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Abstract. Ability to predict and control involved parameters and hence the 

outcome of sheet metal forming processes demand holistic knowledge of the 

product/-process parameter influences and their contribution in shaping the output 

product quality. Recent improvements in the ability to harvest inline production 

data and the capability to understand complex process behaviour through computer 

simulations opens up the possibility for new monitoring and control approaches for 

improving production process performance and output product quality. Current 

work presents a framework for monitoring and control of sheet metal forming 

processes which incorporates a hybrid data�and model�based approach. An initial 

attempt to evaluate the proposed frameworks’ ability to support output product 

quality and process performance enhancements is made by implementing the 

proposed approach via an in-house built wire-bending machine prototype. Initial 

experiments conducted using the built prototype indicate that the proposed 

framework has the potential to support such enhancements and further work is 

needed to validate the overall framework. 
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manufacturing 

Introduction 

In the past, most industrial process monitoring (IPM) approaches were focused on fault 

detection i.e., the ability to detect a fault and to reduce the time between a faults’ 

occurrence and detection [1]. The identified faults were then commonly mitigated in an 

ad-hoc manner through trial and error based on the expertise of the machine operators 

on-site. More recently, with concepts like zero�defect manufacturing gaining 

importance, the focus has shifted towards fault diagnosis and troubleshooting activities 

that consume a considerably larger portion of the process downtime [1,2] compared to 

fault detection activities. In this context, several data�driven [1,3-6], model�based [7-9] 

and statistical [10] approaches have been proposed to support the identification of the 

underlying root cause of a fault. However, most of these approaches lack features 

necessary to completely diagnose and isolate a fault [11]. Similarly, numerous control 

approaches have been developed to regulate increasingly complex manufacturing 

processes as described in [12,13]. Although these approaches have gained significant 
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popularity within sophisticated manufacturing processes such as in semiconductor 

production or chemical plants, their potential within other manufacturing domains such 

as metal forming remain underexploited [13]. Most control approaches within sheet 

metal forming aim to control and optimize machine parameter settings instead of the 

product properties which is usually the property of interest for the end customer [14,15]. 

Furthermore, the control actions in such approaches are generally based on either 

offline models, or on online process models which involve several approximations to 

be computationally feasible [14]. In either case, the influence of product/-process 

parameter correlations on the output product quality is overlooked by not explicitly 

modeling such complex relationships [16]. Therefore, in the presence of changing 

production conditions, the overall effectiveness of control loops is affected leading to 

higher costs and process downtime. 

Recent improvements in the ability to harvest operation data combined with 

computationally efficient simulation setups opens up the possibility for newer concepts 

to control product/-process quality. The dawn of the fourth industrial revolution, 

commonly denoted as Industry 4.0 [17], promises new opportunities in this regard. A 

central theme in Industry 4.0 is connectedness enabled via embedded electronics, 

software, sensors and network connectivity, allowing components within the 

manufacturing plant to exchange data regarding specific product or process attributes 

over the internet in order to improve the overall manufacturing efficiency. However, 

due to the inherent complexity, providing proper context to the gathered data enabling 

valuable interpretation is both difficult and time-consuming. Efforts towards exploiting 

operation data, process models and simulations to improve product quality are gaining 

popularity [6,8,18] and it is believed that the amalgamation of data-driven and model-

based procedures has the potential to provide a predictive dimension to process control 

in addition to fault detection and diagnostic features [1,15]. By combining data-driven 

and model-based approaches, a proper context can be provided to the harvested data. 

Computer models and simulations hold potential in this regard which have proved to be 

a powerful means for gathering deeper insights of complex stochastic processes. 

Furthermore, the development of demonstration platforms, such as test-beds and 

prototypes, are crucial to explore the benefits of digitalization [19].  

Current work, while building on previously conducted research [20], presents and 

tests a framework for enhancing monitoring and control of sheet metal forming process 

through an in-house built prototype. The following sections describe the proposed 

framework which involves a hybrid data- and model-based approach in addition to the 

prototype and the initial experiments conducted using it. 

