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Abstract: Recently, it was demonstrated that low-frequency wavelength-resolution synthetic aperture
radar (SAR) images could be considered to follow an additive mixing model due to their backscatter
characteristics. This simplification allows for the use of source separation methods, such as robust
principal component analysis (RPCA) via principal component pursuit (PCP), for detecting changes
in those images. In this manuscript, a change detection method for wavelength-resolution SAR
images based on image stack through RPCA is proposed. The method aims to explore both the
temporal and flight heading diversity of a set of wavelength-resolution multitemporal SAR images in
order to detect concealed targets in forestry areas. A heuristic based on three rules for better exploring
the RPCA results is introduced, and a new configurable parameter for false alarm reduction based on
the analysis of image windows is proposed. The method is evaluated using real data obtained from
measurements of the ultrawideband (UWB) very high-frequency (VHF) SAR system CARABAS-II.
Experiments for stacks of four and seven reference images are conducted, and the use of reference
images acquired with different flight headings is explored. The results indicate that a gain in
performance can be achieved by using large image stacks containing, at least, one image of each
possible flight heading of the data set, which can result in a probability of detection (PD) above 99%
for a false alarm rate (FAR) as low as one false alarm per three square kilometers. Furthermore, it
is demonstrated that high PD and low FAR can be achieved, also considering images from similar
flight headings as reference images.

Keywords: synthetic aperture radar; CARABAS-II; change detection; blind source separation; robust
principal component analysis

1. Introduction

Wavelength-resolution SAR can be characterized by a large fractional bandwidth,
such as the ones achieved by ultrawideband (UWB) SAR, and a wide antenna bandwidth.
The backscattering phenomenology for wavelength-resolution SAR systems differs from
traditional microwave SAR. For wavelength-resolution systems, small objects tend to follow
the characteristic of a Rayleigh scattering regime whereas large target-size elements present
a resonance scattering regime [1]. Thus, the scattering process is mainly related to the
contribution of scatterers with dimensions in the order of the signal wavelengths, mitigating
the contribution of small objects. Therefore, a resolution cell may only contain one scatter.
Consequently, the images obtained by those systems do not suffer from speckle noise.
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Additionally, the images obtained from multiple passes using low-frequency wavelength-
resolution SAR systems are highly similar due to the large scatterer’s characteristics, e.g.,
lower sensitivity to weather conditions than small objects and high stability in time [2].

Based on these characteristics, low-frequency wavelength-resolution SAR images can
be considered a good choice for Foliage-penetrating (FOPEN) applications [1], such as the
detection of human-made objects and military vehicles hidden by vegetation. However,
designing a low-frequency wavelength-resolution SAR system is challenging due to ul-
trawideband (UWB) and ultrawide beam characteristics. These types of system demand
UWB SAR processing including wide integration angle, motion compensation, and range
resolution [3]. Indeed, there are only a few existing low-frequency wavelength-resolution
SAR systems, such as the Coherent All RAdio BAnd System II (CARABAS-II) [4], which is
considered in this paper.

One of the most studied research topics regarding the use of low-frequency wavelength-
resolution SAR systems in FOPEN applications is detecting concealed targets in forestry
regions, which have been investigated for more than two decades [5–7]. Traditionally, the
detection of a concealed target is mainly carried out by change detection (CD) methods.
One of the first CD methods used with the CARABAS-II system was a Bayes linear classi-
fication scheme proposed in [8]. Since then, several new CD methods were proposed to
perform target detection in low-frequency wavelength-resolution SAR images and were
tested using CARABAS II data [9–14]. Recently, the authors in [15–18] considered and eval-
uated the use of image stacks in change detection applications for wavelength-resolution
SAR images aiming at improving CD performance. From the results presented in [15–18], it
is observable that the use of image stacks in low-frequency wavelength-resolution increases
the change detection performance by reducing the number of false alarms (FA).

Another recent study, which presented promising performance and an entirely differ-
ent approach for low-frequency wavelength-resolution SAR data, was published in [19].
The study considered the change detection problem in SAR images as a signal separation
problem and introduced a methodology based on Robust Principal Component Analysis
(RPCA) to perform target detection. In fact, different from studies addressing the use of
RPCA aiming at ground moving target indication (GMTI) in X-band SAR systems [20,21],
the proposal of [19] was a incoherent change detection method based on the RPCA solved
by principal component pursuit (PCP), aiming at image pairs of an UWB VHF SAR system.

