
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2020 IEEE East-West Design and Test
Symposium, EWDTS 2020, Varna, Bulgaria, 4 September 2020 through 7 September 2020.

Citation for the original published paper:

Adamov, A., Carlsson, A. (2020)
Reinforcement Learning for Anti-Ransomware Testing
In: 2020 IEEE East-West Design and Test Symposium, EWDTS 2020 - Proceedings,
9225141 Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/EWDTS50664.2020.9225141

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20811

978-1-7281-9899-6/20/$31.00 ©2020 IEEE

Reinforcement Learning for Anti-Ransomware Testing

Alexander Adamov

NioGuard Security Lab /

Design Automation Dep.

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine /

Dep. of Software Engineering

Blekinge Institute of Technology

Karlskrona, Sweden

ada@nioguard.com

Anders Carlsson

Dep. of Computer Science

Blekinge Institute of Technology

Karlskrona, Sweden

anders.carlsson@bth.se

Abstract—In this paper, we are going to verify the possibility

to create a ransomware simulation that will use an arbitrary

combination of known tactics and techniques to bypass an anti-

malware defense.

To verify this hypothesis, we conducted an experiment in

which an agent was trained with the help of reinforcement

learning to run the ransomware simulator in a way that can

bypass anti-ransomware solution and encrypt the target files.

The novelty of the proposed method lies in applying

reinforcement learning to anti-ransomware testing that may

help to identify weaknesses in the anti-ransomware defense and

fix them before a real attack happens.

Keywords—ransomware, machine learning, reinforcement

learning, artificial intelligence, anti-ransomware testing

I. INTRODUCTION

68% of ransomware attacks go unnoticed according to the
latest report by US cybersecurity provider FireEye [1] that
draws the cybersecurity experts’ attention to this problem.

In the previous work, we already analyzed the
LockerGoga ransomware used in the targeted attack against
Norsk Hydro in consequence of which the company needed to
switch to manual operation mode reducing the production
capacity. The discovered techniques included digital signing
of ransomware executables and multi process encryption
when a single worker process was created and responsible for
encryption only one user’s file. These techniques helped the
ransomware go under the radar. [2]

Another ransomware called Maze discovered in May 2019
and used in the recent attack against Canon on July 30, 2020
that caused the outage of the image.canon cloud service.
Before that, the Maze operators published the data stolen from
Xerox and LG companies in June 2020.

The author(s) of Maze ransomware complained that it is
so easy nowadays to bypass an antivirus protection because
they “place a signature on data section in the packer layer” that
makes EDR (Endpoint Detection and Response) [3] solutions
useless when it comes to detecting targeted ransomware
attacks. Because, once repacked, a piece of malware becomes
undetectable again.

One more recent ransomware called WastedLocker and
operated by the Evil Corp gang has shown the power of
bypassing anti-ransomware modules that typically rely
detecting anomalous behavior. The ransomware employed
Alternate Data Streams (ADS) in NTFS to drop the payload
and memory-mapped files for encrypting user’s data in
addition to digital signing employed by LockerGoga and
MegaCortex in the beginning of 2019. As a result,
WasteLocker managed to encrypt data stored on the Garmin’s
servers. [4]

Fig. 1. WastedLocker uses a self-signed digital certificate.

Fig. 2. WastedLocker stores its copy in the ADS ‘Join:bin’.

Fig. 3. WastedLocker executes its code from the ADS ‘Join:bin’.

WastedLocker also took advantage of the Lazy Writer

function of the Windows Cache Manager. This function is

used by the Windows Cache Manager to reduce the overall

number of disk I/O operations. The file's data is stored in

cache pages in the memory and then written to disk by the

Cache Manager allowing to accumulate file changes in the

memory and, only then, flush them all at once. [5]

This is enabled with memory-mapped files. In a regular

way, we need first to open a file for modification and get its

size to know how many memory pages to allocate. Then, we

call CreateFileMapping() and MapViewOfFile() to load the

file’s content to the memory. After, modifying data in the

memory, a program usually calls UnmapViewOfFile(), closes

a handle of the memory-mapped file and, only then, a file

handle.

