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GIP test for Automotive FMCW interference 
Detection and Suppression 

Thomas Pernstål, Johan Degerman, Henric Broström, Viet Thuy Vu, Member, IEEE, Mats I. 
Pettersson Member, IEEE, 

Abstract—This paper addresses the problem of mutual in-
terference between automotive radars. The rapid growth of 
automotive and commercial radar systems on the market does 
not only facilitate new applications, e.g., advanced driver assistant 
systems, but also put demands on the possibilities for co-existence, 
i.e. cohabitant systems. For military radar systems, various jam-
mer and interference mitigation methods have been extensively 
analyzed and evaluated for decades. However, until now, the 
co-existence and infuence of jamming/interference have almost 
been ignored for the commercial radar business. A Generalized 
Inner Product, GIP, test based outlier detector and interference 
estimation is presented here, which suppress the interferences 
only in those Directions of Arrival, DOA, and time domain 
portions where the nuisance signals appear. We will denote this 
GIP test based Interference Detector and Suppression as the 
GIDS method. Using GIDS, the target detection performance for 
the specifc interference DOA will merely have a small loss instead 
of being completely suppressed, e.g., sample matrix inversion 
implementation of spatial nulling. The proposed technique is 
robust and does not rely on any calibration for the interference 
cancellation. Based on simulation and experimental data, we 
have shown that without losing target detection performance, 
we achieved up to about 30 dB enhancement for the Signal to 
Interference and Noise Ratio. 

Index Terms—mm-wave FMCW radar, interference mitigation, 
GIP outlier detection 

I. INTRODUCTION 

The rapid growth of automotive radar system on the mar-
ket not only facilitates new applications like sophisticated 
Advanced Driver Assistant Systems (ADAS) functions, e.g. 
rear cross traffc alert, and intersection Automatic Emergency 
Braking (AEB), autonomous parking, simultaneous localiza-
tion and mapping (SLAM), freespace grid, and so on, but also 
makes the signal environment very challenging since all radar 
systems are located in the same frequency band employing 
simple frequency chirp waveforms. This could be compared 
with the situation for the mobile communication systems for 
about 30 years ago. 

From the MOSARIM analysis, [1], conducted 7 years ago it 
was strangely concluded that interference from different radar 
systems could almost be neglected in terms of performance 
loss. This analysis was merely considering slow chirp and low 
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bandwidth FMCW waveforms and thus this might be one of 
the reasons for this more or less misleading conclusion. 

Moreover, the theoretical foundation of multi-channel sen-
sor array systems, that provides the ability to extract or reject 
signals, is called array signal processing. Here, one applies 
detection and estimation theory, which in radar theory have 
always been employed for temporal characteristics of the 
signal, to the entire problem of discriminating signals in time 
and space. We refer to [2], [3] for an overview of this research. 
While array signal processing is a general theory not specifc to 
any type of sensor, it has successfully been applied to the radar 
application. The literature is extensive, see e.g [4], [5], [6], 
[7], [8], and references therein. Utilizing Multi-Channel sensor 
Arrays (MCA), several interferer signals can be suppressed. 
More specifcally,a MCA that consists of N channels provides 
the possibility to suppress N-1 narrow band jammer signals 
[3]. By narrow band we mean a signal that covers less than 
one percent bandwidth, e.g., 100 MHz at X-band. Now, in 
common arraysignal processing algorithms, e.g. the Sample 
Matrix Inversion (SMI) detector [9], the estimation of the 
covariance matrix and the weight vector adaptation is made 
using data samples known as secondary data. The secondary 
data is assumed to be signal free and statistically independent 
of the data to which the weight vector is applied, i.e., the 
primary data. Clearly, the essence in jammer suppression is to 
access secondary data which provides a confdent estimate of 
the interference covariance matrix. In other words, the ability 
to suppress N-1 narrow jammer signals degrades if the spatial 
covariance estimate deviates from the true directions of the 
jammer signals. 

