The Journal of Systems & Software 177 (2021) 110944

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

-

journal homepage: www.elsevier.com/locate/jss

Adapting Behavior Driven Development (BDD) for large-scale software ~ m

systems”™

Check for
updates

Mohsin Irshad P Ricardo Britto ®°, Kai Petersen®

2 Ericsson AB, Sweden
b Blekinge Institute of Technology, Sweden

ARTICLE INFO

Article history:

Received 14 May 2020

Received in revised form 28 February 2021
Accepted 5 March 2021

Available online 13 March 2021

Keywords:
Behavior-driven
Large-scale

BDD

Software processes
System of systems

ABSTRACT

Context: Large-scale software projects require interaction between many stakeholders. Behavior-
driven development (BDD) facilitates collaboration between stakeholders, and an adapted BDD process
can help improve cooperation in a large-scale project.

Objective: The objective of this study is to propose and empirically evaluate a BDD based process
adapted for large-scale projects.

Method: A technology transfer model was used to propose a BDD based process for large-scale
projects. We conducted six workshop sessions to understand the challenges and benefits of BDD. Later,
an industrial evaluation was performed for the process with the help of practitioners.

Results: From our investigations, understanding of a business aspect of requirements, their improved
quality, a guide to system-level use-cases, reuse of artifacts, and help for test organization are found as
benefits of BDD. Practitioners identified the following challenges: specification and ownership of be-
haviors, adoption of new tools, the software projects’ scale, and versioning of behaviors. We proposed
a process to address these challenges and evaluated the process with the help of practitioners.
Conclusion: The evaluation proved that BDD could be adapted and used to facilitate interaction in
large-scale software projects in the software industry. The feedback from the practitioners helped in

improving the proposed process.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Software development is a complex process that involves var-
ious stakeholders and their interaction to conceptualize, plan,
develop, test, and release a software product (Pressman, 2005).
These days, software products transform existing businesses into
more agile, customer-oriented, and robust business setups by
automating manual processes (Earley, 2014). These products are
developed to support a new or existing commercial business
(e.g., industrial automation, telecommunication, robotics).

Large-scale software products are a fundamental part of this
transformation of existing businesses, and products are becom-
ing software intensive with time. These large-scale products are
developed in large-scale projects (i.e., Dikert et al. (2016) de-
fined it as software development projects with 50 or more people
or at least six teams. Dikert et al. (2016). However, developing
these large-scale software systems has proven to be a challenging

* Editor: Antonia Bertolino.
* Correspondence to: Software Engineering Research Lab, Blekinge Institute
of Technology, Valhallavdgen 1, 371 41 Karlskrona, Sweden.
E-mail addresses: mohsin.irshad@bth.se (M. Irshad), ricardo.britto@bth.se
(R. Britto), kai.petersen@bth.se (K. Petersen).

https://doi.org/10.1016/j.jss.2021.110944

task because of their characteristics such as parallel develop-
ment (Perry et al., 2001), distributed teams (Bass, 2015), misun-
derstood requirements (Kasauli et al., 2017), and effort estimation
issues (Usman et al., 2018). Researchers have explored possible
solutions to improve the development of large-scale products,
such as by reducing large-scale systems into smaller manageable
systems (Bui-Thanh et al., 2008), by improving the requirements
engineering process (Konrad and Gall, 2008), or by using knowl-
edge engineering (Scacchi, 1989) to facilitate the development
process. Large-scale system testing is a complex process that
requires interaction, communication, and verification activities
spreading over various sub-products (De Almeida et al., 2010).
As there are multiple sub-products involved in testing large-scale
systems, the synchronization of test activities and release man-
agement are challenges associated with testing large-scale sys-
tems (Linares-Vasquez et al., 2017). In the context of this study, a
sub-product is an independent unit of deployment (Obbink et al.,
2002), e.g., a micro-service, a component, or a library.

Dikert et al. (2016) described that in large-scale projects, re-
quirements are defined at a very abstract level, and it may be
a problem to transform the high-level requirements to correct
functional requirements. The alignment of requirements and ver-
ification phase is necessary to succeed in software development,

0164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110944
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110944&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mohsin.irshad@bth.se
mailto:ricardo.britto@bth.se
mailto:kai.petersen@bth.se
https://doi.org/10.1016/j.jss.2021.110944
http://creativecommons.org/licenses/by/4.0/

M. Irshad, R. Britto and K. Petersen

as described by Sabaliauskaite et al. (2010). Behavior-driven de-
velopment (referred to as BDD in this study) is a test-driven
development methodology to align the business and technical
needs of software (North, 2006a). In traditional software de-
velopment organizations, the business needs are unknown to
the developers, testers, and other engineers working on these
products (Sabaliauskaite et al., 2010). There is a gap between the
technical and business aspects of software development.

Initially, when BDD was introduced, the objective was to pro-
vide a systematic process that supports a common vocabulary
and shared understanding of requirements among customers, re-
quirements engineers, developers, and testers (North, 2006a). The
use of test cases as specifications placed this methodology into
the category of acceptance test-driven development methodolo-
gies (e.g., story-driven development, specification driven devel-
opment) (Lazar et al., 2010). Acceptance test-driven development
is commonly used to bridge the gap between the business of the
customer and technical aspects of software (Melnik and Maurer,
2007; Otaduy and Diaz, 2017).

