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Abstract—The performance of software defect prediction(SDP)
models is known to be dependent on the datasets used for
training the models. Evolving data in a dynamic software
development environment such as significant refactoring and
organizational changes introduces new concept to the prediction
model, thus making improved classification performance difficult.
In this study, we investigate and assess the existence and
impact of concept drift on SDP performances. We empirically
asses the prediction performance of five models by conducting
cross-version experiments using fifty-five releases of five open-
source projects. Prediction performance fluctuated as the training
datasets changed over time. Our results indicate that the quality
and the reliability of defect prediction models fluctuate over time
and that this instability should be considered by software quality
teams when using historical datasets. The performance of a static
predictor constructed with data from historical versions may
degrade over time due to the challenges posed by concept drift.

Index Terms—Defect prediction, Just-in-time Quality assur-
ance, Concept drift

I. INTRODUCTION

Software defect prediction models help practitioners de-
tect potential defective modules in software, thus enabling
the effective allocation of scarce testing resources [1], [2].
Several machine learning models [3], [4], [5] and recently
deep learning models [6], [7] have been proposed to help
software quality teams detect potentially buggy modules in
new releases or versions trained on historical versions of
a software project. The performance and efficiency of the
prediction models are thus dependent on the quality of the
training (historical versions) datasets [8], [9].

Traditional defect prediction is usually conducted at the
package or file-level where product (static/code) metrics are
extracted from software source codes and used for training.
To help focus on the most risky changes that can potentially
introduce bugs into a software project, Kamei et al. [10]
proposed Just-in-Time (JIT) prediction models which focus
on identifying defect-prone software changes instead of files
or packages. These JIT models are constructed with process
metrics extracted from the properties of software changes.

Validation of defect prediction models for within-project
scenarios are mostly done using the time-wise validation
approach where the chronological order of software modules
or versions are considered. The most recent version is used
for testing, whereas the least recent versions/modules are

considered for training. This widely used approach assumes
the stability of software projects during the evolution process.
However, software projects vary or undergo several changes
over time and this reflects in the distribution of the data
instances (metrics) extracted from the projects. These changes
in the data distribution over time is referred to as concept drift
in the machine learning literature. Factors such as code review
process, major refactoring, change of developers, changes in
organisation policies such us formal programming language,
tools and others can contribute to this concept drift phe-
nomenon.

Very few studies [11], [12], [13], [14] consider the impact
of concept drift on software quality. Amongst the common
challenges of software defect datasets tackled in literature
are class imbalance [15], [16] and feature selection [17].
Ekanayake et al. [18] observed that the prediction quality of
models for software projects changes over time as the number
of developers editing and fixing defects on the files changes.

To investigate and empirically assess the impact of concept
drift on software defect quality, we revisit the study by
Ekanayake et al. [18] and conduct comprehensive change-level
defect prediction experiments on 55 releases of 5 change-level
metrics software projects using 5 prediction models and 3
evaluation measures.

As a contribution, we conduct a replication study in which
we reassess previous evidence but achieve similar outcomes.
Our analysis reveals that concept drift does impact prediction
performance but some prediction models are more robust to
the distribution changes.

This paper is organised as follows. Section II presents the
related work. In Section III, the datasets, prediction models
and experimental settings are presented. The results and a dis-
cussion of the results are reported in Section IV. The potential
threats to the validity of our study results are presented in
Section V. Finally, we present our conclusion and potential
future work directions in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we review the limited related work on
concept drift in software defect prediction.

By studying four open source systems, Ekanayake et al.
[11] investigated the notion of concept drift and its impact



on defect prediction. Further study by Ekanayake et al. [18]
revealed that the number of authors editing software projects
contributes to concept drift and results in fluctuating software
quality.

Kabir et al. [14] demonstrated the applicability of a drift
detection method to identify concept drift for defect prediction.
The method helped to identify drift points in the datasets for
two open-source projects. Such points can indicate the need
for retraining the prediction models.

A recent study by Amasaki [12] on the feasibility of
applying a cross-project defect prediction approach for cross-
version project defect prediction revealed that the nearest
neighbor filter method used for cross-project defect prediction
did not improve the performance of models trained on cross-
versions. The author also observed that most projects suffered
from concept drift and that was the main challenge imped-
ing performance improvement. We supplement the findings
of these studies by empirically identifying concept drift in
five additional projects. The projects we have used in the
analysis are significantly larger than the ones used before and
therefore are more likely to be representative of some real-
world systems.