In most of the published literature regarding array 
signal processing, only non-fuctuating/non-adaptive jam-
mer/interference scenarios are analyzed. In other words, in the 
case of jammer signals with time varying properties, the liter-
ature is scarce. There are however some interesting papers that 
discuss and analyze the jammer/interference rejection ability 
of an MCA system when it is subjected to jammer signals 
with different polarization states [1], [2]. In [1], a feasible 
approach of investigating the infuence of polarization agile 
jammers is presented. This approach is based on representing 
the change of the polarization state by a complex excitation 
error that is imposed on the true steering vector. Moreover, in 
[10] a novel approach for adaptive interference cancellation 
adopted for automotive radar is shown. This approach relies 
on the time domain data employing spatial suppression by 
adapting a flter (weights) based on the time domain data. 
In this paper it is shown that the results are very promising. 

mailto:mats.pettersson@bth.se
mailto:viet.thuy.vu@bth.se
mailto:Brostr�m@saferadar.se
mailto:thomas.pernstal@saferadar.se,johan.degerman@saferadar.se,Henric


Interferen 

ceiver ba ndwidth 

■ TransmitSig n al ■ Rece iveSigna l Time 

Doppler [ m/s] 

2 

However, the interference identifcation framework is simple 
where the outliers are based on non-sinusoidal behavior of the 
received signals. Thus, in a dense environment where many 
targets and interferers are present it is typically diffcult to 
adapt such a framework to a desired false alarm rate. 

In this paper we instead employ well know frameworks for 
outlier screeningin order to mitigate the infuence of interfer-
ence. The origin of this idea comes from the heterogeneous 
clutter screening where one can employ non-homogeneity 
detection (NHD) or design detectors that in some way are 
robust to heterogeneity [11], and [12]. For the heterogeneous 
clutter case, the idea of this NHD is to detect which of the 
training data range bins that are not homogeneous, and then 
remove them from the estimation of the covariance matrix. 
For the FMCW interfering case we want to adopt the same 
approach but here we instead are screening the baseband signal 
(after mixing with the received RF signal) in order to detect 
the DOAs of interferers (or outliers). 

In this paper the NHD analysis is given by the generalized 
covariance based Generalized Inner Product (GIP) statistics, 
[5] [6], [13], and [14]. The resulting performances using 
this outlier detection approach is then compared with the 
simple and commonly used Post Doppler based Sample Matrix 
Inversion (SMI) method in terms of suppression capability and 
sensitivity loss. 

II. FMCW/FCM INTERFERENCE PROBLEM AND SMI 
SUPPRESSION 

In [10], [15] and also in [1], the infuence of the FMCW 
waveform emitter interference impact discussed and analyzed. 
In Figure 1 we illustrate this issue where also the typically 
used Fast Chirp Modulation, FCM, waveform is shown. From 
Figures we also observe that the interference is intermittent 
since this intersection between the interfering and real signal 
moves through the chirp train, assuming different chirp rates. 

After dechirping, i.e., mixing the in and out signals, the 
received and interfering signal to baseband we typically obtain 
an Range Doppler outcome, i.e., after making the range-
Doppler Processing based on a 2D FFT, as shown in Figure 
1. Note that the host (or EGO) vehicle, being subjected to 
interference, is moving at a speed of 2 m/s. The interfering 
system was using a chirp duration of 40 µs and 500 MHz chirp 
bandwidth. The system subjected to interference was using a 
chirp duration of 40 µs and 1 GHz chirp bandwidth. 

To mitigate the infuence of interference, a commonly 
employed method is adaptive spatial nulling relying on the 
Sample Matrix Inversion (SMI) Method 

More specifcally, the suppression weights of the Sample 
Matrix Inversion (SMI) method are computed as follows [3], 
and [2] 

w = R−1 s ≈ R̂ −1 s (1) 

where s is the (spatial) steering vector and the estimated 
(spatial) sample covariance matrix, R̂ , is given by 

where vk is the acquired post-Doppler processed data of all 
channels at training bin k. The covariance matrix, R̂ , becomes 
a Nch by Nch space-matrix where Nch is the number of 
receiving channels, i.e., the number of spatial channels. 

To determine if interference is present we need to introduce 
a threshold that tells us if we have interference or not. This 
could typically rely on the estimated power of the interference. 
That is � � 

trace R̂ > ηjam (3) 

where trace denotes the diagonal sum ( i.e., the sum of the 
diagonal elements) and ηjam is the threshold of interference 
power level deciding if interference is present or not. 

