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ABSTRACT

Background: The detection and extraction of causality from natu-
ral language sentences have shown great potential in various fields
of application. The field of requirements engineering is eligible for
multiple reasons: (1) requirements artifacts are primarily written
in natural language, (2) causal sentences convey essential context
about the subject of requirements, and (3) extracted and formal-
ized causality relations are usable for a (semi-)automatic transla-
tion into further artifacts, such as test cases.
Objective:We aim at understanding the value of interactive causal-
ity extraction based on syntactic criteria for the context of require-
ments engineering.
Method:Wedeveloped a prototype of a system for automatic causal-
ity extraction and evaluate it by applying it to a set of publicly avail-
able requirements artifacts, determining whether the automatic ex-
traction reduces the manual effort of requirements formalization.
Result: During the evaluation we analyzed 4457 natural language
sentences from 18 requirements documents, 558 of which were
causal (12.52%). The best evaluation of a requirements document
provided an automatic extraction of 48.57% cause-effect graphs on
average, which demonstrates the feasibility of the approach.
Limitation: The feasibility of the approach has been proven in the-
ory but lacks exploration of being scaled up for practical use. Eval-
uating the applicability of the automatic causality extraction for a
requirements engineer is left for future research.
Conclusion: A syntactic approach for causality extraction is viable
for the context of requirements engineering and can aid a pipeline
towards an automatic generation of further artifacts from require-
ments artifacts.

CCS CONCEPTS

• Computing methodologies → Rule learning; • Software and

its engineering→ Genetic programming.
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1 INTRODUCTION

The detection of semantic relations in natural language text has
proven to be an aspect of the field of information extraction which
has great potential for many areas of application as outlined by the
SemEval 2010 task set [14][27][20].
The automatic extraction of causal relations from large corpora of
natural language text has proven useful to many fields of research.
Some examples for these fields of research are healthcare, where
causal relations between symptoms and diseases yield insights for
diagnostics [15], and economy, where financial relations can be de-
rived from analysing stock reports [4].
These domain-specific examples limit the scope of an automatic
phrase extraction method to causal relations but they in turn in-
crease their precision, as specific semantic structures and lexical
cue phrases reoccur in domain-specific texts. Automatic extraction
of causal relations is especially applicable in domains where causal
relations are explicitly stated.
One field of research that is often overlooked in this context, but
shares the qualifying attributes to excel in automated recognition
and extraction of causal relations, is requirements engineering. Ar-
tifacts in requirements engineering are predominantly written in
natural language [28] and describe conditions of a system in sen-
tences conveying a causality relation. This can be seen in the exam-
ple "If registration is not successful an audible and visual indication
shall be provided." [7], where the relation between the unsuccess-
ful registration and the audible and visual indication is expressed
in a causal sentence.
Furthermore, the implementation of a system based on require-
ments engineering artifacts needs to be validated by determining
whether the defined requirements are fulfilled. Tests of various
granularity are usually a formalized version of specific require-
ments. Manually transforming natural language requirements into
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formalized test cases can be a tedious and error-prone task, as natu-
ral language often lacks specificity and contains ambiguous phras-
ing, which may be interpreted in more than one way.
Approaches to minimize ambiguity in natural language require-
ments exist in the form of controlled natural language [10][17],
which can be easily reused for further formalization [22] or gener-
ating executable scenarios from requirements [13] among others.
Though controlled natural language poses clear advantages for for-
malization techniques, it is still underrepresented in requirements
engineering in practice. For this reasonwe do not assume any form
of control on the natural language requirements.
An automatic recognition and extraction of causal relations in nat-
ural language requirements texts can mitigate the problem of am-
biguity by reducing the manual work necessary for transforming
causal relations conveyed by sentences into formalized notation.
Above that recent studies have shown that an automatic test gen-
eration from cause-effect graphs are effective and viable [25][24].
Our proposed system fills the gap between natural language re-
quirements artifacts and cause-effect graphs: the automatic extrac-
tion of causal relations may be used in a pipeline to automatically
generate test cases from natural language requirements artifacts.
Our contribution is threefold: first, we introduce a causality pat-
tern structure that is based on the syntactic rather than the seman-
tic structure of a sentence. This structure is specified incrementally
to prevent over-fitting. Second, we present an interactive, online
machine learning framework that tailors the causality patterns to
its input, therefore adapting to any given context. Third, we evalu-
ate the framework by analysing a set of publicly available require-
ments artifacts and assess the system’s capability to automatically
extract cause-effect graphs from causal sentences.
Following Roel Wieringa’s design science approach [29] our work
relies on the problem investigation observed in practice in the in-
dustry, where requirements engineering experts at QualicenGmbH
identified a need for an automatic extraction of causal relations
from natural language requirements. Our contribution covers the
treatment design and provides a preliminary evaluation of the pro-
totypical implementation.
The rest of this paper is structured as follows: Section 2 covers re-
lated work in the field of automatic extraction of causal relations.
Section 3 introduces the used concepts and Section 4 presents our
approach in detail, which is evaluated in Section 5. A conclusion
is drawn in Section 6 alongside considerations for future work.

