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Abstract— This letter presents an incoherent change detection
algorithm (CDA) for wavelength-resolution synthetic aperture
radar (SAR) based on convolutional neural networks (CNNs).
The proposed CDA includes a segmentation CNN, which
localizes potential changes, and a classification CNN, which
further analyzes these candidates to classify them as real changes
or false alarms. Compared to state-of-the-art solutions on the
CARABAS-II data set, the proposed CDA shows a significant
improvement in performance, achieving, in a particular setting,
a detection probability of 99% at a false alarm rate of
0.0833/km2.

Index Terms— CARABAS-II, change detection, change detec-
tion algorithm (CDA), convolutional neural network (CNN), deep
learning, synthetic aperture radar (SAR), ultrawideband (UWB),
very high frequency (VHF), wavelength-resolution.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has been used in
remote-sensing applications for decades to capture

high-resolution images, independent of weather and light con-
ditions [1]. Ultrawideband (UWB) very high-frequency (VHF)
wavelength-resolution SAR systems are useful in monitoring
targets concealed under dense foliage since small scatterers,
such as leaves and branches, have almost no influence in the
generated images. The resolution of these systems is in the
order of the radar signal wavelength, thus achieving maximum
resolution [2]. For wavelength-resolution SAR systems, there
is likely only a single scatterer per resolution cell, which
results in SAR images without suffering the influence of
speckle noise. This characteristic of wavelength-resolution
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SAR images promotes stability in time, a feature that can be
very well explored in applications that make use of two or
more SAR images acquired at different time passes [2], [3].

A very important application for civilian and military pur-
poses is change detection, which was the primary motivation
to present a challenge problem for the detection of targets
in foliage using UWB VHF SAR images [4]. The data
set presented in [4] consists of 24 UWB magnitude SAR
images, acquired with the CARABAS-II system, operating at
20–85 MHz, HH-polarization, and an incidence angle of 58◦.
The CARABAS II data set was made publicly available
in [5]. The SAR images were acquired in a restricted forest
area in northern Sweden. Each image contains 25 military
vehicles concealed under dense foliage. In [4], a baseline
change detection algorithm (CDA) was also presented, which
is composed of three parts; change analysis, constant false
alarm rate (CFAR) normalization, and detection analysis. After
that publication, several incoherent CDAs for wavelength-
resolution SAR images have been proposed using the
CARABAS-II data set for performance evaluation [6]–[9]. For
instance, two approaches have achieved reasonable detection
performances and low false alarm rates (FARs) by using
CFAR detection methods considering the use of only two
SAR images [4], [6]. On the other hand, we can find interest-
ing change detection approaches that use SAR image stacks
[7], [8]. The CDAs presented in [7] and [8] explored the stacks
in different ways. While the former uses the stacks to obtain a
ground scene prediction without targets and uses the result as
inputs of a very simple CDA, the latter proposes a CDA based
on a noise canceller algorithm, using three SAR images. Both
solutions provided a good tradeoff between detection probabil-
ity and FAR. In Dal-Molin et al. [9] proposed a CDA based on
logistic regression. The results show that the FAR could be sig-
nificantly reduced, even without a stage for threshold selection.

This letter presents an incoherent CDA for wavelength-
resolution SAR images based on convolutional neural net-
works (CNN). Due to their great potential for learning
complex spatial patterns, CNNs have been vastly used for
texture recognition and object classification in photographic
images [10] and more recently also in SAR images [11]–[13].
The proposed CDA exploits CNNs in two stages: 1) a first
CNN analyzes a difference image to localize potential changes
and 2) a second CNN further inspects these candidates and
their neighborhoods to determine whether they are either real
changes or false alarms. Compared to other state-of-the-art
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solutions on the CARABAS-II data set, the proposed approach
shows a significant improvement in detection performance and
FAR for all operating points considered.

II. DATA SET

The CARABAS-II data set [5] contains 24 amplitude images
preprocessed with radiometric calibration and geocoding tech-
niques. Each image was acquired over the same geographic
area of 3000 m × 2000 m and contains 25 targets concealed
under foliage. The four different target deployments present
in the data set are associated with four flight missions, each
consisting of six flight passes under three different flight
headings. The system has a spatial resolution of approximately
2.5 m, and each image pixel corresponds to 1 m2, so each
image has 3000 × 2000 pixels.

