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Abstract: In 2020, over 10,000 bird strikes were reported in the USA, with average repair costs
exceeding $200 million annually, rising to $1.2 billion worldwide. These collisions of avifauna with
airplanes pose a significant threat to human safety and wildlife. This article presents a system
dedicated to monitoring the space over an airport and is used to localize and identify moving objects.
The solution is a stereovision based real-time bird protection system, which uses IoT and distributed
computing concepts together with advanced HMI to provide the setup’s flexibility and usability.
To create a high degree of customization, a modified stereovision system with freely oriented optical
axes is proposed. To provide a market tailored solution affordable for small and medium size airports,
a user-driven design methodology is used. The mathematical model is implemented and optimized
in MATLAB. The implemented system prototype is verified in a real environment. The quantitative
validation of the system performance is carried out using fixed-wing drones with GPS recorders.
The results obtained prove the system’s high efficiency for detection and size classification in real-time,
as well as a high degree of localization certainty.

Keywords: bird monitoring; bird strike; distributed computing; runway safety; localization; Internet
of Things; environmental sustainability; monitoring of avifauna; safety system; stereovision; visual
sensor network

1. Introduction

The first collision of a bird with an aircraft, so-called bird strike, was reported in
1905, and then, in 1912 the first fatality was noted [1]. Since then, the number of cases
has risen, presenting a significant threat to flight safety and causing a number of tragic
accidents worldwide [2]. In 2020, purely in the USA, over 10,000 bird strikes were re-
ported [3]. The reports show that the average bird strike rate, which is counted per 10,000
flights, increased from 11 in the year 2011 to 33 in the year 2017 [4]. According to the
International Civil Aviation Organization (ICAO), most of the bird strikes occur during
the approach, 33%, take off, 31%, and landing, 26%, which means that 90% of incidents
occur in the airspace under the airport’s legal responsibility [4]. The administration and
legal regulations introduced by the ICAO and European Union Aviation Safety Agency
(EASA) oblige each airport to minimize the bird and wildlife strike risk, under Wildlife
and Hazard Management (WHM) [5,6].

Currently, different techniques and methods allowing the mitigation of bird strike
risk such as the ornithological observations and radar based solutions [7] are the most
widespread at medium and large airports. There are also some attempts to develop
vision based monitoring systems [8–10]. However, enhancing automation and to improve
the system performance levels of WHM in terms of detection efficiency and localization
accuracy is a research challenge.

Sensors 2021, 21, 1464. https://doi.org/10.3390/s21041464 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21041464
https://doi.org/10.3390/s21041464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041464
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1464?type=check_update&version=3


Sensors 2021, 21, 1464 2 of 25

To meet the requirements of a market tailored product, which may be customized to
any small and medium size airport, a stereovision based real-time solution embedded into
the Internet of Things (IoT) and a distributed computing paradigm is proposed. A new
stereovision method with the cameras’ optical axes freely oriented is modeled, evaluated,
and implemented in a prototype. The real-time field verification at an airport runway using
drones with a GPS recorders shows the system’s capacity to detect moving objects at a
range of 300 m and to localize them within the required accuracy of 10%. It is proven that
the proposed solution is able to classify detected objects into one of three size categories
corresponding to bird size.

2. Background and Related Works

The problem of bird strikes is multifaceted and can be approached from the point of
view of sustainable development, economy, law, and technology.

2.1. Non-Technological Approaches

The non-technological aspect of the presented solution could be analyzed from the per-
spective of bird presence near the airports, as well as the legal and financial consequences
of potential bird strikes.

Increasing volumes of air traffic and the adaptation of some bird species to the living
conditions in the vicinity of urban areas, which also increases their activity around airports,
are the main causes of the increase in bird collisions [11]. Birds have modified their behavior
and learned to tolerate the presence of both humans and man-made structures including
air traffic and accompanying noises. Therefore, it is getting more difficult to control or limit
their presence in the airport’s vicinity [12].

The problem with the increasing bird strike rate was noted by national and interna-
tional organizations including the ICAO [13], the World Birdstrike Association (WBA),
and states’ aviation authorities [14,15]. These organizations are responsible for sharing
information and experiences, as well as for the development of the best practices regarding
collision prevention. Currently, environmental monitoring of airports is regulated by the
EASA [5] and the ICAO [6]. There are also national civil and military authorities and orga-
nizations responsible for aviation safety, like the Civil Aviation Authority [16] in Poland
or the Swedish Civil Aviation Administration (Luftfartsverket) [17] in Sweden, who are
responsible for wildlife risk management.

The data analysis performed by the ICAO and the EASA shows the critical areas
where most of the accidents occur [18]:

• Ninety percent of collisions are below an altitude of 150 m;
• Sixty-one percent of events are at heights of less than 30 m;
• Eight percent of collisions are at an altitude above 900 m and are outside the aero-

drome area;
• Seventy-five percent of accidents happen during the day.

The bird strikes with the windshield and the engine of the aircraft are the most
dangerous and the most frequent events [19]. These damages cost over $200 million
annually [20] purely in the USA and up to $1.2 billion worldwide [21].

2.2. Technological Approaches

So far, the most widespread solutions for bird strike prevention at large and medium
size airports are still the eye observation of the runway. At many airports, various methods
such us trained dogs, falconry, pyrotechnics, and green lasers are used as the most effective
tools. Sometimes, deterrents are also installed, which emit predator or banging cannon
sounds [20].