Fig. 1. Upper Left insert illustrates the conventional Fast Chirp FMCW 
waveform (FCM) and the upper right insert shows when a FCM/FMCW 
radar is subjected to FCM/FMCW interference. Courtesy [10]. The lower 
insert illustration of when a FMCW radar is subjected to FMCW interference 
(measurement data at 77 GHz). Note that the x-axis and y-axis show the 
Doppler and Range, respectively. The radar subjected to interference is the so 
called "Vinnova"-radar developed in a Swedish Research Program. Note that 
0 dB corresponds to the noise level of the systems and the "yellow" stripes 
along Doppler is due to the interference. 

NX 
hR̂ =

1 
vkv (2)kN 

k=1 
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III. GIP BASED INTERFERENCE DETECTION AND 
SUPPRESSION (GIDS) 

In this section we describe the GIP based Pre-Range and 
Pre-Doppler outlier scanning. 

One way of measuring homogeneity of the signal contents 
is the so called “generalized inner product” (GIP) statistic. 
Assume we have a data matrix of N channels and K bins. ⎞⎛⎞⎛ 

where xk is the acquired baseband sample data for that 
single de-chirp signal, i.e., prior range and Doppler processing. 
The data, xk, is a vector of a length equal to all receiving 
spatial channels at the baseband (after AD-converter) sample 
bin k (or time k). 

To make the interference suppression we examine the out-
come from the GIP statistics. Assume we have a pre-defned 
threshold, ηgip, the we select the GIP samples exceeding this 

x11 x12 · · · x1n · · · x1N x1 

k K l=k xlx6

threshold. That is 

X = 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

x21 x22 · · · x2n · · · x2N x2 
. . . .. . . . . . . . . . 

= xH −1 
k kR̂ 

Pre xk > ηgip (7). . Pk. . . . . 
= 

xk1 xk2 · · · xkn · · · xkN xk 
Now, we denote these outlier samples as xout. Note that the . . . .. . . . . . . . . .. .. . . . . inlier samples are denoted as xin. That is 

xK1 xK1 · · · xKn · · · xKN xN 
(4) � 

H R̂ −1xin x prex < ηgipNow, let x =[x1, x2, . . . , xN ] denotes a complex random (8)x = H R̂ −1 
prex ≥ ηgipxvector that is distributed as complex Gaussian with zero xout 

mean and known positive Hermitian covariance matrix,R, i.e., 
H R−1x ∼CN(0, R). Then the quadratic form Q = x x has 

mean E (Q) = N and is chi-square distributed [16]. Now if 
we use the sample covariance matrix estimate, R̂ 

k, based on 
our training data we get the GIP statistic P 

Pk = xH R̂ −1 ˆ 1 = k xk Rk 
H (5)l 

Here it is noteworthy that the pre-defned threshold, ηgip, is 
computed based on the desired false alarm rate achieved from 
the GIP statistics, see Equation 5. 

To compute the interference covariance we frst need to 
remove the targets signals in the baseband signal before we 
estimate the interference directions. To remove the target sig-
nals, we pre-white the samples by using, R̂ 

Pre, by computing 
Moreover, it is shown in [16] that Pk can be seen as 

the ratio between two independent chi-square distributed 
random variables (i.e. it follows a F-distribution), and that 
limK→∞ E (Pk) = N . Note that the covariance matrix, R, 
will be a spatial covariance given by the receiver channels of 
the radar antenna array. 

Loosely speaking, the GIP approach means that we try 
to sort out training samples that deviate too much from 
the estimated covariance. Typically, screening based on GIP 
statistics sort out samples either based on using a threshold X 

Ĉ −1 zout = xout (9) 

where we employ Cholesky decomposition to fnd R̂ 
Pre = 

Ĉ Ĉ H . 
Next, we compute the (spatial) covariance matrix, R̂ 

out, 
originating from the interferences as follows (skipping the pre-
Doppler notation) 

M ≤N 
1

R̂out = zoutz H (10)outor a fx number of samples, e.g., 25 percent are removed and 
M − 175 percent are kept for covariance estimation. Note that the m=1 

threshold method needs to ensure that the remaining number of 
training samples is suffcient when estimating the covariance. 

The GIP statistic was introduced in [5] by Melvin et. al. 
as a non-homogeneity detector, and have since been used in 
various situations. In [5], range bins for which the Pk values 
deviated to much from the mean of all Pk were discarded from 
the covariance matrix estimation used for the STAP. There is a 
problem in using the GIP statistic in heterogeneous data since a 
test using Pk assumes homogeneous data are used to form R̂ 

k. 
A iterative (multi-pass) method, that after censoring a number 
of range bins makes a new covariance matrix estimate and 
computes a new GIP statistic based on that, can reduce this 
problem [6], [13]. 

