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Abstract. Malware authors do their best to conceal their malicious soft-
ware to increase its probability of spreading and to slow down analysis.
One method used to conceal malware is packing, in which the original
malware is completely hidden through compression or encryption, only to
be reconstructed at run-time. In addition, packers can be metamorphic,
meaning that the output of the packer will never be exactly the same,
even if the same file is packed again. As the use of known off-the-shelf
malware packers is declining, it is becoming increasingly more important
to implement methods of detecting packed executables without having
any known samples of a given packer. In this study, we evaluate the use
of recurrent neural networks as a means to classify whether or not a file
is packed by a metamorphic packer. We show that even with quite sim-
ple networks, it is possible to correctly distinguish packed executables
from non-packed executables with an accuracy of up to 89.36% when
trained on a single packer, even for samples packed by previously unseen
packers. Training the network on more packer raises this number to up
to 99.69%.

Keywords: packing · packer detection · security · static analysis · ma-
chine learning · deep learning

1 Introduction

There is a constant arms race going on between malware authors and malware
analysts. As anti-malware tools get better at detecting malware, the malware
authors are being forced to adapt new strategies to hide their malware. Modern
anti-malware tools rely mainly on two approaches: signature-based detection,
and detection based on heuristics. The first method detects malware by searching
for exactly matching unique byte-strings, called signatures, within an analyzed
file, while approaches based on heuristics estimates the behavior of the analyzed
code by e.g. enumerating called functions. Since both of these methods rely on
analyzing the malware itself, a common way of avoiding detection is to hide
the malicious software using tools called packers, which completely hide the
original code from analysis. It is reported that up to 92% of all malware is hidden
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this way [12], and 35% of these are hidden using custom, previously unseen
packers [23]. This large number of unknown packers, combined with the inability
to analyze the malicious code itself, results in anti-malware tools having a harder
time detecting potential malware. To make matters worse, some packers are
designed to procedurally generate packed executables that always look different,
even if the original file is the same.

Detection of packed binaries, rather than malicious code itself, is useful in
several ways. As mentioned, the malware itself cannot be detected using con-
ventional methods when it is hidden. However once a file is determined to be
obfuscated it can be flagged as high priority for further analysis. If such detection
is used in e.g. a network intrusion detection system (NIDS), the search space to
identify the responsible file of an intrusion could be decreased. Such files could
also be stopped from entering the network until they are checked and cleared
by an administrator. Since a large portion of the tools used to hide malware are
custom made, and therefor not previously known, studying ways to generically
detect these kinds of obfuscation techniques is important. Despite this, studies
conducted on packer detection (discussed in Section 8) do generally not evaluate
how general the proposed methods are, but they only evaluate on packers known
by the model. A notable exception is a study by Bat-Erdene et al from 2017 [9].

The purpose of this study is to determine whether deep learning, in particular
recurrent neural networks, can be used to differentiate between the procedurally
generated code mentioned above, and compiler generated code. We will deter-
mine whether or not this is possible by training a neural network on several data
sets derived from a large set of off-the-shelf packers, and evaluating how general
these models are. These experiments are described in Section 6. Our results show
that neural networks can be trained to make the distinction, not only for packers
in the training set, but also for previously unseen packers. To the best of our
knowledge, we are the first to use deep learning to solve this problem, and we
have evaluated our approach on the largest set of packers in the literature. Our
two main contributions are a) showing that deep learning can be used to train
models capable of distinguishing between obfuscated code and compiler gener-
ated code in the general case, and b) our classification of a very large amount of
run-time packers.

