
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 42nd ACM/IEEE International
Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP 2020,
Online, South Korea, 27 June 2020 through 19 July 2020.

Citation for the original published paper:

Strand, A., Gunnarson, M., Britto, R., Usman, M. (2020)
Using a context-aware approach to recommend code reviewers: findings from an
industrial case study
In: Proceedings - International Conference on Software Engineering, 3381365 (pp.
1-10). IEEE Computer Society
https://doi.org/10.1145/3377813.3381365

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20573

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Using a Context-Aware Approach to Recommend Code
Reviewers: Findings from an Industrial Case Study

Anton Strand
Ericsson AB, Sweden.

anton.strand@ericsson.com

Markus Gunnarson
Ericsson AB, Sweden.

markus.gunnarsson@ericsson.com

Ricardo Britto
Ericsson AB, Sweden.

Blekinge Institute of Technology, Sweden.
ricardo.britto@ericsson.com

Muhmmad Usman
Blekinge Institute of Technology, Sweden.

muhammad.usman@bth.se

ABSTRACT
Code reviewing is a commonly used practice in software develop-
ment. It refers to the process of reviewing new code changes before
they aremergedwith the code base. However, to perform the review,
developers are mostly assigned manually to code changes. This may
lead to problems such as: a time-consuming selection process, lim-
ited pool of known candidates and risk of over-allocation of a few
reviewers. To address the above problems, we developed Carrot,
a machine learning-based tool to recommend code reviewers. We
conducted an improvement case study at Ericsson. We evaluated
Carrot using a mixed approach. we evaluated the prediction accu-
racy using historical data and the metrical Mean Reciprocal Rank
(MRR). Furthermore, we deployed the tool in one Ericsson project
and evaluated how adequate the recommendations were from the
point of view of the tool users and the recommended reviewers. We
also asked the opinion of senior developers about the usefulness
of the tool. The results show that Carrot can help identify relevant
non-obvious reviewers and be of great assistance to new developers.
However, there were mixed opinions on Carrot’s ability to assist
with workload balancing and the decrease code review lead time.

ACM Reference Format:
Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman.
2019. Using a Context-Aware Approach to Recommend Code Reviewers:
Findings from an Industrial Case Study. In Proceedings of International Con-
ference on Software Engineering (ICSE). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Code review is one of the central activities in assuring quality of the
code in most software development environments [17, 19, 23, 24].
Modern code review (MCR) is a lightweigth approach wherein the
review process is conducted with the support of dedicated tools,
such as Gerrit and GitHub.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE, May 23–29, 2020, Seoul, South Korea
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In MCR, the code is reviewed before it is pushed to a repository.
Integrating MCR in the development process improves maintain-
ability of the software and also helps in reducing bugs [19, 24].
It also helps to share knowledge among the involved developers
[3, 17, 19, 21].

Selecting a suitable reviewer in a large project can be both chal-
lenging and time-consuming [6, 19, 24, 27]. In general, developers
select reviewers from a small pool of people they know [23]. If they
are not sure about who should review a given code change, they
spend more time trying to identify a suitable review. This is even
more critical in the case of newcomers, who do not know everyone
in a project and may require even more time to identify adequate
reviewers [7].

The limited knowledge about existing code in a project limits the
extent to which newcomers can review code. If a newcomer without
enough knowledge is asked to review a given code change, it may let
defects slip through the review process. Although this may happen
even with the experienced reviewers, the more knowledge, the
lower the risk of defects not being captured during a code review
session [27].

Another consequence of inadequate code reviewer selection
is unbalanced review load. When selecting code reviewers from
a small group of known developers, it is possible that the same
reviewers are selected repeatedly. The repeated assignment of code
changes to the same reviewers may lead to a situation wherein just
a few developers review most of the code changes.

The previouslymentioned problems have twomain consequences:
i) the time spent finding a reviewer not only costs development
time but can also increase the lead time in the review process. A
delay in the review process can be seen as a minor inconvenience,
but many occurrences could delay the entire project; ii) the risk of
choosing unsuitable reviewers may result in more post-delivery
defects, due to unsatisfactory code making it through the review
process [3, 18].

One way to mitigate the aforementioned problems is by fully
or partially automating the code reviewer selection process. This
may lead to more effective and efficient code review processes.
Furthermore, it may foster balanced review load by considering
more developers as potential reviewers.

In this paper, we report the findings from developing, deploying,
using, and validating a tool called Carrot, which partially automates

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE, May 23–29, 2020, Seoul, South Korea Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the code reviewer selection process. Carrot recommends code re-
viewers using a machine learning-based approach (context-aware
collaborative filtering).

The following research questions are answered in this paper:

• RQ1 - What are the factors that relate to the suitability of a
developer to review a given code change?

• RQ2 - How well does Carrot perform recommendations?
– RQ2.1 - What is the predictive performance?
– RQ2.2 - How accurate are the recommendations?

• RQ3 - What is the developer’s perception of the feasibility
of using Carrot to recommend code reviewers in large-scale
projects?
– RQ3.1 - How useful is Carrot to recommended reviewers?
– RQ3.2 - What is Carrot’s ability to help decrease the lead
time for reviews?

– RQ3.3 - What is Carrot’s ability to help balance workload?

We have contributed in the following ways:

• We have deployed Carrot in a real project and used the input
from real users to validate its predictive performance and
usefulness.

• Carrot is the first code reviewer recommendation tool that
uses context-aware collaborative filtering, which has out per-
formed other recommendation approaches in other domains.