In this paper we employ the GIP approach prior to the range 
and Doppler processing, i.e., so called baseband signal. This 
means that the pre-Doppler (spatial) covariance matrix, R̂ 

Pre, 
for one downconverted single chirp (baseband) in the chirp 
train received is given by 

Where M is the number of GIP samples, i.e., outliers, 
detected. 

The weighting vectors are computed as for the SMI ap-
proach [17]. That is 

w = R̂ −1 s (11)out 

Here it is noteworthy that for this pre-whitening step [3], we 
have a fundamental restriction: the covariance matrix for the 
noise must have full rank and be positive semidefnite. This 
is crucial since the pre-whitening step essentially consists of 
multiplying the signal matrix with the inverse of the Cholesky 
factor of the noise covariance matrix. 

Finally, we can impose the interference suppression in 
two different ways. For the frst and simplest approach we 
merely use the computed weight vector when making the 
beamforming process, i.e., steering the beams digitally in order 
to scan and detect targets . That is �XN 

= xkx 
1 Hx x < ηGIPR̂Pre 

h yin = s(6)k (12)y = N − 1 Hyout = w x x ≥ ηGIPk=1 
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where y is the coherently summed beams using all receiver 
channels. Note that these coherent beams are computed for all 
directions, steering vectors, of interest. 

The other and more sophisticated way to mitigate this 
interference is to facilitate the ability to still employ a multi-
channel detection and estimation framework after this inter-
ference mitigation. That is, instead of computing the coherent 
beam y, we pre-white the received data x. In other words, 
we suppress the detected interference samples for each spatial 
receiver channel using the Cholesky decomposed version of 
the estimated interference covariance R̂ 

out. , that is 

˜ Ĉ −1 (13) 

where R̂ 
out = Ĉ 

outĈ H
out. Now the received radar samples 

(pre-Doppler) provided to the detection and estimation frame-
work becomes 

xout = xout out 

� 
H R̂ −1xin x prex < ηgipx̃ = (14)H R̂ −1x̃out x prex ≥ ηgip 

where xin and x̃out corresponds to the inlier and outlier 
samples based on the GIP test, respectively. In Figure 2 we 
show the fowchart of the operations made in GIDS. 

Fig. 2. Flowchart of the GIDS framework GIP statistics, respectively. 

IV. SIMULATIONS 

To simulate this we have employed a simple multi-channel 
aperture based on eight channel receiver layout in an ULA 
confguration, i.e., the phase centers are separated by half a 
wavelength along the horizontal axis. 

The setups of the simulation are as follows. In case 1 we 
use a single point target at a range of 10 m having an SNR 
of 30 dB. The target velocity is 10 m/s where the target is 
located at boresight. The host radar bandwidth is 1 GHz using 
a chirp duration of 40µs. The interferer is located at a DOA 
of 20 degrees in azimuth using a bandwidth 2 GHz using a 
chirp duration of 40µs. The Jammer to Noise Ratio (JNR) of 
interferer is 30 dB. 

In case 2 we have increased the complexity of scenario 
where it consist of two targets and two interfererers. The target 
ranges are 10 m and 20 m where both targets have a speed 
of 10 m/s. The DOAs of of the targets are given at boresight 
and 20 degrees in azimuth (horizontally). The interferences are 
given for azimuth angles at 10 and 20 degrees, respectively. 
Thus, the DOAs for one of the targets and one of the interferers 
are given at the same azimuth angle, i.e., 20 degrees along 
azimuth. The host radar bandwidth is 1 GHz using a chirp 
duration of 40µs. The interferers employes a chirp bandwidth 
of 1.5 GHz and 2 GHz, respectively, where both the interferes 
are using a chirp duration of 40µs. 

Scenario Case 1 Case 2 Unit 
Number of targets 1 2 [-] 

Number of interferers 1 2 [-] 
Target Range/ 

Velocity 
10 / 
10 

10, 20 / 
10,10 

[m] and 
[m/s] 

Target DOA 
Azimuth 

Boresight Boresight , 
20 degrees 
in azimuth 

[deg] 

SNR 30 30, 20 [dB] 
Hosts/EGO Radar 

Bandwidth 
1 1 [GHz] 

Interference Bandwidth 1 1.5, 2 [GHz] 
Interference DOA 

(Azimuth) 
20 10, 20 [deg] 

JNR 30 30, 30 [dB] 

TABLE I 
SUMMARY OF SIMULATED TEST CASES ANALYZED 

In Figure 3 we show the baseband signal (pre-Doppler and 
range) outcome and the GIP statistics for the case 1 scenario. 
From the fgure we clearly can obseve the peak indicating the 
interference. 