2 RELATED WORK

Automatic extraction of causal relations fromnatural language texts
is typically split into two categories [1]: non-statistical techniques
that rely on pattern matching and statistical techniques that utilize
machine learning for classification of sentences.
Early approaches attempted an automatic causality detection by
matching sentences to manually defined lexico-syntactic patterns.
A highly cited, early work by Girju et al. [12] investigated a specific
pattern <NP1 VP NP2>, where NP represented a noun phrase and
VP a verb phrase. A set of semantic constraints on the three pattern
elements filtered the matching sentences and allowed for a causal-
ity detection via a specific, semantic ranking. Other pattern-based
approaches include [4], which utilizes a hierarchy of templates to

increase the granularity of patterns.
Another popular approach consists of feature-based classification
methods, where causality is detected based on syntactic, semantic
or lexical features. A recent approach by Ayyanar et al. [2] based
the classification on grammar tags of specific elements of a sen-
tence as well as the distance between the causally related nouns.
Other approaches on classification via features and decision trees
are [3], where syntactic patterns were manually generated and
then used to train a decision tree for the detection of causality, and
[11], a refinement of [12] by adding a decision tree for causality
detection.
Rink et al. achieved the best result for the SemEval 2010 task 8 chal-
lenge of detecting causality [1]. Their proposed framework com-
bines graphical patterns consisting of syntactic, semantic and lex-
ical constraints with a binary classifier to identify causally related
events in sentences [21].
Prominent domains for application of causality extraction are ques-
tion answering [11], the medical domain [15], and economics [4].
The technique can be utilized in the context of requirements and
software engineering to reuse extracted cause-effect graphs for
other downstream artifacts. One example of this is to integrate an
automatic extraction algorithm into a pipeline for automatic test
case generation: As test cases are the validation of a built system
and this validation is based on the context described in the require-
ments artifacts [26], an automatic pipeline for formalizing natural
language requirements artifacts into test cases provides viable sup-
port for the software engineering process [19].
Research on the steps of automatically transforming cause-effect
graphs into decision tables [25][24] exists as well as transforming
decision tables into test suites [23].
Other possible fields of application include traceability link recov-
ery, where the extracted semantic, causal relation could add to the
processing of natural language requirements [16]. The extracted
cause-effect graph provides additional semantic information on re-
lations in the requirements and might add to the precision of link
recovery.
But most of the existing approaches on causality extraction are not
eligible to the context of requirements engineering for three major
reasons:

(1) Causal relations described in requirements artifacts are rarely
connected in an obvious semantic manner

(2) Semantic causality extraction is based on large corpora of
natural language text, which is often not available in the
requirements engineering phase

(3) The extracted causal relation is often limited to a word pair,
omitting information of the causal sentence vital for reusing
the extracted cause-effect graph

Tailoring causality extraction for requirements engineering is ex-
plored in a more recent approach by Fischbach et al. [8], where test
cases are automatically generated from acceptance criteria. The us-
age of predefined, manual patterns based on the dependency struc-
ture of sentences specifies their approach on the artifact type of
user stories, which is avoided in our approach to ensure a greater
generalizability.
Our approach is eligible to extract cause-effect graphs from causal
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sentences in requirements engineering by dealing with the afore-
mentioned flaws of existing approaches as follows:

(1) Causal relations are detected via syntactic and lexical at-
tributes

(2) The online learning approach continuously improves the
causality detection without the need for a large training cor-
pus beforehand

(3) Specific phrase extractionmethods are capable of extracting
an arbitrary portion of a sentence rather than only a single
word.

This approach can be applied to requirements engineering as well
as any other domain.

3 CONCEPTS

This section introduces and formalizes all concepts used in the con-
text of the implementation.

3.1 Foundation

Sentences. We denote sentences as B ∈ ( , where S is the set of
all sentences, called the corpus, and a sentence s can be causal or
non-causal.

Causality. Causal sentences contain a causality 2 ∈ � . We intro-
duce the following predicate to express the causality of a sentence
s:

Predicate Explanation

causality(s, c) 2 ∈ � is the causality of sentence B ∈ (

A causal sentence and its conveyed causality is illustrated in the
following example:

Sentence The application is terminated when the x-
button is pressed.

Causality the x-button is pressed =⇒ The application is
terminated

The relation of causality is reduced to its most simple form, consist-
ing of a cause- and an effect-phrase. Extracting these two phrases
from the sentence is subject to the causality extraction.

3.2 Formalization

Structure. A sentence written in natural language can be pro-
cessed by natural language processing (NLP) tools in order to de-
rive syntactic and semantic information about the sentence. A sen-
tence can be structured in two ways: by constituency or depen-
dency. A constituency parser groups adjacent words into grammat-
ical units and builds a tree structure, where the root node repre-
sents the full sentence. A dependency parser also constructs a tree
structure, but in this case the inner nodes of the tree are not chunks
grouping words or other chunks into units, but rather the words
itself. A wordF1 is the parent node of a wordF2 ifF2 is semanti-
cally dependent of F1. The root node of the semantic structure is
the root dependency, which is usually the sentence’s predicate.
Elemental to the identification of causal sentences in our approach
is the syntactic structure, which will be denoted as C ∈ ) and ap-
plicable to the following predicates:

structureOf(s, t) C ∈ ) is the structure of sentence B ∈ (

Internal Representation. A sentence B ∈ ( is formalized by NLP
tools into an internal representation. This internal representation
of sentences consists of the following aspects:

• Words: each word contained in the sentence in order of ap-
pearance with a corresponding part-of-speech-tag indicat-
ing the words role within the sentence

• Constituency structure: adjacent words clustered together
to chunks of words which represent a specific grammatical
unit

• Dependency structure: semantic relations of words to each
other

An example for a sentence formalized into the internal represen-
tation is given in Figure 1. The tree-structure composed of grey
nodes represents the constituency structure, where each node con-
tains its constituent tag. The list of white nodes represents the
words of the sentence annotatedwith their respective part-of-speech-
tag. The lines connecting theword nodes represent the dependency
structure, where each label on the connection represents the de-
pendency relation type.

Structural Equivalence. The premise of our approach is that sim-
ilarly structured causal sentences also have their cause- and effect-
phrases located at similar positionswithin the sentence. This premise
will be explained in detail in Section 4.2. Two tree-like structures
are equivalent if both structures contain the same nodes in the
same order. Furthermore, a structure C1 ∈ ) is the subtree of a
structure C2 ∈ ) when C1 contains all nodes in the same order as
C2 and potentially more, but not necessarily the other way around.
We introduce the following predicate:

subtree(C1, C2) structure C1 ∈ ) is a subtree of structure C2 ∈ )

For example, the structure depicted in Figure 2 is a subtree of the
structure in Figure 3, but not a subtree of structure in Figure 4.
Hence: BD1CA44 (C1, C2) but not BD1CA44 (C1, C3), because C3 lacks a
node with the tag SBAR as the first child of the root node.