Motivated by the results and observations from [15,19], this paper proposes extending
the methodology presented in [19] to an approach with a focus-assessment into image
stacks, relying on a heuristic of three rules. The preliminary results of the proposed
approach were discussed in [22], limited to few specific image stack configurations. In
this manuscript, the methodology is addressed conclusively by considering a wider range
of image stack configurations and by including a new configuration parameter, so-called
neighborhood-size (δ), which allows for fine adjustment of certain settings and scenarios.
Performance gains are observed with the increase in data diversity into the stack, which
relies on the number of images into the stacks (temporal diversity). In that sense, the
increase in images in the stack can also give the algorithm a priori information with respect
to the variations caused by measurements of different flight headings (flight heading
diversity). In some cases, such a feature allows for achieving good change detection results
when using surveillance images from different flight headings. Mainly, experimental
results reveal several false alarm reductions for a certain probability of detection (PD),
outperforming previous methodologies designed aiming at wavelength-resolution SAR
change detection based on RPCA.

The remainder of this paper is organized as follows. Section 2 presents some useful
concepts regarding the RPCA via PCP formulation. The SAR image data set and its main
aspects are described in Section 3. Section 4 presents the proposed change detection method.
Experimental results obtained with the proposed method are evaluated and discussed in
Section 5. Section 6 discusses the results in perspective of previous studies, pointing out
some future research directions. Concluding remarks are provided in Section 7.
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2. Robust PCA

Given a data matrix X, which may represent, for instance, an image, classical principal
component analysis (PCA) searches for an approximation of X by means of a matrix
of lower rank. Such an approximation can be useful in several applications, including
dimensionality reduction, denoising, and data visualization. In mathematical terms, the
resulting PCA approximation can be obtained by formulating the following optimization
problem:

minimize ||X− L||2F
subject to rank(L) ≤ l,

(1)

where X ∈ RN×M is the observed data matrix and L ∈ RN×M denotes the low-rank
approximation of X.

PCA can be extended in many different ways [23], including a methodology known
as robust PCA. The main idea behind RPCA is to approximate the observed data matrix by
considering an additive model that comprises a low-rank term and a sparse term, that is, a
matrix in which most of its elements are null. Such a model naturally arises in a context in
which the observations are, for instance, corrupted by outliers, which can be represented
by the sparse term. Although there are several PCA improvements that addressed the
limitation of classical PCA with respect to outlier and noise, most of these methods do not
possess strong performance guarantees [24].

Another interesting feature of RPCA is that it can be considered a source separation
methodology. Indeed, the goal of RPCA is to obtain the following decomposition:

X = L + S, (2)

where matrices L and S represent the low-rank and sparse terms, respectively. Therefore,
the model (2) can be seen as an additive mixing model, in which X corresponds to the
mixed data whereas L and S correspond to the sources. This particular formulation of
source separation finds applications in several domains, including video surveillance [24],
where one aims to separate the background from spurious events, and geophysics [25],
where low-rank and sparse sources can be associated with reflections and diffractions,
respectively.

There are several approaches to obtain the decomposition expressed in (2). A popular
one is oriented towards the formulation of a convex optimization problem, given by

minimize ||L||∗ + λ||S||1
subject to L + S = X

(3)

where ||L||∗ represents the nuclear norm of L and ||S||1 is the l1 norm of S. The rationale
behind this formulation, which is also known as principal component pursuit (PCP) [26], is
that the nuclear norm provides a convex approximation of the rank whereas the l1 norm
has been intensively used as a measure of sparsity. The constant λ corresponds to the
regularization term. According to Candès et al. [26], an interesting λ value for many
applications can be obtained by

λ =
1√

max(n, m)
, (4)

where n and m denote, respectively, the number of rows and columns of X.
Regarding the resolution of the optimization problem (3), the fact that convex approx-

imations are used opens the path for application of the alternating direction method of
multipliers (ADMM) [27]. The idea in ADMM is to decompose the optimization problem
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into separate steps, which can be addressed employing simpler strategies. In the context of
RPCA, such a decomposition is given by