III. EXPERIMENTAL METHODOLOGY

A. Datasets

Five large software projects with change-level metrics which
were made publicly available by Kamei et al. [10] were ex-
tracted and used for the experiments. The basic information of
these software projects with the number of changes (modules)
and percentage of defects are presented in Table I. These
datasets comprise 14 change-level metrics and an additional
metric called bug which shows the number of bugs found per
module. Table II shows the summary of the metrics for the
datasets used. Further information on these metrics and how
they were extracted can be found in the original study by
Kamei et al. [10]. The ND and REXP metrics were removed
from the datasets before constructing the models because these
two metrics were found to be highly correlated by Kamei et
al. [10].

TABLE I
SUMMARY OF THE STUDIED SOFTWARE PROJECT

Project Period # changes % Defect Total LOC
Bugzilla 08/1998 – 12/2006 4620 36 173250
Columba 11/2002 – 07/2006 4455 14 665577
Eclipse Platform 05/2001 – 12/2007 64250 5 4638850
Mozilla 01/2000 – 12/2006 98275 25 10466287.5
PostgreSQL 07/1996 – 05/2010 20431 20 203960.3

B. Prediction Models and Performance Measures

To assess the impact of concept drift on prediction per-
formance, we used five prediction models. Four of them are
models commonly used in defect prediction studies; Naive-
Bayes, Neural Networks, K-Nearest Neighbor (n=3) and Ran-
dom Forest [19]. Furthermore, we adopted a recently proposed
boosting model called XGBoost [20]. XGBoost is an improved
implementation of a gradient boosting framework optimized to

TABLE II
SUMMARY OF CHANGE MEASURES

Name Definition
NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change
FIX Whether or not the change is a defect fix
NDEV The number of developers that changed the modified files
AGE The average time interval between the last and the current change
NUC The number of unique changes to the modified files
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem
bug Indicates the existence of a bug or not

be highly efficient, effective and better performance [21], [22].
The models are implemented and executed using scikit-learn1,
a machine learning package in Python. We used the default
configurations for each model.

The prediction models are evaluated using three measures:
recall or probability of detection (pd), probability of false
alarms (pf ) and the Area Under the Curve (AUC). Both (pd)
and (pf ) are computed from a confusion matrix (III) and
the Area Under the Curve (AUC) value is calculated from
the Receiver Operating Characteristics (ROC) curve. Recall
(pd) measures the percentage of actually detected defects
and achieves a value of 100% if false negatives are zero.
Pf computes the rate of predicted modules that are wrongly
predicted as defect-prone. Higher values of pd and lower
values of pf denote better prediction performance. Equations 1
and 2 show the mathematical computation for these measures.
AUC handles the trade-offs between true and false positive
rates [23] and has been shown to be more suitable for
evaluating prediction models trained on imbalanced defect
datasets [16], [24]. As a preliminary study, a direct comparison
of performance values are compared.

TABLE III
CONFUSION MATRIX FOR THE TWO-CLASS PROBLEM

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Recall (pd) =
TP

TP + FN
(1)

FalseAlarm (pf) =
FP

FP + TN
(2)

C. Experiments

Three sets of experiments were conducted to assess and
examine the impacts of different training datasets developed
in different time periods on prediction quality. To determine
the evolution and drift changes in the software projects, the

1http://scikit-learn.org/



change-level datasets are chronologically arranged based on
the commit dates. They are then divided into groups where
changes made in the same month are grouped together. Similar
to the approach by Yang et al. [25] and in conformance with
popular intuition that a release/version of a software is com-
pleted within 6–8 weeks [18], changes in two groups (months)
are merged to create one dataset. Thus, 11 versions/releases
were created from each software project where version 1
represents the very first two months of changes (old version)
and version 11 represents the latest version (current changes).
In addition to replicating the procedure followed by Ekanayake
et al. [18] where they keep the target project (latest version)
constant and predict the defects using models trained on all
of the possible combinations of training datasets collected
within a period earlier than that of the latest target project, we
conduct two different sets of cross-version experiments where
the target (test) changes per every experimental run imitating
a more practical scenario. Below is a description of the three
approaches followed.

