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Abstract—In this paper, we are going to verify the possibility 

to create a ransomware simulation that will use an arbitrary 

combination of known tactics and techniques to bypass an anti-

malware defense. 

To verify this hypothesis, we conducted an experiment in 

which an agent was trained with the help of reinforcement 

learning to run the ransomware simulator in a way that can 

bypass anti-ransomware solution and encrypt the target files.  

The novelty of the proposed method lies in applying 

reinforcement learning to anti-ransomware testing that may 

help to identify weaknesses in the anti-ransomware defense and 

fix them before a real attack happens. 
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learning, artificial intelligence, anti-ransomware testing 

I. INTRODUCTION 

68% of ransomware attacks go unnoticed according to the 
latest report by US cybersecurity provider FireEye [1] that 
draws the cybersecurity experts’ attention to this problem. 

In the previous work, we already analyzed the 
LockerGoga ransomware used in the targeted attack against 
Norsk Hydro in consequence of which the company needed to 
switch to manual operation mode reducing the production 
capacity. The discovered techniques included digital signing 
of ransomware executables and multi process encryption 
when a single worker process was created and responsible for 
encryption only one user’s file. These techniques helped the 
ransomware go under the radar. [2] 

Another ransomware called Maze discovered in May 2019 
and used in the recent attack against Canon on July 30, 2020 
that caused the outage of the image.canon cloud service. 
Before that, the Maze operators published the data stolen from 
Xerox and LG companies in June 2020. 

The author(s) of Maze ransomware complained that it is 
so easy nowadays to bypass an antivirus protection because 
they “place a signature on data section in the packer layer” that 
makes EDR (Endpoint Detection and Response) [3] solutions 
useless when it comes to detecting targeted ransomware 
attacks. Because, once repacked, a piece of malware becomes 
undetectable again.  

One more recent ransomware called WastedLocker and 
operated by the Evil Corp gang has shown the power of 
bypassing anti-ransomware modules that typically rely 
detecting anomalous behavior. The ransomware employed 
Alternate Data Streams (ADS) in NTFS to drop the payload 
and memory-mapped files for encrypting user’s data in 
addition to digital signing employed by LockerGoga and 
MegaCortex in the beginning of 2019. As a result, 
WasteLocker managed to encrypt data stored on the Garmin’s 
servers. [4] 

 
Fig. 1. WastedLocker uses a self-signed digital certificate. 

 

 
Fig. 2. WastedLocker stores its copy in the ADS ‘Join:bin’. 

 
 

 
Fig. 3. WastedLocker executes its code from the ADS ‘Join:bin’. 

 
WastedLocker also took advantage of the Lazy Writer 

function of the Windows Cache Manager.  This function is 

used by the Windows Cache Manager to reduce the overall 

number of disk I/O operations. The file's data is stored in 

cache pages in the memory and then written to disk by the 

Cache Manager allowing to accumulate file changes in the 

memory and, only then, flush them all at once. [5] 

This is enabled with memory-mapped files. In a regular 

way, we need first to open a file for modification and get its 

size to know how many memory pages to allocate. Then, we 

call CreateFileMapping() and MapViewOfFile() to load the 

file’s content to the memory. After, modifying data in the 

memory, a program usually calls UnmapViewOfFile(), closes 

a handle of the memory-mapped file and, only then, a file 

handle. 

To force Lazy Writing on behalf of the System process, 

WastedLocker closes a file handle right after mapping the file 
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but before encrypting the data to let the Cache Manager write 

back the encrypted data later on behalf of the operating 

system. 
TABLE I 

THE FILE MEMORY MAPPING EXECUTION 

# Regular file memory 

mapping 

Wastedlocker’s way 

1 CreateFile() - open file CreateFile() - open file 

2 GetFileSize() GetFileSize() 

3 CreateFileMapping() CreateFileMapping() 

4 MapViewOfFile() MapViewOfFile() 

5 Modify mapped data CloseHandle(file) 

6 UnmapViewOfFile() Encrypt mapped data 

7 CloseHandle(file map) UnmapViewOfFile() 

8 CloseHandle(file) CloseHandle(file map) 

 

As a result, the encrypted data is flushed by the System 
process after the ransomware process has already closed the 
file handle. 

 

 
Fig. 4. System process writes back the cached encrypted data to the 

user’s file after the file handle has been already closed by the 

ransomware. 

 
As we can see, the described techniques have been 

evolving and may help attackers to elude anti-ransomware 
protection. Therefore, it is essential to act proactively and test 
anti-malware solutions (EDR) if they can provide an adequate 
response to the modern ransomware defense evasion 
techniques. Attack simulation based on the discovered 
techniques can be  

In 2017 [6] we already made the first attempt to evaluate 
the quality of anti-malware solutions by conducting the Anti-
Ransomware Test using the Ransomware Simulator with the 
limited set of basic ransomware techniques to simulate 
behavior of popular ransomware families. The test results 
revealed that just a few products had managed to detect a 
simulation of the known ransomware attacks. 