Cause-Effect Graphs. Cause-effect graphs are used to represent
the causality, which a sentence conveys, in a formalized, graphical
notation [5]. In our approach we limit the extent of cause-effect
graphs to their most simple form, consisting of two nodes, one
representing the cause and one the effect of the causality relation.
Cause-effect graphs will be denoted as 6 ∈ � and are applicable to
the following predicate:

conveys(g, c) CEG 6 ∈ � conveys causality 2 ∈ �

For every causal sentence there exists a cause-effect graph that
conveys its causality:

∀B ∈ (, ∃2 ∈ � : 20DB0;8C~ (B, 2) → ∃6 ∈ � : 2>=E4~B (6, 2)

Note that the cause-effect graph is not necessarily equivalent to
the causality. Ensuring that a cause-effect graph extracted from a
sentence actually represents the causality of that sentence is the
center of the challenge of correct causality extraction.

3.3 Phrase Extraction Methods

Other attempts at causality extraction covered the part of phrase
extraction by selecting certain semantic elements from the sen-
tence, for example taking the two noun phrases NP1 and NP2 of
the sentence. Introducing phrase extraction methods is necessary
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Figure 1: Internal representation of a natural language sentence formalized via constituency and dependency parsing

Figure 2: Syntactic sentence structure

C1 of sentence B1
Figure 3: Syntactic sentence structure

C2 of sentence B2 Figure 4: Syntactic sentence structure

C3 of sentence B3

for our approach for two reasons: first, to provide independence of
semantic information, the extraction of phrases must be based on
syntactic or lexical information. Second, the extent of the phrase,
which represents a part of the causality, shall be arbitrary to ensure
that the causality patterns meet the needs for the requirements en-
gineering process. An example from the prominent SemEval 2010
Task 8 set of annotated sentences is the following sentence [14]:

Sentence The current view is that the chronic inflamma-
tion in the distal part of the stomach caused by
Helicobacter pylori infection results in an in-
creased acid production from the non-infected
upper corpus region of the stomach.

Causality infection =⇒ inflammation

The causality relation annotated in the SemEval 2010 set of sen-
tences is semantically correct, but causality detection algorithms

trimmed to identifying causal relations of this type are restricted
to ignore a lot of data in comparable sentences. Without claiming
to define the borders of causality in a linguistic or philosophical
scope, it is feasible to expect a more encompassing phrase from a
causality phrase extraction method, for example as follows:

Sentence The current view is that the chronic inflamma-
tion in the distal part of the stomach caused by
Helicobacter pylori infection results in an in-
creased acid production from the non-infected
upper corpus region of the stomach.

Causality Helicobacter pylori infection =⇒ chronic in-
flammation in the distal part of the stomach

The context of causality extraction in requirements engineering is
to extract phrases from a natural language requirements artifact
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that can be reused to generate test cases, possibly even automat-
ically. The information value of an extracted causality is highest
when the extraction is not limited to the two events in a causal
relation represented by a single word, but includes all relevant in-
formation like participating actors and conditions. This becomes
evident in the following example, where a sentence from the PURE
dataset of requirements artifacts [7] is annotated by a causality,
which only takes into account the connected events:

Sentence If registration is not successful an audible and
visual indication shall be provided.

Causality registration =⇒ indication

The causal relation of the registration and the indication is evident,
but vital information is lost in the extraction process. This vital
information is necessary to more precisely define the initial situa-
tion and the expected result of described context. In contrast, the
following cause- and effect-phrase would provide the necessary in-
formation for later processing, like a test case generation:

Sentence If registration is not successful an audible and
visual indication shall be provided.

Causality registration is not successful =⇒ an audible
and visual indication shall be provided

An phrase extraction method 4 ∈ � is a process that, when applied
to a sentence B ∈ ( , returns a specific phrase from this sentence.
The extracted phrase is a substring of the sentence. An phrase ex-
traction method is defined as follows: for a sentence s with causal-
ity c, the application of the phrase extractionmethod on swill yield
a cause-effect graph g. The following predicate is introduced for
phrase extraction methods 4 ∈ �:

extracts(e, s, g) Phrase extraction method 4 ∈ � ex-
tracts cause-effect graph 6 ∈ � from
sentence B ∈ (

Aphrase extractionmethod is generated as outlined inAlgorithm 1.
In the simplified case of cause-effect graphs for this approach the
cause-effect graph g only contains 2 nodes n, one for the cause and
one for the effect.

Algorithm 1 Generate phrase extraction method 4 ∈ � for causal
sentence B ∈ ( with causality 2 ∈ �

Require: B ∈ ( , cause-effect graph 6 ∈ � where causality(s, c)
for node = ∈ 6 do

find phrase of n in s
find nodes in the syntactic structure of s, which parent the
phrase of n
create selector of these nodes and add selector to e

end for

return 4 , where extracts(e, s, g) holds

The resulting phrase extraction method works by selecting spe-
cific nodes within a sentence and combining all word nodes, that
are direct or indirect children of the selected node, together. Multi-
word expressions are handled by selecting parenting nodes of the
sentence structure, which cover the full expression.
In case of the sentence described above and shown in Figure 1, the
phrase extraction method extracting the cause-phrase would se-
lect the node S under the node SBAR, which transitively parents

all word nodes of which the cause-phrase consists. The phrase ex-
traction method extracting the effect-phrase would select the node
NP and VP, which are direct children of the root node, and combine
their word nodes to the effect-phrase.