• Finally, Carrot is the first code reviewer recommendation tool
that accounts for reviewer workload and makes an attempt
to foster balanced review load.

The reminder of this paper is organized as follows: Section 2
contains the related work. Section 3 presents the research design
employed in our research. Section 4 contains the description of
Carrot. Section 5 presents and discusses the results of Carrot’s
validation. Section 6 presents threats to the validity of our results.
Finally, Section 7 presents our conclusions and vision on future
work.

2 RELATEDWORK
Recently, Badampudi et al. [4] conducted a systematic mapping
study on the state of modern code review. While they identified
that different topics are covered by existing literature, many papers
address the problem of recommending code reviewers. Most papers
focus on proposing tools to recommend reviewers (often using
machine learning techniques) and validate their approaches using
historical data extracted from open source projects.

For example, Thongtanunam et al. [23] proposed an algorithm
(FPS) for selecting appropriate reviewers by calculating a similarity
value of file paths from previous reviews [23]. In a later paper,
Thongtanunam et al. [24] extended their previous work with an
improved comparison-functionality and developed a tool called
RevFinder.

Xin et al. [25] proposed a tool that uses file’s location as input.
They proposed analyzing the available description field to get a
better understanding of what a code change is about. Additionally,
their approach compares the identical number of components in
the file-path string independent of its order.

With a focus on the time it might take to review a patch, Zanjani
et al. [27] developed the tool cHRev. Their tool combines the rele-
vance of similar files, with the frequency and recency of previous
reviews.

Xia et al. [26] proposed an approach to catch implicit relations
between reviewers and changes. The basis of the algorithm is to
replace a new change request with several similar closed change
requests. An explicit score is calculated using the replacements
per reviewers based on their participation. Additionally, a score is
evaluated from the implicit connection to relevant reviews through
what they call an Singular Value Decomposition-like (SVD) lower
rank decomposition approach.

Ouni et al. [19] focused on social connections. They the connec-
tions between a submitter and reviewer and a reviewer’s knowledge
associated with similar code snippets as input. Then, the recommen-
dations are done using a search-based approach (genetic algorithms)
to recommend reviewers.

Jiang et al. [10] developed CoreDevRec, a tool that uses file paths
as input and a Support Vector Machine-based approach to recom-
mend code reviewers. Their approach is only able to recommend
core members of a given project.

A different approach using set operations is suggested byMikolaj
et al. [8] proposed a profile-based approach. A developer’s profile
is a set that contains all folders and files that the developer has
interacted. To make the recommendations for a given code change,
all existing profiles are compared (using Jaccard coefficient and
Tversky index) with the files and folders of the change, which
results in a score for each developer.

Kovalenko et al. [14] implemented an Information retrieval-
based recommendation system that was deployed in two compa-
nies (Microsoft and Jetbrains). They analyzed the performance of
their approach using data from production environments. Further-
more, they evaluated the usefulness of their approach through
semi-structured interviews and questionnaires. The results indicate
that the recommendations are often perceived as relevant and effort
saving.

Peng et al. [20] extracted data associated with open source
projects through archival research, interviews, and questionnaires
to identify the usefulness of Facebook Mention bot, a code reviewer
recommendation tool. They found that most developers that the
tool help them saving time to identify adequate reviewers. However,
they also found that most developers believe that the tool leads to
unbalanced review work load.

The main limitations of existing literature can be summarized
as follows:

• Existing literature only uses data from open source projects
to validate code reviewer recommendation approaches (the
only exception is Kovalenko et al. [14]).

• Most studies have not validated their code reviewer recom-
mendation approaches in production or collected the opinion
of developers about those approaches (the exceptions are
Kovalenko et al. [14] and Peng et al. [20]).

• The validation of existing approaches are done using accu-
racy metrics such as precision, recall, and Mean Recipro-
cal Rank (MRR). They compare a list of reviewers recom-
mended by their proposed approach with the list of actual

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Using a Context-Aware Approach to Recommend Code Reviewers: Findings from an Industrial Case Study ICSE, May 23–29, 2020, Seoul, South Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

reviewers in the extracted data (from open source projects
in most cases). If this type of validation is not possible to
know whether the actual reviewers were adequate to review
the pushed code or if a recommended reviewer not part of
the actual reviewers’ list was adequate or not.

• Most approaches focus on getting the best reviewer “on
paper” and rarely take into account the workload of potential
reviewers. A possible implication of this greedy approach is
the high review workload of a few developers. Furthermore,
the more reviews a developer does, the better match for
future reviews a developer will be, leading to a “vicious
circle”.

• Context-aware approaches have not be used to recommend
code reviewers. This type of approach is able to handle the
limitations of traditional recommendation systems (e.g., the
cold start problem). It has also been successfully used in
other domains (e.g., fashion recommendation [15]).

With the investigation reported in this paper, we aimed at ad-
dress the aforementioned limitations of existing research. Carrot is
recommendation tool that uses a context-aware approach to recom-
mend code reviewers. Our tool also makes an attempt to balance the
workload of code reviewers. Furthermore, we have deployed Carrot
in a real project in Ericsson. Finally, we evaluated Carrot’s perfor-
mance, usefulness, and feasibility by means of feedback provided
by Ericsson developers.

3 RESEARCH DESIGN
In this section, we describe the research design used to conduct the
research. We conducted an improvement case study [22], which
involved a literature review, semi-structured interviews and ques-
tionnaires as data collection methods.