In this paper, we explain how we applied Reinforcement 
Learning (RL) approach to anti-ransomware testing. We 
created a simulation environment that includes two major 
components: Ransomware Simulator (an attacker) and 
Ransomware Detector (a defender). We also introduced an 
Agent that can learn with the help of RL how to perform the 
ransomware attack in an optimal way bypassing Ransomware 
Detector. 

II. RANSOMWARE ATTACK SIMULATION 

To be able to test if antiviruses (EDR solutions) can detect 

an unknown ransomware attack, we propose the attack 

simulation. An example of such approach is MITRE 

ATT&CK Evaluation project [7]. The first evaluation of EDR 

solutions was performed based on the discovered attacks by 

APT29 group attributed to Russian Intelligence Service. The 

attack simulation included tactics and techniques of this 

hacking group [8]. 

Similarly, we designed a ransomware simulation tool 

(Ransomware Simulator) to imitate techniques employed by 

a ransomware. For this experiment, only three parameters 

were chosen:  

1) adding extension to an encrypted file, e.g. ‘.enc’;  

2) encoding the encrypted data with Base64 that helps to 

reduce an entropy level;  

3) the number of files to be encrypted per step.  

The simulator uses AES-256 for encryption and targets 

documents, multimedia files, and archives that are typically 

encrypted by ransomware. The goal of the Ransomware 

Simulator is to encrypt the maximum number of files in the 

minimal number of steps on the target system. 
 

TABLE II 

THE CHOSEN PARAMETERS OF THE RANSOMWARE SIMULATOR 

Parameter Value 0 Value 1 Value 2 Value 3 

Adding the extension no yes     

Base64 encoding no yes     

The number of 

encrypted files per 

action 

1 

  

2 

  

5 

  

10 

  

 

III. RANSOMWARE DEFENSE SIMULATION 

To counteract the Ransomware Simulator, we created 

Ransomware Detector. The detector implements three 

methods to detect the ransomware activity in correspondence 

with the Ransomware Simulator’s parameters:  

1) checking if the second extension exists;  

2) entropy level evaluation;  

3) detection of anomalous modification time of the files 

(e.g. 8 files have been modified within 1 second). 

The detection Threshold was set to 8, which means if the 

Ransomware Detector sees 8 files with one of the following 

anomalies: 1) second extension; 2) high level of entropy that 

indicates that data are encrypted; 3) similar modification time 

then it triggers an alert ‘Ransomware Detected’ and block the 

attack. The Ransomware Simulator failed and the game 

(attack) is over (blocked). 

IV. ENVIRONMENT 

The recent targeted ransomware attacks such as Maze, 

WastedLocker, Netwalker, Clop, and others target Windows 

OS. Therefore, we used a Windows 10 virtual machine [9] as 

a simulation environment where we placed the folder with ten 

files that include documents, multimedia files, archives that 

are typically encrypted by ransomware. 

 

 
Fig. 5. A screenshot of the simulation environment showing the 
Ransomware Simulator (on the left), target user’s files and the 

Ransomware Detector (on the right). 



V. REINFORCEMENT LEARNING 

Ransomware Simulator is a tool that requires a set of 

parameters as an input to operate. The problem is how to find 

these parameters that will allow the Ransomware Simulator 

to bypass the Ransomware Detector. To address this problem, 

we came to the idea of adding Artificial Intelligence (AI) to 

the Ransomware Simulator with the help of RL that should 

be well known to the players of the Real-Time Strategy (RTS) 

games, such as StarCraft. 

 

 
 Fig. 6. Reinforcement learning process. 

 

The key advantage of RL is that it does not require 

training data or specific expertise in the domain. It needs only 

a goal to be specified and the Agent finds the optimal way (a 

policy) to achieve that goal using the trial and error method. 

In RL, we have the Agent and Environment. The Agent 

performs actions that affect in some way the Environment 

and receives the new state of the Environment and the 

Reward (a numerical score) that evaluates how good the 

previous action was in terms of leading the Agent to 

maximization of the total reward in the long run. 

In our case the Environment can be a user’s Windows 

OS with antivirus (the Ransomware Detector). The Actions 

performed by the Agent are ransomware attempts to encrypt 

user’s files. After executing an Action, the Agent receives 

information about the new state of the Environment and how 

successful the attempt was. The state of the Environment is 

evaluated based on the number of encrypted files [10]. 