3.4 Causality Patterns

A causality pattern combines the recognition of a causal sentence
with extraction of a cause- and effect-phrase from this unknown
sentence. This connection is based on the grammatical equivalence
to a previously known and processed causal sentence example. A
causality pattern consists of three elements:

• Signature: a subtree of a syntactic sentence structure, which
is the indicator for compliance to a sentence

• Phrase extraction method: an algorithm, which extracts the
cause- and effect-phrase when applied to a sentence

• Accepted sentences: a list of all causal sentences, that are
compliant to the pattern and applicable by its phrase extrac-
tion method

The signature associated with a causality pattern is similar to the
syntactic structure C ∈ ) of a sentence, as it represents a sub-tree
of a syntactic structure.
The following predicates are introduced:

signatureOf(p, t) C ∈ ) is the signature of the pattern ? ∈ %

compliant(p, s) sentence B ∈ ( is compliant to pattern ? ∈ %

extractionOf(p, e) 4 ∈ � is the phrase extraction method of
pattern ? ∈ %

applicable(p, s) sentence B ∈ ( is applicable by the pattern
? ∈ %

accepted(p, s) sentence B ∈ ( is accepted by the pattern
? ∈ %

Generation. A causality pattern can be generated from a causal
sentence and a manually created cause-effect graph. The signature
is extracted from the sentence’s syntactic structure to represent
its grammatical structure, and the phrase extraction methods are
generated from the elements of the cause-effect graph, which are
located within the sentence. The generation and maintenance is
further explained in Section 4.2. The acceptance of a sentence by a
pattern is determined by evaluating compliance and applicability,
which are explained next.

Compliance. Compliance between a sentence and a pattern de-
termines, whether the sentence belongs to the grammatical equiv-
alence class which the pattern represents. A sentence is compliant
to a pattern if and only if the signature of the pattern is a subset of
the sentence structure. This is formally expressed as:

∀B ∈ (,∀? ∈ %, ∃C1, C2 ∈ ) : B86=0CDA4$ 5 (?, C1)∧

BCAD2CDA4$ 5 (B, C2) ∧ BD1CA44 (C1, C2) → 2><?;80=C (?, B)

Our approach explores an incremental signature: the pattern’s
signature consists of as many nodes necessary, such that the fol-
lowing two conditions hold:

• The pattern’s signature is a subtree to the structure of all
accepted sentences
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Figure 5: Signature C?2 of a hypothetical pattern ?2

• The pattern’s signature is not a subtree to the structure of
all non-causal sentences and causal sentences of different
patterns.

This can be visualized when reviewing existing examples: assume
sentence B2 with structure C2 visualized in Figure 3 is causal and
sentence B3 with structure C3 visualized in Figure 4 is not causal.
Then a pattern ?2 would minimally require a signature C?2 as vi-
sualized in Figure 5 to differentiate the two sentences. Since C?2 is
a subtree of C2, sentence B2 is compliant to pattern ?2. Sentence B3
is not compliant to pattern ?2, because C?2 is not a subtree of C3.
Note that the pattern ?2 would also differentiate between B2 and
B3 if it had a the signature C1 shown in Figure 2, but this signature
would not be minimal because it contains more nodes than neces-
sary. The conditions ensure that only sentences of similar syntactic
sentence structure are compliant to a pattern and therefore eligible
to be accepted.

Applicability. Applicability of a sentence by a pattern determines,
whether the phrase extraction methods of the pattern extract the
desired cause-effect graph. A sentence is applicable by a pattern if
the phrase extraction method associated with the pattern extracts
the cause- and effect-expressions from the sentence that convey its
causality relation. This is formally:

∀? ∈ %,∀B ∈ (, ∃4 ∈ �, ∃2 ∈ �, ∃6 ∈ � : 20DB0;8C~$ 5 (B, 2)∧

2>=E4~B (6, 2) ∧ 4GCA02C8>=$ 5 (?, 4) ∧ 4GCA02CB (4, B, 6)

→ 0??;8201;4 (?, B)

Acceptance. A sentence is accepted by a pattern if the sentence’s
structure is compliant to the pattern’s signature and the sentence
is applicable by the patterns phrase extraction method.

∀B ∈ (,∀? ∈ % : 2><?;80=C (?, B)∧0??;8201;4 (?, B) → 0224?C43 (?, B)

4 IMPLEMENTATION

This Section describes the implementation of concepts and the func-
tionality of the pattern-based machine learning algorithm, which
will then be evaluated in the following chapter. We invite fellow
researchers to inspect and use our implementation [9] for further
studies.

4.1 System Architecture

The cause-effect recognition system (cerec) provides an interface
which allows for two operations: training, where the system is pro-
vided with a sentence and a desired cause-effect graph, which con-
veys the sentence’s causality. Here the system is induced to create

a new causality pattern for the sentence’s syntax, if it does not
already exist. When using the operation testing the system is pro-
vided only with a sentence. If the sentence is causal and its syntac-
tic structure is already covered by a causality pattern, the system
will attempt to generate a cause-effect graph from the sentence us-
ing the phrase extraction methods associated with the pattern. If
a sentence is not correctly processed – meaning that a causal sen-
tence is either not recognized as causal or a non-causal wrongfully
recognized as causal – providing a manual correction will result in
a training operation to generate a new or adapted pattern.
The cause-effect recognition is the core of the cerec system and
tasked with the maintenance of pattern correctness, which is in
detail explained in Section 4.2. This system contains three major
elements:

• NLP unit: used to formalize natural language sentences into
the internal representation mentioned in Section 3.2

• CommandGenerator : used to generate phrase extractionmeth-
ods mentioned in Section 3.3

• database of patterns: contains all generated causality pat-
terns, where each pattern has the structure described in Sec-
tion 3.4

Furthermore, the cerec system keeps track of all discovered non-
causal sentences: as non-causal sentences are not associated with
any pattern, they are stored by the system directly, which is of
importance for the maintenance of pattern correctness, later de-
scribed in Section 4.2. We use the OpenNLP and Maltparser [18]
for the NLP unit.