L(t+1) = arg min
L

{
||L||∗ +

ρ

2
||L + S(t) − X + ρ−1Λ(t)||2F

}
(5)

S(t+1) = arg min
S

{
||S||1 +

ρ

2
||L(t+1) + S− X + ρ−1Λ(t)||2F

}
(6)

Λ(t+1) = Λ(t) + ρ(L(t+1) + S(t+1) − X). (7)

where ρ corresponds to the augmented Lagrangian parameter. This ADMM strategy is
considered in this paper. For solving each of these steps, one may resort to the classical
solution founded on shrinkage operators (see [27] for more details).

3. Low-Frequency Wavelength-Resolution SAR

As aforementioned, the main advantage of wavelength-resolution SAR systems over
traditional microwave SAR is due to the scattering process of the former. As the scatterer’s
dimensions are in the order of the signal wavelengths, there might be only a single scatter
in the resolution cell. This greatly reduces the influence of speckle noise, which is a form of
multiplicative, locally correlated noise, which plagues imaging applications such as medical
ultrasound image interpretation and SAR image region-based detection, segmentation,
and classification [28]. Moreover, those large scatterers tend to be static objects that are
less sensitive to weather conditions and more stable in time, especially for low-frequency
SAR systems [2], as previously mentioned in Section 1. Such features facilitate the use of
CD techniques, especially when using multi-passes with identical heading and incidence
angle of the illuminating platform at a given ground area, as an image stack with similar
statistics can be obtained [16].

Furthermore, as mentioned in Section 1, low-frequency wavelength-resolution SAR
systems are especially suitable for FOPEN applications—such as the detection of vehicle-
sized targets concealed by foliage—as these systems suffer less attenuation due to foliage
than commonly used band SAR systems. However, designing such systems is still challeng-
ing due to the required characteristics of integration angle, motion compensation, and range
resolution [3]. As a result, there are only a few UWB VHF SAR systems, e.g., CARABAS,
Low-frequency Radar (LORA), and Tactical Reconnaissance and Counter-Concealment
Enabled Radar (TRACER).

Due to the low speckle noise, we can state that the main contributors (sources) to
the image formation process of UWB VHF SAR images are targets, background (clutter),
and additive noise. This can be seen as a superposition process in the complex domain,
and consequently, a source separation technique aiming at additive mixing models can be
exploited, which pave the way for the use of RPCA via PCP as an efficient tool to detect
changes in multitemporal UWB VHF SAR images [19].

The CARABAS-II Data Set

The CARABAS-II data set is composed of 24 VHF UWB SAR images. In fact, the
images are composed of magnitude values (i.e., the absolute value from amplitude and
phase), and as a consequence, original amplitude and phase information are unavailable.
The data were acquired in the same area, with three different flight headings: 135◦, 225◦,
and 230◦. The heading is defined as 0◦ pointing towards the north with a clockwise
increasing heading. Each image has a size of 3000× 2000 pixels associated with an area
of six square kilometers. The spatial resolution in this measurement campaign is 2.5 m in
both azimuth and range [6,29]. Indeed, it is possible considering that one pixel covers an
area of one meter in azimuth by one meter in range.

Each image of the data set has 25 concealed targets arranged in four possible target
deployments: Sigismund, Karl, Fredrik, and Adolf–Fredrik. In this manuscript, following
the notation in [29], we refer to them as mission numbers 2, 3, 4, and 5, respectively.
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Each mission is measured by six passes. The missions contain the deployments of targets
in different positions, and the passes of each mission are related to the flight track and
intensity of radio frequency interference (RFI) [29]. The images collected with the flight
headings 225◦ and 230◦ are the most affected by RFI, since the antenna main-lobe points
towards a TV transmitter located southeast of the test area [29]. Table 1 illustrates the
operational conditions for each pass.

Table 1. Operational conditions associated with each pass.