The 25 targets consist of three types of military vehicles:
ten TGB11, of dimensions 4.4 m × 1.9 m × 2.2 m;
eight TGB30, of dimensions 6.8 m × 2.5 m × 3 m; and
seven TGB40, of dimensions 7.8 m × 2.5 m × 3 m. The center
coordinates of the vehicles’ positions are provided in the data
set. The performance of a CDA is evaluated by comparing
the coordinates of the targets identified in a particular image
with those of the true targets. For each target identified, if it
is closer than 10 m to any true target contained in the image
under analysis, the identified target is declared to be a true
target. Otherwise, it is declared to be a false alarm.

A. Data Set Split and Evaluation

A common practice in deep learning, when applied to large
data sets, is to split the data set into training, development,
and test sets, with the second one used for hyperparameter
selection and the last one for final performance evaluation.
However, this approach is unsuitable for small data sets such
as CARABAS-II, since it compromises the amount of training
and test data and may lead to an unreliable performance
evaluation. An alternative is to use k-fold cross-validation [10],
which consists of partitioning the data into k equal-sized
nonoverlapping subsets (folds) and creating k splits of the data,
where, for each split, one of the folds is used as test data and
the remaining ones as training data. Following [9], we have
used sixfold cross-validation for final performance evaluation,
so each split contains 20 train images and four test images.
The distribution of the 24 images into the six folds is presented
in Table I. For model development and hyperparameter selec-
tion, only the 20 images from the first five folds were used,
under fivefold cross-validation, so as to separate the images
of the last fold for the final performance test.

III. PROPOSED ALGORITHM

The proposed CDA consists of four sequential steps.

1) Preprocessing: a reference image is subtracted from the
monitored image, generating a difference image; this
image is then normalized to have zero mean and unit
variance.

2) Semantic Segmentation: the normalized difference image
is fed to a CNN that outputs a probability map with

TABLE I

SIXFOLD CROSS-VALIDATION DISTRIBUTION
OF THE CARABAS-II DATA SET

the same size indicating the probability of each pixel
being part of a change. Then, a thresholding operation
is applied, resulting in a binary image of pixels classified
as parts of a change.

3) Clustering: A clustering algorithm is applied to the
positive pixels, and the central point of each cluster is
identified.

4) Classification: Small patches of the normalized differ-
ence image, centered on the cluster centers, are fed to
a second CNN to be further classified as changes or
clutter.

The classification step is optional and is used to improve
performance by reducing false alarms. An example prediction
of the proposed algorithm on the CARABAS-II data set is
illustrated in Fig. 1. More details on the algorithm are given
below.

A. Semantic Segmentation

The segmentation model consists of a fully CNN designed
to classify each pixel as being part of a change based on
low-level features from the local region surrounding the pixel.
The proposed architecture is described in Table II. The ReLU
activation function is used in the first three convolutional
layers, while the output layer uses Sigmoid activation. The
CNN output is a probability map with the same size as the
input image, which is then quantized to a binary image by
thresholding at ω1 ∈ [0, 1]. In other words, for a pixel (i, j),
the segmentation output is computed as

ŷi j =
{

1 (is part of a change), if ỹi j > ω1

0 (is not part of a change), otherwise
(1)

where ỹi j ∈ [0, 1] denotes the corresponding CNN output.
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Fig. 1. Examples of the application of the proposed algorithm. (a) Monitored
image (Mission 3, Pass 5). (b) Reference image (Mission 5, Pass 5).
(c) Difference image. (d) Probability map produced by the segmentation CNN,
in which brighter pixels are more likely to be part of a change. (e) Binarized
segmentation mask after thresholding (ω1 = 0.68). (f) Candidate patches
(marked as purple squares) sent to the classification CNN. (g) Final prediction
of changes made by the classification CNN (ω2 = 0.75), with correctly
predicted changes marked as green squares, undetected changes as yellow
squares, and false alarms as red squares. For comparison, another example
is shown of (h) segmentation mask with a different threshold (ω1 = 0.96)
and (i) its corresponding prediction obtained after the clustering operation,
without using the classification CNN.