3.1 The case and unit of analysis
The case company is Ericsson1. The case product is BSS (Business
Support System) comprising 30 subsystems/products. The system
was deployed in production for the first time in the second semester
of 2018 but have been in development for more than half a decade.
The development of this product involves more than 1000 employ-
ees distributed in centers of excellence located in Sweden, India,
Canada, and Brazil.

The products are developed by multiple teams with different
responsibilities, often directly connected to a few repositories. The
same repository can be owned by multiple teams. The teams have
from 5 to 8 members and use agile practices in their daily work.
There are many differences in how the teams operate in regards to
Gerrit changes. The most impacting difference is the way they cur-
rently add reviewers; some teams have the policy to add the entire
team as reviewers; some go by areas of responsibility (sometimes
unknown by a developer); and others choose reviewers more freely
inside the same community, (a large pool of developers). Another
difference is the specific role of the design lead and how involved
they are in all aspects of the code base. In some cases, anyone can
review the change, and the design lead just gets involved if there is
a need. For other cases, a design lead should (very much preferred)

1www.ericsson.com

review a particular part. Depending on how critical a repository is
and what the specific change entails, it might be necessary or not.

Additionally, some teams have implemented Gerrit hooks that
when triggered, add a pre-made review list. This is often by adding
+1 review themselves to tell the other developers the change is ready
for review. The different review processes are the main reason that
some of the evaluations are split into two for the two subsystems.

3.2 Research Approach
We used the following six step approach to carry out the reported
research:

(1) Factor identification - consists of the literature review as
well as the complementary interviews with experienced de-
velopers to discuss and find suitable factors.

(2) Factor selection - is the process of filtering the identified
factors, looking at the availability and complexity; which is
based on an exploratory analysis of the available data includ-
ing the thoughts and ideas collected from the experienced
developers.

(3) Approach selection - consists of finding a suitable recom-
mendation approach that can work with the desired factors
previously identified. This consists of identifying possible
machine learning approaches that are viable and can accept
the data.

(4) Predictive performance - it is calculated with the help of
Mean Reciprocal Rank (MRR) to give an early sanity check
of the chosen algorithm.

(5) Recommendation suitability - it is the feedback collected
through a questionnaire when the developer request a rec-
ommendation. The developers provide their feedback on the
suitability of the recommended candidates.

(6) Questionnaire (candidate) - it is a set of questions asking
the recommended candidate reviewers if they see themselves
as suitable reviewers for the given change.

(7) Questionnaire (feasibility) - it is the questions for the
static validation [9] of the tool, which is used to evaluate the
real feasibility of Carrot.

MRR is calculated with the following Equation , whereQ means the
number of times recommendations were requested (queries) and
ranki refers to the position wherein the first relevant recommended
item appears for for the i-th query. The result is between 1.0 and 0.0,
where 1.0 means that all recommendations had an actual reviewer
on the first position and 0.0 means that they did not present any
actual reviewer.

MRRscore =
1
|Q |

∗

|Q |∑
i=1

1
ranki

(1)

3.3 Data Collection
We used multiple data collection methods in this study including
a literature review, semi-structured interviews, repository mining
and two questionnaires (see Table 1 for more details).

We describe the details of the interviewees and questionnaire
participants in the following:

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE, May 23–29, 2020, Seoul, South Korea Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

• Interviews - We conducted six semi-structured face-to-face
on-site interviews of experienced software developers. The
interviewees were selected by the Unit Manager. The average
length of the interviews was about half-hour. The experience
of the interviewed developers varied from four to ten years
(average experience of 7.5 years).

• Questionnaire (accuracy) - To see how the developers using
Carrot view its recommendations with regards to accuracy,
we administered a questionnaire inside the Carrot tool (see
likert scale options against recommended candidates in Fig-
ure 1). Through this questionnaire, we collected the opin-
ion of the developers to see how strongly they (dis)agree
with Carrot’s recommendations. During the validation pe-
riod consisting of two weeks, Carrot was used to make 47
recommendation requests.

• Questionnaire (candidate) - It was aimed to collect the feed-
back of the candidates recommended by Carrot as reviewers
to ascertain the suitability of the recommendations. After
deployment and testing of Carrot, this questionnaire was
sent to a sample of 36 developers that were recommended by
Carrot as reviewers for the ten randomly selected changes.
In response, 26 developers answered the questionnaire.

• Questionnaire (feasibility) - To test the feasibility of the Car-
rot as a recommendation tool, the developers who used Car-
rot during the testing period were asked to provide their
feedback. This questionnaire was answered by 8 developers.

3.4 Data Analysis
To analyze our data, we compiled a factor list for RQ1 from the
literature review and the interviews. We used historical data to
control Carrot’s recommendation for RQ2.1. Lastly, we used basic
descriptive statistics to identify the trends in the questionnaires’
responses corresponding to RQ2.2 and RQ3.

4 CARROT OVERVIEW
Carrot is a recommendation system that utilizes a hybrid approach
(context aware) for performing recommendations. To use it, the
user provides a valid code change id. As a result, Carrot provides a
list with the top 5 reviewers and their respective reviewworkload. It
also allows the users to provide feedback on the recommendations.
In the remainder of this section, we provide more details about
Carrot architecture and its associated micro services.

4.1 Architecture
Carrot was developed using python 3.6 and is composed by five
microservices, which are deployed using Docker containers, uWSGI,
and Nginx. The tool can be used either via the available Flask-based
GUI (see Figure 1) or REST API calls.

Figure 2 shows an overview of Carrot’s architecture. The dotted
lines represent data channels, and the other lines are bi-directional
communication channels for requests and response data. The blue
boxes represent the microservices, while the red box represents
the intermediate storage where the ML model is located (a pickle
object2).