Q-learning algorithm is commonly used to solve RL 

tasks. Q-learning is a reinforcement learning algorithm 

defined over Finite Markov Decision Process (FMDP) which 

does not require creating a model of the Environment. The 

algorithm calculates the quality (Q) of a combination of a 

state (S) and action (A) based on a reward value (R): 

 

𝑄: 𝑆 × 𝐴 → 𝑅   (1) 

 

The Q values are updated based on the reward the Agent 

got and the reward the Agent expects next. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ≔  𝑄(𝑠𝑡 , 𝑎𝑡) +  
+ 𝛼 ∙ [𝑟𝑡+1 + 𝜆 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (2) 

 

, where 

α – learning rate; 

r – Reward; 

λ – discount – how the future Action value is weighted 

over the one at present; 

𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎)  – the estimated Reward from the next 

Action. 

 

The algorithm requires the definition of the possible 

states, actions, and reward function.  

Set of States. There are 11 states in our model that 

represents the number of encrypted files in the target folder 

from 0 to 10. 

Set of Actions. There are 16 possible actions that are the 

combinations of three Ransomware Simulator’s parameters. 
 

TABLE III 

THE ACTIONS ENCODING TABLE 
Action 

code 

Extension 

(code) 

Base64 

(code) 

Number of files  

(code)  

0 0 0 0 

1 0 0 1 

2 0 0 2 

3 0 0 3 

4 0 1 0 

5 0 1 1 

6 0 1 2 

7 0 1 3 

8 1 0 0 

9 1 0 1 

10 1 0 2 

11 1 0 3 

12 1 1 0 

13 1 1 1 

14 1 1 2 

15 1 1 3 

 

See Table 1 to translate the codes to the actual values of 

the parameters. 

Reward. The Reward is calculated using the following 

formula: 

             Rewards  = Nenc * 2 – 1,               (2) 

where  

Nenc – is the number of encrypted files as the result of an 

action. 

In other words, for one encrypted file the Agent earns 2 

points, and one action costs 1 point. 

Learning strategy. The algorithm starts with the 

random (exploration) policy and then slowly reduce the 

probability of random choice for an action from 1 in the 

beginning to 0 at the end of the learning process 

(exploitation). Discount = 0.95. Learning rate = 0.1. 

VI. RESULTS 

After 2000 iterations (595 games have been played), we 

obtained the following results. 

As shown on Figure 7, the Reward values goes up through 

the training session starting from 0 and ending in 15 – the 

highest possible reward value to achieve out of 20 with the 

given Ransomware Detector configuration. The Agent gets 

20 points for 10 encrypted files and spends 5 points to execute 

the ransomware simulator five times changing the options in 

order to bypass the Ransomware Detector. 

The same trend can be seen on Figures 8 and 9 where the 

number of wins (Ransomware Simulator encrypts all the files 

without being detected) grows exponentially with the number 

of played games. 



 

 
 Fig. 7. Learning progress (Reward vs. Game rate). 

 

 

 Fig. 8. Learning curve (Wins vs. Games rate). 

 

 

 Fig. 9. The number of Wins per 10 games. 

 

 
 

 Fig. 10. Q-matrix with the optimal policy highlighted. 

 

VII. ANALYSIS OF RESULTS 

After training, the Agent found the optimal policy that 

allowed it to encrypt all ten files in the target folder: 

1. State 0: Action 14 - encrypt 5 files adding the 

extension and apply Base64 encoding to reduce 

entropy. 

2. State 5: Action 1 – encrypt 2 files without adding 

the extension and Base64 encoding. 

3. State 7: Action 0 – encrypt 1 file without adding 

the extension and Base64 encoding. 

4. State 8: Action 0 – encrypt 1 file without adding 

the extension and Base64 encoding. 

5. State 9: Action 2 – encrypt 5 files without adding 

the extension and Base64 encoding.  

At State 9, any Action would lead to win because only one 

file left unencrypted. Moreover, at State 9, we have: 

• 5 (or 7 – two consequent iterations may result in the 

encrypted files having similar modification time 

within 𝛥t) files modified at the same time (within 𝛥t 

= 1 sec), 

• 5 files with the extension, 

• 4 files with high entropy. 

None of these exceeds the detection threshold equal to 8. 

VIII. CONCLUSIONS 

The obtained results during the experiments show that RL 

can help to discover an attack strategy that can overcome a 

behavior-based anti-ransomware protection. It is worth 

noting, that the experiment was conducted on the 

Ransomware Detector that only represents the limited 

number of detection methods imitating the behavior of a real 

EDR solution. However, the presented results look promising 

and the proposed RL approach for anti-ransomware testing 

can be further applied to the anti-malware products with anti-

ransomware modules available on the market that mostly rely 

on behavior analysis. 

The future work can be also conducted on applying the 

RL approach to network penetration testing. So, the Agent 

can learn how to discover the optimal attack path that can be 

used by an ethical hacker in security testing of a service or 

product. 
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