Next step is to fnd a proper threshold based on the test 
statistics. In [16], they have derived that the GIP statistics 
follows the Student-t distribution. Using this, and simulated 
500,000 complex-Gaussian samples aiming for a probability of 
false alarm of 10−5 . This yielded a normalized GIP threshold, 
i.e., normalized by the number of samples, N used, ηgip, of 
0.05. 
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Fig. 3. The upper and lower sub plots show the baseband signal in present 
of interference for case 1 and the corresponding GIP statistics, respectively. 
Note that each time index corresponds to a baseband sample rate of 20 MHz 

Thereafter, we want to examine the behavior using this 
threshold and make the suppression based on the covariance 
estimated for those samples that are indicated as interfered (by 
the GIP measure). In other words, for those samples labeled as 
interfered we employ simple SMI based suppression. Please 
note that, to avoid matrices close to singular, i.e., large 
condition number, we employ diagonal loading, i.e., 

KX 
HR̂ = βIN +

1 
xkx (15)kK 

k=1 

where k indicate the samples that are interfered. Please note 
that on [18] the use of diagonal loading to overcome low 
sample size for adaptive beamforming is described thoroughly. 
Other interesting papers are [19], and [20]. Typical values of 
β is 10-100, i.e., 10-20 dB above noise foor. In this paper, 
we have used a β value of 10. The corrected baseband signal 
outcome using this suppression is shown in Figure 4. From 
the Figure, we can clearly observe that the interfering signal 
is removed 

To understand this GIP measure based method we show 
the MUSIC spectra’s extracted for different parts of the 
chirp regarding the case 1 scenario. In Figure 4, we show 
the MUSIC spectra’s using the eight channel ULA antenna 
confguration. From the Figures, we clearly can observe that 
the interference yield an additional signal DOAs. Thus, using a 
spatial covariance of the GIP measure that is estimated using 
the entire chirp, i.e., the outcome in the top insert, we can 
clearly see that it is easy to detect this “spatial” outlier when 
the interference is present (the bottom insert). 

Fig. 4. Upper insert show the baseband sampling outcome prior to (red solid) 
and after mitigation of the interference (black solid with cross). The x and 
y axis represent the baseband samples (time index k) and signal amplitude, 
respectively. The lower insert show the MUSIC spectrum outcome using data 
over the part of data where only the signal is present (black solid) and where 
both signal and interference is present (red dashed). 

Next, we want to examine this for the case 2 scenario that 
also emphasize the target detection performance before and 
after the interference suppression has been made. At frst, 
we show and examine the range Doppler outcome without 
interference suppression. In Figure 5 we observe that the 
Signal to Noise Ratio for both of the targets are at the same 
level as the the interferer level, i.e., JNR. Thus we can almost 
distinguish the target points in the range Doppler outcome. We 
compute the normalize GIP measure in Figure 5. From the 
Figure, we can clearly observe the interfering signals in the 
GIP measure. In Figure 5 we also show the baseband signal 
before and after suppression. Using the corrected baseband 
signal outcome shown in Figure 5 and make range and Doppler 
processing we achieve a result that is shown in Figure 5. From 
the Figure, we can clearly observe that the interfering signal is 
suppressed (almost removed). The Signal to Interference and 
Noise ratio (SINR) has been improved by about 30-40 dB, see 
Figure 5. 

Finally, we will compare this method with a regular post 
Doppler SMI suppressing method, see section II. In Figure 
6 we can clearly observe that the GIDS method outperforms 
the post Doppler SMI spatial nulling method since the second 
target is completely suppressed by this method (having the 
same direction as the interferer). In addition to this, the 



ai' 
:"'. 
a: 
z 
"' 

nmelnde"lkl nme lnde"lkl 

-50 ~ - - ~--~--~--~---~- ~ 
0 10 15 20 25 30 

Range [ml 
" . ,o 

~ 

' Doppler [mis] 

800 [ 

600 ri 
400 

200 

-g 0 

i 
E -200 
<( 

-400 

-600 

-800 

;:.:: 11 
j:'. : ~ 
·::~~-----~·1;,.'-v-"'-" 

-1000 L_--~-- -~--~---~--~--~ 
0 50 100 150 200 250 300 

Time Index [k) 

6 

interferences are not completely removed due to poor estimates 
of the spatial covariances in presence of the targets. 