2docs.python.org/3/library/pickle.html

Figure 1: The Carrot web interface.

The Core microservice orchestrates the operation of the other
services. It also handles the functionality used to obtain the feedback
from Carrot’s users about the recommendations.

The ETL microservice performs the data extraction, transforma-
tion and loading of the data. It has two responsibilities: i) extract
data (code changes and the associated authors and reviewers) from
the version control system (Gerrit in our case) every day and stores
it in a database; ii) extract the data (from Gerrit) associated with
an input code change that a user expects recommendations from
Carrot. Note that this module also transforms the data to the format
required by the ML microservice.

The ML microservice uses the data extracted by the ETL mi-
croservice and trains (once per day) a model to recommend code
reviewers (see Section for more details). The trained model is stored
as a pickle file. Note that Carrot considers both code changes and
code reviews to train the model. Carrot accounts for code review
data explicitly since the ETL microservice extracts this type of data
through the Gerrit API. Code changes are accounted for by means
of the self-reviews done by the developers. In the studied case, the
author of a given code change is required to review its own code in
addition to other developers. As a consequence, even if a developer
has not reviewed a file modified by some other developer, if s/he has
modified the file before, it will have self-reviewed his/her change
and this will be considered when training the ML model.

Recommend is the microservice that loads the trained model
to perform a recommendation for a given code change. It loads
the trained model and requests the ETL (via the Core) to obtain
the data (file paths and repository) associated with the given code
change id. After, it splits the file paths into directories and file
extensions. The repository name, along with the folders and file
extensions are provided as input to the trained model. As a result,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Using a Context-Aware Approach to Recommend Code Reviewers: Findings from an Industrial Case Study ICSE, May 23–29, 2020, Seoul, South Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Data collection methods used in the study

Data source Description Questions
Literature review Code review factors identified in related and previous

work.
RQ1

Semi-structured
interviews

Complementary information on the factor identification
from literature. Includes additional identified factors as
well as ideas and limitations on the already discovered
ones.

RQ1

Repository mining The data from Gerrit required to perform the initial ex-
ploratory analysis, but also the factor selection for Carrot.
This data is also responsible for training the recommenda-
tion model.

RQ2.1

Questionnaire
(candidate)

Feedback on the suitability of the recommendation from
the candidate’s point of view.

RQ2.2

Questionnaire
(accuracy)

A scale of the suitability of the recommendations from
the developer requesting the recommendation.

RQ2.2

Questionnaire
(feasibility)

Feedback on the usefulness of Carrot from the developer’s
point of view.

RQ3

Figure 2: Carrot’s architecture.

the trained model predicts a score for each developer. This score
reflects the suitability of each developer to review the given code
change. Then, the developers are sorted by the calculated scores
(descending order).

The final step carried out by Recommend is the calculation of the
code review workload associated with the developers. The work-
load is measured in two ways: i) the number of reviews conducted

in the last 30 days by each developer; ii) how many standard de-
viations the number of reviews conducted by a developer is from
the mean number of reviews conducted by all developers in the
last six months. Candidates with less than 0 reviews in the last 30
days are removed from the list. This is done to avoid recommend-
ing someone that may be on vacation or on leave. Finally, Carrot
recommends the top five developers from the resulting list.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE, May 23–29, 2020, Seoul, South Korea Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

The Carrot-Front microservice provides the front-end of Car-
rot. This microservice enables the users to request code reviewer
recommendations, along with an indication of their respective re-
view workloads (a review counter and a color indicator). The color
indicator can have three different values: i) red, if the review work-
load is equal or above three standard deviations from the mean
(high load); yellow, if the review workload is between two and three
standard deviations from the mean (medium load); iii) green other-
wise (low load). These thresholds are commonly used to identify
abnormalities in data.

Another responsibility of Carrot-Front is to provide a feedback
form for Carrot’s users. The users can grade the correctness of each
recommended reviewer using a 5-point scale, wherein 1 means
strongly disagree and 5 means strongly agree. The users can also
provide free text-feedback. Note that we used the data gathered
through this feedback form to evaluate Carrot.

4.2 Recommendation Engine
The recommendations provided by Carrot are calculated using a
context-aware approach. More specifically, we implemented the
LightFM algorithm [15] using the python library provided by the
author3. LightFM combines both collaborative filtering [1] and
context-based filtering [1]. We decided to implement this hybrid
approach because it handles well the so-called cold start problem
and sparse interactions [15]. Furthermore, it has presented good
performance [15] in recommendation contexts similar to the one ad-
dressed in this paper. When recommending code reviewers, the cold
start problem happens when new files are added to the repositories,
i.e. it is not possible to directly link the new files to the potential
reviewers. Furthermore, the interaction between files and potential
reviewers is sparse since not all files are modified or reviewed by
all reviewers.

Collaborative filtering uses the collaborative power of the interac-
tions between users (code changes in our case) and items (potential
reviewers in our case provided by to make recommendations. It is
often the case that not all developers have reviewed all files in a
repository. This means that the matrix that relates code changes
and developers is sparse (there are many empty cells/relationships).
The matrix, called interaction matrix, has dimension c x d, where
c means the number of unique changes and d means the number
of unique developers who have interacted with at least one of the
files in the changes.

Collaborative filtering methods are able to obtain the missing
interactions because the existing interactions are frequently highly
correlated. The interactions can be obtained via memory-based
methods [1] or model-based methods [1]. LightFM uses model-
based latent factor collaborative featuring, wherein where the inter-
action matrix is factorized into two matrices (change latent vector
and developer latent vector).