There have been a number of attempts to develop reliable autonomous bird detection
and localization systems [10,22]. Besides the aforementioned automation of WHM at
airports [23], the bird preservation at wind farms [10,24] and autonomous analysis of
migrant bird behavior [25,26] are the main application fields.
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Mainly, there are two types of sensors used for bird detection: radar [27,28] and vision
cameras [9]. One of the first bird detection systems, which used the radar technology, was
developed [29,30] in the early 1950s. Since then, the radar based solutions have improved
their capabilities of bird detection in wide observation areas. Because of their capacity
to estimate the bird’s position, velocity, and movement [31], they have become widely
used in airports [32]. Radar systems for bird detection are characterized by long-range
detection [33] in any weather and light conditions [34,35]. It is worth noting that the radar
based solutions require additional permissions for emission in the frequency band, which
should not disrupt the airport’s flight control systems [31].

The vision based solutions can be split into two groups: mono- and stereo-scopic
systems. Whereas monoscope systems are able to detect the birds [26,36] and identify
particular species [37], the stereoscopic systems additionally allow bird localization and
size estimation [10,37,38].

The growth of CPU and GPU capabilities allows the application of advanced algo-
rithms, which are more reliable in moving object detection [39] and identification [40,41].
The parallel enhancement of the resolution of image sensors and the advance in optics
make it possible to detect and identify even small objects from far distances [10,26,39,42].

The core component of each vision based system is a detection algorithm. The bird
detection in the video stream can be made using motion detection [22,25,43], AI based
identification [26,44–49], or a combination of both [10,38]. Whereas the motion detection
algorithms allow the reduction of the computational complexity of the safety system [50],
the application of AI methods allows bird identification [48,49] and the reduction of false
positive rates [10]. From the AI based solutions, the Convolutional Neural Networks
(CNNs) [51–53] outperform other methods, for instance the Haar feature based cascade
classifier [45,54] or Long Short-Term Memory (LSTM) [48]. The most recent studies re-
ported that dense CNN [54] shows good feature extraction capabilities allowing for bird
identification [49,55], and after 100 epochs, the system reaches near 99% accuracy. Other
CNNs, implemented in distributed computing and IoT paradigms, allow the system to en-
sure 99.8% precision with 99.0% recall in bird identification with real-time performance [10].
This allows the development of a reliable vision based safety system at airports.

There are several examples of vision based systems allowing WHM at airports.
Chen et al. proposed an automatic bird-blocking network and intelligent bird-repelling
system [56]. The proposed algorithm with the use of IoT technology allowed automatic re-
pelling, which minimizes the habituation effect [56]. The company Pharovision developed
a commercially available system that is based on the infrared camera and allows scanning
of the ground and the air, day and night [9]. Using the FLIR and CCTV cameras, their
system detects and tracks even a single bird from up to 7 km [9]. Another complex system
allowing multiple bird detections and repelling is provided by Volacom [8]. Detection
is supported by thermal and stereovision cameras, which in real-time scan the airport’s
vicinity for flying objects [8]. An additional acoustic module focuses a deflection sound
signal at the targeted birds, to deter them up to 300 feet [8].

After detection, an automatic repellent method could be applied to minimize the
bird strike risk. One of the first repelling methods tested in various scenarios was puls-
ing light [23]. This method was successfully used at an airport [57], other man-made
structures [58], and wind farms [10]. Since the year 2015, pulsing light at 2 Hz in the
landing light system has been recommended by the Federal Aviation Administration (FAA)
and successfully used in airplanes and helicopters as a tool, allowing a substantial drop
in bird collisions [59]. The other solution mounted in airports near the runway is large
screens displaying a specific visual sight [60].

To deter a bird, a loud sound can also be used. Bishop et al. [61] showed that high
frequency sound in the ultrasonic range above 20 kHz is ineffective and therefore has
no biological basis for its use. In [62], the authors combined the effect of sound between
90 dB and 135 dB and a frequency of 2 kHz with white light. To reduce the habituation
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effect of the repellent method, the particular deterrent method used should vary and be
implemented as rarely as possible [61].

3. Problem Statement, Objectives, and Main Contributions

As the survey of related works shows, there is a need for a reliable and cost-effective
system mitigating the collision of avifauna with airplanes around airport runways.
The biggest drawback of existing solutions, mostly based on stereovision, is their basically
horizontally oriented Field of View (FoV), limiting the observation area and therefore
requiring multiplied installations, which are heavy and costly.

The main objective of the paper is to determine the hardware and software structures
of a stereovision based detection system for monitoring space over the airport runway to
identify, localize, and classify moving objects. Such a highly reliable real-time system has
to assure a wide range observation area without compromising its size and price, whilst
also providing a wide range of customizability.

The proposed hardware configuration is composed of two cameras coupled in stere-
ovision mode, wherein the first and second cameras are oriented with their optical axes
of an angle α to the base line, wherein α is a substantially non-right angle. The cameras
could be equally rotated to any direction to cover the selected observation area, which can
be horizontal, vertical, or even oblique. The system software configuration is based on IoT
technology, the distributed computing concept, and deep learning algorithms to ensure
real-time operation mode.

The user-driven design methodology is used to provide a market tailored solution
that may be customized to any small and medium size airports. The proposed solution
was modeled and optimized using MATLAB software. The system prototype was installed
in an real environment and verified using fixed-wing drones with GPS recorders.

4. System Design

The proposed avifauna monitoring system for runways was designed based on the
User-Driven Design (UDD) methodology presented in [63,64]. Besides airport stakeholders
and designers, the design process involved several authorities such as ornithologists
and experts in aviation laws. Furthermore, future users, who contributed to the design,
were falconers, airport security and safety staff, pilots, maintenance service workers, and
environmental workers.