Pass Flight Heading RFI Pass Flight Heading RFI

1 225◦ High 4 135◦ Low

2 135◦ Low 5 230◦ High

3 225◦ High 6 230◦ High

As the target deployment of the CARABAS-II images changes, a set of images can
be used to suppress the image background and to identify the location of the targets.
Figure 1 shows four image examples of the considered data set as well as the four possible
missions with the target’s location marked with a red circle. Elongated structures are
pointed out with the blue arrows. Comparing Figure 1a to Figure 1b, it is possible to
observe the influence of different flight headings when acquiring the SAR images. Note
that, for Figure 1a, elongated structures that cause most false alarms are shown in the range
0–500, while for Figure 1b, the elongated structures can be seen in the range 1000–2000. In
this scenario, detecting changes is a challenge as these elongated structures significantly
increase the number of false alarms. In Figure 1c,d, one can see that, when using images
of the same flight heading, the main change is in the disposition of the targets. In this
scenario, traditional CD algorithms can be efficient for target detection, since elongated
structures remain stationary in time.
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Figure 1. Example of magnitude synthetic aperture radar (SAR) images from the CARABAS-II data
set: (a) Mission 2, Pass 1; (b) Mission 3, Pass 2; (c) Mission 4, Pass 5; and (d) Mission 5, Pass 6.

Finally, more information about the CARABAS-II data set can be found in [29]. This
content is made available as an open data set by the U.S. Air Force Research Lab (AFRL)
at the sensor data management system (SDMS) website [30], which is the only publicly
available data set for wavelength-resolution SAR images.

4. The Proposed Method

As introduced in Section 1, Schwartz et al. [19] describes a CD method based on
RPCA via PCP for image pairs, which relies on decomposing a data matrix X into two
new matrices: L (low-rank matrix) and S (sparse). In such a case, S was formed by the
content that most diverges between the first image I1 and the second image I2. In addition,
the content tangent between the two rows were considered for the matter of decision-
making (if certain detections might be considered a target or not). In this manuscript, the
methodology presented in [19] is extended to use N images, aiming to achieve a better
compromise between PD and false alarm rate (FAR).

As previously mentioned, performance gains are expected to be achieved as N in-
creases due to the addition of temporal diversity as a priori information. This favors the
target separation through RPCA once an additive mixing model plays the role for each
image, and the targets are naturally sparse. It is important to note that using an additive
mixing model is supported by the stability of the wavelength-resolution SAR images,
which can be considered the sum of different sources such as targets, background, and
noise, as mentioned in Section 3.

Let us consider the scenario illustrated in Figure 2, where I1 ∈ Rr×c represents a
surveillance image while I2, · · ·, IN ∈ Rr×c represents the reference content, formed by
N − 1 images. In this scenario, the proposed method aims to use information from the
reference images to perform the target detection in the surveillance image, keeping the
false alarms as low as possible. Considering that the targets do not move between images
I2, · · ·, IN (i.e., the reference images are from the same deployment), changes in I1 can be
seen as sparse content. In that sense, as N increases, the data correlation structure of the
matrix X changes, favoring the target detection in I1.
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Figure 2. Simplified diagram of the change detection (CD) method.

Initially, the N images can be stacked to allow for RPCA application. Considering that
singular value decomposition (SVD), which works within the RPCA via PCP, operates by
comparing the rows of the input matrix (looking for linearly independent lines), each image
composed of r rows and c columns can be transformed into vectors (the concatenation
of image rows) of size m, where m = r × c, and then arranged into the input matrix X
according to

X =


V1
V2
...
VN

 =


p11 p21 · · · pm1

p12 p22 · · · pm2
...

...
. . .

...
p1N p2N ... pmN

, (8)

where V1 is the surveillance image in its vector form, and V2, · · ·,VN are the reference
images in its vector form. Thus, p11 , · · ·, pm1 ; p12 , · · ·, pm2 ; and p1N , · · ·, pmN , represent the
pixels (magnitude values) of the vectorized images. For the CARABAS-II images in the
data set, X will have N rows (number of images in the stack) and m = 6× 106 columns.

Next, RPCA via PCP can be applied to the matrix X. As a result, matrix S retrieves
the sparse content of the N images until it achieves a given measure of sparsity, which
relies on the choice of λ value. The sparse content with respect to the images I1, · · ·, IN are
distributed on the N rows of matrix S. As mentioned in [19], the goal is to find a λ value
that balances the content between S and L so that the targets are kept in S, avoiding false
alarms. Then, the rows of matrix S can be reshaped into N matrices, S1, · · ·,SN , containing
the detections.