(1) Single cross-version defect prediction for varying
target period: For each software project, we conduct cross-
versions experiments. Prediction models are trained on the
earlier version and used to predict the bug-proneness (classify)
of the subsequent version. As an example, for each project
with n (n=11) versions, the models are first trained on ver-
sion 1 and used to predict version 2. Afterwards, models
will be trained on version 2 and then tested on version 3.
The latest version (11) is not used for training. Since each
software project has 11 versions, 10 i.e (11–1) cross-versions
experiments are conducted per each model. By following this
process, an overall 250 (10*5*5) models across all datasets.

(2) Aggregated cross-version defect prediction for vary-
ing target period: Similar to the first experiment, we conduct
cross-versions predictions. However, the training set is gradu-
ally expanded by the subsequent versions after being used as a
target set in the previous experimental run. The target project
is moved one version forward and the preceding versions are
combined as the training sets. We begin by using the oldest
version to predict the next oldest version. Afterwards, both
versions are merged to form one training set and tested on
the subsequent older version. As an example, for each project
with n (n=11) versions, the first experimental run uses version
1 as the training set and the model is tested on version 2.
Subsequently, versions 1 and 2 are merged and used as the
training sets and version 3 is used as the testing set. The
procedure is followed until all versions but the last version
are merged as the training set.

(3) Aggregated cross-version defect prediction for con-
stant target period: We follow the same procedure imple-
mented by Ekanayake et al. [18] for our datasets and prediction
models. For this experiment, all combinations of training
datasets are created to predict a constant target project (most
recent version being version 11).

IV. RESULTS AND DISCUSSIONS

To give an overview over the impact of drift changes on
prediction performance, the results are presented using line
plots.

A. Single cross-version defect prediction for varying target
periods

As explained in the experimental approach in Section III-C,
we conduct cross-version predictions where each old version
is used to predict the subsequent recent version once. Only
the last (xth) recent version is not used for training but it was
used as a testing dataset for the x–1th version. Figure 1 shows
the results of using different projects developed in different
time periods on prediction performance. The versions used
for training the models are displayed on the x-axis with the
performance values on the y-axis.

For most prediction models especially for the Naive-Bayes
(NB) and Neural Network (NNET) models, recall and pf val-
ues fluctuate as the training data set changes. The performance
increases and decreases at different times. The Random Forest
(RF) and XGBoost (XGB) models are more robust to changes.
AUC values are almost stable across all datasets and models.

The results indicate that it is a challenge to construct a
stable predictor that will perform well across new software
releases developed in different time periods. More specifically,
constructing defect prediction models using a single version
may or may not improve prediction performance. To find a
more stable predictor that will perform well, the second set of
experiments where several releases of software are combined
are analysed in the section below.

B. Aggregated cross-version defect prediction for varying tar-
get periods

Figure 2 displays the results of using more than one software
releases as a training set for predicting a new release. Apart
from the very first (T1) release which was used individually
to predict the next subsequent release, all quality predictions
were made with models trained on 2 or more releases. The
last prediction was made with models trained on the previous
10 releases (T1 to T10) and tested on T11.

The performance for all measures initially decreases as
the training data set is expanded to include new versions
produced in different time periods for most models. Similar to
the previous observations in the first experiment, AUC values
were almost stable across all datasets and models. Recall and
pf values fluctuate especially for the NB and NNET models.
However, there is a bit of stability for the NB and NNET
models compared to the single-set cross version experiment
results.

C. Aggregated cross-version defect prediction for constant
target period

Figure 3 displays the results of using more than one software
releases as a training set to predict the latest release. Different
from the observations of the previous two experiments, more
fluctuations were observed across all prediction models and
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Fig. 1. Prediction quality using different single training datasets developed at different time periods to predict changing target project for different classification
models
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Fig. 2. Prediction quality using different combined datasets developed at different time periods to predict changing target project for different classification
models

some datasets. AUC values were as volatile as the pd and pf
values for the mozilla, platform and postgre projects. For these
projects, the prediction quality were more unstable throughout

all prediction periods. The NNET model was the most unstable
across all datasets. Considering the bugzilla and columba
datasets, the prediction performance is initially low and stable
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Fig. 3. Prediction quality using different combined datasets developed at different time periods to predict a stable target project for different classification
models