It is beyond a doubt that such a system is demanded to minimize the collision risk
due to:

• passengers and staff safety;
• wildlife protection;
• financial consequences related to damages and delays;
• the legal, administrative, and marketing consequences of a potential catastrophe.

To achieve the listed goals, the designed system needs to fulfill the following function-
alities and constraints:

• to detect and localize suspected moving objects within the customizable safe zones
and to do this with high reliability and low positioning uncertainty;

• to distinguish individual, multiple, or flocks of birds simultaneously;
• to work in real time with a very short detection latency;
• to ensure that bird risk management has no side effects;
• to eliminate the human factor by autonomous monitoring and repelling methods;
• to ensure the affordability of the system including that the system price, cost of

installation, and cost of maintenance are acceptable for small airports;
• to facilitate and automate the reporting process recommended by the ICAO and the

EASA regulations.

General and itemized functionalities and particular related constraints along with
selected technologies and algorithms are summarized in Table 1. The motivation analysis
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of the technologies and algorithm selection is beyond the scope of this paper. However, it
can be observed that the system is based on stereovision and the distributed computing
and IoT concepts. The chosen algorithms belong to the machine learning and AI categories.
The details of the applied solutions are presented in Sections 5 and 6.

Table 1. UDD summary: functionalities, constraints, and applied technologies and algorithms.

Functionalities
Particular Constraints Technologies and Algorithms Used

General Itemized

Real-time
runway
monitoring

Detection and
identification
of moving objects

Reliability ≥ 98%,
latency ≤ 5 s,
computation rate > 15 FPS,
FP rate < 5%,
robustness for weather and light conditions

Stereovision,
motion detection,

machine learning
(convolutional NN),

distributed computing,

microcontrollerLocalization,
positioning

3D positioning ranges:
large (red kite) (20 m–300 m),
medium (common buzzard) (20 m–200 m),
small (swallow) (20 m–75 m),
corresponding wing image size
(10 px–10,000 px),
localization uncertainty < 10%

Classification/management

Object
classification

Bird/no-bird,
small/medium/large bird,
reliability > 80%,
simultaneously up to 4 individual,
birds, and/or flocks

Multi-dimensional signal processing,
distributed computing,

machine learning
(convolutional and

deep NN),
strobe, audio

Threat
classification

According to the airport’s specific horizontal
and vertical zones

Bird risk
management

Manual and automated repelling,
cannot distract people, especially pilots

HMI

System
accessibility

Redundant reliable link with error warning 24/7,
using web/mobile app to view
current and archive events,
manual activating repelling system

Linux/MacOS/Windows
/Android/iOS,

Edge/Chrome/Mozilla
/Safari,

MySQL, ReactJS,
Ethernet, Wi-Fi, TCP/IP

Event traceability,
archiving

Automate and periodical reporting
(monthly, quarterly, annually),
compliant with the ICAO and the EASA regulations,
manual reporting of eyewitness observations

Affordability

Customizability,
versatility

Customize monitoring range and
observation zones,
customize object classification

Distributed computing,
IoT,

CUDA, GPU,
modularity

Cost-effectiveness System price, easy installation, and replacement

Serviceability,
/operability

Automated and on-demand online,
in situ auto-test,
in situ auto-calibration

5. Modeling

The system conceptualization is presented in Figure 1. Since there is a need to cover
a wide observation space, the system consists of several monitoring modules and other
subsystems inter-connected via the network, which becomes a central component of the
proposed structure. On the network’s right side, there are components allowing the user to
interact with the system. On its left side, there are the control unit along with the sensors
and actuators responsible for data acquisition and system reactions. The system is based
on the IoT and distributed computing concepts [50], facilitating communication between
modules and providing easy access to the storage data through the intuitive GUI.



Sensors 2021, 21, 1464 6 of 25

Figure 1. Block diagram illustrating the system conceptualization.

The system can be deployed along the runway and consists of the control system,
monitoring modules, and repellent part. Each monitoring module includes the stereovision
sensing unit and Local Processing Unit (LPU) responsible for motion detection, object
identification, and localization. Data from all monitoring modules are sent to the control
system, where the detected object is cropped from the picture and processed, and a decision
is made about using the repellent part. The control system handles the connection with several
monitoring modules, repellent parts, the database, and the Human Machine Interface (HMI).

In the database, the data of the detected events such us the bird’s position, estimated
flight-path, images, and movies, as well as info regarding any actions undertaken are
collected. Archived data are accessible through the HMI such as web and mobile applica-
tions. The HMI can be also used to manually activate the repellents part and maintain/test
the system.

5.1. Model of the Modified Stereovision Method

A stereovision based monitoring module oversees a selected runway zone. The proposed
new solution ensures that the observation space is freely selectable through the adjustment
of the cameras’ optical axes by changing the orientation of their angles α(z); see Figure 2.

In classical stereovision, the cameras’ optical axes are perpendicular to the baseline, B,
where the baseline is the line segment connecting the cameras’ centers. Then, the baseline
and the cameras’ image planes are placed on the same Euclidean plane; see Figure 2a.
In the proposed modified stereovision method, the cameras’ optical axes are set at an angle
α with respect to the baseline, in such a way that the cameras’ image planes are placed
on two parallel planes, as shown in Figure 2b. The cameras’ alignment is presented in
Figure 2c [65,66].

To understand the extraction of the 3D features, the coordinates of the modified
stereovision system can be transformed using some geometric features. The transformation
is carried out in relation to the first camera C1 (see Figure 3) in such a way that the
coordinates and the scene are shifted by the rotation angle α. Using the geometrical
transformation, the modified mathematical model of the method can be delivered using
the variables and parameters defined in Table 2.
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Figure 2. Stereovision model: (a) classical; (b) with rotated image planes; (c) illustration of the
cameras’ alignment for the modified stereovision.

