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Abstract— In this letter, we propose a method to reduce the
number of false alarms in a wavelength–resolution synthetic
aperture radar (SAR) change detection scheme by using a
convolutional neural network (CNN). The detection is performed
in two steps: change analysis and object classification. A simple
technique for wavelength–resolution SAR change detection is
implemented to extract potential targets from the image of
interest. A CNN is then used for classifying the change map
detections as either a target or nontarget, further reducing the
false alarm rate (FAR). The scheme is tested for the CARABAS-II
data set, where only three false alarms over a testing area
of 96 km2 are reported while still sustaining a probability of
detection above 96%. We also show that the network can still
reduce the FAR even when the flight heading of the SAR system
measurement campaign differs by up to 100◦ between the images
used for training and test.

Index Terms— CARABAS-II, change detection, convolutional
neural network (CNN), synthetic aperture radar (SAR), target
detection.

I. INTRODUCTION

THE use of multitemporal synthetic aperture radar (SAR)
images, i.e., SAR images acquired in the same geograph-

ical area but at different time instants, has provided solutions
for a wide range of remote sensing applications, such as
climate monitoring and deforestation control. Their use can
also be expanded for target detection: the image background
can be suppressed by comparing SAR images from different
flight passes, and the targets can be located considering a
change detection analysis. In this scenario, the main challenge
is to provide a rate of false alarms per square kilometer low
enough to be useful to the operator [1].
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Low-frequency SAR systems that operate in the very-
high-frequency (VHF) or ultrahigh-frequency (UHF) band
with large fractional bandwidths provide the required stability
for an efficient change detection analysis [2]. The scattering
process of wavelength–resolution SAR systems is only related
to scatterers with dimensions in the order of the signal wave-
lengths, which can severely reduce speckle noise. Moreover,
low-frequency wavelength–resolution SAR suffers less atten-
uation due to foliage than more commonly used band SAR
systems. Hence, VHF-band systems can be especially suitable
for foliage penetration (FOPEN) applications, such as the
detection of vehicle-sized targets concealed by foliage. In [1],
a set of 24 VHF ultrawideband (UWB) wavelength–resolution
SAR images was made publicly available as part of the
CARABAS-II data set. The imaged area, located in northern
Sweden, is the same for all available images, and 25 vehicles
are distributed within each one of them. For this data set,
there are four possible target deployments and three different
imaging geometries. For each deployment, the target’s location
and orientation change. Hence, a change detection analysis can
be made to identify the position of targets within a test image.

The stability of the clutter and noise of the CARABAS-II
images supports simple but efficient change detection methods
that operate on a pixel-by-pixel basis [3]–[5]. Such methods,
however, can still be affected by noise fluctuations over
two multitemporal images. Furthermore, elongated structures
reported within the imaged area are considered to be the main
source of false alarms [6]. Two main approaches for overcom-
ing this problem can be identified: the use of image stacks [6],
[7] and supervised algorithms [8]. In [9], a combination of both
approaches is introduced. The stacks approach employs more
than one reference image to reduce the influence of noise and
structures related to the background. Supervised algorithms
acquire empirical-based knowledge about the targets by per-
forming training based on sliding windows that comprise not
only each pixel under test but also their neighborhood.

We propose the use of convolutional neural net-
works (CNNs) for change discrimination. Given the unique
stability of low-frequency wavelength–resolution SAR images,
the task of discerning large objects from military vehicles
can be seen as a mostly geometry-based problem. CNNs
can excel in this situation, as their feature extraction process
is primarily based on extracting visual features from the
images. This capability has been shown extensively for object
classification in optical images, and their application in SAR
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images have been expanded for both change detection [10]
and object classification [11] in SAR systems using higher
frequency bands. Their use for wavelength–resolution SAR
change detection, however, is yet to be explored.

In this letter, we introduce the use of a CNN as a filter to
reduce the occurrence of false alarms in wavelength–resolution
SAR change detection. The proposed target detection scheme
differentiates from the previous works as we perform a double
detection. First, an initial change map (CM) is generated to
detect differences between two multitemporal SAR images on
a pixel-by-pixel basis. Second, the detections based on the
initial CM are grouped to form larger objects and then are
reassessed by a CNN to reduce the number of false alarms.
We show that the proposed end-to-end target detection scheme
achieves the lowest number of false alarms ever reported for
the CARABAS-II data set. Furthermore, we investigate the
capability of CNNs to reject false alarms in CARABAS-II
images with different flight headings.

The remainder of this letter is organized as follows.
Section II describes the proposed target detection scheme.
Section III provides the results for the CARABAS-II data set.
Finally, Section IV summarizes the conclusions.