4.2 Maintenance of Pattern Correctness

Principles of Maintenance. In order to ensure the correctness of
the database of patterns, a set of principles must be upheld. These
principles formalize how the training data – both causal and non-
causal sentences – constructs the knowledge database represented
by the existing patterns.
The most basic principle is the core assumption of the syntactic
cause-effect recognition approach: causal sentences of syntactic
similarity are likely to have their causal phrases located at the same
position within the sentence, which is the foundation of pattern-
based detection and extraction algorithms [11][12][8]. These causal
phrases are therefore retrievable by the same phrase extraction
methods. This derivation can be denoted as follows:

∀B ∈ (, ∃2 ∈ �, ∃? ∈ % : 20DB0;8C~ (B, 2) ∧ 2><?;80=C (?, B) →

0??;8201;4 (?, B)

This principle justifies to have sentences of similar syntactic struc-
ture accepted by the same causality pattern. All accepted sentences
of a pattern are compliant to the signature of a pattern and there-
fore share syntactic similarities. This makes it likely for the phrase
extraction methods associated with the pattern to extract the cor-
rect cause-effect graph.
The second principle is that every already discovered non-causal
sentence must be non-compliant to every pattern, which formally
translates to:

∀? ∈ %,∀B ∈ (,¬∃2 ∈ � : 20DB0;8C~ (B, 2) → ¬2><?;80=C (?, B)



Automatic Extraction of Cause-Effect-Relations from Requirements Artifacts ASE ’20, September 21–25, 2020, Virtual Event, Australia

To ensure that already discovered non-causal sentences are not
compliant to a newly introduced pattern, each signature must be
specified in a way to comply to both principles of maintenance.
The process of achieving this will be technically explained in next
section and brought into context in section thereafter.

Signature Specification. An important process for the mainte-
nance of pattern correctness in regard to incremental patterns is
the specification of a pattern’s signature. The incremental nature
of the signature, which defines the grammatical class of each pat-
tern and is used to determine a sentence’s compliance to it, derives
that the structure consists only of as many nodes such that it ful-
fills all principles of maintenance.
The overall goal of the machine learning algorithm is to identify
all sentences, which are applicable to the same phrase extraction
method. To ensure that as many sentences as possible are identi-
fied by their respective causality patterns, the pattern’s identifying
signature must be minimal in size of nodes: each additional node
risks that a sentence, which would be applicable by the phrase ex-
traction method of the causality pattern, is not compliant to the
pattern anymore, because one node of the sentence’s structure dif-
ferentiates it from the pattern’s signature.
The specification process is applied when a sentence is compliant
to a pattern, but the sentence is not applicable to the pattern’s
phrase extraction method, therefore violating the first principle of
maintenance. A sentence which is compliant to a pattern but not
applicable by its phrase extraction method will be referred to as an
intruder, because the sentence is falsely compliant to the pattern.
An intruder can be causal or non-causal:

• Causal intruders are compliant to a pattern but the phrase
extraction method of the pattern does not extract the de-
sired cause-effect graph

• Non-causal intruders are compliant to a pattern, although
they should never be

An intruder can only be detected if his actual causality is provided.
Knowing the actual causality of a sentence requires semantic do-
main knowledge and must be provided by a human, either before-
hand when preparing training samples or as an correction during
the online usage of the system. If an intruder is detected, the pat-
tern’s signature must be more specific in order to prevent the pat-
tern’s compliance to the intruder. This correction improves the
causality detection and extraction of the cerec system in provid-
ing further data for the machine-learning algorithm.
The specification of the signature can take two forms: in the most
general form, additional nodes are added to the pattern’s structure.
These nodes are taken from the set of accepted sentences, in or-
der to maintain compliance of the accepted sentences. The algo-
rithm specifically searches for a position in the signature where
all accepted sentences contain the same node while the intruding
sentence is different. This node is identified as an differentiator be-
tween the accepted sentences and the intruder. Adding the differ-
entiator to the pattern’s signature will maintain the compliance to
the accepted sentences, while revoking the compliance to the in-
truder. During this process the pattern’s signature incrementally
reconstructs the structure of the accepted sentences.
The other form of specifying a signature is enforcing additional

constraints on certain nodes of the pattern’s signature. The imple-
mentation explored in our approach uses lexical constraints: ex-
plicitly causal cue phrases like "because" or "if" are highly eligi-
ble indicators for differentiating between syntactically similar, but
causally different sentences. A lexical constraint added to a node of
the pattern’s signature means that any sentence, that is compliant,
must also contain this specific keyword as a word node transitively
parented by the node, to which the constraint is applied.
When a signature specification process is triggered, all eligible dif-
ferentiating specifications are listed and ordered by degree of preci-
sion. A specification is more precise when the changes to the signa-
ture are minimal, which reduces the risk of later disregarding sen-
tences, which would be accepted but are not compliant anymore
due to an overfitting of the signature. The most precise specifica-
tion is applied.