The rest of this paper is structured as follows. In Section 2, the concepts
of a packer, metamorphic packer and polymorphic packer are defined. Section 3
describes the recurrent neural network used for packer detection in this study,
and Section 4 discusses how data generation and processing was performed.
Section 5 describes how the set of packers studied in this paper was selected.
The experiment design is explained in Section 6. Results are shown in Section 7.
Previous work in the area of packer detection is laid out in Section 8, and finally
conclusions and future work are presented in Section 9.
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2 Background

The tools used by malware authors to hide their malware, referred to as packers,
have evolved from earlier tools that produced self-extracting archives [27]. The
term ”packer” originally referred to a program that packed a set of files into a
single package. This meaning has shifted over time to refer to tools that transform
executable files into another form that can reproduce the original at run-time.
This drift in terminology has led to competing definitions amongst the work in
this area. For clarity, we pin down definitions of these commonly used terms. We
also discuss the operation of a packer, as well as different kinds of packers.

2.1 Terminology

Throughout this paper, we will use the following terms to talk about packers,
and the concepts surrounding them:

– A packer is a program that transforms an executable into two parts: an
unpacking stub and the data that it operates upon.

– An unpacker or unpacking stub is a piece of code that converts data into
code.

– The original program is an executable whose signature is being hidden by
the packing process.

– The packed data is a binary stream from which the original program can be
reconstructed by the unpacker.

Most packers will perform (up to two) transformations when creating the
packed data: compressing the data, and/or encrypting the data. Typically pack-
ers that compress the packed data are referred to as compressors, and packers
that encrypt the packed data are referred as as crypters [30]. These transfor-
mations are not mutually exclusive and it is possible for a packer to be both a
compressor and a crypter.

When checking for malware using signature-based detection, the stream of
bytes in the unpacker and packed data are compared to known samples (typically
by comparing hashes). In order to avoid detection, a polymorphic packer will
create a different unpacker and packed data stream on each executable. This
may be achieved, for example, by encrypting the code via a different key on each
execution of the packer [27]. In a similar fashion, a metamorphic packer will avoid
detection by generating unpackers where the code is semantically equivalent but
not identical [27]. Programming using macros instead of actual code, where each
macro represents a set of different representations of the same operation, can
be used to accomplish this [15]. A monomorphic packer will produce the same
unpacker and packed data stream for each execution on the same input original
program [28].
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2.2 Typical Operation

Packers operate on executable files, which can be either an original program,
or an executable that has already been processed by one or more packers. This
should not matter, since the original executable is simply data to the packer.
The executable is transformed in some way, commonly through compression or
encryption, to hide the original code. Following this, an unpacking stub is created
and bundled with the transformed executable in a new executable file. The entry
point of this executable file points to the start of the unpacking stub, which will
inflate or decrypt the original executable into memory at run-time. Typically
this is done in one single pass, unpacking the whole original into memory at
once, however there are advanced packers that use multiple passes [28].

Once the original code is unpacked into memory, the unpacking stub will hand
over execution to the unpacked application. This is typically done through a tail
jump to the original entry point (OEP). The tail jump is commonly obfuscated,
e.g. by pushing the OEP to the stack and ”returning” to it, to hide where in
memory the original code starts.

It is common for packers to employ techniques for making the unpacking stub
itself harder to analyze as well. Common techniques include embedding random
data in the code, loading libraries at run-time, overlapping instructions, as well as
poly- and metamorphic code. Code can be metamorphic either by procedurally
generating the assembly code itself by choosing between synonymous assembly
sequences, or by inserting dummy basic blocks into the control flow graph of the
program. Morphine v.2.7 [17] uses both of these techniques, and also inserts
junk code, i.e. code that is semantically identical to a NOP, into the unpacking
stub to make analysis harder [14].

3 Neural Network Design

The data that is being analyzed in this study, discussed at length in Section 4.1,
is a sequence of x86 assembly instructions. Since these sequences are slices of
real code, context is crucial. For instance, while the operation of an XOR opcode
will always be the same in any given executable, the purpose can vary widely
depending on how it is used. In some contexts an XOR opcode might be used to
efficiently clear a register, while in another context it could be used to decrypt
packed data that was encrypted with an XOR-cipher. Because of this, the general
design of the neural network evaluated in this study is a recurrent neural network,
as they are well suited for learning a context sensitive sequence of data.