Fig. 5. Upper left and right inserts show the range-Doppler without 
suppression and using this interference suppression for all chirps, respectively. 
Lower insert show the GIP and baseband outcome, prior and after suppression. 
Note that in this case the two interfering signals crosses the receiving chirp 
three times due to different chirp rates and thus we get three peaks. 

Fig. 6. Shows the improvement of using GIDS versus SMI where the 
interference level/noise level is normalized to 0 dB. Thus this presents the 
Signal to Interference ratio measure 

V. ANALYSIS USING EXPERIMENTAL DATA 

In this section we analyze this Pre-Doppler interference 
mitigation technique using experimental data collected in 
an anechoic chamber, see Figure 7. In this Figure we also 
show the evaluation board from TI (1243) used to collect 
the interfered radar data. In Figure 7 we show the outcome 
when one of 77 GHz radar system is subjected one 1 GHz 
interference. The system itself, i.e., the receiving and analyzed 
system, employs 500 MHz bandwidth using the same chirp 
duration (40µs). As reference targets, the test case comprises 
a corner refector at boresight and at a range of 4 m for the 
radar systems. 

To examine the behavior of this method we use one of 
the outcomes that seems to be a fairly weak interference 
case. In the Figure 7 we show the incoherently summed 
Range Doppler outcomes having the interference present. The 

JNR of interference is estimated to about 15 dB. Please note 
that since the host radar is not moving, both static objects, 
DC-noise and interferers are located in the same Doppler 
channel, i.e., zero Doppler. Thus, since it is diffcult to observe 
improvements after interference suppression, we will only 
examine infuence for the baseband signal prior to and after 
interference mitigation. Moreover, to we analyze the pre-
Doppler outcome from one of the chirps and employ the GIP 
measure onto the baseband signal in order to assess where 
in time of each chirp we have this interference. In Figure 
7 we show the Pre-Doppler outcome, i.e., the coherent sum 
channel at boresight, with the interference present and GIP 
statistics from these measurements. In Figure 7 , we show the 
outcome when using the GIDS method. To reduce the false 
alarm rate for the GIP detector, we have added a margin of 
10 % compared to the theoretically computed GIP thresholds. 
The reason for this might be that the data samples are not 
complex Gaussian distributed. From the Figure, we observe 
that signal to interference ratio (SINR) has increased and 
that the interference is suppressed. Note that the sum beam 
direction is the boresight direction, i.e., the position for the 
corner refector. 

Fig. 7. Photo of the anechoic chamber setup and the radar subjected to 
interference. Lower left insert show the Incoherently summed Range Doppler 
outcomes having the interference present. The interference and the radar 
subjected to the interference employs 1 GHz bandwidth and 500 MHZ, 
respectively. The lower center insert shows the baseband chirp outcome (real 
part) and the GIP measure with interference present, respectively. The lower 
right insert shows the baseband sampling outcome prior to (red solid) and after 
mitigation of the interference (black solid with cross) using GIDS suppression. 
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VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have described a novel method used 
for mitigating the infuence of automotive radar interference. 
The method is denoted as GIDS and utilizes an interfer-
ence detection framework based on DOA anomalies of the 
baseband signal. The simulation results and the comparison 
using experimental data show that the algorithm is powerful, 
particularly for weak interferences that typically are diffcult 
to detect. More specifcally, the GIDS framework is compared 
with the conventional SMI framework where it is shown, in 
particularly for weak interferences levels, that the sensitivity 
of the GIDS framework outperforms the SMI version. Thus 
from this we can infer that the GIDS framework used for 
interference suppression has a great capability and potential. 

In this paper we have only been using the GIP measure 
to detect DOA anomalies. However, in the literature a vast 
number of measures can be used for this where one of the 
most interesting in a DOA perspective is given in paper [21]. 

The future work also comprises deriving a framework that 
also fully reconstruct the baseband signal where the interfer-
ence is present, see [10]. In other words, this result in a milder 
suppression of the targets located in the same direction as the 
interferer. Thus, this will enhance the GIDS framework even 
further. 
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