Training causal Sentences. When training a causal sentence in
the cerec system, a sentence alongside a cause-effect graph, which
conveys its causality relation, is given. The first step of the system
is to check if any existing pattern is compliant to the given sen-
tence.
If no pattern is found, then the given sentence structure is novel to
the system and needs to be established. A new pattern is generated
in the following steps: first, an identifying signature is associated
with the pattern. Following the nature of the incremental signa-
tures, this signature initially consists just of the minimal represen-
tation of the structure of its first accepted sentence: the root node
of the sentence’s structure, which is an S-node identifying the tree
as structure of a sentence.
With just thisminimal S-node as a signature the new patternwould
violate the second principle of maintenance, as all previously dis-
covered non-causal sentences would be falsely compliant to the
pattern, since every sentence’s structure is rooted in the S-node.
This is overcome by applying the specification algorithm described
in the previous section: the pattern’s signature is specified against
every previously discovered non-causal sentence, until no non-causal
sentence is compliant to the new pattern and therefore the second
principle upheld.
Next, a phrase extraction method is tailored to retrieve the cause-
effect graph that conveys the sentence’s causality relation from the
sentence. This is done by dynamically constructing an algorithm
as described in Section 3.3. In a last step the given sentence is added
as an accepted sentence to the new pattern, as this sentence’s affil-
iation with the pattern is confirmed.
The training algorithm is differentwhen an existing pattern is found
to which the causal sentence is compliant. Two cases are possible
from here: if the sentence is also applicable to the phrase extrac-
tion method associated with the pattern, then this causal sentence
is already covered by the cerec system and correctly recognized.
The sentence is added to the accepted sentences of the pattern and
adds no new pattern to the database.
If the sentence is not applicable to the phrase extraction method
associated with the pattern, to which the sentence is compliant,
then the sentence violates the first principle of maintenance: the
sentence is compliant to a pattern, but not applicable by its phrase
extraction methods.
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This is resolved by specifying the pattern against the intruding sen-
tence and creating a new pattern for the causal intruder. The re-
sult will be two patterns with very similar structures associated to
them, but different enough to differentiate the accepted sentences
of the original pattern from the intruding sentence. The new pat-
tern will be provided with a specific phrase extraction method to
preserve the first principle of maintenance.

Training non-causal Sentences. When training a causal sentence
in the cerec system, only a sentence is given. The first step of the
system is again to check if any existing pattern is compliant to the
given sentence.
If no pattern is found, then the non-causal sentence is correctly dis-
carded. The cerec system adds the sentence to its list of non-causal
sentences for further processing.
If a pattern is found, to which the sentence is compliant, then the
second principle of maintenance is violated. This is resolved by
specifying the structure of the compliant pattern against the non-
causal intruder. The specification process results in the incremen-
tal addition of nodes or constraints to the pattern’s signature, until
the intruding sentence is no longer compliant to the pattern and
the second principle of maintenance therefore upheld.

5 EVALUATION

The purpose of the following preliminary study is to prove the fea-
sibility of the causality recognition and phrase extraction method
based on syntactic similarities. For this, we use the cerec system
as described in Section 4 with lexical constraints and train a set of
requirements artifacts containing natural language sentences.

5.1 Design

A publicly available dataset A containing requirements artifacts
0 ∈ � was selected for the evaluation of the implemented ap-
proach. The obvious choice is the SemEval 2010 Task 8 dataset
[14], which is often used for the evaluation of causality extraction
approaches because causal sentences are already annotated. How-
ever, the annotated causal phrases are limited to pairs of events,
predominantly two nouns, in semantically causal relation. Our pro-
posed algorithm works on the dataset, but evaluating its effective-
ness by detecting causally related noun-pairs defeats the purpose
of tailoring the proposed algorithm to requirements engineering.
Instead we used the PURE dataset of public requirements docu-
ments [7][6] and manually annotated the 18 available artifacts for
evaluation. Only full natural language sentences were regarded, as
these are subject to our approach. The 18 datasets collectively con-
tained 4457 sentences, 558 of which (12.52%) are causal.
To assess our approach we formulated the following research ques-
tions:

• RQ1: How effective is the algorithm in automatically detect-
ing and extracting causal relations in a single requirements
document?

• RQ2: How effective is the algorithm in automatically detect-
ing and extracting causal relations in a single requirements
document with previous training?

To evaluate the effectiveness of the algorithm, the system will be
fully trained: a dataset will be randomly ordered and provided to

the system sentence by sentence in a training operation. The sys-
tem will perform this operation and evaluate the process with one
of the following flags:

• creation successful/failed (crea+/crea-): a causal sentence has
not been accepted by an existing pattern. The creation of a
new pattern is attempted

• recognition successful (rec+): a causal sentence is accepted
by an existing pattern and the causal relation has been ex-
tracted accordingly

• specification successful/failed (spec+/spec-): a sentence has
been compliant to an existing pattern, but not applicable
to its phrase extraction method, so a pattern specification
process to restore the principles of maintenance has been
attempted

• discarding successful (disc+): a non-causal sentence has not
been accepted by an existing pattern

• deflection successful/failed (defl+/defl-): a non-causal sen-
tence has been compliant to an existing pattern, so a pat-
tern specification process to restore the principles of main-
tenance has been attempted

The eight flags compose the containing set F :

� = {A42+, 38B2+, 2A40+, 2A40−, B?42+, B?42−, 34; 5 +, 34; 5 −}

The full training process simulates the expected user interaction
with the system: while writing natural language sentences of a re-
quirements document, the system attempts to detect a causality in
every sentence upon its completion. If a causal sentence is recog-
nized and the causal phrases are extracted correctly, the process is
flagged as rec+. If the causal sentence is not recognized, the inter-
acting user can manually provide the cause- and effect-phrase of
the sentence and train the system by providing the causal relation
alongside the sentence. This information is used for a training pro-
cess and upon success will generate a new pattern, which flags the
process as crea+. Should this process fail for any reason, the pro-
cess is flagged as crea-. Should the algorithm detect the causality
of a sentence but extract a cause- and effect-expression that does
not align with the user’s perception of the conveyed causality, he
can manually correct the cause- and effect-expression of the sen-
tence, which will be used for a specification process as described
in Section 4.2, as the sentence is seemingly compliant to a pattern
but not applicable by its phrase extraction method.
If the specification succeeds, the run is flagged as spec+ – other-
wise spec-. If a non-causal sentence is non-compliant to any pat-
tern, the sentence is correctly discarded, which is flagged as disc+.
If the non-causal sentence is wrongfully compliant to a pattern, a
specification algorithm has to be performed again to deflect the
intruder, but with the exception that no new pattern is created for
the new, non-causal sentence. If the specification succeeds, the run
is flagged as defl+ – otherwise defl-. The overall training process
is illustrated in Figure 6. Here processes are written in round-edge
boxes and can result in success or failure.
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Figure 6: Decision diagram on the training process