1. A hybrid approach to process monitoring and control 

A hybrid approach to process monitoring and control contains elements that are data-

driven as well as model-based. The former refers to approaches that extract necessary 

information for the underlying process model structure predominantly from operation 

data (in addition to subsidiary sources such as background process knowledge, process 

flowsheets, etc.). The latter refers to approaches where the underlying model structure 

is based on a priori knowledge of the process and its behavior deduced from first-

principle models incorporating quite detailed process-specific structure. On one hand, 

data-driven approaches benefit by requiring minimal understanding of the inherent 

process mechanisms [3] while on the other hand; suffer from dimensionality issues, 
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often require huge amounts of data for reliable performance and do not contain features 

for full fault diagnosis and isolability [1]. Model-based approaches albeit capture and 

provide a clear cause-effect relationship between product/-process parameters [6] they 

fail to take into account the external disturbances and noises prevalent in real 

production processes [3] while also require rigorous experimentation/effort to derive 

the process models [14]. 
Depending on the manufacturing process and scenario, different approaches are 

suitable. In general, data-driven approaches are popular in scenarios where operation 

data is relatively easy to acquire, and the process involves few variables (and their 

interdependencies) to monitor/control. However, the reliability of data-driven 

approaches is strongly influenced by the quantity and quality of acquired data. When 

the number of product/-process variables increase, using data-driven approaches could 

lead to ambiguous results since they lack necessary information for full fault 

investigation and root-cause identification. Accordingly, model-based approaches are 

preferred in scenarios that require comparatively more information regarding process 

phenomena and the influences of involved product/-process variables in order to 

execute control actions. Approaches which involve process models, are often derived 

from first-principle models or detailed numerical models which demand exceptional 

computational resources to be useful in real-time making them impractical with the 

current computing technology [14]. Figure 1 depicts various considerations involved in 

a model-driven scenario (digital twin) of sheet metal forming process for car body 

component manufacturing. 

 

Figure 1. A schematic view of a digital twin of a die and a press line [21]. 

 

Due to high computational costs required for solving such models, it is common to 

develop reduced process models through various strategies. In general, model-based 

approaches include a better mapping of the cause-effect relationship between product/-

process variables although the inherent approximations create a mismatch between the 

model and reality. Moreover, other problems are involved such as, variability in 

product/-process properties (e.g., temperature, surface properties) that cause variation 

in process performance are usually not modelled. It is believed that the combination of 

data-driven methods that capture fluctuations present in reality with model-based 

approaches that comprise of extensive knowledge regarding product/-process behavior 

could benefit the monitoring and control approaches in the context of complex 

manufacturing processes. 
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2. Hybrid framework proposal 

The proposed hybrid framework, combining data-driven and model-based concepts 

into a hybrid methodology, is presented in Figure 2. The framework consists of the 

following steps; It starts with an input to the manufacturing line which is uniquely 

marked. Through that marking, the input is identified, and input specification data is 

retrieved from data storage (e.g., material properties, surface coating), while other input 

data (e.g., temperature, thickness, friction conditions), not available from data storage, 

is measured using sensors in the process. The retrieved and measured data, together 

with the desired target product specifications is fed into process models to proactively 

predict the product/-process settings needed to attain the desired output. 

 

Figure 2.  Framework incorporating a hybrid data-and model-based approach. 

 

Available data is used by the monitoring platform to supervise product/-process 

variables, detect faults, identify root-cause of faults, and to maintain process health. 

The monitoring platform includes data-driven models (primarily for variable 

supervision, fault detection, diagnosis and process health monitoring), and contains 

information about normal operation conditions (NOC). Depending on the scenario, 

such as;  extent of data possible to harvest, data storage/transmission infrastructure, 

type of process models as well as the effort required to derive them, various data-

driven/model-based methods are suitable. The information from the monitoring 

platform in addition to measured data is fed into the process control system. The 

control system uses reduced process models (e.g., metamodels [8,9], for viability in 

real-time) to determine appropriate control response in order to diminish the gap 

between actual process output and desired process output. These settings are used to 

adjust the manufacturing process. The framework includes a feed-forward control loop 

(to adjust process based on input measurements), a feed-back control loop (to adjust 

process based on in-line and output parameter measurements) as well as a monitoring 

platform for enhancing product/-process supervision, process fault detection/diagnosis 

and for providing product/-process current state information to the control system. All 

process sensors continuously stream data to a central unit for use during different 

process steps. In addition, intermediate nodes store data immediately required for the 
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next stage thus facilitating faster communication between process components and 

smooth execution of the various stages. 

3. Method 

3.1. Demonstrator: Wire-bending machine 

In order to obtain an initial understanding, iteratively develop and test the features of 

the proposed framework in a safe and resource-efficient manner, an in-house 

demonstrator (or prototype) was built. In relation to the demonstrator, design choices 

were guided by aspects such as cost, flexibility, and realizability so that popular 

engineering tools such as, 3D-printers and open source electronic prototyping platforms 

could be used to materialize it. Furthermore, it had to include some key elements of a 

real-industrial setup namely electronics, automation, sensors, control system. Thus, an 

automated wire-bending machine, inspired from [22], was built. Compared with a press 

shop manufacturing complex car parts, the proposed demonstrator may be regarded as 

simplistic, however it is here assumed to include several interesting phenomena such as 

material non-linearity, springback, vibrations which are also prevalent within real-

production scenarios. To achieve a perfect bend, such aspects need to be controlled. It 

is believed that the insights gathered from experiments conducted using the 

demonstrator shall support the implementation of the approach within a real 

manufacturing setup. Figure 3 shows virtual representation of the demonstrator with its 

main sections namely, a wire straightening section, a wire feeding section, and a wire 

bending section. 