Table 2. Definition of the basic variables and parameters of the mathematical model along with units used.

Symbol Name Unit

B Baseline, the line segment connecting the cameras’ centers. (m)

Db
The length of the segment connecting the object with the line through the centers of the two cameras
along a line parallel to the optical axes of the cameras. (m)

Dk The distance of a detected object to a line through the centers of the two cameras. (m)

b0 The intersection point of the line of Db with the baseline. (-)

b1 The distance from the first camera C1 to b0 in a direction perpendicular to the optical axes of the cameras. (m)

b2 Th distance from the second camera C2 to b0 in a direction perpendicular to the optical axes of the cameras. (m)

D The distance from the first camera to the plane of the object, wherein the plane of the object is a plane
perpendicular to the optical axes of the cameras. (m)

d1 The distance from the first camera C1 to b0 in a direction parallel to the optical axes of the cameras. (m)

d2 The distance from the second camera C2 to b0 in a direction parallel to the optical axes of the cameras. (m)

ϕ0 The cameras’ field of view. (◦)

ϕ1
The angle between the projection line of the object on the first camera C1 and the optical axis of the
first camera. (◦)

ϕ2
The angle between the projection line of the object on the second camera C2 and the optical axis of the
second camera. (◦)
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Table 2. Cont.

Symbol Name Unit

α
The rotation angle defined as an angle between the (parallel) optical axes of the cameras and the base line.
The rotation of the first camera C1is around the first axis, perpendicular to the optical axis of the first
camera, and the rotation of the second camera C1 is around the second axis, parallel to the first axis.

(◦)

y0

The cameras’ resolution along the Y axes wherein the Y axis of a camera is perpendicular to the rotational
axis of the camera (the first axis for the first camera and the second axis for the second camera) and within
the image plane of the corresponding camera.

(px)

y1
The pixel number of the object’s center projection on the image plane of the camera C1 along the Y1 axis
wherein the Y1 axis is perpendicular to the rotational axis of C1 and within the image plane of the camera. (px)

y2
The pixel number of the object’s center projection on the image plane of the camera C2 along the Y2 axis
wherein the Y2 axis is perpendicular to the rotational axis of C2 and within the image plane of the camera. (px)

Figure 3. Definition of the variables and basic system settings.
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5.1.1. Distance Measurement Using Modified Stereovision

The distance, D, from the first camera C1 to the plane of the object, wherein the plane
of the object is a plane perpendicular to the optical axes of the cameras, is equal to the
distance Dk from the object to the baseline, D = Dk. From the basic geometry, one may
also find that D = Db − d1 and B× cos α = b1 + b2, where b1 and b2 are defined as:{

b1 = D tan ϕ1
b2 = D tan ϕ2

(1)

Then, after substitution:

B× cos α = (Db − d1)× tan ϕ1 + (Db + d2)× tan ϕ2 (2)

Knowing that d2 = B× sin α− d1:

B× cos α =(Db − d1)× tan ϕ1+

(Db + B× sin α− d1)× tan ϕ2
(3)

which could be simplified to:

B× cos α = (Db − d1)× tan ϕ1 + (D + B× sin α)× tan ϕ2 (4)

From this, distance, D can be calculated as:

D =
B× (cos α− sin α tan ϕ2)

tan ϕ1 + tan ϕ2
(5)

The angles ϕ1 and ϕ2 may be found from the relationships:

y1
y0
2

=
tan ϕ1

tan ϕ0
2

(6)

−y2
y0
2

=
tan ϕ2

tan ϕ0
2

(7)

Then, distance D can be defined as:

D =
B× cos α× y0

2× tan ϕ0
2 × (y1 − y2)

+
B× sin α× y2

(y1 − y2)
(8)

which, for α = 0, gives the distance for classical stereovision:

D =
B× y0

2× tan ϕ0
2 × (y1 − y2)

(9)

Knowing the distance D and the angle ϕ0, the object altitude could be calculated using
the formula:

H = D× cot
( ϕ0

2
+ ϕ2

)
(10)

where ϕ2 can be found from (7).
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5.1.2. Quantization Uncertainty of the Distance Measurement

The distance D defined by (8) is a non-linear discrete function of y0, B, (y1 − y2), y2, and
ϕ0. The measurement uncertainty, ∆D, determined by the exact differential method [10,67,68],
can be expressed by:

∆D =±
( y0 × cos α

2× tan ϕ0
2

+ y2 × sin α
)
× B

(y1 − y2)2 =

= ± D
y1 − y2

(11)

The quantization uncertainty ∆D is a discrete function of (y1− y2) ∈ N+ and y2 ∈ N+.
Since ∆D depends also on the value of y2, it means that the uncertainty increases not only
with distance D, but also with object altitude H. The quantization uncertainty of H depends
on the distance estimation and may be considered per analogiam.

Figure 4 shows how for a varying pixel difference, (y1 − y2), the quantized value
of distance measurement D and its uncertainty ∆D depend on the y2 value, which is a
measure of object elevation. The simulations for the highest y2max and lowest altitude y2min
were performed for y0 = 1440 px and ϕ0 = 48.8◦, corresponding to the off-the-shelf IMX219
camera with a focal lens of f = 3 mm and a large baseline B = 1 m [10].

Figure 4. The distance measurement and its uncertainty for varying (y1 − y2) where y2max and y2min

depict the numbers of the top and bottom pixel, respectively, on the C2 image plane.