To force Lazy Writing on behalf of the System process,

WastedLocker closes a file handle right after mapping the file

mailto:ada@nioguard.com
mailto:anders.carlsson@bth.se

but before encrypting the data to let the Cache Manager write

back the encrypted data later on behalf of the operating

system.
TABLE I

THE FILE MEMORY MAPPING EXECUTION

Regular file memory

mapping

Wastedlocker’s way

1 CreateFile() - open file CreateFile() - open file

2 GetFileSize() GetFileSize()

3 CreateFileMapping() CreateFileMapping()

4 MapViewOfFile() MapViewOfFile()

5 Modify mapped data CloseHandle(file)

6 UnmapViewOfFile() Encrypt mapped data

7 CloseHandle(file map) UnmapViewOfFile()

8 CloseHandle(file) CloseHandle(file map)

As a result, the encrypted data is flushed by the System
process after the ransomware process has already closed the
file handle.

Fig. 4. System process writes back the cached encrypted data to the

user’s file after the file handle has been already closed by the

ransomware.

As we can see, the described techniques have been

evolving and may help attackers to elude anti-ransomware
protection. Therefore, it is essential to act proactively and test
anti-malware solutions (EDR) if they can provide an adequate
response to the modern ransomware defense evasion
techniques. Attack simulation based on the discovered
techniques can be

In 2017 [6] we already made the first attempt to evaluate
the quality of anti-malware solutions by conducting the Anti-
Ransomware Test using the Ransomware Simulator with the
limited set of basic ransomware techniques to simulate
behavior of popular ransomware families. The test results
revealed that just a few products had managed to detect a
simulation of the known ransomware attacks.

In this paper, we explain how we applied Reinforcement
Learning (RL) approach to anti-ransomware testing. We
created a simulation environment that includes two major
components: Ransomware Simulator (an attacker) and
Ransomware Detector (a defender). We also introduced an
Agent that can learn with the help of RL how to perform the
ransomware attack in an optimal way bypassing Ransomware
Detector.

II. RANSOMWARE ATTACK SIMULATION

To be able to test if antiviruses (EDR solutions) can detect

an unknown ransomware attack, we propose the attack

simulation. An example of such approach is MITRE

ATT&CK Evaluation project [7]. The first evaluation of EDR

solutions was performed based on the discovered attacks by

APT29 group attributed to Russian Intelligence Service. The

attack simulation included tactics and techniques of this

hacking group [8].

Similarly, we designed a ransomware simulation tool

(Ransomware Simulator) to imitate techniques employed by

a ransomware. For this experiment, only three parameters

were chosen:

1) adding extension to an encrypted file, e.g. ‘.enc’;

2) encoding the encrypted data with Base64 that helps to

reduce an entropy level;

3) the number of files to be encrypted per step.

The simulator uses AES-256 for encryption and targets

documents, multimedia files, and archives that are typically

encrypted by ransomware. The goal of the Ransomware

Simulator is to encrypt the maximum number of files in the

minimal number of steps on the target system.

TABLE II

THE CHOSEN PARAMETERS OF THE RANSOMWARE SIMULATOR

Parameter Value 0 Value 1 Value 2 Value 3

Adding the extension no yes

Base64 encoding no yes

The number of

encrypted files per

action

1

2

5

10

III. RANSOMWARE DEFENSE SIMULATION

To counteract the Ransomware Simulator, we created

Ransomware Detector. The detector implements three

methods to detect the ransomware activity in correspondence

with the Ransomware Simulator’s parameters:

1) checking if the second extension exists;

2) entropy level evaluation;

3) detection of anomalous modification time of the files

(e.g. 8 files have been modified within 1 second).

The detection Threshold was set to 8, which means if the

Ransomware Detector sees 8 files with one of the following

anomalies: 1) second extension; 2) high level of entropy that

indicates that data are encrypted; 3) similar modification time

then it triggers an alert ‘Ransomware Detected’ and block the

attack. The Ransomware Simulator failed and the game

(attack) is over (blocked).