Pure collaborative filtering struggles with the code start problem.
LightFM handles this problem by accounting for the meta-data
associated with the changes. In Carrot, we used the following meta-
data features: directory, repositories, and file extension (see Section
5). The changes are related to the meta-data through a binary matrix
of dimension c x (d + r + e), where c means the number of unique

3github.com/lyst/lightfm

changes, d means the number of unique directories, r means the
number of unique repositories, and e means the number of unique
file extensions. In this matrix, 1 means that a given feature is present
in a change, while 0 means the absence.

To calculate the score (ŝik) that reflects how suitable is a devel-
oper k to review code change i , LightFM uses Equation , where qi
means the latent representation of change i , pk means the latent
representation of developer k , bi represents the bias term of code
change i , andbk means the bias term of developerk . The parameters
of this equation are obtained by by an optimization approach (more
specifically, stochastic gradient descent), which aims at maximising
the likelihood of the data conditional on the parameters.

ŝik = qi .pk + bi + bk (2)
LightFM has eight hyperparameters. Table 2 shows the hyper-

parameter values we used in Carrot, which are the default values
recommended by Kula [15].

Table 2: The hyperparameters used in Carrot.

Hyperparameter Value
Epsilon 1.09e-08
Learning rate 0.02
Learning sched-
ule

adadelta

Loss warp
Max sampled 22
No components 40
Rho 5.51e-09
User alpha 8.24e-09

5 RESULTS AND DISCUSSION
In this section, we show the results associated with our research
questions.

5.1 RQ1 - Review Factors
Table 3 summarizes the data collected through the literature review
and the interviews. The results show that the two prominent factors
are: path usage and repository activity. The usage of time and
activeness is also cited in multiple studies and interviews. The
categorization used for the factors is fairly rough, since it would
not be viable to use every single option as it’s own category. For
example the path similarity under file consists of simple character
count, common directory count and more advanced algorithms.
The category and factor is a bucket for types that in some way
analyze the file paths.

The factors used as input for Carrot are in bold letters in Table 3.
To select these factors, we used the following criteria:

C1 - Is explicitly discussed in the interviews.
C2 - Is talked about in reviewed literature.
C3 - Is available through automated extraction (does not require

manual input).
C4 - The extraction complexity is reasonable (extracting the

required data is not a non trivial task).
6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Using a Context-Aware Approach to Recommend Code Reviewers: Findings from an Industrial Case Study ICSE, May 23–29, 2020, Seoul, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Factors from literature review, exploratory analysis and interviews.

Category Factor Description
Int.
Freq

Lit.
Freq Source

Time Time limit Limit length of history analyzed and used. 3 2 [16, 25]

Freshness Consider new as higher weight or other
way around.

1 3 [12, 13,
26]

Activeness Time period First and last day the developer have been
active.

2 [11, 27]

Frequency. How often comments are made. 2 [19, 27]
Recency How recent comments are. 3 3 [12, 19,

27]

File Path Path comparison or usage in one way or
another.

4 7 [11, 12, 16,
23–26]

Modifications Who have changed the line previously. 4 1 [5]

Commit Title Semantic analysis of commit title. 1 [11]
Description Semantic analysis of commit message. 1 [25]
Change type Is it a bug, a re-factoring, how complex is

it. All these things affect who should make
the review.

2

Social Network Build network with comments. 1 2 [11, 19]
Feedback Find developers that give helpful and pos-

itive feedback.
1 2 [2, 12]

Repository Activity The contribution made, number of com-
mits, comments and reviews.

4 4 [12, 13, 16,
27]

C5 - The analysis complexity is reasonable (data size and com-
parison is within reason).

C6 - Is a non punishing attribute (relatively unbiased).
C7 - The data is reliable (the meaning of the data is trustworthy

and does not change).

5.2 RQ2 - Carrot Performance Evaluation
In this section, we present the results associated with RQ2.

5.2.1 RQ2.1: Evaluation using historical data. To answer RQ2.1, we
calculated the MRR. The calculation was performed on the last six
months of data (up until 2019-05-03). The model was trained on
two years of data with the end date before the testing data. The
training and testing data were strictly separated, with both sets
being represented in the format of an interaction matrix. The inter-
actions in the testing matrix are the changes that recommendations
are performed on with an actual interaction being counted as a
positive value in the MRR.

The MRR score of the recommendation system was calculated as
0.37 on the historical data of six months. This score is equivalent to
an average rank of 2.7 in the recommendation list. In other words,
on average Carrot presents an actual reviewer in rank 2 or 3 of the
list of recommendations.

While it is clear that the tool could be improved in terms of
MRR, the goal is not to aim for only a good MRR (instead also
consider non-obvious candidates). The score can be seen as a form
of baseline or sanity check to establish that the algorithm is on the
right track.

5.2.2 RQ2.2: Perceived accuracy. We evaluated the perceived accu-
racy of Carrot from two perspectives: developers who used Carrot
to find relevant reviewers and candidates recommended by Carrot.

The results (see Table 4) show that the developers, who used Car-
rot to find relevant reviewers, are in agreement with 78% (strongly
agree - 53%, agree - 23%) of Carrot’s first recommendations. The
results also show that the strong agreement reduces as we move
from the first to the fifth recommendation. The higher agreement
with the first recommendation is understandable as the tool aims
to recommend the best suitable candidate as the top candidate. The
results also show a noticeable level of disagreement with Carrot
recommendations. The disagreement may be due to the difficulty in
recommending the relevant candidate for specialized components.
Carrot may not have found the relevant reviewer due to faulty
implicit relations used by the algorithm or a failure to draw some
connection.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE, May 23–29, 2020, Seoul, South Korea Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Developers’ perceptions regarding Carrot’s recommendations.

