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Abstract—Background: Establishing traceability from require-
ments documents to downstream artifacts early can be beneficial
as it allows engineers to reason about requirements quality (e.g.
completeness, consistency, redundancy). However, creating such
early traces is difficult if downstream artifacts do not exist
yet. Objective: We propose to use domain-specific taxonomies
to establish early traceability, raising the value and perceived
benefits of trace links so that they are also available at later
development phases, e.g. in design, testing or maintenance.
Method: We developed a recommender system that suggests trace
links from requirements to a domain-specific taxonomy based on
a series of heuristics. We designed a controlled experiment to
compare industry practitioners’ efficiency, accuracy, consistency
and confidence with and without support from the recommender.
Results: We have piloted the experimental material with seven
practitioners. The analysis of self-reported confidence suggests
that the trace task itself is very challenging as both control
and treatment group report low confidence on correctness and
completeness. Conclusions: As a pilot, the experiment was suc-
cessful since it provided initial feedback on the performance
of the recommender, insight on the experimental material and
illustrated that the collected data can be meaningfully analysed.

Index Terms—Traceability, Requirements, Domain-specific
Taxonomy, Recommender, Pilot Experiment

I. INTRODUCTION

Tracing requirements to downstream artifacts has benefits,
such as more efficient and correct software maintenance [1],
enables requirements-based testing [2], and is often demanded
by regulations on software production [3]. However, require-
ments engineers lack motivation to create traces as they usually
are not the beneficiaries of traceability [4]. Furthermore,
creating traces from requirements to downstream artifacts
requires that these downstream artifacts already exist. Early
requirements traces would increase their value for engineers,
as they would allow to reason about requirements correctness,
completeness or consistency.

To reap these early trace benefits for requirements engi-
neers, we propose to trace requirements to domain-specific
taxonomies. This enables early requirements analysis by ex-
ploiting the information encoded in a taxonomy, i.e. the
definitions and hierarchies of domain concepts. For example,
engineers can reason about the completeness and correctness
of requirements specifications [5], [6], [7]. This is particularly
useful when the number of requirements is high (in the order
of thousands) and are written over a longer period of time by

different engineers. Furthermore, when information systems
are used where direct traces between artefacts are not possible
(e.g. in an outsourcing scenario), the taxonomy serves as an
“index” to establish traceability.

The approach to use a domain-specific taxonomy as a mean
to enable early traceability across time, infrastructure and
organizational borders is contingent on two assumptions: (1)
such a taxonomy exists or can be created at low cost. In this
paper, we assume that such a taxonomy exists; (2) engineers
are able to associate taxonomy concepts to requirements. The
evaluation of this second assumption is subject of an ongoing
research project. The main research question we address is:

RQ To what extent can a recommender system support practi-
tioners in associating requirements with concepts defined
in a taxonomy?

We implemented a recommender system, CCR, that we
are currently evaluating with practitioners. In this paper, we
report on a pilot that aimed at validating the experiment design,
material and instrumentation. As the number of participating
subjects in the pilot was seven, we are not able yet to answer
our main research question. However, these initial results
provide an indication that the task, associating requirements
with taxonomy objects, is difficult, even for domain experts.
Furthermore, we illustrate metrics which could be helpful for
researchers evaluating recommender systems in general.

The remainder of the paper is structured as follows. In
Section II we provide background on knowledge organization
systems, introduce the basic underpinnings of CCR and
point to related work. We document the experimental plan in
Section III, analyze the results in Section IV and discuss the
outcome of the pilot experiment in Section V. We conclude
the paper in Section VI.

II. BACKGROUND AND RELATED WORK

A. Knowledge Organization Systems

There exists a wide spectrum of processes and artifacts that
are used in practice to represent entities and their relationships
for various knowledge oriented applications [8], [9]. A con-
trolled vocabulary is a closed list of terms that describes a
subject area. It homogenizes the assignment of terms to con-
cepts as everyone is limited to the same, existing definitions



(for example, the Library of Congress Subject Headings1).
Taxonomies provide additional structure to controlled vocabu-
laries. The term “taxonomy” is rooted in the greek taxis, which
broadly means the arrangement of things, and nomos, meaning
law or science. A taxonomy is a set of rules to order things,
abstract or concrete. Taxonomies can, but don’t have to, be
hierarchical and encode a particular slice of knowledge about
the world. Modifications to content and structure typically
require the consensus of the community that has ownership
over the taxonomy. The IEEE Thesaurus2 is an example that
contains engineering, technical and scientific terms, organized
in a broad to narrow progression. While taxonomies are useful
constructs to encode and share knowledge, they are one-
dimensional and based on a closed vocabulary [9]. Ontologies
allow to model relationships between concepts, even if they
are part of different taxonomies. This makes ontologies ver-
satile in representing domain knowledge, requiring however
also formal languages, such as the Web Ontology Language
(OWL)3, that enable computational reasoning and applications
in artificial intelligence [9].