In particular, the neural network used in this study is made up of a multi-
layered LSTM network, and a fully connected binary classifier. The multi-layered
LSTM network has two layers, each with 128 nodes. The second of these two
layers feed into a dropout layer with 50% dropout to mitigate overfitting. The
dropout layer feed into the binary classifier, which has three layers of 128, 64
and 1 nodes respectively.

The first two layers of the fully connected binary classifier use a ReLU (Recti-
fied Linear Unit) activation function, while the last layer uses a sigmoid function.
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Fig. 1. Neural network design used in this study.

ReLU is used as it makes training the network easier while still yielding good re-
sults, while the sigmoid function is used to make sure the output of the network
is a probability between 0 and 1. We chose a sigmoid function, as opposed to
a softmax function, since we are performing binary classification in this study.
The network is illustrated in Figure 1.

The input of the network consists of the first 128 instructions of each sample
file. A sliding window is used to specify each time-step in the sequence, where
the window size w = 1 is used. Both the number of instructions and the size of
the sliding window were determined through a process that is described in [10].
Each input is labeled l ∈ {0, 1} where 0 means the instructions come from a
non-packed executable, and 1 means they come from a packed executable. The
encoding of the x86 instructions is discussed in Section 4.1.

3.1 Training

The neural network was trained for 50 epochs, with a batch size of 10∗n, where n
is the number of packers included in training. A small batch size means reduced
training time and memory requirements, while letting the network update its
weights a large number of times to facilitate learning. Each batch consisted of
both packed and non-packed samples in equal amounts, to ensure that the neural
network had equal exposure to positive (packed) and negative (non-packed) sam-
ples. Because each sample is only seen by the network exactly once per epoch,
the network need to be trained for multiple epochs to allow the network to make
a sufficient number of updates to the weights of each node, which is why the
network is trained for 50 epochs. The model with the best accuracy was saved
and used for the evaluation.

An epoch is a pass over all training and validation data exactly once.
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4 Data Collection and Preprocessing

In this section the collection and generation of the raw data used in this study
is laid out, as well as the preprocessing and filtering steps that were taken to
construct the final data set.

4.1 Data Encoding

The goal of this study is to determine if it is possible to utilize neural networks
to differentiate metamorphic code from compiler generated code. As such, the
raw data used will be binary code, which is structurally complex. It is there-
fore necessary to find a way to represent this data, so the neural network can
understand it.

The first issue to address was which data to feed to the network. A trivial
approach would be to use the raw byte values of the code, but the issue with
this approach is that some operations that are semantically different share bytes.
For instance, both JMP and INC start with the byte 0xFF. Extending this to
the whole opcode does not solve this problem, as JMP [EAX] and INC [EAX]

are semantically different but have the opcodes 0xFF2 and 0xFF0 respectively,
which are numerically very close to each other. Using the whole numerical values
for an instruction and its arguments has the opposite problem; JMP EAX and
JMP 0x1234 are semantically similar, but their numerical values, 0xFFE0 and
0xe92f120000, are very different.

The encoding scheme that we decided on was to map the assembly mnemon-
ics of the x86 instruction set to a list sorted according to the order given in
chapter 6 of the x86 manual [4], where the mnemonics are grouped by the type
of operation they perform (e.g. moves, jumps or arithmetic). Mnemonics not
described there were sorted alphabetically at the end of our list. The data fed
to the neural network are the indices of these mnemonics, meaning that se-
mantically similar operations will have similar indices, thus solving the issues
mentioned above. Based on an evaluation detailed in [10], we chose to only con-
sider the first n =128 instructions after the entry point of each executable file.
This results in fast execution, while still retaining a good average accuracy. Dis-
assemblies that were shorter than n instructions were padded with meaningless
values. However if the last disassembled instruction was a direct jump it was fol-
lowed, and disassembly continued from there. Because the disassembly will only
be too short if it reaches the end of an executable section, we know that this
has to be unconditional control flow (either JMP or RET), as otherwise execution
would risk ”falling outside” the code. Therefore we only need to consider the last
instruction. Files that could not be disassembled at all, or were not recognized
as Portable Executable (PE) files, were excluded from the data set.