IV. ENVIRONMENT

The recent targeted ransomware attacks such as Maze,

WastedLocker, Netwalker, Clop, and others target Windows

OS. Therefore, we used a Windows 10 virtual machine [9] as

a simulation environment where we placed the folder with ten

files that include documents, multimedia files, archives that

are typically encrypted by ransomware.

Fig. 5. A screenshot of the simulation environment showing the
Ransomware Simulator (on the left), target user’s files and the

Ransomware Detector (on the right).

V. REINFORCEMENT LEARNING

Ransomware Simulator is a tool that requires a set of

parameters as an input to operate. The problem is how to find

these parameters that will allow the Ransomware Simulator

to bypass the Ransomware Detector. To address this problem,

we came to the idea of adding Artificial Intelligence (AI) to

the Ransomware Simulator with the help of RL that should

be well known to the players of the Real-Time Strategy (RTS)

games, such as StarCraft.

 Fig. 6. Reinforcement learning process.

The key advantage of RL is that it does not require

training data or specific expertise in the domain. It needs only

a goal to be specified and the Agent finds the optimal way (a

policy) to achieve that goal using the trial and error method.

In RL, we have the Agent and Environment. The Agent

performs actions that affect in some way the Environment

and receives the new state of the Environment and the

Reward (a numerical score) that evaluates how good the

previous action was in terms of leading the Agent to

maximization of the total reward in the long run.

In our case the Environment can be a user’s Windows

OS with antivirus (the Ransomware Detector). The Actions

performed by the Agent are ransomware attempts to encrypt

user’s files. After executing an Action, the Agent receives

information about the new state of the Environment and how

successful the attempt was. The state of the Environment is

evaluated based on the number of encrypted files [10].

Q-learning algorithm is commonly used to solve RL

tasks. Q-learning is a reinforcement learning algorithm

defined over Finite Markov Decision Process (FMDP) which

does not require creating a model of the Environment. The

algorithm calculates the quality (Q) of a combination of a

state (S) and action (A) based on a reward value (R):

𝑄: 𝑆 × 𝐴 → 𝑅 (1)

The Q values are updated based on the reward the Agent

got and the reward the Agent expects next.

𝑄(𝑠𝑡 , 𝑎𝑡) ≔ 𝑄(𝑠𝑡 , 𝑎𝑡) +
+ 𝛼 ∙ [𝑟𝑡+1 + 𝜆 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2)

, where

α – learning rate;

r – Reward;

λ – discount – how the future Action value is weighted

over the one at present;

𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎) – the estimated Reward from the next

Action.

The algorithm requires the definition of the possible

states, actions, and reward function.

Set of States. There are 11 states in our model that

represents the number of encrypted files in the target folder

from 0 to 10.

Set of Actions. There are 16 possible actions that are the

combinations of three Ransomware Simulator’s parameters.

TABLE III

THE ACTIONS ENCODING TABLE
Action

code

Extension

(code)

Base64

(code)

Number of files

(code)

0 0 0 0

1 0 0 1

2 0 0 2

3 0 0 3

4 0 1 0

5 0 1 1

6 0 1 2

7 0 1 3

8 1 0 0

9 1 0 1

10 1 0 2

11 1 0 3

12 1 1 0

13 1 1 1

14 1 1 2

15 1 1 3

See Table 1 to translate the codes to the actual values of

the parameters.

Reward. The Reward is calculated using the following

formula:

 Rewards = Nenc * 2 – 1, (2)

where

Nenc – is the number of encrypted files as the result of an

action.

In other words, for one encrypted file the Agent earns 2

points, and one action costs 1 point.

Learning strategy. The algorithm starts with the

random (exploration) policy and then slowly reduce the

probability of random choice for an action from 1 in the

beginning to 0 at the end of the learning process

(exploitation). Discount = 0.95. Learning rate = 0.1.

VI. RESULTS

After 2000 iterations (595 games have been played), we

obtained the following results.