In the remainder of this paper, we focus on the use of tax-
onomies as knowledge organization systems since we studied
the proposed approach, described next, in a context in which
a domain-specific taxonomy already exists. Nevertheless, we
point out that the basic idea we propose is independent from
the underlying knowledge structure. The type of analyses,
however, that can be performed once requirements are traced,
depends on the sophistication of the used knowledge or-
ganization system. For example, requirements mapped to a
controlled vocabulary may allow analyses on the consistency
of requirements. Analyses that are targeted at understanding
the completeness of requirements specifications may require
ontologies that are able to reflect structure and relationships
between entities.

B. The CC Recommender (CCR)

CoClass4 (CC) is a taxonomy that describes objects in the
construction domain. For our approach, we make the assump-
tion that the most information-bearing language construct is
the noun. Therefore, to establish traces between requirements
and taxonomy objects, it would make sense to base those
traces on nouns. We use a basic natural language processing
pipeline that consists of a segmenter, tokenizer, stemmer and
part-of-speech tagger to identify nouns, using the DKPro
framework [10]. The domain-specific terminology found in
the taxonomy and in the requirements uses agglutination,
i.e. complex terms are built from two or more component
morphemes. Therefore, we also de-compound the identified
nouns with SECOS [11].

Once the nouns in a requirement are identified, we associate
each noun with 0..n taxonomy objects. This association is es-
tablished by three predictors. Each predictor score contributes

1http://id.loc.gov/authorities/subjects.html
2https://www.ieee.org/publications/services/thesaurus.html
3https://www.w3.org/TR/owl2-overview/
4https://coclass.byggtjanst.se/about#about-coclass

to a confidence score [0..1] that is used to rank the taxonomy
objects. This strategy allows us to add new predictors in the
future and to weigh the components contributing to the total
score. Next, we describe the currently implemented predictors
that are calculated for each noun found in a requirement.

a) Exact match predictor: If a stemmed, de-compound
noun is found in the requirement and in the CC taxonomy, the
score is computed as follows:

Pexact =
1

fnoun

where fnoun refers to the number of taxonomy objects in which
the noun appears in. The more prevalent the noun is, i.e. the
less distinguishing power between objects it has, the lower the
predictive score.

b) Semantic similarity predictor: While the requirements
are written by domain experts, they are not necessarily using
the exact terminology that is used in the taxonomy. We de-
veloped therefore a predictor using word embeddings [12]that
exploits semantic relatedness among nouns. Instead of using
a pre-trained model, e.g. from Wikipedia articles, we trained
our own domain-specific model. First, we constructed a text
corpus by searching the web programmatically5 for nouns used
in the labels of CC taxonomy objects. This resulted in 540,409
documents from which we extracted6 the text to construct a
word2vec model7. Then, for each noun in a requirement, we
use the model to find the 10 most similar nouns, i.e. “proxies”,
and try to find them in the set of taxonomy nouns. Any
such identified “proxy” produces another association between
a requirement noun and a taxonomy object, with the score:

Psimilarity =
1

fproxy ∗ cos(θnoun−proxy)

where fproxy refers to the number of taxonomy objects in
which the “proxy” appears and cos(θnoun−proxy) refers to the
cosine similarity of noun and “proxy” based on the custom
word2vec model. The more similar a “proxy” is to a noun
found in a requirement, and the less frequently it appears in the
taxonomy, the higher the semantic similarity predictor score.

c) History predictor: Finally, we take into consideration
past decisions, that is, data reflecting whether an association
between a particular noun and taxonomy object was accepted
or rejected by the user of the recommender. After a particular
noun-object association has been rejected n times (the default
is five, but can be configured to any number), the predictor
score is set to −∞. Otherwise, the score is calculated as:

Phistory =

fassoc−min(fassoc)
max(fassoc)−min(fassoc)

fnoun

where fassoc refers to the number of existing associations
between the noun and taxonomy object. In the numerator of

5https://azure.microsoft.com/en-us/services/cognitive-services/
bing-web-search-api/

6https://textract.readthedocs.io
7https://radimrehurek.com/gensim/models/word2vec.html

http://id.loc.gov/authorities/subjects.html
https://www.ieee.org/publications/services/thesaurus.html
https://www.w3.org/TR/owl2-overview/
https://coclass.byggtjanst.se/about#about-coclass
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the fraction we scale the frequency of occurrences to (0..1].
All predictors produce scores in this range, which allows us
to calculate an overall confidence score:

Pconfidence =
Pexact + Psimilarity + Phistory

3

We have implemented CCR using INCEpTION [13], a
web-based annotation platform. The user is presented a re-
quirement and for each (recognized) noun, one or more
suggested associations with taxonomy objects are shown. The
suggestions are ordered by the calculated Pconfidence score.
The user can then either reject or accept suggestions until no
more suggestions are available. The source code for CCR,
the instrumentation of the experiment, and the collected data
together with the statistical analysis is available online8.

C. Related Work

We direct readers to the systematic literature review by
Dermeval et al. [14], who reviewed the research on ontologies
as knowledge organization systems supporting requirements
engineering activities, and to Borg et al. [15] who reviewed
information retrieval approaches to traceability recovery.

III. EXPERIMENT PLANNING

We have designed a quasi-experiment with industry practi-
tioners, following the guidelines by Wohlin et al. [16] and
report the experiment planning according to Jedlitschka et
al. [17]. We decided against a randomized design as we
wanted to balance control and treatment group with respect to
the participants’ experience on requirements and the domain-
specific taxonomy. Furthermore, we decided to involve indus-
try practitioners to avoid constructing artificial domain-specific
material (requirements, taxonomy) that would be suitable for
e.g. student subjects.

A. GQM

We refine the research question posed in the introduction
with the Goal-Question-Metric (GQM) approach [18].

a) Goal: Analyze manual and recommender aided as-
sociation of requirements with a taxonomy, for the purpose
of evaluation with respect to efficiency, accuracy, consistency
and confidence from the viewpoint of domain experts in the
context of an infrastructure project.

The evaluation aspects of efficiency, accuracy, consistency
and reliability were inspired by work on effectiveness evalua-
tion of expert systems [19].

b) Questions:
Q1 Is there a difference in time spent to create manual and

recommender aided associations?
Q2 Is there a difference in accuracy between manual and

recommender aided associations?
Q3 Is there a difference in consistency between manual and

recommender aided associations?
Q4 Is there a difference in reported confidence by engineers

creating manual and recommender aided associations?

8https://zenodo.org/record/3827169

c) Metrics: Table II maps metrics to questions.

TABLE II: Metrics to answer questions
Question Metrics

Q1 time spent per requirement (M1)
Q2 expert-based judgment on correctness of associations (M2)
Q3 within-group variation of made associations (M3)
Q4 self-reported confidence in terms of completeness (M4) and

correctness (M5) of made associations

We measure M1 by the time in seconds spent to associate
a requirement with zero or more objects from the taxonomy.
The correctness of associations (M2) is assessed independently
by two domain experts. They are tasked to distribute 10
points to the instances of associations made by the experiment
participants. The judgment is made without knowledge of
whether the associations were made with or without the aid
of the recommender. We measure thereby the relative and
not absolute correctness of the associations. We measure
variance within the group (M3) by encoding each requirement
as a vector that represents the associated taxonomy objects.
The larger the angle between the vectors representing the
association instances, the larger the within group variation
(and the lower the association consistency). The idea for this
measure stems from the vector space model [20] that is often
used to encode text documents to analyze their similarity.
Finally, we measure confidence in completeness (M4), i.e.
whether all relevant taxonomy objects were associated with the
requirement, and correctness (M5), i.e. whether the made as-
sociations are correct. The experiment participants self-report
their confidence on a scale from -2 to +2 per requirement.

B. Hypotheses and Variables

Based on the metrics defined in the GQM, we formulate
five hypotheses pairs. We show one pair and explain next how
the five pairs are generated.

H0n :MnCCR =Mnsearch

H1n :MnCCR 6=Mnsearch
(1)

where n = [1..5] and the dependent variables Mn=[1..5]

refer to the metrics defined in Table II. The factor is how the
association between requirement and CC object is supported
in INCEpTION, with two possible treatments. CCR refers
to the treatment using the CC recommender we described in
Section II-B, while search refers to the treatment using the
full-text search to find CC taxonomy objects in INCEpTION.

Note that our hypothesis formulations do not assume di-
rectionality because we do not compare an established and
a new method. Both alternatives, associating requirements to
CC objects with and without CCR support, are activities that
are not familiar to the participants (control of experience is
discussed in Section III-C).