Moreover, Ref. [19] presents a strategy to achieve false alarm reductions, considering
the detections tangent between the two images (within a window) null, which can be the
result of measurement deviations, can be related to the same object, or can just be ignored
because they occur in nearby pixels (i.e., small shift). However, the strategy in [19] uses
only two images (image pairs), limiting the false alarm reductions caused by elongated
structures that reflect differently depending on the flight headings. That is the reason why
most algorithms for wavelength-resolution SAR change detection use images taken from
the same flight heading as input. For image stacks, a slightly different strategy can be
designed to achieve even more significant false alarm reductions, as partially discussed
in [22]. The proposed method uses a heuristic based on three rules that allow for better
exploitation of the RPCA results. Such rules can be described as follows, where the
neighborhood-size parameter, δ, is introduced in rule (c).
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(a) Each positive value in S is considered a detection. Since we are interested in the
variations that emerged in the surveillance image (i.e., illuminations that do not appear
in the reference images), this rule becomes necessary. In real cases, reference images
may have reflections referring to static objects in the same position (e.g., buildings,
fences, and others). The absence of these static objects only in the surveillance image is
interpreted by the RPCA as sparse content and separated into S with a negative value.
For the CARABAS-II data set, in which all images have targets, a single deployment is
used as a reference. Then, sparse content (targets in the reference images) is mirrored
in S with a negative value, which can be ignored.

(b) Only detections in the first line of matrix S are counted (S1). It is important to note
that S1 retrieves the sparse content with respect to the first line of X (i.e., I1). Once we
are interested in detecting targets in the surveillance image, this choice is justified.

(c) Detections related to the surveillance image are discarded if such a detection also
occurs, at least, in one of the reference images into the output stack (S2, · · ·,SN),
considering a square window of 2δ× 2δ pixels, as illustrated by Figure 2. This rule
is supported on the spatial resolution of the SAR system and aims to eliminate the
detections that can be, for instance, caused by the same object in both images, as
mentioned above.

The motivation of introducing the neighborhood-size parameter can be better clarified
in Section 5.

Method Evaluation

The two metrics considered for evaluating the performance of the proposed method
are PD and FAR. The PD is obtained from the ratio between the number of detected
targets and the total number of known targets in the image. As in [19,22,29], a detection is
considered a target if it is within a radius of 10 m (i.e., approximately 10 pixels) from the
ground truth position.

On the other hand, all detections that are not related to the targets are considered false
alarms. The FAR is calculated from the number of false alarms per square kilometer (in
this case, 6 km2). Similar to the criterion used in [19], false alarms were counted using a
10 × 10 pixel window. Thus, all detections inside the 10 × 10 window are counted as one
false alarm. This choice is justified due to the backscattering characteristic of the system,
which allows us to assume that nearby detections are related to the same object. It is
important to note that the size of this window is compatible with the spatial resolution of
the radar.

5. Results

The materials and tools used for the method evaluation can be summarized as follows:
(a) the CARABAS-II data set and (b) an RPCA via PCP algorithm implementation. The CD
method herein described makes use of a MATLAB implementation of the RPCA available
in [31]. Thus, the proposed method described in Section 4 was also implemented in
MATLAB.

As mentioned in Section 4, the proposed method performance relies on the choice
of an appropriate λ value, which is the regularization parameter to balance the infor-
mation in both terms L and S. According to [26], an interesting λ value for many ap-
plications can be obtained theoretically by (4), which results in λ = (

√
max(n, m))−1 =

(
√

max(N, 2000× 3000))−1 = 4.0825× 10−4 for the CARABAS-II data set and N < r× c.
However, other λ values can present better results depending on the application.

Therefore, similarly to [19], the λ value was varied to meet a range of interesting
values for the considered application. An important operation region was found in the
range of 6 to 14 times the value of 4.0825× 10−4. The following λ values were analyzed:
0.0024, 0.0027, 0.0029, 0.0031, 0.0033, 0.0035, 0.0037, 0.0039, 0.0041, 0.0043, 0.0045, 0.0047,
0.0049, 0.0051, 0.0053, 0.0055, and 0.0057. Considering the description provided in Section 4,
the lower values of λ increase the PD and, consequently, the FAR, while the higher values
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of λ decrease both. Thus, the results for different λ values can be analyzed through receiver
operating characteristic (ROC) curves, which act here as a Pareto’s frontier, as is the case
with other multi-objective optimization problems [32].