https://gist.github.com/erikbergenholtz/a653d46db64c2ce490af91698f75e992
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4.2 Collection and Generation of Raw Data

The basis for the data set used in this study were 1904 executable files retrieved
from the C:/Windows directory of our reference system. These files were packed
once by each of the 42 packers found in the prestudy in Section 5 (positive sam-
ples), and were also included in the data set in their original form (negative
samples). Many packers failed to pack the whole set of 1904 files. On aver-
age, each packer could pack 1358 files. Since some of our experiments include
multiple packers in the training set, we augmented the negative samples with
the 13002 DLL files found in the C:/Windows directory of reference system. All
of these files were preprocessed according to Section 4.1, resulting in a total of
61535 positive samples and 12549 negative samples after preprocessing, meaning
that the full test set consisted of 74084 files.

These 74084 files were split into one training set, one validation set, and one
test set. The validation and test sets each consist of 10% of the total amount of
data each, i.e. 7426 files, and the remaining 59232 files are in the training set.

It is important to note that while the full data set is unbalanced, with almost
five times more positive samples than negative samples, the three subsets men-
tioned above are always balanced when used. If, for example, the neural network
is trained on a packer with 1000 samples, then 1000 negative samples are used.
If a set of packers with a total of 13000 samples is used for training, then this
set is capped at 12549 samples, and an equal amount of files is used from each
packer. In other words, in both training, validation and test sets there is always
balanced data, despite the fact that the data set as a whole is unbalanced.

5 Packer Prestudy

A prestudy was conducted to determine which packers to include in the main
study. We had two criterion for including a given packer in the main study: avail-
ability and relevance. We consider a packer to be available if and only if we can
legally acquire a copy of it without purchasing it. This means that commercial
tools are out of the scope of this study, unless they provide a free demo or trial
version. A packer is considered to be relevant if and only if it is metamorphic,
possible to execute on a modern operating system, and is able to pack 32-bit PE
files. We chose to not make the ability to pack 64-bit PE files a requirement, as
a lot of the packers we found in the prestudy were 32-bit applications, and we
wanted to include as many packers as possible. We still consider 32-bit packers
relevant, as they can run on modern 64-bit systems.

A total of 180 packers, listed in Table 1, were identified and considered for
this this study. The available packers were evaluated for relevance on a Windows
10 virtual machine, by packing the same executable twice with each packer. The
two resulting executables were disassembled with objdump, and these disassem-

Windows 10 Education 32-bit, build 17763.316
Windows 10 Education 32bit, build 17763.316
objdump -d <FILENAME>
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Table 1. Packers included in the selection process. Packers marked with green were
included in the study, and red were unavailable. Yellow are metamorphic, but not
included.

