balance the workload of the reviewers. We also to plan to integrate
Carrot in the code review tool Gerrit, which is used in Ericsson, to
further improve its usefulness, and to see if it helps in reducing the
code review lead time.
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