II. PROPOSED SCHEME

Let us consider two geo-coded and coregistered magnitude
SAR images, Ir and Is , both of size H × W and acquired in
the same geographical area but at two different time instants.
The first acts as the background representation and, therefore,
is called a reference image. We aim to identify the targets that
appear in the latter, i.e., the surveillance image.

We divided the target detection problem into three parts (see
Fig. 1).

1) Change Map: A CM that highlights differences between
the reference and surveillance images is generated.

2) Object Extraction: Windows surrounding each group of
connected pixels (objects) of the CM are extracted.

3) Object Classification: A classification technique to
assign each object of the CM as either a target or
nontarget is employed, in which the objects classified
as nontarget are discarded. The output is a binary image
that contains only objects associated with targets from
the surveillance image.

A. Change Map

A simple CM for UWB wavelength–resolution SAR images
may be obtained through a difference image, thresholding, and
morphological operations. We first use a pixelwise subtrac-
tion [6]–[8] to obtain a difference image

Id = Is − Ir . (1)

A binary image Iλ is then obtained by thresholding the entire
change image with a single threshold λ

Iλ = Id > λ, λ = μd + α × σd (2)

where μd and σd are the mean and standard deviation of Id ,
respectively, and α is the detection constant showing how strict

Fig. 1. Proposed scheme for target detection. The superscript “*” indicates
that the step is repeated until every object detected in Icm is tested.

is the thresholding. The higher the α, the lower the number
of detected objects tends to be. The pixels with amplitudes
below the threshold are set to zero, and the remaining ones
will be subject to morphological operations. We employ the
morphological operations of opening and dilation with the
same structuring element Se. The structuring element is linked
to the spatial resolution of the system and is defined once
for the considered data set so that the objects smaller than it
will be removed, while the objects separated by less than this
distance can be locally connected, forming larger structures.
Thus, the output after the morphological operations is a binary
image with the mathematical representation given by

Icm = (Iλ ◦ Se) ⊕ Se (3)

where ◦ and ⊕ stand for the morphological operations of
opening and dilation, respectively.

B. Object Extraction

The binary image Icm can be seen as a set of objects dis-
tributed within the same geographical region of the reference
and surveillance images. Therefore, for each object, we extract
their centroid coordinates ck = (i, j), and consider a block
h × h, centered in ck , as the region of interest related to this
object. Given that the amplitude information of both the refer-
ence and surveillance images is available, we extract windows
Ws

k and Wr
k in a way that Ws

k = {Is(x, y)|i − �h/2�+1≤ x ≤
i + h − �h/2�, j − �h/2�+1≤ y ≤ j + h − �h/2�}, and Wr

k =
{Ir (x, y)|i − �h/2�+1≤ x ≤ i + h − �h/2�, j − �h/2�+1≤
y ≤ j +h −�h/2�}, where �·� denotes a round toward positive
infinity. Therefore, Ws

k and Wr
k are windows that contain the

amplitude information of Is and Ir , respectively, associated
with a geographical location of size h × h, centered in ck

(when h is odd). Each object within Icm has a sample Pk

associated with it, composed of both Ws
k and Wr

k windows side
by side, forming an h × 2h structure. An example illustrating
this is shown in Fig. 2.

C. Object Classification

Each object within Icm can be classified as either a target or
a nontarget structure. We define this as a binary classification
problem. Let � = {ωt, ωn} be the set of classes to be
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Fig. 2. Illustration of sample extraction. Given a CM Icm, for each object
(bright connected pixels), a block h × h (highlighted within the images) is
extracted for both Is and Ir . A sample Pk of size h × 2h is formed by merging
Ws

k and Wr
k side by side. The sample Pk was zoomed, and a dashed line was

included for better visualization of the windows.

TABLE I

DESCRIPTION OF THE IMPLEMENTED CNN ARCHITECTURE

identified, where, for each sample Pk , we need to decide if
it corresponds to a target ωt or a nontarget ωn class. For this
problem, supervised schemes for the CARABAS-II challenge
have attempted to manually craft features based on the local
statistics of the samples [8], which are not designed to capture
edges and basic shapes that may better discriminate targets
from the false alarms. We propose to use a CNN for this task.

The first layer of a CNN extracts features, such as edges and
the samples’ geometry, and as the number of layers increases,
high-level features are extracted. This is particularly useful
for the CARABAS-II problem, as the geometry can be very
important when it comes to distinguishing elongated structures
from military vehicles. We propose a simple architecture
composed of two convolutional and two max-pooling layers
given the low speckle noise and stability of the considered
images, as the use of fewer layers can prevent a massive loss of
spatial context from the samples. The architecture parameters
for the proposed network are shown in Table I.