AASE Aegis Crypter AHT Entry Point Protector AKALA v3.20

Alex Protector Allaple Alloy v4.3.21.2005 Alternate exe v2.220

AntiCrack protector AntiCrack protector pro AntiUCPE v1.02 APack v0.98

Armadillo ARMProtector v0.3 ASPack v2.43 ASprotect v2018.3

ASprotect v2.78 Beria 0.07 Berio BeRoEXEPacker

BJFNT v1.3 CelsiusCrypt CodeCrypt v0.164 Code Virtualizer v2.2.1.0

ComCryptor v1.80 Corso v5.2 Crinkler 2.1a Crunch v1.0

CRYPToCRACk’s PE Protector CryptoLock v2.0 Daemon Crypt 2.0 DalKrypt v1.0

Diet DingBoy PE-Lock v1.5 DragonArmor v0.4.1 Drony Application Protect v3.0

Enigma v6.00 !EPack v1.0 !EPack v1.4 EPProtect

Escargot Excalibur v1.03 exe32pack EXECryptor v1.3

EXEFog v1.12 EXEJoiner EXEPack ExeSax v0.9.1

ExeStealth eXPressor FileXPack FSG v1.3

FSG v2.0 GHF Protector HidePX v1.4 Hmimy’s Protector

HuffComp v1.3 Hyperion JDPack KillFlower v1.2

KKrunchy v0.23a2 KKrunchy v0.23a KKryptor Krypton

LameCrypt LiteProtect LZEXE v0.91 LZEXE v0.91e

MarCrypt v0.1 marioPACKer v0.0.3 MaskPE Masspecer v3.0

Mew v11 MicroJoiner Molebox Morphine 1.5

Morphine 1.6 Morphine 1.7 Morphine 1.9 Morphine 2.7

Morphine 3.5 Morphnah MPRESS v1.27 MPRESS v2.18

MPRESS v2.19 [MSLRH] Mucki’s Protector v1.0 MZOoPE v1.0.6b

NakedPacker v1.0 NeoLite v2.0 NFO v1.0 NiceProtect

NoobyProtect NoodleCrypt v2.0 nPack NSAnti (Anti007)

NsPack v3.7 NTKrnl Obsidium v1.6.6 Obsidium v1.6.7

ORiEN PackerFuck PackMan v1.0 Pack v1.0

PCGuard v6.00.0540 PCShrink v0.71 PE-Armor PEBundle

PECompact PECRP v1.02 PECrypt32 v1.02 PEDiminisher

PELockTide v1.0 PELock v2.08 PE.ncrypt v3.0 PE.ncrypt v4.0

PenguinCrypt PE Ninja PEPaCK PE.Prot

PersonalPrivatePacker PEShiELD v0.25 PEShrinker PESpin

PEstil PETITE v2.4 PeX PKLITE32

Pohernah v1.1.0 PolyCrypter PolyCrypt PE PolyEnE v0.01+

Private EXE Protector v2.0 RCryptor RDG Tejon Crypter ResCrypt

RJoiner RkManager11 RLPack 1.21 RPolycrypt

ScrambleUPX v1.07 SecureCode Sentry ShareGuard v4.0

Shrinker v3.4 demen Shellter v7.1 SimplePack v1.0 SimplePack v1.3

SLVc0deProtector v1.12 STonePE tELock Themida v2.4.5.0

ThinApp Trap v1.21 UCFPE v1.13 Unk0wn Crypter v1.0

Unopix v0.94 Unopix v1.10 Upack UPolyX

UPX v3.91w UPX v3.95 USSR v0.31 VBox

VGCrypt v0.75 VMProtect v3.3 VPacker v0.02.10 WinKript

Winlicence v2.4.5.0 Winlite WinUpack WWPack32 v1.12

WWPack32 v1.20 XCR v0.13 XProtector XXPack v0.1

YodaCrypter v1.3 YodaProtector v1.03 ZCode v1.0.1 ZProtect

blies were compared. A packer is considered to be metamorphic, and therefore
relevant, if the disassemblies differ.

We chose to compare the disassembled code for differences, rather than the
files themselves, as we are only interested in packers where the unpacking stub
is generated dynamically. Cases where different encryption keys are used each
time, i.e. polymorphic packers, are not of interest in this study.

Monomorphic packers are excluded from the study as they are trivial to
detect using signature-based detection, and because they would only provide a
single data point for the neural network to learn from.