Figures 5 and 6 illustrate how the quantized distance measurement D and its quanti-
zation uncertainty ∆D respectively depend on the pixel difference, (y1 − y2), and object
position on the C2 image plane, y2. The simulation was done within the range of 300 m. It
proves that in the worst case, quantization uncertainty ∆D could be of 70 m, which gives a
measurement uncertainty of 35 m.
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Figure 5. The distance measurement as a function of the pixel difference, (y1 − y2), and object
position on the C2 image plane, y2, within a range of 300 m.

Figure 6. The quantization uncertainty of the distance measurement as a function of the pixel
difference, (y1 − y2), and object position on the C2 image plane, y2, within the range of 300 m

5.2. System Processing

Figure 7 presents the processing architecture of the system, which is based on the
distributed computing and IoT paradigms. The proposed architecture supported by a
stable Ethernet connection enables reliable real-time communication between the monitoring
modules where images are collected and the control unit where the measurement data
are processed.

The monitoring modules with the on-board LPU provide the video streaming from
the stereovision set consisting of two cameras. The flying bird identification is based
on the motion detection and object identification algorithms presented in the authors’
previous studies [10]. The CNN distinguishes bird-like objects from sky artifacts such as
clouds, snow, rain, etc. When a detected moving object is identified as a bird, a warning
trigger is activated, and the information from the motion detection algorithm including the
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estimated object’s center coordinates, xc and yc, is sent to the 3D localization unit. The
optimization procedure of the detection and identification algorithm was described in the
authors’ previous work [10].

Via Ethernet, the control unit receives information including the object’s 3D position-
ing along with the image miniature and object contour [10]. In the data filtering block,
a statistical analysis is performed to conclusively distinguish birds from other bird-like
objects such as the drones, airplanes, and insects. Then, based on data about the object
width, height, and contour received from the motion detection algorithm, as well as the
estimated distance calculated in the localization algorithm, the size classification algorithm
estimates the object’s size to sort it into one of three categories: small, medium, or large [10].
After classification, the notification protocol via HMI is provided to the users’ apps and
archived in a local database. The deterrence module could be activated if needed.

Figure 7. General system processing architecture consisting of N monitoring modules and the
control unit.
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5.3. Size Classification

Knowing the distance D and the size of a detected object on the image plane as pW (px)
and pH (px) [10], the bird’s wingspan PW (m) and height PH (m) could be estimated from:{

PW = D× pW × SIA
f ×

1
y0

PH = D× pH × SIA
f ×

1
y0

(12)

where SIA is the camera’s Sensor Image Area.
Previous studies showed that the approximation of the bird’s size with an isosceles

triangle enables classification of its size as small, medium, or large [10]. Figure 8 illustrates
how the bird size could be estimated. The triangle base corresponds to the bird’s wingspan
pW (px), and the height of the triangle pH (px) denotes the bird’s height. Then, the triangle
area Oapprox is a measure of the bird’s size.

Figure 8. Graphical illustration of the bird’s size estimation.

Since the representation of an object on an image depends significantly on the object
distance from the monitoring modules, then the size classification accuracy depends on
the quantization error. The uncertainties of the measurement of PW as a function of the
distance for typical small, medium, and large objects are presented in Figure 9. Within the
requested distance ranges, there are no overlaps between the shown classes; however,
the fuzziness resulting from the distance measurement uncertainty could be observed
for birds of sizes close to the inter-category boundaries. The presented simulations were
performed for the parameters selected in Section 5.1, and the SIA was set to 3.76 mm, which
corresponds to the Sony IMX219 sensor. The calculations were done for average birds
representative of each class, i.e., 1 m, 1.32 m, and 1.67 m wingspans for small, medium, and
large, respectively. The measures of PH and Oapprox show similar uncertainty and may be
considered per analogiam.

The estimate of object area Oapprox is used for the classification of the birds [10]
into three categories, with the boundary values, Ob1 and Ob2, which were defined based
on ornithologists suggestions. The common buzzard and the red kite were selected as
boundary representatives of the medium and large objects. Therefore, each object smaller
than Ob1 = 0.22 m2, corresponding to the size of the common buzzard, is considered
as small, and each object bigger than or equal to Ob2 = 0.48 m2, corresponding to the
size of the red kite, is considered as a large object. The calculation of boundary values of
Ob1 = 0.22 m2 were performed for wingspans of 1.1 m and 1.45 m and heights of 0.4 m
and 0.66 m, for the common buzzard and red kite [69], respectively.
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Figure 9. The quantization uncertainty of PW with respect to the distance. The calculations were made
for average birds representative of each class, i.e., 1 m, 1.32 m, and 1.67 m wingspans representative
of small, medium, and large bird classes, respectively.

6. Prototyping

This section firstly considers the optimization of the parameters within a range of
constraints stated in Section 4, and then, the prototype of the system is presented.

6.1. Parameter Optimization

From (8) and Figure 10, it can be seen that the core structural parameters of the
proposed method are: the baseline, B, image resolution, y0, and FoV, ϕ0; therefore, the
selection of their values is crucial.

A camera image resolution y0 = 1440 px was selected due to the limitation of the
computational complexity of the applied algorithms and the corresponding capabilities
of the local processing units. Camera’s focal length f and its FoV defined by ϕ0 are
interdependent. Previous studies [10] showed that the maximum possible FoV can be
realized using the IMX219 with a focal lens of f = 3 mm and an FoV ϕ0 = 48.8◦.