BDD was aimed at normal-scale software projects, without
multiple teams or sites (North, 2006a). Furthermore, the current
state of the art and practice lacks solutions or empirical evidence
related to BDD in large-scale software projects. The majority of
the studies propose theoretical concepts associated with BDD that
are not yet evaluated in the industry and cover only a small part
of a software development cycle (e.g., implementation and testing
phases). While BDD is an approach that might improve software
development in large-scale contexts, the empirical evidence of
BDD'’s usefulness in large-scale projects is missing.

As BDD aims to enhance communication between different
stakeholders, it is crucial to propose a BDD-based process adapted
for large-scale software development. In this study, we have
introduced a BDD based process for large-scale software devel-
opment and performed an empirical investigation of the benefits
and challenges associated with the introduction of BDD in large-
scale software projects. We start our investigation by understand-
ing the existing development process, identifying the challenges
and benefits of BDD with the help of several workshop sessions.
Based on the outcome of workshop sessions, we propose and
evaluate a BDD based process using industrial practitioners. They
(practitioners) perceived the process as useful for large-scale soft-
ware development and suggested improvements in the process.
Later, based on the feedback of the practitioners, we revised the
proposed software development process.

The study provides background and related work on behavior-
driven development in large-scale development in Section 2. The
research design and analysis are present in Section 3. Section 4
describes the results and the discussion related to the results
is present in Section 5. The threats to the validity of our in-
vestigation are presented in Section 6, and Section 7 contains
conclusions and view on future work.

2. Background and related work

This section briefly describes the main concepts used in this
study, such as large-scale software development and behavior-
driven development. Furthermore, in the related work section,
we have described the studies that have used BDD practices in
a software development process.

2.1. Definition of behavior driven development
In BDD, requirements are described in two parts, the central

part referred to as ‘Narrative or feature or behavior' and the
acceptance criteria referred to as “Scenario” (North, 2006b). There

The Journal of Systems & Software 177 (2021) 110944

can be multiple scenarios under one behavior/feature. An exam-
ple using a BDD template suggested by North (2006b) is shown
below:

Behavior/Feature:

As a user
I want to login
So that I can view products
Scenario 1: A user is able to login to the system
Given User enters its username and pass-
word
When authentication is successful
Then user logs-in to the system
Scenario 2: A user is able to view products
Given User authenticates with correct cre-
dentials
When user logs-in to the system
Then user can view the products

These behaviors (also known as features) are reported in fea-
ture files, and these feature files act as test and requirement
documents (Gohil et al., 2011). The vocabulary in the feature file
is used by the stakeholders (e.g., product managers, developers,
testers, architects) when communicating about the behaviors. In
this way, feature files promote the common understanding of the
requirements (Gohil et al., 2011).

Jorgensen (2018) suggested that agile software development
practices (XP, Scrum, Test-Driven Development (TDD), etc.) are
more suited for large-scale software development. However,
these practices introduce new challenges that force the modifica-
tion of existing practices to form new practices. Behavior-driven
development is one such example, which attempts to improve
the TDD by adding collaboration and coordination among all the
stakeholders. Previous research has shown that the communica-
tion gap leads to failure to meet customer requirements (Bjarna-
son et al., 2011). Behavior-driven development’s main features
are user-acceptance criteria provided by the customer and to
foster a common vocabulary in the organization to improve
knowledge sharing, coordination, and collaboration. These fea-
tures make BDD a good fit for large-scale software development
organizations that want to enhance the customer’s perspective
and knowledge sharing in the organization.

Solis and Wang identified six characteristics of BDD (Solis and
Wang, 2011), and these characteristics are:

e the use of ubiquitous language based on the business termi-
nologies,

e iterative decomposition process for the high-level specifica-

tions,

templates to write user stories and scenarios,

automated acceptance tests,

readable specification code,

elaboration of behaviors based on the needs of the develop-

ment phase

In their literature review, Solis and Wang found that a limited
number of studies are present on BDD, and considerable work is
needed to evaluate the BDD (Solis and Wang, 2011) in different
contexts. BDD’s characteristics are still under investigation by the
research community, and a limited number of studies have de-
scribed the use of behavior-driven development in an industrial
context.

The Test-Driven development inspires BDD principles, and
behaviors (or features) are specified at the start of the devel-
opment. These behaviors fail at the beginning since no product
development is done yet. As the product development starts
and the functionality is implemented in the product, the failing
behaviors start to pass (North, 2006a). Here it is important to
note that these behaviors (also known as“features”) are specified

M. Irshad, R. Britto and K. Petersen

based on the business needs of the customer (North, 2006b).
BDD does not specify an exact format for behaviors, although
behaviors are often described using domain-specific languages
(e.g., Gherkin) (Egbreghts, 2017).