The visual perception of a detection result can be obtained in Figure 3, which shows
the method output for λ = 0.0037, using the six images of Mission 2 as reference images
(N = 7). More precisely, Figure 3a shows the content separated into S1 after applying
the RPCA, using the Pass 6 from Mission 5 as the surveillance image. It is possible to
observe the detections with negative values in the upper-left quadrant, representing the
absence of targets in such positions at the surveillance image, as detailed in the description
of the method rule (a). The targets retrieved from the surveillance image are marked in the
lower-right quadrant. In addition, some false alarms can be found in azimuth 1000–1500.
After applying the method rules, the negative values are discarded and the false alarms are
eliminated by the rule (c) of the method, as shown in Figure 3b.

Similar to Figure 3a, Figure 3c shows the detection result for λ = 0.0037, considering
the Mission 2 as reference images (N = 7) but using the Pass 4 of the Mission 5 as
the surveillance image (flight heading of 135◦). It is possible to observe that elongated
structures in the surveillance image increase the number of false alarms in S1. Then,
Figure 3d illustrates that the method rules could eliminate most of the false alarms in
azimuth 500–1500 of Figure 3c, keeping a PD = 0.920 and reducing the FAR to 1 FA/km2.

Furthermore, stacks of seven (N = 7) and four (N = 4) images were formed to
evaluate the performance of the proposed method and the gains achieved due to the
addition of a priori information into the stack. Both consider images from one mission as
reference images and images of the remaining 3 missions as surveillance images. Thus, for
N = 7, it is possible to observe the system behavior when using the maximum number
of reference images that the data set is able to provide. On the other hand, for N = 4, it
is possible to observe the performance of the method with respect to the flight heading
deviations by removing specific flight headings from the stack images. Such analyses will
be described in the sequel.
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Figure 3. CD results for λ = 0.0037, using Mission 2, Passes 1–6, as reference images (N = 7):
(a) Detections in S1 using Mission 5, Pass 6, as a surveillance image; (b) results after the method rules
application in (a); (c) detections in S1 using Mission 5, Pass 4, as surveillance image, and (d) results
after the method rules application in (c).

5.1. Results for N = 7

Considering that the data set is limited to 24 images and that, for N = 7, one entire
mission is used as reference images (6 images), the images from Missions 3–5 are individ-
ually used as surveillance images when Mission 2 is used as the reference image. When
using Mission 3 for the reference image, the images from Missions 2, 4, and 5 are used as
the surveillance images. Similarly, for Missions 4 and 5, two other different stack configura-
tions with N = 7 can be obtained. Thus, for N = 7, four different stacks configurations can
be achieved (in order to keep the reference images from a single mission).

Moreover, results varying the neighborhood-size (parameter δ), which belongs to the
third rule of the method, can be computed for each configuration. In this manuscript, it is
δ = 9 and δ = 5. Thus, it is assumed that a tangent detection can exist, approximately, in a
radius of 10 and 6 m, for δ =9 and 5, respectively. Hence, δ = 0 in the case of not applying
the rule (c). Figures 4a–c show the ROC curves for different missions as reference images,
respectively, for δ = 0, 5, and 9.

Figure 4a shows that the best performance is achieved when using Mission 3 for the
reference images except for the region when PD < 0.89, where a similar performance is
also observed for Mission 5. This behavior can be explained by the weaker reflections
of some targets in Mission 3 when compared to the same targets in other missions. As a
consequence, using Mission 3 for the reference images implies eliminating images from the
surveillance images that present low performance.