Fig. 4. Quartile plot of prediction quality using different combined datasets developed at different time periods to predict a stable target project for different
classification models

but increases towards the end of the prediction prediction.
To better demonstrate the variability in prediction results,
quartile plots are presented in Figure 4. The quartile plots are

generated by sorting the prediction results and extracting the
median, lower (25th percentile) and upper (75th percentile)
quartiles for each dataset project. In the figure, the solid dot



represents the median whereas the limits represents the lower
and upper quartiles. From the quartile plots, we observe that
all prediction models with the exception of the NNET model
trained on the bugzilla and columba projects produced more
stable recall and pf values. All models trained on these two
projects produced stable AUC values. These two projects had
few code changes (less than 5K) compared to the other three
projects with more than 20K changes (from Table I) and
may explain why prediction models trained on them were
more stable. This indicates that concept drift may exist in the
project but the drift is not significant. We also observe that the
Random Forest model was the most robust model to concept
drift changes as very few variations of results were observed
across all training periods and datasets.

D. Discussion

Despite the concept drift impact on prediction performance,
it is not always negative as noted by a previous study [14].
Model performance at different time periods (using versions)
vary. Regarding the first experiment, the instability in perfor-
mance is due in part to the changes in the training dataset
per each prediction. For the second and third experiments,
the improvement or degradation in performance is caused by
the expansion in training set. Although the versions belong to
the same software project, the training datasets were recorded
and extracted in different time periods. As such, different
factors such as change in developers, code review systems
and others may affect the quality of each software version
subsequently affecting the data distribution. Concepts available
in old version may not be available in the new version and vice
versa. The different and new concepts existing in the different
versions once introduced into the training set are not easily
detected and learned by the prediction models. Interestingly,
the Bugzilla dataset which was collected over a period of 8
years was one of the most stable project across all prediction
models in all three experiments. The usual intuition will be
that there will be a significant concept drift. Obviously, the
factors such as code reviews, tools used and developers may
have changed during the 8-year period but the concepts or
distribution did not significantly change (drift). We attribute
this stability to the few number of changes made during the
8-year period the data was collected. Other factors may have
led to this stability and further research beyond our current
study may aid unravel the factors. This is left for a future
study.

We also observed different types of concept drift based on
the prediction performance. Whilst most the drifts observed
are gradual, we observe sudden drifts for the NB and NNET
models. These models are less robust to distribution changes in
the training datasets. Additionally, the recall and pf values are
almost the same and highly correlated. A good model should
achieve high recall and low pf [1], thus we do not recommend
using NB and NNET for defect prediction trained on several
releases of software projects.

Most studies suggest discarding the old historical data when
drift changes are observed and impacts prediction performance

negatively. However, our analysis reveal that not all the data
should be discarded; not only will it lead to data shrinkage but
the data instances that do not contribute to the model should
be the only ones discarded keeping the beneficial models.
Determining the beneficial instances is a challenge and we
leave this as a future study where we will conduct in-depth
analysis of the data instances and keep the beneficial ones.

V. THREATS TO VALIDITY

We discuss below the potential threats to validity that might
influence our results and findings. The prediction models and
the Python library used are potential threats to validity and
we acknowledge that using different prediction models and
libraries might produce different results. We used the default
parameters of the prediction models during training and differ-
ent configurations would produce different results. We cannot
generalize our results for all datasets especially commercial
projects since we studied only open-source projects. We limit
the results of our study to the five open-source projects studied.
Additionally, investigations of projects with metrics other than
process metrics will be considered in a future study. The time-
frame used to divide the projects into several versions is also
a potential threats to validity. We followed an approach by
Yang et al. [25] where we assume software releases are done
between 6–8 weeks but do acknowledge that different time
periods may produce different results.

VI. CONCLUSIONS

Construction of reliable software quality models that span
different versions (releases) developed in different time periods
is a challenge facing software quality teams. This study
investigated the impact of concept drift in software defect
prediction. We assess and examine the impacts of different
training datasets developed in different time periods on predic-
tion quality. By considering 5 prediction models and 5 open
source projects comprising 55 versions, three sets of cross-
version experiments are conducted. The results indicate that
quality of prediction performance is not stable over time and
the random forest and XGBoost models are robust to concept
drift when the target project is not constant.

Software quality teams should consider the instability factor
when using historical datasets for prediction training. It will
be interesting to design a tool that detects concept drift in
prediction models before model training. This could be done
by leveraging the benefits of incremental learning to reduce
the misclassification rate caused by concept drift and this is
left as a possible future work.
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