6 Experiments

Two experiments were performed in this study, both of which are laid out in this
section. We also discuss how the disassembly engine used in these experiments
was selected.
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6.1 Choice of Disassembler

Since the neural network works with mappings of opcode mnemonics, it is essen-
tial how to extract the mnemonics. We considered two well known, off-the-shelf
disassemblers for this study: objdump [1] and radare2 [2]. These two tools op-
erate differently, in that objdump is a linear disassembler while radare2 is a
recursive disassembler. This means that objdump will disassemble a program
from the first instruction to the last in the order instructions are laid out in the
file, while radare2 will disassemble one block of code at a time, following jump
instructions along the way. The consequences of this are that objdump will be
able to disassemble all code in the file, but may also disassemble embedded data
by mistake. radare2, on the other hand, won’t disassemble any data, but may
end up seeing very small portions of the code if it encounters indirect jumps.
The tools were evaluated on a subset of the data set used in this study, and from
this evaluation it was clear that objdump is in general able to disassemble larger
parts of the files than radare2. For this reason, we chose to use objdump in this
study. More details on the evaluation can be found in [10].

6.2 Experiment Design

The experiments laid out below were all performed with the parameters and
procedures described above. The results can be found in Section 7.

Training on a Single Packer In the first experiment, we trained the neural
network on a single packer at a time for each packer included in the study.
This allows us to determine which packers produce the model that can most
accurately distinguish packer generated code from compiler generated code, even
for packers that the neural network has not been exposed to. Being able to train
such a general model with samples from a single packer would be very beneficial,
as it would allow us to detect unknown packers, even with a small training set.

Training on n − 1 Packers, Evaluate on Excluded One In the second
experiment, a model was trained on all packers included in the experiment except
for one. The model was then evaluated on the excluded packer. This was done
for the ten packer families that yielded the most accurate models in the first
experiment. This experiment represents a realistic scenario in which we have
access to samples of many, but not all, packers, and where a new unseen packer
is being scanned by the anti-malware tool. As with the previous experiment,
begin able to train such a general model would be highly beneficial, as it would
allow us to detect unseen packers. Since it will be exposed to more kinds of
metamorphic code, it is our hypothesis that the accuracy of these models will
be higher than that of the first experiments.

objdump -Mintel -D --start-address <ENTRY POINT>
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6.3 Evaluation

The performance of each model was evaluated by estimating the probability of
a given file being packed (ppacked) once for each file in the unseen test set of
each experiment. Since we are interested in a binary prediction (packed or not
packed) we applied Equation 1 to determine whether or not a file was considered
to be packed or not.

prediction =

{
packed if ppacked > 0.5

non-packed if ppacked ≤ 0.5
(1)

Two different test sets were created for each of the two experiments described
above. For the first experiment, the first test set consisted of executables packed
by the packer used for training. The second test set consisted of packed files
from all packers. For the second set of experiments, the first test set consisted
of files packed by the one packer that was excluded from the training set. The
second test set consisted of all packers included in the experiment. All test sets
also contain non-packed files in the same amount as packed files.

Of these four test sets, we are mostly interested in the evaluation on all
packers for experiment one, and in the evaluation of the excluded packer for
experiment two. This is because these two evaluations are performed on packers
that are not included in the training sets of the experiments, and will therefore
show how general the trained model is. A more general model will be able to
more accurately detect unseen packers, which is highly desirable.

Since all our data is labeled, we are recording the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN) for the
two evaluations of each model. A true positive in our case is a file that has been
classified as packer and in fact is packed, and a true negative is a non-packed file
classified as such. Using these values, we can calculate accuracy, precision and
recall for all models.

7 Results

The results of the experiments described in Section 6 are laid out below.

7.1 Model Trained on a Single Packer

The accuracy of each model trained on a single packer can be seen in Figure 2.
For each model, the accuracy of evaluating the models on the packer itself, as well
as all packers in bulk, is shown. From the figure it is clear that most models work
well when classifying files packed by the packer used for training. However, we
are more interested in seeing how well the models generalize onto the unknown
packers. Here, some of the models perform well, with the best being the model
trained on EXEFog v1.12 with and accuracy of 89.36%, and the worst being PE

Ninja with an accuracy of only 51.16%.
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These results are very promising, as it means that by training an RNN on
only samples packed by EXEFog v1.12, we can get a model that can correctly
distinguish files from any of the 42 packers in 89.36% of the cases. This, combined
with the recall of 81.75% and a precision of 96.43%, as seen in Figure 4 in
the Appendix, makes for a good model for detection of executables packed by a
metamorphic packer, even the packer is unknown to the network.
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Fig. 2. Accuracy of model trained on the individual packers, when evaluated against
only the packer included in the training set (Self), and all packers included in the study
(All).