 

Figure 3.  Demonstrator setup. 

 

The basic workflow of the demonstrator is as follows: The wire is fed through a 

straightening section where the wire is straightened using rollers. Adjacent to it is the 

feeder section which is responsible for feeding throughout the bending process. The 

underlying feeding mechanism transforms rotation of a stepper motor into translational 

feed of the wire. The subsequent bending section involves a rack and pinion 
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mechanism and a rotating gear, actuated by a servo motor and a stepper motor, which is 

used in combination to bend wire to the desired angle. 

3.2. Building reduced process models 

Adapting product/-process settings in response to process measurements demands the 

ability to measure changes in the system, estimate system status based on 

measurements and use the system status to predict appropriate system settings. While 

operation data is measured using sensors in the system, the estimation of the system 

status and prediction of appropriate settings requires holistic system knowledge. 

Furthermore, this knowledge needs to be packed into process models that are 

executable in real-time. 
In order to understand the studied system behaviour and the 

interdependencies/influences of the product/-process parameters on the output product 

quality, virtual experiments are conducted. For this, a simulation model of the wire-

bending process is built in a commercial Computer-Aided Engineering (CAE) software 

aiming to replicate the studied phenomena. The proposed model is validated by 

comparing the simulated angle of bend with the angle of bend produced from the wire 

bending machine. The intended parameter space is explored by simulating the 

behaviour of the system in different scenarios (involving various combinations of 

system parameter values). This is done in a structured fashion using a pregenerated 

experimental plan applying an optimal latin hypercube algorithm. To effectively 

conduct the experiment, an automated strategy inspired from server-client model is 

adopted as explained in [23].  
The results of the simulation experiment revealed that the wire diameter, young's 

modulus of the material and the angular velocity of the bender motor are the most 

influential parameters shaping the output bend angle in addition to other subsidiary 

influences caused by, for example, residual stresses in the material or boundary 

restraining forces. Further, the results also revealed the presence of springback. 

Springback is a non-linear phenomenon affecting the dimensional accuracy of the part 

caused by the recovery of elastic deformation as external bending force is released. A 

common approach to handle springback is to overbend the part so as to allow the 

material to springback to the desired bend angle as the elastic part of the deformation is 

recovered.  However, it is a challenging task to understand and determine the extent of 

overbend required in order to achieve the desired angle of bend without reducing the 

strength of the part. Results from the conducted simulation experiment, in addition to 

providing parameter interdependency/influence knowledge, are also used as basis for 

building metamodels. A metamodel is a mathematical approximation of the response of 

the original simulation model, hence a metamodel may be described as “a model of the 

model” [24].  In the context of the proposed hybrid framework, process models need 

real-time computational performance. Hence, using metamodels is proposed as a 

remedy since metamodel function calls are generally much faster compared to the 

original model. However, these approximations introduce errors meaning that such 

models are usually less accurate in comparison to reality thus potentially amplifying 

issues such as model uncertainty and related risks. A hybrid approach is believed to 

potentially mediate for the lack in accuracy by leveraging both model-based and data-

based insights. Building metamodels involves choosing an approximating model, 

fitting method and a validation strategy [25,26]. The built metamodel is then used for 

process control as described in the following section.  
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Figure 4.  Meta-model presenting the relationship between input variables (young's modulus and wire 

diameter) with output variable (bend angle). 

Figure 4 shows an example of a response surface of the meta-model linking the 

input variables, young’s modulus and wire diameter to the output variable, angle bent. 

A quadratic polynomial model with three-factor interactions is chosen. The parameters 

of the polynomial are determined using least square regression analysis by fitting the 

response surface approximating function to the data collected from the validated 

simulation model. Several meta-models are built using different combinations of input 

variables with the output variable. 

4. Results: Prototype in action 

Figure 5 shows a schematic of the prototype (or demonstrator) workflow in relation to 

the proposed framework. The input to the prototype is a metal wire with an 

identification tag. In the input measurement station, the tag is scanned to load 

information regarding the current specimen such as material, dimensions, prework 

information, coatings, residual stresses, mechanical properties. Additionally, data of the 

feeder motor rotation is collected to estimate the length of the wire fed forward. 

Furthermore, the target specifications of the desired output product is loaded. This data 

is used by the process model to predict appropriate actuator settings. These settings are 

then used to adjust the machine parameters namely, motor rotation (i.e., the actual 

amount of rotation required to achieve the desired output bend based on measurements 

such as dimensions, mechanical properties), motor angular velocity etc., after which the 

wire bending machine executes its operation. 
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Figure 5.  Schematic depicting prototype workflow in relation to the proposed framework. 