Survey question Strongly agree Agree Neutral Disagree Strongly disagree
RQ2.3: How accurate are the recommendations? - perception of developers selecting code reviewers (N = 47)

Agreement with Carrot’s first recommendation 53% 23% 13% 9% 2%
Agreement with Carrot’s second recommendation 47% 19% 13% 17% 4%
Agreement with Carrot’s third recommendation 28% 26% 23% 21% 2%
Agreement with Carrot’s fourth recommendation 34% 19% 21% 23% 2%
Agreement with Carrot’s fifth recommendation 43% 15% 23% 17% 2%
Percentages in the table are rounded off to the nearest ten.

Table 5 presents the perceptions of the candidates recommended
by Carrot. The results show that a majority of the recommended
candidates in our questionnaire sample (96% in total) felt comfort-
able in reviewing the given change, indicating a very high suitability
of the recommendations. To further elaborate, the candidates were
also asked to inform if they have previously worked on the same
file. The results show that 74% of the candidates shared that they
had worked with the same file before. For example, see some quotes
below:

“Already worked in this part of code.”
“It is in the repository that I am the owner of.”
“It’s front-end related code and it’s the area I sit most
with.”

It is important to note that when files are added for the first time,
they would not have direct dependencies at that stage. Therefore,
besides experience of working in the same file, we also asked can-
didates to share if they have previously worked on similar files. We
found that 89% of the candidates in our sample had worked with
similar files before the given change. Furthermore, all candidates
noted (both strongly agree and agree responses together) that they
were familiar with the language used in the change, and they could
also understand what the code aimed to do. See, for example, some
quotes from the recommended candidates:

“I’m familiar with the use case, and I have a good un-
derstanding of the contents of the change.”
“I’m familiar with the background and understand the
contents of the change.”
“I’m very familiar with the code area affected by the
change.”

Looking at the candidates responses together, the results show
that majority of the respondents had positive perception about
Carrot’s recommendations.

5.3 RQ3 - Carrot feasibility
The question aims to validate the feasibility of Carrot as a suitable
code reviewer recommendation tool. We performed this validation
by sending a questionnaire (see Table 6) to experienced reviewers.
Eight reviewers ranked Carrot with regards to its usefulness and
ability to improve the lead time and workload.

5.3.1 RQ3.1. The results (see Table 6) show that the majority of
the respondents (75%) agree or strongly agree that Carrot is useful
to select relevant reviewers. Some reviewers may not be obvious,
but are still relevant to review the change. It is relatively more
difficult to find such reviewers. We asked the participants to judge

Carrot’s ability to find such non-obvious but relevant reviewers. The
results show that over 60% respondents think that Carrot helped in
identifying non-obvious reviewers that are still relevant to review
the change. Furthermore, about 87% of the respondents have a
positive perception (both agree and strongly agree) about Carrot’s
ability to help new developers in finding the relevant reviewers.

5.3.2 RQ3.2. The results (see Table 6) show that the majority of the
respondents do not think that Carrot helps in decreasing the lead
time for code reviews. There is currently no known explanation
for this sentiment. An important note is that the tool in its current
use requires a developer to manually enter the web page, copy and
past the change ID and then copy one or more names into Gerrit
to add them as reviewers.

5.3.3 RQ3.3. The results (see Table 6) show that only half of the
respondents agree that Carrot is helpful in balancing the workload
of reviewers. No direct explanations were provided in the answers,
but comments like the following one indicate that some changes
need to be reviewed by a specific set of developers (i.e. not many
developers to balance among).

“Bumps are primarily handled by build masters, unless
they contain special changes.”

Each team has a design lead, who is an experienced developer hav-
ing good knowledge about the product’s architecture. It would not
be possible to balance for the changes that needed to be reviewed
by the design leads (similar to build masters).

6 THREATS TO VALIDITY AND LIMITATIONS
The validity threats associated with our investigation are discussed
using the categories reliability, internal, construct and external
validity described by Runeson and Höst [22].

Reliability is about the extent to which the collected data and
analysis are dependent on the specific researchers[22]. We involved
multiple researchers during all phases of the study to minimize
the potential reliability related validity concerns. The first two
authors developed the case study protocol, interview guide and
questionnaire iteratively based on the feedback of the third author.
Data collection was performed by the first two authors. The fourth
author reviewed and contributed to the data analysis, which was
also lead by the first two authors.

Internal validity relates to the confounding factors that could
impact the validity of the result [22]. We identified the factors using
a literature review and interviews. It is possible that we missed out

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Using a Context-Aware Approach to Recommend Code Reviewers: Findings from an Industrial Case Study ICSE, May 23–29, 2020, Seoul, South Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 5: Recommended candidates’ perceptions regarding Carrot’s recommendations.

Survey question Strongly agree Agree Disagree Strongly disagree
RQ2.3: How accurate are the recommendations? - perception of reviewers recommended by Carrot (N = 26)

I feel comfortable reviewing the given change 63% 33% - 4%
I have previously worked with the files in the change N/A 74% 26% N/A
I have previously worked with files similar to the ones in the change N/A 89% 11% N/A
I am familiar with the language used in the change 74% 26% - -
I understand what the code aims to do in the change 67% 33% - -
Percentages in the table are rounded off to the nearest ten.
N/A means the response option (i.e., strongly agree or disagree) is not relevant for this question.