5.2 Measures

The distribution of occurring flags allows to evaluate the effective-
ness of the algorithm.We introduce the notation =5 (0) as the num-
ber of training processes of the artifact 0 ∈ � tagged with a specific
flag 5 ∈ � .
The system’s task is twofold: the detection of a causal relation in a
sentence, which is equivalent to a classification as either causal or
non-causal, and the extraction of a cause-effect graph from a causal
sentence. Both tasks are evaluated using the precision, recall and
f-score measures.
In case of detection, true positive cases are all processed sentences
flagged as rec+, spec+, and spec-, since these are the cases, where a
causal sentence is compliant to an existing pattern. The recall value
of this task is calculated as described in Equation 1 and represents,
how many of the causal sentences were classified as such.

A420;; (0) = '(0) =
=A42+ (0) + =B?42+ (0) + =B?42− (0)

=2 (0)
(1)

In case of extraction, true positive cases are all processed sentences
flagged as rec+. The recall value of this task is calculated as de-
scribed in Equation 2 and represents, from how many sentences
the cerec system automatically and correctly extracted the cause-
effect-graph, hence it is also referred to as recognition rate.

A420;; (0) = '(0) =
=A42+ (0)

=2 (0)
(2)

5.3 RQ1: Effectiveness of the algorithm
without training

The study of RQ1 simulates the use of the system in an environ-
ment without any previous training, which means that no causal-
ity patterns exist at the start of the evaluation. Table 1 shows the
results of the measures on the requirements artifacts on the left
side.

Figure 7: Recall trend in relation to =2 (0)

Twomajor insights can be derived from the results of this study:
first, the overall number of causal sentences is directly proportion-
ate to the recognition rate. The recall of artifacts with more causal
sentences tends to be higher as indicated in Figure 7. The relation
between number of causal sentences and recognition rate is due to
the nature of the machine learning approach, where an increased
number of training data provides more patterns, which the system
can learn and reuse for detection and extraction later.
The second insight is that also the number of causal linguistic pat-
terns used is directly proportionate to the recognition rate. This
can be observed when comparing the results of the two artifacts
phin and qheadache with each other: even though they contain al-
most the same amount of causal sentences, qheadache presents
a significantly higher precision and recall in both detection and
extraction. Investigating the resulting patterns yields that the re-
peated use of a causal linguistic pattern "If <S>, <NP> <VP>." gen-
erated a patternwith the signature shown in Figure 8. Once the pat-
tern was established by manually annotating the first occurrence
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Artifact a n(a) nc(a) RQ1: without previous training RQ2: with previous training

Detection Extraction Detection Extraction

P R F1 P R F1 P R F1 P R F1

blitdraft 67 19 89.13 43.15 58.15 75.0 15.78 26.08 100.0 21.05 34.78 100.0 21.05 34.78
cctns 183 28 87.5 20.0 32.55 84.61 15.71 26.5 100.0 14.28 25.0 100.0 7.14 13.33
dii 40 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
eirene 520 66 81.57 37.57 51.45 74.31 24.54 36.9 84.73 33.63 48.15 83.47 30.6 44.78
eirene fun 616 140 94.0 53.71 68.36 93.4 48.57 63.9 95.81 48.99 64.83 95.44 44.85 61.03
ertms 223 42 90.29 44.28 59.42 85.91 29.04 43.41 100.0 23.8 38.46 100.0 19.04 32.0
gammaj 203 3 0.0 0.0 0.0 0.0 0.0 0.0 66.66 66.66 66.66 50.0 33.33 40.0
gemini 392 12 33.33 3.33 6.06 33.33 3.33 6.06 66.66 16.66 26.66 50.0 8.33 14.28
getreal 99 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
keepass 191 46 91.3 45.65 60.86 86.66 28.26 42.62 100.0 36.95 53.96 100.0 23.91 38.59
microcare 39 8 100.0 20.0 33.33 0.0 0.0 0.0 100.0 12.5 22.22 0.0 0.0 0.0
peering 131 13 60.0 18.46 28.23 27.27 4.61 7.89 100.0 23.07 37.5 100.0 15.38 26.66
peppol 656 81 71.87 17.03 27.54 56.45 8.64 14.98 95.45 10.37 18.7 87.5 3.45 6.65
phin 184 14 72.72 11.42 19.75 40.0 2.85 5.33 86.84 47.14 61.11 54.54 8.57 14.81
qheadache 107 14 100.0 58.57 73.87 100.0 45.71 62.74 100.0 42.85 60.0 100.0 35.71 52.63
tcs 548 34 65.62 12.35 20.79 45.0 5.29 9.47 67.39 18.23 28.7 55.88 11.17 18.62
themas 178 28 97.91 67.14 79.66 97.01 46.42 62.8 100.0 31.42 47.82 100.0 21.42 35.29
video search 80 7 91.66 31.42 46.8 83.33 14.28 24.39 100.0 14.28 25.0 100.0 14.28 25.0

Table 1: Performance of automatic causality detection and extraction

Figure 8: Signature of themost prominent pattern generated

from the qheadache requirements artifact

of this linguistic pattern, all comparable sentences were compli-
ant and also applicable by the generated phrase extraction method.
Sentences like "If the file was correctly updated, there is no output."
and "If the game is not saved, a dialog box is displayed that asks
to the player if he wants to save the game." are compliant to the
pattern and the phrase extraction method generated the correct
cause- and effect-phrase, therefore successfully automatizing the
causality recognition and extraction for these sentences.
The consequence of the two insights are discussed in the conclu-
sion.