As a rule of thumb, the spatial vision is correct when the baseline is between 1/100
and 1/30 of the system range [70]. However, due to technical reasons, the baseline should
not exceed 1.5 m. To select an acceptable baseline length, an evaluation of the distance
measurement and its uncertainty was dione. The simulation results of D and ∆D for the
object image detected at the top and at the bottom of the camera matrix were collected for
B = {0.75 m, 1 m, 1.25 m, 1.5 m}; see Figure 10. From their analysis, it can be concluded
that in the worst case at 300 m, (y1 − y2) = 4 px and (y2) = 1440 px, with measurement
quantization uncertainty ∆D=±81 m for B = 1 m, and for B = 1.5 m, ∆D =±61 m. Therefore,
the stereoscopic baseline B = 1 m was selected as fulfilling the requirement for a 10%
localization accuracy with the shortest baseline B.
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Figure 10. The distance measurement and its uncertainty as a function of the pixel difference for
baseline B = (0.75, 1, 1.25, 1.5) m for different object placements on the image plane: y2 = 1 in (a) and
(b); y2 = 1440 in (c) and (d).

6.2. Hardware Prototyping of the Monitoring Modules

The prototype of the monitoring modules is presented in Figure 11, and the installation
spot is shown in Figure 12. Each module was composed of two IMX219 cameras with a
f = 3 mm lens, having a vertical FoV ϕ0 = 48.8◦ and allowing the image capture with a
resolution of y0 = 1440 px. To optimize the monitoring space, the rotation angle of the
system (optical axes of both detection cameras) was set to α = ϕ0/2. The computational
core of the LPU was an ARM v8.2 processor with 8 GB RAM and 384 CUDA cores and 48
Tensor cores for the AI based object identification algorithm. The monitoring modules were
equipped with a switch allowing the IoT configuration. To ensure low weight, the system
was composed of an acrylic cover.

The prototype of the system included an auxiliary recording camera allowing real-
time video streaming and recording for verification and validation of the detection system.
The configuration of three monitoring modules allowed monitoring of the area within the
field of view of ϕ = 180◦, as shown in Figure 13, where small dead zones near construction
could be neglected as having no impact on the detection efficiency.

The control system ran on a database Dell server equipped with 3.6 GHz Xeon X5687
processor and 8 GB of RAM. As the memory storage, two 8 TB hard drives were used.
The connection between the monitoring modules and the control system was provided by the
Ethernet protocol. The monitoring modules were powered by safety extra-low voltage.
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(a) (b)

Figure 11. (a) The prototype computer drawing of the monitoring module; (b) the system installation
composed of three monitoring modules and one control unit.

Figure 12. The installation spot depicted as P1 at the airport.

Figure 13. The monitoring area and dead zone configuration of the system prototype consisting of
three monitoring modules.
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7. Validation and Testing

The system prototype was installed on a dedicated stand in a test field, which was a
flat open space near the runway of Reymont Airport in Lodz, Poland (IATA: LCJ, ICAO:
EPLL), as shown in Figures 11 and 12. The prototype was equipped with three monitoring
modules and one control unit. Mutual placement of the stereoscopic cameras was manually
set based on the fixed distant object. The positions of the images were manually determined
using transformation by handle in the GIMP software. The system reported approaches by
birds in flight, and an example of one such observed dangerous approach of a bird with an
airplane is presented in Figure 14.

Figure 14. A picture from the monitoring module during the tests—a bird with an airplane in a risk
situation. Frame 1 and Frame 3 are centered on the detected bird and the airplane, respectively.

For the quantitative evaluation of the system performance in terms of detection
efficiency and localization precision, bird-like drones equipped with GPS recorders were
used. Two fixed-wing drones and one quadrocopter representing small, medium, and large
objects are presented in Figure 15, and their dimensions provided by the manufacturer
in terms of the wingspan, height, and total area are shown Table 3. The drones were
programmed to fly along a given path within the system vicinity.

Table 3. Parameters of drones used for the tests.

Parameter Small [71] Medium [72] Large [73]

Wingspan 0.24 m 1.20 m 1.99 m

Height 0.10 m 0.53 m 1.04 m

Total area 0.012 m2 0.28 m2 0.67 m2

Oaproxre f 0.04 m2 0.32 m2 1.02 m2

Requested detection range 75 m 200 m 300 m
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Figure 15. Small, medium, and large drones used during the validation of the system.

To evaluate the system detection efficiency, test flights for the three drones were
performed. The drones flew at a random speed and altitude within the desired system
detection range. The system detected the small drone 1565 times, the medium drone
2248 times, and the large drone 2875 times, during the 3 min, 12 min, and 10 min flights,
respectively. The detection efficiency presented in Table 4 was calculated as the relationship
between the time when the drone was visible to the monitoring module and the time of
flight in the defined range. Table 4 summarizes the results. The presented results prove that
the desired efficiency was achieved within the requested detection range defined in Table 1.

Table 4. Evaluation of system detection efficiency.

Small Medium Large

Detection
Range

Detection
Time

Flight
Time

Detection
Efficiency

Detection
Time

Flight
Time

Detection
Efficiency

Detection
Time

Flight
Time

Detection
Efficiency

(s) (s) (%) (s) (s) (%) (s) (s) (%)

(0–50> 29 32 91 26 26 100 - - -

(50–100> 80 85 94 82 82 100 - -

(100–150> 20 40 50 226 235 96 24 24 100

(150–200 > - - - 322 329 98 242 252 96

(200–250> - - - 64 69 93 102 105 98

(250–300> - - - - - - 26 28 92

(300–350> - - - - - - 206 362 57

To quantitatively evaluate the developed system’s ability to carry out 3D object local-
ization, it was tested in nine different scenarios defined in Table 5. The drones were turned
on in autopilot mode using the remote controller, and they flew around the module at a
predefined approximately constant distance and altitude, with different distances D and
altitudes H used for different scenarios. The subscripts S, M, and L included in the sce-
narios listed with Roman numerals denote small, medium, and large drones, respectively.
The average speed of the small, medium, and large drones during each test was 4.0 m/s,
20.0 m/s, and 15.0 m/s, respectively.
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For each test flight, the mean distance D, height H, and corresponding standard devia-
tion σD and σH , for GPS and detection module data, respectively, were estimated. The GPS
measurements were treated as reference values for the analysis of system uncertainty
presented in the last four columns, where ∆Dk and ∆H depict the mean absolute accuracy
of the distance and height measure, respectively, and δDk and ∆H depict the corresponding
relative accuracy of the distance and height measure, respectively.