Table 6: Experienced reviewers’ perception regarding Carrot’s feasibility.

Survey question Strongly agree Agree Neutral Disagree Strongly disagree
RQ3.1: How useful is Carrot to recommend reviewers? (N=8)

Carrot is useful to select adequate code reviewers 25% 50% - 12.5% 12.5%
Carrot can recommend non-obvious relevant reviewers - 62.5% - 37.5% -
Carrot will help new developers to find relevant reviewers 12.5% 75% - 12.5% -

RQ3.2: What is Carrot’s ability to help decrease the lead time for reviews? (N=8)
Carrot will help reduce lead time for the code reviews 0 37.5% 0 50% 12.5%

RQ3.3: What is Carrot’s ability to help balance the workload of reviewers? (N=8)
Carrot will help to balance the reviewers’ workload 0 50% 0 37.5% 12.5%

some relevant studies in the literature review. We performed inter-
views of six developers having varying experience level to gather as
many relevant factors as possible. We used three questionnaires to
collect data from the study participants during the study. Further-
more, the questionnaires were sent to only relevant respondents
to avoid getting incorrect answers. For example, the questionnaire
about recommended candidate’s perceptions about Carrot’s feasi-
bility, was only sent to the candidates that were recommended by
Carrot.

External validity concerns the extent that the findings can be
generalized and how interesting they are to people outside of the
investigated case [22]. We performed the case study in a partic-
ular context (i.e., at Ericsson), and therefore the results are not
generalizeable beyond the studied case. However, our empirical
approach that we used to evaluate Carrot would be interesting to
other researchers working in the same area.

Construct validity concerns the extent of how well the opera-
tional measures represent and answer the research questions [22].
A possible threat is the misinterpretation of the questions in the
interviews. At the start of the interviews we clarified the purpose
of the interview and how the information will be used. Regarding
the questionnaire, We used an iterative process to design and im-
prove the questionnaires instrument in order to avoid ambiguities.
However, it is still possible that some respondents misunderstood
some parts in our questionnaires.

7 CONCLUSIONS AND FUTUREWORK
In this work, we conducted an improvement case study to address
challenges associated with identifying relevant code reviewers. We
developed a recommendation tool Carrot using a machine learning
based approach (context aware collaborative filtering). We deployed

the tool for a testing period of two week during which Carrot was
used to recommend reviewers for a total of 47 changes. For major-
ity of these changes, the involved developers were in agreement
with Carrot’s first recommendations. Furthermore, most of the rec-
ommended candidates shared that they have either worked in the
same or similar file before or understand what the code aims to
do. Overall, most of them felt comfortable in reviewing the change.
During the static validation with 8 experienced code reviewers,
Carrot was not found to be helpful in reducing the lead time and
balancing the workload of the reviewers. In our future work we
aim to conduct a long-term study to investigate the impact of using
Carrot on the lead time of the code reviews and also its ability to
balance the workload of the reviewers. We also to plan to integrate
Carrot in the code review tool Gerrit, which is used in Ericsson, to
further improve its usefulness, and to see if it helps in reducing the
code review lead time.

ACKNOWLEDGMENTS
The authors are very thankful to all Ericsson developers who pro-
vided helped us identifying the relevant factors to recommend
adequate reviewers and also provided their feedback in relation to
Carrot.

REFERENCES
[1] Charu C. Aggarwal. 2016. Recommender Systems: The Textbook (1st ed.). Springer

Publishing Company, Incorporated.
[2] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017.

SentiCR: A customized sentiment analysis tool for code review interactions. ASE
2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering (2017), 106–111. https://doi.org/10.1109/ASE.2017.8115623

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. Proceedings - International Conference on Software
Engineering (2013), 712–721. https://doi.org/10.1109/ICSE.2013.6606617

9

https://doi.org/10.1109/ASE.2017.8115623
https://doi.org/10.1109/ICSE.2013.6606617

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE, May 23–29, 2020, Seoul, South Korea Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[4] Deepika Badampudi, Ricardo Britto, andMichael Unterkalmsteiner. 2019. Modern
Code Reviews - Preliminary Results of a SystematicMapping Study. In Proceedings
of the Evaluation and Assessment on Software Engineering (EASE ’19). ACM, New
York, NY, USA, 340–345. https://doi.org/10.1145/3319008.3319354

[5] Vipin Balachandran. 2013. Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recommendation.
Proceedings - International Conference on Software Engineering (2013), 931–940.
https://doi.org/10.1109/ICSE.2013.6606642

[6] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: which problems do they fix? Proceedings
of the 11th Working Conference on Mining Software Repositories - MSR 2014 (2014),
202–211. https://doi.org/10.1145/2597073.2597082

[7] Ricardo Britto, Daniela S. Cruzes, Darja Smite, and Aivars Sablis. 2018. Onboard-
ing software developers and teams in three globally distributed legacy projects:
A multi-case study. Journal of Software: Evolution and Process 30, 4 (2018), 1–17.
https://doi.org/10.1002/smr.1921

[8] Mikolaj Fejzer, Piotr Przymus, and Krzysztof Stencel. 2018. Profile based recom-
mendation of code reviewers. Journal of Intelligent Information Systems 50, 3
(2018), 597–619. https://doi.org/10.1007/s10844-017-0484-1

[9] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. 2006. A Model for Technology
Transfer in Practice. IEEE Software 23, 6 (Nov 2006), 88–95. https://doi.org/10.
1109/MS.2006.147