7.2 Model Trained on n − 1 Packers

Figure 3 shows the accuracy of the models trained on the ten packers that yielded
the most accurate models in the previous experiment, with one packer being ex-
cluded from the training set. From the graph, we can tell that the resulting
models have a very high accuracy, both when evaluated on the excluded packer
and when evaluated on all packers in the training set. The best model was the one
trained on all packers but Themida v2.4.5.0, where an accuracy of 99.69% was
achieved when evaluated on only Themida v2.4.5.0, and 97.01% when eval-
uated on all packers in the training set. The other models show a very high
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Fig. 3. Accuracy of model trained on N-1 packers, when evaluated against only the
packer excluded in the training set (Excluded), and all packers included in the training
set (All).

accuracy in general as well, with accuracies above 95% for all packers but two,
as shown in the figure. The recall and precision follow the same pattern, as shown
in Figure 5 in the Appendix.

Keeping in line with the results from the previous experiment, these results
show that it is indeed possible to train a recurrent neural network on a subset
of all metamorphic packers, while retaining the ability to accurately distinguish
the metamorphic code from compiler generated code of a normal, non-packed
executable.

8 Related Work

Although many of the following papers use the term ”polymorphic”, the pack-
ers they study is metamorphic according to our terminology, as described in
Section 2.1.

A number of methods have been proposed to address the problem of detection
of metamorphic packers, ranging from advanced signature-based detection and
entropy analysis to steganalysis.
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Signature-based detection is explored by Křoustek et al [21], and Naval et al
in [24] and [16]. The approach taken by Křoustek et al is part of the Retargetable
Decompiler project [3], and uses handcrafted heuristic signatures. In their study,
they demonstrated that the approach can identify metamorphic packers with
an accuracy of 98%. Naval et al, on the other hand, use the Smith-Waterman
algorithm together with multiple sequence alignment to generate signatures. The
method reached an accuracy of 92.5% and 99.0% when evaluated on ASPack and
PECompact respectively [24], and was later extended by parallelizing the Smith-
Waterman algorithm, yielding a speed up of up to 49.19 times the original speed,
while maintaining accuracy [16].

Ban et al [5,6] used string-kernel-based support vector machines for packer
identification, thus bridging the gap between signature-based and machine learning-
based detection. Their method could identify which packer was used to pack a
certain executable with and accuracy of 91.42%, thus outperforming PEiD.

Machine learning approaches of different kinds have also been studied in
multiple articles. Hubballi et al evaluated two approaches in 2016 [18]. The first
was a semi-supervised approach trained on data from the PE header, with an
accuracy of 98.97%, and the second was clustering approach based on the as-
sumption that packers mutate their memory at run time. This method reached
an accuracy of 100% for certain packers. Lee et al [22] studied the use of stacked
RNNs and Convolutional Neural Networks (CNN) to classify Android malware.
Features are extracted using gated recurrent units (GRU), optimized by an ad-
ditional CNN unit. The method was shown to be robust against obfuscation,
and were able to detect 99.9% of the analyzed obfuscated samples. Kancherla
et al used Byte and Markov plots to extract features which were used to train
an Support Vector Machine [20]. They concluded that the features extracted us-
ing the Markov plots performed better, with detection accuracies ranging from
83.94% for Armadillo up to 99.05% for Themida.

Xie et al proposed the use of a sample-based Extreme Learning Machine
(ELM) system for run-time packer detection [29]. Their hypothesis was that the
system would be less sensitive to erroneous or missing data if it was sample-
based, which was confirmed by experiments in which the proposed system per-
formed better than other ELMs, and reached a detection accuracy of 69.74%.