C. Participants

We recruited seven domain experts with varying experience
working with requirements and the domain-specific taxonomy.

https://zenodo.org/record/3827169


TABLE I: Pre-questionnaire results

Variables CCR search

P1 P2 P3 P4 P5 P6 P7

Current role Product
owner asset
management

Contract
specialist

Proj. manager
technical
requirements

Information
management
research

Proj. manager
technical
requirements

Bridge special-
ist

Proj. manager
technical
requirements

Years in role 5 10 6 2 5 9 6

Total exp. 5 10 23 15 25 35 23

Writing
requirements

once a month a couple of
times per year

a couple of
times per year

a couple of
times per year

a couple of
times per year

never a couple of
times per year

Read
requirements

once a month daily once a week a couple of
times per year

daily once a week once a week

Experience CC yes no yes yes yes no no

Use of CC once a month N/A a couple of
times per year

a couple of
times per year

daily N/A N/A

Location onsite offsite onsite onsite onsite offsite onsite

Available frequency options: daily, once a week, once a month, a couple of times per year, less frequently, never

The participants filled in a questionnaire that we used balance
treatment and control group, based on experience with read-
ing and writing requirements, use of the CC taxonomy and
their overall experience in the construction domain (Table I).
Two remotely participating subjects were equally distributed
between treatment and control group. There was an uneven
number of participants and we chose to add four to the CCR
treatment in order to collect more usage experience on the
instrument under investigation.

D. Materials

We randomly sampled 100 from a set of 1,216 requirements
that belong to an ongoing infrastructure project. The average
number of words per requirements was 19 (minimum: 5, max-
imum: 77). The CC taxonomy contained 1,420 objects. Each
object has a label, a description and associated synonyms.
Finally, the participants were given a spreadsheet in which
they reported the duration (M1) and confidence (M4, M5) for
each requirement they mapped to objects in the CC taxonomy.

E. Tasks

The participants used the web-based annotation system
INCEpTION. Both groups were tasked to annotate the same
requirements, in the same order. The only difference between
the two groups was that the treatment group received sugges-
tions from CCR, which they either accepted or rejected, while
the control group used the built-in search functionality of the
annotation tool to find the relevant objects.

F. Experiment Design

We chose for the pilot a simple one factor and two treat-
ments design [16]. All participants received the same require-
ments and were using the assigned treatment throughout the
experiment. We assigned four participants to the CCR and
three participants to the search treatment (see Table I).

G. Procedure

We carried the pilot experiment out on January 15, 2020.
We allocated one hour for explaining the principle idea of the
activity, associating requirements to CC objects, and illustrated
the mechanics of the annotation task with INCEpTION, both
using the CCR and the built-in search functionality. The
remainder of the time (two hours) was allocated to perform
the experimental task. All participants, except two who were
connected via a videoconferencing software, were located in
the same room. While the participants performed the tasks,
the author of this paper answered questions and helped par-
ticipants in case of technical issues.

H. Analysis Procedure

Due to the low number of observations collected in the
pilot experiment, we resolved to a non-parametric test statistic
with lower power (Mann-Whitney-Wilcoxon) rather than its
parametric counterpart (t-test). While the results are therefore
less robust, we deem it important to also pilot the analysis
procedure, especially since the raw data required intermediate
analyses to evaluate accuracy (Section IV-B) and consistency
(Section IV-C), as described in the respective sections.

I. Deviations from the Plan

We spent 1.75 hours, instead of the allocated 1 hour, on
the experiment introduction. Including a 15 minute break, 1
hour was spent on the experiment execution, instead of the
originally planned 2 hours.

IV. ANALYSIS

During the allocated time for the experiment execution, the
participants completed a varying number of tasks (require-
ments), shown in Table III. We limit therefore our analysis
to the requirements that were annotated by all participants
(nrequirements = 7). Next, we analyse the results, answering
our four GQM questions.



TABLE III: Finished tasks by participants P1-P7
CCR search

P1 P2 P3 P4 P5 P6 P7

Number of tasks 28 32 24 14 12 13 7
Median time per task (s) 72 59 69 179 105 17 128

A. Efficiency

Median duration in groups CCR and search was 61 and
101 seconds. The distribution in the two groups did not differ
significantly (Mann-Whitney-Wilcoxon U = 209, nCCR =
28, nsearch = 21, p = 0.09). We cannot reject H01 at α <
0.05. Figure 1 shows a box plot of the annotation duration for
each requirement.
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Fig. 1: Annotation duration (seconds) per requirement

B. Accuracy

The participants produced 49 observations, i.e. associa-
tions between requirements and CC objects. Two domain
experts evaluated their relative accuracy (see Section III-A)
by distributing 10 points on the associations for each require-
ment. Table IV shows the frequency of the evaluators agree-
ments/disagreements and the score they were apart, indicating
that the two experts had a good agreement.