 

The monitoring platform continuously collects and logs data during the entire 

process execution such as bender, feeder and servo motor rotations and notifies when 

the actuator behaviour deviates from the normal operating condition range. A sensor 

(3-axis, 6-DOF digital gyroscope and accelerometer sensor [27]) in the output 

measurement station measures the actual angle of bend. Data from the monitoring 

platform and output measurement station is fed into the process control platform. 

Process monitoring and control platform is regulated using a microcontroller board 

which is programmed to execute an in-house developed algorithm, to facilitate 

predictions based on reduced process model (metamodels) and to support 

communication between various sections of the process. 

Thus, the metamodels in the process control platform use the current process state 

to predict appropriate settings for adjusting the process. For instance, the difference 

between the actual and desired angle of bend is compensated by altering the angular 

velocity of the bending motor and/or by over-bending or under-bending the wire based 

on the material young's modulus which influences wire springback. The process is 

adjusted in every step based on the latest measurement to achieve the desired angle of 

bend. Continuous process monitoring and measurements help evade process and 

product quality deviations to go beyond acceptance level. In case, the deviations cross 

the acceptance level, process fault-diagnosis algorithms help identify the root-cause of 

the fault which is then fed into the process control platform to prescribe the necessary 

control action. 

In order to evaluate the proposed hybrid approach in comparison with a non-hybrid 

approach, several experiments were conducted. During these experiments, 

different  combinations of input variables were tested and the output was recorded. 

Figure 6 shows the output obtained from one of the experiments conducted. In these 

experiments, wires of different diameters and young's modulus were bent to a desired 

angle using a hybrid and a non-hybrid approach. The implementation of the hybrid 

approach is depicted in figure 5, while the implementation of the non-hybrid approach 

uses nominal system settings similar to a traditional manufacturing process. Since the 

demonstrator setup is relatively stable in comparison to a real manufacturing setup 

involving variations due to changes in temperature, friction conditions, material 
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properties and rough conditions, random errors were introduced in both cases via the 

implemented algorithm to see if the errors are compensated for in the consecutive steps. 

   

Figure 6.   The graph plots the output (actual angle bent) for varying wire diameters, a given desired angle of 

bend and two different materials showing the comparison with and without a hybrid approach. 

Figure 6 plots the actual angle bent (y-axis) for varying wire diameters (x-axis) 

with respect to a given material (young's modulus) and desired angle of bend (ideal 

angle). Material A (on left) has a higher young's modulus than Material B (on right). 

The graphs show that the angle of bend is influenced by factors such as the size of the 

diameter and material young's modulus. The results show that using a hybrid approach 

allows to proactively compensate for the wire springback phenomena together with 

other process errors to consistently produce desired output bend angle. 

5. Discussion and conclusion 

The paper presents a framework for monitoring and control of sheet metal forming 

process realized through a hybrid data� and model�based approach. An initial attempt to 

evaluate the proposed frameworks’ ability to support product quality and process 

performance enhancements is made by implementation of the proposed framework via 

a wire-bending machine demonstrator. 
Experimentation with the wire-bending machine shows that the proposed hybrid 

approach renders an agile process which is capable of handling and automatically 

adjusting settings in response to process variations caused due to various factors. 

Although the wire-bending machine demonstrates key aspects of the proposed hybrid 

approach thus indicating its potential, further work is needed to validate the overall 

framework. A challenge faced while experimenting with the demonstrator is related to 

the ability of measuring features of interest within the process. This is even more 

pronounced in a real-production scenario, for instance, within the sheet metal forming 

process, due to the prevalence of rough production conditions [28]. Similarly, further 

work is required for standardizing data transmission, storage and processing tasks 

within the hybrid approach to facilitate practical application feasibility. In the authors 

opinion, the proposed approach may form a basis for a digital twin considering the 

connectivity, sensor setup, process model and data analysis included. However, more 

analysis tools and a stronger focus on predictive capabilities should be added for it to 

be a fully functional digital twin. Moving forward into an industry 4.0 enabled 
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manufacturing ecosystem where machines and processes shall interact and operate 

synergistically while allowing digital systems to respond in real-time, a hybrid 

approach seems promising.  
Future work will focus on further development of the framework to include self-

learning abilities where process models are updated in-the-loop using machine learning 

algorithms. Further research would aim to assess the validity of the approach and its 

implementation on a larger lab-scale production environment. Moving forward, it 

would also be interesting to explore the ability of the research to support designing 

products for increasingly smart manufacturing facilities and its potential to benefit the 

initial stages of the product development. 
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