TABLE II

SEGMENTATION CNN ARCHITECTURE

It is noted that, when multiple changes appear in close
proximity in the same image, we run the risk of overfitting to
the arrangement of changes if the receptive field of the output
layer is too large. To avoid this situation, the (diagonal of the)

TABLE III

CLASSIFICATION CNN ARCHITECTURE

receptive field of the output layer must not be larger than
the minimum distance between two changes from any image
in the data set. For the CARABAS-II data set, this minimum
distance is measured to be approximately 18 m, equivalent to a
receptive field of 18/

√
2 ≈ 13 pixels. The receptive field of the

proposed model is 7 pixels, well below the maximum value,
ensuring that the model will not overfit to global information.

B. Clustering

The pixels classified as positive by the segmentation step
are subject to a clustering operation, to identify high-density
regions as potential changes and discard isolated points as
outliers. We have used the popular DBSCAN algorithm [14],
which is a density-based algorithm that finds core points
with at least nminpts − 1 neighbors and expands clusters from
them. Two points are considered neighbors if their distance
is at most ε. We have used the parameters nminpts = 8 and
ε = 5 pixels.

After the clusters are found, their centroids are computed,
and these coordinates are passed to the classification model.

C. Classification

For each cluster found, a small window centered on the clus-
ter center is extracted from the original normalized difference
image. We have used windows of size 34×34 pixels, which are
small enough to contain no more than one target. These image
patches are then individually fed to a second CNN, whose
goal is to classify whether a patch contains a change or not.
The classification CNN architecture is described in Table III.
The ReLU activation function is used in all convolutional
layers, except for the output layer, where Sigmoid activation
is applied. It is noted that, due to the input dimensions and
the stride and padding used, the input to the Conv 5 layer is
1 × 1 × 64, so this layer is equivalent to a fully connected
layer with a single unit.

Finally, the CNN output ỹ ∈ [0, 1] is binarized as

ŷ =
{

1 (contains a change), if ỹ > ω2

0 (does not contain a change), otherwise
(2)

where ω2 ∈ [0, 1] is the classification threshold.
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D. Training

For the segmentation model, we have used as ground truth
a binary mask, with the same size as the original images,
containing 1’s along a square of pixels around the target
centers and 0’s for the remaining pixels. We have used 3 × 3
squares for TGB11 vehicles and 5 × 5 squares for both
TGB30 and TGB40 vehicles.

For the classification model, we have used a sliding window
of 34 × 34 pixels over each training image, with a vertical
and horizontal overlap of 10 pixels, to extract patches that do
not contain any targets. Patches that contain the center of any
target are discarded. This process creates about 104 patches
per image, which are labeled as negative training examples
and assigned a value of 0. The positive examples, which are
assigned a value of 1, are obtained by capturing windows
of 34 × 34 pixels centered on the target centers, resulting in
exactly 25 patches per image. This approach yielded the best
performance in the development phase when compared with
the extraction of uncentralized positive patches, which is likely
because the clustering algorithm provides points very close to
the target centers when a true target is found.

Due to the severe class imbalance on both training sets,
we have used as the loss function for both models the
so-called Balanced Focal Loss cross-entropy function [15],
which is known to decrease training speed and increase model
performance for data sets with high-class imbalance. This loss
function is defined as

FL(py) = −αy(1 − py)
γ log(py) (3)

where py is the probability that the predicted label is equal
to the ground truth y ∈ {0, 1} (i.e., p1 is the unquantized
output ỹ and p0 = 1 − p1), αy ∈ [0, 1] is the weighting
factor corresponding to the label equal to y, used to address
the class imbalance of the data set, and γ is the focusing
parameter, used to tune the importance given to harder-to-learn
examples. These parameters were set to γ = 2, α1 = 0.9999
and α0 = 0.0001 for the segmentation model and to γ = 2,
α1 = 0.9 and α0 = 0.1 for the classification model.

To increase the number of positive examples as well as
reduce overfitting, we have used data augmentation for the
classification model, which in our initial experiments has
shown to increase performance. Each positive example was
duplicated by a counterclockwise rotation of 90◦ together with
the addition of white Gaussian noise with variance σ 2 = 100.
Moreover, the same transformations were also performed on
a subset of negative examples without duplication, with prob-
ability 0.7 of replacing the example with its transformation,
so that the total number of negative examples was unchanged.