5.4 RQ2: Effectiveness of the algorithm with
previous training

The study of RQ2 simulates the use of the system in an environ-
ment with previous training, which means that causality patterns

already exist at the start of the evaluation. To simulate this, each of
the requirements artifacts was tested as in RQ1, but only after the
system has been previously trained with all other artifacts before-
hand, effectively starting the training with all patterns extracted
from the other artifacts. The results are shown in Table 1 on the
right side.
Compared to the results of RQ1, the effect of previous training
of the cerec system is not entirely positive: the precision has in-
creased partially, which means that more of the compliant sen-
tenceswere actually causal and recognized successfully. This comes
at the cost of a partially decreased recall, whichmeans that less sen-
tences were compliant to patterns in general. In total these changes
result in no overall improvement of the f-score compared to RQ1.
The training beforehand established a large set of patterns based
on a corpus vastly outnumbering the sentences contained by the
artifact under test. These patterns have undergone a multitude
of specification processes as described in Section 4.2, which ac-
counts for the increase in precision of the overall algorithm. On
the other hand, the increased specificity of patterns causes less sen-
tences of the artifact under test to be compliant. This represents
that the specification process is focused on preventing false posi-
tives, hence reducing the recall.
The evaluation of RQ2 shows that the system does not yet profit
from an increased beforehand training, which leaves room for im-
proving the scalability of the approach. Reevaluating the focus on
precision by balancing the specification process more in favor of
recall is to be explored in future approaches.
It is worth mentioning that the lack of improvement in recall when
performing RQ2 in contrast to RQ1 is further rooted in the fact that
the evaluation was performed on a very heterogeneous set of re-
quirements, written by different authors from different domains. A
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common template or guideline for writing requirements was most
probably absent, which would have increased the similarity of lin-
guistic causality patterns and therefore the recognition rate. The
evaluation was from this perspective performed under worst-case
conditions with artifacts that are biased against a learning system
that relies on consistency and patterned expressions, which miti-
gates the benefit from previous training.

6 CONCLUSION

6.1 Limitations

Two major limitations restrict the generalizability of our study ap-
proach: first, the approach is restricted to recognizing and extract-
ing a simplified form of cause-effect-graphs, consisting only of a
cause- and a effect-phrase, when in reality conveyed causalities
may be a lot more complex. Regarding arbitrarily complex cause-
effect graphs as formalized causalities improves the applicability
of the causality recognition and extraction approach, but may im-
pose a challenge on the cerec system in terms of the recognition
rate.
Secondly, the study only investigates the theoretic capability of
an automatic causality extraction system while disregarding an ac-
tual implementation in practice. Following Roel Wieringa’s design
science approach [29], the process framed as scaling up to practice,
which covers treatment validation, implementation and implemen-
tation evaluation, is still required in order to explore the sensitivity
of our solution proposal to the practical context.
Further limitations include the exclusive focus on intersentential
causality and that patterns’ signatures are restricted to lexico-syntactic
structures, which disregards the semantic component of causality.
The implication of these limitations for the detection and extrac-
tion of causal relations from natural language requirements is part
of an ongoing study.

6.2 Discussion

Though the range of recall values peaks at a promising 48.57%,
some artifacts are evaluated with a recognition rate of 0.0%. The
deviation of success in recognition leads to two observations: first
of all, the proposed cerec system lacks in maturity and has still dif-
ficulties in maintaining a consistent level of causality recognition.
Possible improvements presented in Section 6.3 may improve the
robustness of the approach.
Secondly, some requirements artifacts are more eligible for an au-
tomatic causality recognition and extraction. Two major factors
influence the applicability of a syntactic causality recognition ap-
proach:

(1) Number of causal sentences: a higher number of causal sen-
tences increases the number of causality patterns, which are
directly proportionate to the recognition rate

(2) Recurring linguistic causality patterns: reusing formulations
for conveying causal relations increases the probability of
pattern compliance and phrase extraction method applica-
bility

These derivations are especially interesting when bringing the pro-
posed approach of automatic causality recognition in relation to

user interaction: encouraging to comply to the derived recommen-
dations may drastically increase the usage of causal sentences as
well as the recognition rate of the cerec system, further benefiting
the automatized requirements formalization.

6.3 Future work

Apart from the future work of overcoming the mentioned limita-
tions by utilizing the derivations outlined in the discussion, other
aspects of the an automatic causality extraction approach are eli-
gible for further investigation.
The signature of a causality pattern does not only consist of a sub-
tree of a syntactic sentence structure, but may apply additional
constraints to increase the specificity of the signature. The possibil-
ities of different constraints and their influence on the recognition
rate may yield interesting results on the relation between causal
sentences an specific semantic, syntactic and lexical attributes.
Furthermore an integration of the causality recognition and extrac-
tion system into a full pipeline dedicated to automatically gener-
ating artifacts like test cases from natural language requirements
documents may be of interest for validating the context, in which
the cerec system is supposed to be used. Research in this direc-
tion approaches the application of the causality recognition and
extraction and may generate actual value for the requirements en-
gineering phase as well as other downstream phases.
Lastly, the potential of the syntactic patternsmight be utilized with
different semantic relationships: as the patterns used in our ap-
proach simply associate a lexico-syntactic structure to a phrase
extractionmethod retrieving certain parts of the sentence, the algo-
rithm could be tailored towards any semantic relation and context.
This may initiate a discussion about the degree of connection be-
tween semantic relations and the syntactic structure of sentences.
Overall, the results presented in Section 5 prove, that the isolated
process of automatic causality extraction based on lexico-syntactic
patterns holds great potential with an recognition rate of up to
48.57%, supporting our confidence in the viability of this approach
for the requirements engineering context.
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