By comparing the ROC curves in Figure 4a to the ones in Figures 4b,c, it is possible
to observe the performance gains caused by the use of the third rule. For instance, by
assigning λ = 0.0039 and using Mission 3 for the reference images, one can achieve
PD = 0.978 for FAR = 1.843 FA/km2 without applying the third rule (δ = 0). However,
it is possible to reduce the FAR to 0.352 or 0.222 by using δ = 5 or δ = 9, respectively,
while sustaining the same PD. It is worth highlighting the high performance that can be
achieved by the proposed method. Still analyzing the results for Mission 3, one can achieve
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PD = 0.991 for FAR = 0.370 FA/km2 using δ = 9 or PD = 0.996 for FAR = 0.370 FA/km2

using δ = 5. For Missions 2, 4, and 5, the lowest FAR values for PD > 0.95 are 0.453, 0.389,
and 0.537, respectively.
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Figure 4. Receiver operating characteristic (ROC) curves for N = 7 using different missions as reference images: (a) δ = 0;
(b) δ = 5; (c) δ = 9; and (d) the resulting average values of missions 2–5, for δ = 0, 5, and 9.

Figure 4d shows the average performance of the four missions for each δ value, which
serves as a more general indicator of performance. The best compromise between PD and
FAR is obtained for δ = 9, in which PD = 0.976 for FAR = 0.532 FA/km2 can be observed.
In addition, if PD = 0.954 is sufficient, the FAR can be reduced to 0.365.

In addition, it is interesting to note that a loss in PD can be observed in the region
where FAR > 1 FA/km2 for Mission 2 and δ = 9 (Figure 4c). In fact, such curve seems to
be wavy in the region where FAR > 1 FA/km2 because some detections in the reference
images (used for false alarm cancelation) disappear when increasing the λ value. Similarly,
performance losses may occur when increasing the δ overly. Increasing the δ value means
increasing the area considered for tangent detection (the window size). If a detected target
in the surveillance image is together with a detection in the reference images (i.e., both
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inside the window used for the tangent detection computation), such a target will be
eliminated by the rule (c) of the method. Thus, assigning a large value to δ may result in
the loss of detected targets.

5.2. Results for N = 4

Stacks for N = 4 are formed by one surveillance image and three reference images.
The following analyses use images from Mission 2 for the reference images and images
from the other missions (missions 3, 4, and 5) as surveillance images (18 images). Since
each mission has six passes and only three images are necessary, it is possible to form 20
combinations of images to be used as reference images, that is, C6,3 = 6!(3!(6− 3)!)−1 = 20.
Among the 20 possible combinations, eight of them will be composed of three images
from different flight headings (230◦, 225◦, and 135◦, viz. “all F.H.”). The remaining 12
combinations consist of three reference images having some missing flight heading. More
precisely, four combinations will not have a 135◦ flight path (viz. “missing 135◦”), four
combinations will not have a 225◦ flight path (viz. “missing 225◦”), and the last four will
not have a flight path of 230◦(viz “missing 230◦”).

Experimental results for the 20 combinations were performed. For each combination,
results for the 18 surveillance images were computed (i.e., 360 executions at all). Then,
four ROC curves were traced from the calculation of the mean values of (1) the eight
combinations of “all F.H.”, the four combinations of (2) “missing 135◦”, (3) “missing 225◦”,
and (4) “missing 230◦”. The general behavior of the method for N = 4 can be seen in
Figure 5a, which shows the abovementioned ROC curves for δ = 9.
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Figure 5. ROC curves for N = 4: (a) performance analysis for missing flight headings as reference images and (b) compara-
tive analysis between N = 7 and N = 4.

It is possible to observe that the best performance is achieved when the reference
images of the stacks are acquired with all three possible flight headings (“all F.H”), achiev-
ing PD = 0.968 for FAR = 0.897 FA/km2. Similar results can be observed for the curves
“missing 225◦” and “missing 230◦”, which achieve PD = 0.961 and PD = 0.894, respectively,
for FAR lower than 1 FA/km2. On the other hand, poor performance is presented by the
curve “missing 135◦”, which shows high rates of FAR. This behavior can be explained by
the description made in Section 3.

When a stack that contains at least one image of each flight heading as a reference
image is used, the flight heading diversity of the image stack increases. This gives the RPCA
a priori information about possible flight heading deviations and improves the false alarm
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cancellation when applying the method rule (c). Furthermore, the curves “missing 225◦”
and “missing 230◦” show that similar results can be achieved for the same 18 surveillance
images when using reference images from other similar flight headings (similar angles).
However, the ROC curve “missing 135◦” indicates that removing reference images that
represents the largest variations (very different angles) severally reduces the performance
of the method.