Both models were trained using Adam optimizer [16]. The
segmentation model used Glorot initialization [17] for weights
while the classification model used He initialization [18].
For the segmentation model, the learning rate was set to
lr = 0.001 and training took place for 1100 epochs. For
the classification model, the learning rate was set to lr =
2 × 10−5 and training took place for 15 epochs. This choice
of hyperparameters produced the best performance on tests
executed in the development phase. The disparity between

Fig. 2. ROC curves of the proposed CDA without the classification step
(obtained by varying ω1) and with the classification step (obtained by varying
ω2 for fixed ω1 = 0.68). Curves or points extracted from [4], [7]–[9] are also
shown for comparison.

the number of epochs may be related to the huge difference
between the number of examples used to train each network.

IV. RESULTS

In this section, the performance of the proposed CDA over
the CARABAS-II data set is presented and compared with
other wavelength-resolution SAR CDAs. The chosen metrics
of comparison are the probability of detection Pd , defined
as the ratio between the number of correctly detected targets
and the total number of targets, and the FAR, defined as the
ratio between the number of false alarms and the area under
surveillance.

Initially, we evaluate the performance of the proposed CDA
without the classification CNN, that is, using the predictions
obtained after the clustering step. The result is displayed
in Fig. 2 in terms of a receiver operating characteristic (ROC)
curve, obtained by varying the segmentation threshold ω1.
For comparison, the performances of other CDAs tested
on the CARABAS-II data set [4], [7]–[9] are also shown.
As can be seen, even without the classification step, the pro-
posed method already outperforms the existing ones for all
FAR ≥ 0.174/km2.

To evaluate the performance of the full proposed CDA, note
that, for every value of ω1 chosen, a different ROC curve can
be computed by varying the classification threshold ω2. Thus,
to select the best ω1, it would be useful to compute a single
metric that summarizes the performance of the system over
all thresholds ω2. A popular such metric is the area under
the ROC curve (AUC). Fig. 3 shows the AUC (computed up
to FAR ≤ 0.8/km2) for several values of ω1. Only the first
five folds were used in this experiment. Since ω1 = 0.68 has
yielded the highest AUC, it has been selected and kept fixed for
the remaining experiments. The resulting ROC curve (obtained
by varying ω2) for the proposed CDA is shown in Fig. 2.
As can be seen, the classification CNN allows for a significant
reduction of the FAR for any given Pd .
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Fig. 3. AUC of the proposed CDA for fixed values of ω1.

TABLE IV

PERFORMANCE OF THE PROPOSED CDA PER FOLD WITH
FIXED THRESHOLDS OF ω1 = 0.68 AND ω2 = 0.86

TABLE V

PERFORMANCE COMPARISON WITH OTHER CDAS TESTED

WITH THE CARABAS-II DATA SET

Table IV presents the Pd and FAR of the proposed CDA
for each of the six folds—defined in Table I—at the operating
point of ω1 = 0.68 and ω2 = 0.86. The performance of the
fold 5 is consistent with the performances of the other folds,
which suggests that the convolutional networks did not overfit
to the 20 images used to develop the models.

Still, for the above operating point, Table V compares
the Pd and FAR of the proposed solution with selected
operating points of other CDAs [4], [7]–[9]. The results
indicate that the proposed CDA outperforms other state-of-
the-art wavelength-resolution SAR CDAs by a considerable
margin, while at the same time requiring the least number of
SAR images to make a prediction.

One possible limitation of the proposed approach is that
the classification CNN was trained on a data set with a
limited number of changes. To properly detect changes whose
morphological attributes are much different from those present
in the CARABAS-II data set, the classification CNN may need
to be retrained with more representative examples.

V. CONCLUSION

In this letter, a CNN-based incoherent CDA for
wavelength-resolution amplitude SAR images has been

presented. Two CNNs are used in the proposed method:
the first one seeks potential targets in the difference image
under analysis, while the second one further inspects these
potential changes to classify them as either true changes
or false alarms. Experiments on the CARABAS-II data set
show that, in terms of the detection probability versus FAR
tradeoff, the proposed CDA achieves a performance superior
to existing state-of-the-art CDAs evaluated on the same data
set. In a particular operating point, the proposed method
attains a probability of detection of 99% with a FAR of
0.0833/km2.
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