Bat-Erende et al [7,9,8] studied the use of entropy analysis for packer detec-
tion, as did Jeong et al in [19]. In all four studies, the entropy of the executable
in memory was calculated while the unpacking stub was running. Using this
analysis, Jeong et al could correctly identify the OEP of a packed binary in
72% of their tests [19]. Bat-Erende, meanwhile, could classify files as packed
or unpacked with a true positive rate of 98.0%, and an accuracy of 90.4% on
files packed once [7], and on average 98.0% on files that were packed multiple
times [8]. In [9] they showed that it is also feasible to use this method to detect
unknown packers, with an average accuracy of 95.35%. In a similar vein, Sun
et al [26] trained statistical classification models on randomness profiles of ex-
ecutables, extracted with a sliding window, to classify packed executables. The
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method was shown to have a precision between 95.5% and 100% for certain
packers.

Steganalysis, the study of detecting hidden communication inside digital
data, was proposed as a means of packer detection by Brugess et al in [13].
Their method converts the executable to a gray-scale image, from which fea-
tures are then extracted to train a support vector machine. The evaluation of
this approach show an accuracy of 99.49%.

More recently, virtual machine (VM)-based obfuscation has been observed in
industry-grade obfuscation solutions, such as VM Protect and Themida, and in
advanced malware [25]. When this technique is used, the original machine code
(e.g. x86) is converted to a byte code used by the VM. The byte code is based on
a instruction set architecture (ISA) chosen randomly at the time of conversion.
This makes reverse-engineering very time-consuming. The deobfuscation method
presented in [25] relies on static analysis. However, it is not very efficient because
it requires more or less full understanding of the VM and needs to be repeated
for each obfuscator encountered [11]. On the other hand, [11] proposes a novel
method of program synthesis based on Monte Carlo Tree Search (MCTS). Their
implementation, called Syntia, allowed them to synthesize with more than 94%
success rate the semantics of arithmetical and logical instruction handlers in VM

Protect and Themida obfuscators.

9 Conclusions and Future Work

The results presented in Section 7 show that it is indeed possible to train a
recurrent neural network to distinguish between non-packed compiler generated
code and the unpacking stub generated by a metamorphic packer. The results
also show that it is possible for such models to not only make the distinction for
packers included in the training set, but that a high level of accuracy can also
be reached for detecting previously unseen packers.

Including a single packer in the training set results in at most an accuracy of
89.36% when the model is evaluated on all packers included in the study. This
was achieved by training on EXEFog v1.12 with a sliding window size of w = 1,
and the model also had a precision of 96.43% and a recall of 81.75%. These
metrics shows that the model performs well, and that this method shows a lot
of promise.

Training the RNN on a set of packers and evaluating it on a single excluded
packer, reinforces this point. When using a set of ten packers and training on
all but one, we achieve an accuracy of 99.69% at most when training on all
ten packers except for Themida v2.4.5.0. The other packers evaluated this way
show generally high performance as well. This shows that as the number of
packers included in the test set goes up, its ability to make accurate predictions
about unseen packers goes up as well.

As the aim of this study was to simply explore the feasibility of using re-
current neural networks to distinguish between non-packed compiler generated
code and metamorphic unpacking stubs, the encoding scheme used to encode

14



the training and test data is rudimentary and naive. In future studies, we will
explore how the encoding affects the accuracy of the trained models. In partic-
ular, we will explore whether or not the output of binary analysis methods can
be used to extract more meaningful information from the PE files, to improve
the accuracy of the network presented in this study.
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Fig. 4. Recall (top) and precision (bottom) of model trained on the individual packers,
when evaluated against only the packer included in the training set (Self), and all
packers included in the study (All).
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Fig. 5. Recall (top) and precision (bottom) of model trained on N-1 packers, when
evaluated against only the packer excluded in the training set (Excluded), and all
packers included in the training set (All).
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