TABLE IV: Inter-rater agreement
Agreements (score difference = 0) 23
Disagreements (score difference = 1) 17
Disagreements (score difference = 2) 6
Disagreements (score difference = 3) 3
Disagreements (score difference > 3) 0

The median accuracy score in groups CCR and search was 4
and 8. The distribution in the two groups differed significantly
(Mann-Whitney-Wilcoxon U = 0, nCCR = nsearch = 7,
p = 0.002). We reject H02 at α < 0.05. Looking at the
bar plot in Figure 2, which shows the average score of the
two evaluators, we see that search resulted in more accurate
results than CCR.
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Fig. 2: Association accuracy per requirement

TABLE V: Example of coding to assess consistency

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 1 1 1 1 1 1 1 2 1 3
P2 1 1 1 1 1 1 1 5 1 1
P3 1 1 1 1 1 1 1 5 1 1
P4 1 1 1 1 1 1 1 5 1 3

C. Consistency

Table V shows an example of how four participants an-
notated a requirement. Each term T1..10 is coded with a
label representing a CC object (1 representing no object). For
example, participant P1 associated term T8 with object 2 while
P2, P3 and P4 associated the same term with object 5. In
order to assess consistency between participants within one
treatment group, we calculated the average pairwise cosine
similarity between their association vectors which results in
a score between (0..1], 1 indicating complete consistency.
The median consistency score in groups CCR and search
was 0.98 and 0.90. The distribution in the two groups did
not differ significantly (Mann-Whitney-Wilcoxon U = 34,
nCCR = nsearch = 7, p = 0.25). We cannot reject H03 at
α < 0.05. Figure 3 illustrates the results.
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D. Confidence

Figures 4 and 5 show the results of the participants’ self-
reported confidence ([−2,+2]) in terms of correct and com-
plete associations per requirement.
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Fig. 4: Correctness confidence
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Fig. 5: Completeness confidence

Correctness confidence in groups CCR and search is low
(71%), neutral (18% and 14%) and high (11% and 14%).
The distribution in the two groups did not differ significantly
(Mann-Whitney-Wilcoxon U = 260, nCCR = 28, nsearch =
21, p = 0.47). We cannot reject H04 at α < 0.05.



Completeness confidence in groups CCR and search is
low (89% and 76%), neutral (4% and 19%) and high (7% and
5%). The distribution in the two groups did differ significantly
(Mann-Whitney-Wilcoxon U = 162, nCCR = 28, nsearch =
21, p = 0.004). We reject H05 at α < 0.05, and accept that
the self-reported confidence in terms of completeness is higher
with search.

V. DISCUSSION

The feedback collected during the experiment and the
results on the self-reported confidence on the correctness and
completeness of the associations between requirements and
CC taxonomy objects indicate that the task is challenging,
even for engineers with extensive domain experience. Both
approaches, CCR and search lead to low confidence on the
created traces. While there are indications that traces can be
created faster with CCR, search traces were judged as more
accurate. We received feedback during the experiment that the
CCR suggested associations do not consider the context of the
requirement. This corresponds well with the implementation
of the used predictors which consider currently only single
nouns.

A. Threats to Validity

We limit our discussion to two major threat dimensions [16].
a) Conclusion: The concept of tracing a requirement to

a taxonomy was new to all participants. The training was very
limited and the participants may have interpreted the task in
different ways.

b) Internal: The annotation UI within INCEpTION,
where suggestions are accepted with a single click and rejected
with a double click, caused some confusion and the partici-
pants perceived it as error prone. Furthermore, the manual
collection of spent time and confidence is error prone. Finally,
the participants may have influenced each others answers by
working in the same room, on the same requirements at the
same time.

VI. CONCLUSIONS

We proposed early requirements tracing to domain-specific
taxonomies to support the analysis of requirements specifica-
tions. We developed a recommender that suggests associations
between requirements and a taxonomy in the construction
domain. To evaluate the feasibility of creating such traces, we
designed a controlled experiment, comparing the recommender
with manually establishing associations. We measured multi-
ple dimensions to better understand the differences between
the approaches. As a pilot, the experiment was successful
since it provided initial feedback on the performance of the
recommender, insight on the experimental material and illus-
trated that the collected data can be meaningfully analysed.
Future experiments can also consider the factors participant
experience and the length of requirements. Furthermore, the
idea of using a taxonomy as a mediator to establish trace
links needs to be further validated on other artefacts than
requirements, such a design documentation or source code.
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