[10] Jing Jiang, Jia Huan He, and Xue Yuan Chen. 2015. CoreDevRec: Automatic Core
Member Recommendation for Contribution Evaluation. Journal of Computer
Science and Technology 30, 5 (2015), 998–1016. https://doi.org/10.1007/s11390-
015-1577-3

[11] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. 2017. Who should
comment on this pull request? Analyzing attributes for more accurate commenter
recommendation in pull-based development. Information and Software Technology
84 (2017), 48–62. https://doi.org/10.1016/j.infsof.2016.10.006

[12] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: How Developers See It. ICSE: International Conference on Software
Engineering (2016), 1028–1038. https://doi.org/10.1145/2884781.2884840

[13] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W.
Godfrey. 2015. Investigating code review quality: Do people and participation
matter? 2015 IEEE 31st International Conference on Software Maintenance and
Evolution, ICSME 2015 - Proceedings (2015), 111–120. https://doi.org/10.1109/
ICSM.2015.7332457

[14] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-
berto Bacchelli. 2018. Does reviewer recommendation help developers? IEEE
Transactions on Software Engineering (2018).

[15] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th {ACM} Conference on Recommender
Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015. ({CEUR} Workshop
Proceedings), Toine Bogers and Marijn Koolen (Eds.), Vol. 1448. CEUR-WS.org,
14–21. http://ceur-ws.org/Vol-1448/paper4.pdf

[16] Jakub Lipčák. 2017. Optimal Recommendations for Source Code Reviews.
Masaryk University (2017).

[17] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality Categories and Subject Descriptors. Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR’14) (2014), 192–201. https:
//doi.org/10.1145/2597073.2597076

[18] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189. https://doi.org/
10.1007/s10664-015-9381-9

[19] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2017. Search-based peer
reviewers recommendation in modern code review. Proceedings - 2016 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2016
(2017), 367–377. https://doi.org/10.1109/ICSME.2016.65

[20] Zhenhui Peng, Jeehoon Yoo, Meng Xia, Sunghun Kim, and Xiaojuan Ma. 2018.
Exploring How Software Developers Work with Mention Bot in GitHub. In
Proceedings 6th International Symposium of Chinese CHI. ACM, 152–155.

[21] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software
peer review practices. Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2013 (2013), 202. https://doi.org/10.1145/2491411.
2491444

[22] Per Runeson and Martin Höst. 2009. Guidelines for conducting and report-
ing case study research in software engineering. Empirical Software Engineer-
ing 14, 2 (2009), 131–164. https://doi.org/10.1007/s10664-008-9102-8 arXiv:gr-
qc/9809069v1

[23] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz,
Norihiro Yoshida, and Hajimu Iida. 2014. Improving code review effectiveness
through reviewer recommendations. Proceedings of the 7th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering - CHASE 2014 (2014),
119–122. https://doi.org/10.1145/2593702.2593705

[24] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken Ichi Matsumoto. 2015. Who should
review my code? A file location-based code-reviewer recommendation approach
for Modern Code Review. 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings (2015), 141–150.
https://doi.org/10.1109/SANER.2015.7081824

[25] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should re-
view this change?: Putting text and file location analyses together for more
accurate recommendations. 2015 IEEE 31st International Conference on Soft-
ware Maintenance and Evolution, ICSME 2015 - Proceedings (2015), 261–270.
https://doi.org/10.1109/ICSM.2015.7332472

[26] Zhenglin Xia, Hailong Sun, Jing Jiang, Xu Wang, and Xudong Liu. 2017. A
hybrid approach to code reviewer recommendation with collaborative filter-
ing. SoftwareMining 2017 - Proceedings of the 2017 6th IEEE/ACM Interna-
tional Workshop on Software Mining, co-located with ASE 2017 (2017), 24–31.
https://doi.org/10.1109/SOFTWAREMINING.2017.8100850

[27] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-
cally Recommending Peer Reviewers in Modern Code Review. IEEE Transactions
on Software Engineering 42, 6 (2016), 530–543. https://doi.org/10.1109/TSE.2015.
2500238

10

View publication statsView publication stats

https://doi.org/10.1145/3319008.3319354
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1002/smr.1921
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1109/MS.2006.147
https://doi.org/10.1109/MS.2006.147
https://doi.org/10.1007/s11390-015-1577-3
https://doi.org/10.1007/s11390-015-1577-3
https://doi.org/10.1016/j.infsof.2016.10.006
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1109/ICSM.2015.7332457
https://doi.org/10.1109/ICSM.2015.7332457
http://ceur-ws.org/Vol-1448/paper4.pdf
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1007/s10664-008-9102-8
http://arxiv.org/abs/gr-qc/9809069v1
http://arxiv.org/abs/gr-qc/9809069v1
https://doi.org/10.1145/2593702.2593705
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1109/ICSM.2015.7332472
https://doi.org/10.1109/SOFTWAREMINING.2017.8100850
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/TSE.2015.2500238
https://www.researchgate.net/publication/338037691

	Abstract
	1 Introduction
	2 Related work
	3 Research design
	3.1 The case and unit of analysis
	3.2 Research Approach
	3.3 Data Collection
	3.4 Data Analysis

	4 Carrot Overview
	4.1 Architecture
	4.2 Recommendation Engine

	5 Results and Discussion
	5.1 RQ1 - Review Factors
	5.2 RQ2 - Carrot Performance Evaluation
	5.3 RQ3 - Carrot feasibility

	6 Threats to validity and Limitations
	7 Conclusions and future work
	References