As shown on Figure 7, the Reward values goes up through

the training session starting from 0 and ending in 15 – the

highest possible reward value to achieve out of 20 with the

given Ransomware Detector configuration. The Agent gets

20 points for 10 encrypted files and spends 5 points to execute

the ransomware simulator five times changing the options in

order to bypass the Ransomware Detector.

The same trend can be seen on Figures 8 and 9 where the

number of wins (Ransomware Simulator encrypts all the files

without being detected) grows exponentially with the number

of played games.

 Fig. 7. Learning progress (Reward vs. Game rate).

 Fig. 8. Learning curve (Wins vs. Games rate).

 Fig. 9. The number of Wins per 10 games.

 Fig. 10. Q-matrix with the optimal policy highlighted.

VII. ANALYSIS OF RESULTS

After training, the Agent found the optimal policy that

allowed it to encrypt all ten files in the target folder:

1. State 0: Action 14 - encrypt 5 files adding the

extension and apply Base64 encoding to reduce

entropy.

2. State 5: Action 1 – encrypt 2 files without adding

the extension and Base64 encoding.

3. State 7: Action 0 – encrypt 1 file without adding

the extension and Base64 encoding.

4. State 8: Action 0 – encrypt 1 file without adding

the extension and Base64 encoding.

5. State 9: Action 2 – encrypt 5 files without adding

the extension and Base64 encoding.

At State 9, any Action would lead to win because only one

file left unencrypted. Moreover, at State 9, we have:

• 5 (or 7 – two consequent iterations may result in the

encrypted files having similar modification time

within 𝛥t) files modified at the same time (within 𝛥t

= 1 sec),

• 5 files with the extension,

• 4 files with high entropy.

None of these exceeds the detection threshold equal to 8.

VIII. CONCLUSIONS

The obtained results during the experiments show that RL

can help to discover an attack strategy that can overcome a

behavior-based anti-ransomware protection. It is worth

noting, that the experiment was conducted on the

Ransomware Detector that only represents the limited

number of detection methods imitating the behavior of a real

EDR solution. However, the presented results look promising

and the proposed RL approach for anti-ransomware testing

can be further applied to the anti-malware products with anti-

ransomware modules available on the market that mostly rely

on behavior analysis.

The future work can be also conducted on applying the

RL approach to network penetration testing. So, the Agent

can learn how to discover the optimal attack path that can be

used by an ethical hacker in security testing of a service or

product.

REFERENCES

[1] Security effectiveness Report 2020. Deep dive into cyber reality,
Mandiant, 2020.

[2] A. Adamov, A. Carlsson and T. Surmacz. An Analysis of LockerGoga
Ransomware, 2019 IEEE East-West Design & Test Symposium
(EWDTS), Batumi, Georgia, 2019, pp. 1-5, doi:
10.1109/EWDTS.2019.8884472.

[3] A. Chuvakin. Named: Endpoint Threat Detection & Response, Gatner,
2013, available at https://blogs.gartner.com/anton-
chuvakin/2013/07/26/named-endpoint-threat-detection-response/

[4] WastedLocker’s techniques point to a familiar heritage, Sophos, 2020,
available at https://news.sophos.com/en-us/2020/08/04/wastedlocker-
techniques-point-to-a-familiar-heritage/

[5] Russinovich M. E., Solomon D. A., A. Ionescu. Windows Internals,
Part 2 (6th ed.), Pearson Education; September 2012, ISBN:
9780735677289.

[6] Ransomware Protection Test, April 2017, NioGuard Security Lab,
available at https://www.nioguard.com/2017/05/ransomware-
protection-test-april-2017.html.

[7] Methodology Overview: Adversary Emulation. MITRE, 2020,
available at https://attackevals.mitre.org/adversary-emulation.html

[8] APT29 Emulation. MITRE, 2020, available at
https://attackevals.mitre.org/APT29/

[9] Windows virtual machines, 2020, available at
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

[10] F. Bach, R. S. Sutton, A. G. Barto. Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning series).
Second edition, A Bradford Book, 2018.