Table 5. Test plan of the designed system. N is the number of samples registered during the test, and the error is the
difference in the mean between the GPS and the system measurements.

GPS Data Detection Module Data Uncertainty

Scenarios DkGPS σDkGPS
HGPS σH N Dk σDk

H σH ∆Dk ∆H δDk δH

(m) (m) (m) (m) (-) (m) (m) (m) (m) (m) (m) (%) (%)

IS 46.4 0.3 26.7 0.2 85 45.6 1.6 26.9 0.6 0.8 0.2 1.7 0.7
IIS 66.6 2.2 32.0 0.2 86 68.7 3.7 34.6 1.4 2.1 2.6 3.2 8.1
IIIS 96.3 10.8 26.7 0.1 82 101.7 20.7 29.3 2.7 5.4 5.9 5.6 9.7

IVM 104.2 12.5 36.1 0.5 99 97.1 8.9 34.5 1.8 7.1 1.6 6.8 1.6
VM 133.6 13.7 38.5 2.3 157 141.3 9.6 35.4 3.8 7.7 3.1 5.0 8.0
VIM 202.8 1.6 48.8 1.7 97 199.1 17.4 50.5 5.1 1.7 6.7 1.8 3.4

VIIL 129.3 2.5 53.0 0.7 137 139.4 9.5 53.7 3.6 10.1 0.7 7.8 1.3
VIIIL 202.9 4.9 96.9 0.7 101 186.7 16.8 88.3 6.7 16.2 8.6 7.9 8.8
IXL 311.5 2.9 102.9 0.7 31 320.2 23.0 103.5 7.2 8.7 0.6 2.7 0.5

Examples of the graphical illustration of the test results are presented in Figures 16–17
for the small, medium, and large drones, respectively. The flight scenarios were chosen to
show the system capabilities at the detection range borders for each drone. The green and
red dots represent localization measurement samples from the GPS and from the system,
respectively. The ellipses illustrate the measurement statistics where their center coordi-
nates, X(D, H), correspond to the mean values of the distance and height measurements,
respectively. Their semi-major axes depict the standard deviation σD, and the semi-minor
axes correspond to the standard deviation σH .

(a) (b)
Figure 16. The graphical illustration of the tests results. Distance from a monitoring module vs. the height of the drone during
the test. Green dots: GPS data; red dots: data from the module. The corresponding color ellipses illustrate the standard
deviations of the respective distance and height measurements. (a) Scenario III; (b) Scenario IV.
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(a) (b)
Figure 17. Graphical representation of the tests results. Distance from a monitoring module vs. the height of the drone during
the test. Green dots: GPS data; red dots: data from the module. The corresponding color ellipses illustrate the standard
deviations of the respective distance and height measurements. (a) Scenario VI; (b) Scenario IX.

At long distances of more than 200 m, the quantization error of a single measurement
was greater than the desired localization precision. However, statistics allow the reduction
of the quantization error, which meets the user’s desire; see Table 1. The mean values of the
distance and height uncertainty dropped below the expected 10% even for far distances of
more than 300 m, which is above the quantization uncertainty of the distance measurement;
see Figure 6. The system detection range and localization precision depend on the object
size. The system was able to detect the small drone from 100 m, the medium drone up to
200 m, and the large drone up to 300 m.

Table 3 includes the test drones’ data sheet information, which were treated as refer-
ence values. Table 6 shows the test results for the size estimates and their quality along
with the results of bird classifications, and they are presented in the last three columns of
the table. For each scenario defined in Table 5, the drones’ width, Pw, height, Ph, and size,
Oapprox, were estimated from the images, and then, the estimates’ variances σPw

, σPh
, and

σOapprox
were calculated, respectively. Despite relatively high estimation uncertainties, the

system was capable of classifying drones into their correct categories.
Object classification into one of three categories of small, medium, and large was

based on the estimate Oapprox and defined heuristically. The selected boundaries between
categories were: between small and medium Ob1 = 0.22 m2 and between medium and
large Ob2 = 0.48 m2, as introduced and presented in Section 5.3. The test results proved
that within the desired ranges, the system classified small and large objects with a reliability
of 99.6% and 91.4%, respectively. The classification reliability of medium objects was 65.4%.
Nevertheless, medium objects were more likely to be classified as large (25.4%) rather
than small (9.0%), which errs on the safe side from an application point of view. It is
worth noting that the classification of objects should be treated as a fuzzy categorization,
because the real sizes of birds of the same species vary. Furthermore, size estimates are
biased by measurement uncertainties. Nevertheless, the test results confirmed that the
average size Oapprox calculated for each scenario allowed the evaluation of the object size
correctly in each case.
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Table 6. The test results of drone size estimations, where the reference sizes can be seen in Table 3. The classification
boundaries are Ob1 = 0.22 m2 and Ob1 = 0.48 m2.