Another analysis that can be performed aims to compare some results for N = 4 with
others for N = 7 in order to assess the gains achieved by the addition of reference images of
the same flight heading into the stack (temporal diversity). Figure 5b shows a comparison
between the ROC curves obtained for Mission 2 with N = 4 and 7 for δ = 5 and 9. It is
worth mentioning that the results for N = 4 consider the combinations for “all F.H.”. Thus,
results for N = 7 were acquired using two images of each flight heading for the reference
images (six passes from Mission 2), while the results for N = 4 were acquired using one
image of each flight heading for the reference images (three passes from Mission 2), as
previously described.

In the case of δ = 9 and N = 7, PD = 0.960 and FAR = 0.453 FA/km2 were observed.
On the other hand, a similar PD can be obtained even if the stack is reduced to N = 4
(PD = 0.968). However, the FAR (FAR = 0.897 FA/km2) increases for the same δ value.
When changing from δ = 9 to δ = 5, a similar cost is observed due to the reduction in the
stack size from N = 7 to N = 4, in terms of FAR. Such a behavior indicates that a gain in
performance can be achieved with the addition of images into the stacks, which increases
the temporal diversity of the data. In addition, the similar performances of both curves,
N = 7 for δ = 5 and N = 4 for δ = 9, indicates that, for scenarios with a limited amount
of reference images, some compensation can be performed with an appropriate choice of
δ value.

6. Discussion

The average performance of the method can be assessed through comparisons of ROC
curves. Figure 6 allows for comparisons between the proposed and other CD methods.
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Figure 6. ROC curves for a comparative analysis with previous methods.

In general, the method could explore the image stacks efficiently, reaching a high PD
while keeping a low FAR. For instance, using Mission 3 for the reference images, with N = 7,
and δ = 9, the method achieved PD = 0.991 and FAR = 0.370 FA/km2. If a small decrease
in PD is acceptable (e.g., PD = 0.967), the method was able to achieve FAR = 0.231 FA/km2.
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Even for N = 4, the method achieved a better performance when compared to other
reference methods for the same data set (PD = 0.948 to FAR = 0.728 FA/km2).

The obtained results showed that the proposed method outperformed previous meth-
ods that do not incorporate flight heading diversity. Moreover, the obtained results allow
for pointing out some directions for future works. The methodology based on the RPCA
can be extended to accommodate the use of another sparsity measure, which can be, for
instance, a block-sparse measure to improve the target detection by considering adjacent
pixels in the RPCA separation step. Another direction is to investigate an approach that
makes use of other RPCA formulations, for instance, an approach considering the stable
principal component pursuit (SPCP), proposed by Zhou et al. [33]. Finally, methodolo-
gies based on other matrix factorization tools for change detection applications could be
studied.

7. Conclusions

In this manuscript, the problem of low-frequency wavelength-resolution SAR change
detection was addressed. Following previous studies on this subject, an approach based on
RPCA—a matrix factorization paradigm that can be applied to address signal separation
problems in which an additive mixing model can be assumed—was considered. However,
differently from previous studies [19], this proposal relies on small image stacks generated
by different flight headings measurements. The proposed approach leads to an additional
sort of diversity (flight heading diversity), which can be jointly explored with temporal
diversity by the RPCA. In addition to the use of RPCA, a heuristic is used, aiming to make
the detection method efficient by providing false alarm cancelation. Encouraged by the
preliminary results presented in [22], a set of numerical experiments with the CARABAS-II
data set was carried out.

For the experiments, stacks with seven and four images were considered. In this
context, the results showed that a performance gain is obtained by adding a priori informa-
tion to the RPCA input matrix. This basically occurs for three reasons: (a) the addition of
information to the input matrix provides information to the RPCA about variations caused
by static objects sensitive to flight heading, making the method robust to false alarms
related to this type of object; (b) the increase in the number of images favors the detection of
targets in terms of sparse objects in the stack as a whole; (c) and the increase in the number
of images allows for improving the removal of false alarms by the heuristic with respect
to the third rule of the method. Finally, the results showed that the proposed method is
capable of achieving superior performance in terms of the probability of detection and
false alarm rate when compared to previous methods existing in the literature.
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