The inputs of the CNN are the samples Pk , of size 16 ×32,
as we selected h = 16. Each convolutional layer, activated by
a rectified linear unit (ReLU) function, uses filters whose sizes
are 3 × 3, while the max-pooling layer reduces the feature map
of the previous layer by a factor of two. A fully connected
layer generates 640 features used to classify the inputs into
two classes, either a target or a nontarget.

III. EXPERIMENTAL RESULTS

For the experiments, we considered the CARABAS-II data
set, composed of 24 VHF UWB SAR images related to
the same region in Sweden, and acquired at three different
flight headings. Each image has a size of 3000 × 2000 pixels
associated with an area of six square kilometers, and each
image pixel represents 1 m in azimuth and 1 m in range. The
spatial resolution in this measurement campaign is 2.5 m in

Fig. 3. Images related to the Sigismund deployment, with the 25 targets
highlighted within the red square. (a) Image 2_2, flight heading of 135◦.
(b) Image 2_1, flight heading of 225◦ . (c) Image 2_5, flight heading of 230◦.

azimuth and range [1], [3], and therefore, we use a 3 × 3
matrix as the structuring element Se for (3). Each image of
the data set has 25 concealed targets that are arranged in four
possible target deployments: Sigismund, Karl, Fredrik, and
Adolf-Fredrik. Each target deployment is associated with a
specific target placement within the image and a specific target
heading. There are three possible vehicle classes: TGB11,
TGB30, and TGB40. While the last two are similar in size,
the first one is considerably smaller. For the scope of this
letter, we will consider that all vehicles belong to the same
target class. The images can play the role of Ir and Is for a
total number of 24 pairs, as suggested in [1]. Fig. 3 shows
the resulting images for the three possible flight headings of
the same deployment. The images collected with the flight
headings of 225◦ and 230◦ are the most affected by radio
frequency interference (RFI) since the antenna main lobe is
pointing toward a TV transmitter located southeast of the test
area [1].

In this letter, we define two databases for training: T1,
which considers all three flight headings and the four target
deployments to achieve a robust classifier; T2, to evaluate the
performance of the proposed scheme when training with a very
different flight heading (135◦) than those from the remaining
pairs (225◦ and 230◦). The information about the 24 pairs is
presented in Table II. Note that, for both T1 and T2, we do
not train the algorithm on pairs 18 and 20. These two specific
pairs have been reported as the most challenging ones for this
data set as their images are highly affected by RFI [4]–[6],
and therefore, the number of false alarms tends to be higher.
We choose these pairs as part of the test database to evaluate
the proposed scheme’s performance against this problem.

The training of the network proceeds as follows. For each
image pair Is and Ir of the training set, the CM and object
extraction steps from Sections II-A and II-B are applied. As the
target’s location for each pair is available, samples related to
objects extracted within a radius of ten pixels from those
regions will be assigned as part of the ωt class. Common
false alarms, i.e., noisy pixels and the elongated structures not
related to targets, will be detected by the CM and automatically
assigned to the ωn class.

For both training and test, a value of α = 2 for (2) was
adopted for the CM step as it was capable of reporting the
targets while still reducing the algorithm’s search space from
6 × 106 pixels to a few hundred objects to be tested per
pair. For the CNN displayed in Table I, a standard stochastic
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TABLE II

INFORMATION ABOUT THE CARABAS-II DATA SET PAIRS, DATABASE SELECTION, AND DETECTION
RESULTS FOR BOTH THE PROPOSED METHODOLOGIES

gradient descent with momentum (SGDM) optimizer was
employed, with 15% of the training data used for validation.
For the sample size, values of h in a range of 14 to 20 were
used, with h = 16 providing the best detection result.

To evaluate the proposed approach, the following metrics
were used. The probability of detection (Pd) is the sum of
detected targets Ndt over the available number of targets
Ngt . Since we are considering 16 test pairs per experiment,
Ngt = 400. The most important metric for radar target
detection is the false alarm rate (FAR), which is the total
number of detected false alarms Nfa over square kilometer
covered by the test images, equivalent to an area of 96 km2.
We also propose to use the figure-of-merit (FoM) metric, as it
can be seen as a relationship between the Pd and FAR metrics.
It is given by FoM = Ndt/(Nfa + Ngt). The higher the FoM,
the better the detection performance is.

A. Classification and CM Analysis

We first demonstrate the effectiveness of the CNN for
reassessing the CM detections. In Table III, we show the total
number of objects detected within the CMs of all test pairs.
These detections can be divided into the corresponding amount
of detected targets Ndt and false alarms Nfa for the CM and
for the proposed framework (CM + CNN). The amount of
Ndt and Nfa directly correlates to the number of true positives
and false positives, respectively. If only the CM is employed,
all the detections will be assigned as targets, and therefore,
the number of false alarms will be high. This highlights the
importance of a detection classification step in this situation.