Detection Module Data Uncertainty Classification

Scenarios Pw σPw
Ph σPh

Oapprox σOapprox
∆Pw ∆Ph ∆Oapprox Small Medium Large

(m) (m) (m) (m) (m2) (m2) (m) (m) (m2)

IS 0.32 0.04 0.17 0.01 0.035 0.002 0.08 0.07 0.005 85 0 0
IIS 0.35 0.01 0.25 0.01 0.044 0.001 0.11 0.14 0.004 86 0 0
IIIS 0.31 0.06 0.21 0.02 0.049 0.005 0.07 0.11 0.009 81 1 0

IVM 1.06 0.23 0.68 0.08 0.363 0.207 0.14 0.15 0.046 8 72 19
VM 0.87 0.11 0.86 0.11 0.379 0.121 0.33 0.33 0.044 21 105 31
VIM 1.26 0.25 0.69 0.03 0.437 0.082 0.06 0.16 0.118 3 54 40

VIIL 1.85 0.24 0.87 0.05 0.807 0.100 0.14 0.17 0.227 5 17 115
VIIL 2.09 0.13 0.95 0.03 0.999 0.079 0.10 0.09 0.036 0 0 101
IXL 1.97 0.14 1.16 0.04 1.156 0.145 0.02 0.12 0.121 0 1 30

8. Discussion, Conclusions, and Future Work

This work proposes a stereovision based detection system for monitoring the space
near airports to identify and localize moving objects. The system is a reliable and cost-
effective solution for the prevention of bird strikes around airport runways.

A new stereovision structure is proposed, composed of two cameras coupled in
stereovision mode, with the cameras’ optical axes able to be freely oriented to cover the
desired monitoring space from one installation spot within the cameras’ common FoV.
A set of detection modules could extend the system observation FoV up to 360◦. One
can estimate that a medium size airport with a 2600 m runway can be covered using up
to seven systems, each equipped with eight monitoring modules. The system software
configuration based on the distributed computing concept powered by machine learning
algorithms embedded in the IoT paradigm ensures real-time performance. Apart from the
detection of moving objects, the system is capable of localizing and classifying them based
on their size.

To make the system desirable and flexible for different airport sizes, the user-driven
design was applied, which included many actors such as airport stakeholders, local
and ecological authorities, designers, and future users. This has driven the design so-
lution into a customizable system, which ensures cost-effectiveness without compromising
system reliability.

The system was modeled and optimized using MATLAB software. The evaluation
method included the analysis of the localization uncertainty and enabled system optimiza-
tion. The quantitative evaluation of the system performance showed that the proposed so-
lution meets the desired requirements regarding detection range and localization precision.

The modeled system was implemented and prototyped and then installed in a test
field, which was a flat open space near the runway of Reymont Airport in Lodz, Poland.
To validate the system performance, two drone sizes of 2.0 m and 1.2 m and one quadro-
copter of 0.24 m were applied, imitating large, medium, and small birds, respectively. Nine
test scenarios, three for each device, were applied to prove system localization and size
estimate accuracy, as well as to prove the detection efficiency and ability to correctly classify
the objects.

The tests proved that the system detects small objects within a range of 100 m with an
efficiency of 94%. Medium objects can be detected within a range of 250 m with an efficiency
of 93%, whereas the large object detection range of 300 m had a detection efficiency of 93%;
see Table 4.

The estimates of the localization uncertainty for both distance and height measure-
ments varied from 0.7% up to 9.7%, but did not exceed the required 10%, as shown
in Table 5.



Sensors 2021, 21, 1464 22 of 25

Estimations of drone size, which is used for object classification, were done for all nine
scenarios; see Table 6. The test results proved that the system is capable of distinguishing
small and large objects with a reliability of 99.6% and 91.4%, respectively. The classification
reliability of medium objects was 65.4%. The results show that the approximated sizes were
overestimated compared to the reference ones. However, this type of result is not fatal, and
the applied classification algorithm is able to sort the objects into the correct categories.
Nevertheless, the test results confirmed that by means of statistics, it is possible to enhance
the object’s size estimation.

The system validation proved that the system implements all the desired functionali-
ties and fulfills all the regulatory requirements and therefore can be used for standalone
autonomous bird monitoring, complementing ornithologists’ work to minimize the risk of
bird collisions with airplanes.

Among other future developments, a tracking algorithm to anticipate bird flight paths
could be implemented to improve system reliability and localization accuracy. The imple-
mentation of Multiple Hypothesis Tracking (MHT), Kalman filter, or Probability Hypothesis
Density (PHD) are considered as possible solutions. Moreover, the classification could
be extended to include the recognition of bird species, which could improve long-term
wildlife monitoring. Other possible work may also concern the detection of mammals or
Foreign Object Debris (FOD) within an airport’s proximity.

Furthermore, ornithological long-term observations should be performed to verify the
system performance in terms of bird detection efficiency and false positive rate. These obser-
vations could also validate the system performance in overcast weather conditions, which
would be required before its implementation at airports in autonomous operational mode.

The precise calibration of a large-base stereovision system is complex and may cause a
large positioning uncertainty [74]. Therefore, our future work will focus on an autonomous
in situ calibration of the system.

Aviation safety at airports requires also the detection of FOD, as well as land mammals.
The monitoring area of the proposed detection system could be extended to cover the
whole runway.

Future work may also concern the deployment of a multi-module configuration along
an airport’s runway to ensure full coverage of the skies within an airport’s legal jurisdiction.
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Abbreviations
The following abbreviations are used in this manuscript:

ICAO International Civil Aviation Organization
EASA European Union Aviation Safety Agency
WHM Wildlife Hazard Management
IoT Internet of Things
WBA World Birdstrike Association
CNN Convolutional Neural Networks
UDD User-Driven Design
FoV Field of View
SIA Sensor Image Area
HMI Human Machine Interface
LPU Local Processing Unit
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