From Table III, it is possible to infer the capability of the
CNN for rejecting the false alarms detected in the CM. Even
for the T2 methodology, where the flight heading changes a
lot between the network training and test, the CNN is still

TABLE III

CLASSIFICATION RESULTS FOR THE CM ONLY AND WHEN

THE CNN IS USED WITH THE CM (CM + CNN)

able to report a high number of targets with the cost of a
slightly increased number of false alarms. In addition, as only
the objects reported by the CM will be processed by the
CNN, the CM approach has the benefit of reducing the number
of samples to be processed. If a pixel-by-pixel classification
was applied, for each set of test pairs, 96 × 106 samples
would be tested. For the proposed approach, this number is
reduced to about 3000 samples. This is a direct consequence
of the value set for the thresholding constant α: the higher the
α, the lower the number of detections is, and consequently,
a greater reduction in the algorithm’s search space is achieved.
However, if α is set too high, the samples related to targets
will be discarded before the CNN classification step.

B. Detection Results and Flight Heading Sensibility

In Tables IV and V, we compare our proposal with target
detection schemes already proposed for the CARABAS-II
data set: the space–time adaptive processing (STAP) approach
of [3], the statistical hypothesis tests (SHTs) based on
the bivariate Gamma [5] and Gaussian distributions [7],
the I-RELIEF approach of [9], and the logistic regression
presented in [8]. Note that, as we only evaluate the model
for the test pairs, we display the results shown in [3], [5],
and [7]–[9] for the same 16 pairs of each methodology. For
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TABLE IV

COMPARISON BETWEEN THE PROPOSED MODEL WITH THE T1
METHODOLOGY AND OTHER TARGET DETECTION SCHEMES

TABLE V

COMPARISON BETWEEN THE PROPOSED MODEL WITH THE T2
METHODOLOGY AND OTHER TARGET DETECTION SCHEMES

our proposed model, we used the CNN of Table I (CM +
CNN) and a fine-tuned deep residual network with 18 layers
based on [12] (CM + ResNet-18) as the object classifier.

Table IV shows that the proposed algorithm achieves the
lowest FAR reported for the CARABAS-II data set with a Pd

above 96% for both classifiers and also surpasses all the other
target detection schemes by at least 2% in FoM. It is important
to note that the approaches presented in [7] and [9] used two
and three reference images, respectively. For the proposed
algorithm, we used a single reference image, the same as
in [3], [5], and [8].

In Table V, we analyze our classification results when
only images acquired with the 135◦ flight heading were used
for training. Note that, as we do not retrain the supervised
approaches of [8], [9] for this case, their results are still
reproduced in this letter as a result of their original training
procedure. The proposed model is still capable of overcoming
the target detection schemes based only on two images of [3],
[5], and [8] and performs better than the stacks approach
of [7]. The results are similar to the approach of [9], which
uses three reference images and employs preprocessing and
postprocessing. This result highlights the capability of the
proposed CNN to learn the targets’ structure even if the
flight heading is changed drastically, as a high correlation
between targets is still expected. A loss in performance for
the ResNet-18 classifier is noticeable and indicates that a
greater generalization can be achieved with the proposed CNN.
A higher number of false alarms are reported as the elongated
structures related to the false alarms are more sensitive to the
flight path (see Fig. 3), and therefore, the objects that will
be detected by the CM will change considerably. In addition,
as the test images of this experiment are considered to be the
most affected by RFI, the results indicate that the scheme is
robust against this problem.

IV. CONCLUSION

In this letter, we presented a twofold solution to the problem
of detecting targets for wavelength–resolution multitemporal
SAR images. First, we generate a CM to highlight objects
within the images employing a simple thresholding technique.
Second, after extracting samples related to the objects, we use
a CNN to distinguish targets from other strong scatterers
detected in the CM to further reduce the FAR. The simple
proposed scheme overcame the performance of statistical tests,
other supervised algorithms, and even the schemes that make
use of more than one reference image. This is particularly
visible for pair 18 of the CARABAS-II data set, where only
one false alarm is reported for the most challenging image
pair of the available data. In addition, we explored the network
learning capability when images acquired with a single flight
heading are used for training, and as the experiment achieved
decent results, we conclude that the proposed scheme can still
be applicable in those conditions. The combination of change
analysis and a classification algorithm for multitemporal SAR
images target detection can be explored further, as the pro-
posed CM step can be replaced with other suitable techniques.
A stricter CM step can be investigated and could imply
a simpler object classification step, as the target detection
scheme can now be seen as a combination of two algorithms.
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