2.2. Large-scale software development

Large-scale software development is defined as a development
process in which several teams are involved. These teams can
be located across different sites and collaborate to develop a
joint product or system of systems, as defined by Dingsayr et al.
(2013) and by Dikert et al. (2016). The dependency of customer
requirements on various sub-products of a large-scale software
product makes the development and verification process diffi-
cult to manage. The difficulties in managing, developing, and
delivering large-scale projects are extensively described in the
research literature on large-scale product development (Dikert
et al.,, 2016). Helgesson et al. (2019) conducted an empirical study
that identifies cognitive load drivers (i.e., tools, information, and
work processes) as an issue for software practitioners in a large-
scale software project. Britto et al. (2019) conducted an empirical
study on the evaluation of developers in large-scale projects.
Requirements engineering-related challenges are the most men-
tion challenges in the research literature on large-scale develop-
ment (Dikert et al., 2016) because of extensive co-ordination that
is required to write and communicate the software requirements
correctly.

The software industry is using various solutions to address
problems related to large-scale software development. Smite
et al. (2019) described a case-study from a large software organi-
zation that has used “Guilds” as a means to improve communica-
tion and coordination in an organization. In an industrial study
on large-scale software development projects, Ali et al. (2016)
addressed the communication and information related challenges
by using the value stream mapping. Dingseyr et al. (2017) found
that a combination of scheduled and unscheduled meetings helps
improve communication and coordination in large-scale software
development projects. Kettunen and Laanti (2008) suggested that
to succeed in large-scale product development, a holistic view
covering all the phases of software development is needed.

Recent research in large-scale software development has fo-
cused on the individual parts of software development processes,
and very few studies address the complete software development
life cycle. Coordination among different phases such as require-
ments, development, and verification phase is crucial for suc-
cessfully delivering large-scale software development projects.
The results from a survey by Begel et al. (2009) show that 98%
of software practitioners need to coordinate closely with other
teams to deliver a successful large-scale software product. Usman
et al. (2018) found that in large-scale software projects, effort
estimation often overruns because of the difficulties related to
coordination in multi-site development settings.

Stray et al. (2019) provides empirical evidence that in large-
scale software development, meetings such as Scrum of Scrums
are not enough for coordination between different teams. They
suggested that additional coordination practices are required
for the successful delivery of large-scale software development
projects. Customer collaboration and knowledge sharing are two
of the eight research areas in large-scale software development
that Dingseyr and Moe (2013) suggested for future research. In
this study, we have attempted to propose and evaluate these ad-
ditional coordination practices, with BDD’s help, in a large-scale
software development context.

The Journal of Systems & Software 177 (2021) 110944
2.3. Large-scale software testing

Large-scale software testing leads to several challenges. Ali
et al. (2012) investigated the practices and challenges of testing
a complex system of systems in the telecommunication domain.
They observed that tests take place on multiple test levels, where
defect slippage occurs between the levels. That is, a defect that
should have been found in one level (e.g., unit testing) is located
at a later level (e.g., system test). Challenges in three areas (fault
slippage, maintenance of tests, and timeliness of testing) were
observed. Fault slippage was caused by the specific challenge in
large-scale development, such as unclear division of responsibil-
ities between test levels, vague requirements, and poor quality
tests. Vierhauser et al. (2014) also investigated the challenges
and practices in the large-scale system of systems testing. They
found that practices are team specific and that the tools used in
development were project-dependent. System size and complex-
ity as an issue concerning maintenance were also highlighted.
Furthermore, communication effort, difficulty in understanding
systems specifications, issues concerning tools, and coordination
were the challenges that were specified. Overall, the findings of
both studies (Ali et al., 2012) and (Vierhauser et al., 2014) are well
aligned. Minhas et al. (2020) investigated practices and challenges
with a focus on regression testing, highlighting time to test, the
maintenance of the test suit, communication, and issues in test
selection and prioritization as challenges.

Various solutions have been proposed to test large-scale soft-
ware systems. Concerning testing measurement and estimation,
Obara et al. (1996) highlighted the importance of measuring the
process, including the test phase. They provided and evaluated
a solution to estimate the effort of the test phase using various
factors. Dalal and McIntosh (1994) used measures to determine
when to stop testing, relying on ideas from software reliability
models. Cottam et al. (2008) takes test measures as input and
proposes a visualization of test results. The visualizations are
highlighted as important as with the system size test diversity,
and the number of tests increases. The visualization benefits have
been highlighted, such as timely updates of test status based on
test data. Practitioners provided positive feedback and found the
visualization to be a valuable addition to their current systems.

With the increase in size and complexity, automation and
tools have become important. Liu and Mei (2014) developed
a platform for automation. Their framework encompasses vari-
ous test activities, from management to execution and analysis,
including the following modules: test initialization, test scope
identification, data management, test procedure management,
automated test, and test data analysis. Given the high number of
tests to be managed and scheduled (Li et al., 2006), propose a unit
testing framework relying on grid technology. The framework is
built on a layer of specific grid services. The researchers com-
pared alternatives for scheduling the grid resources. Using swarm
intelligence for scheduling worked well concerning average task
completion time.

2.4. BDD studies

This section lists the related work for the usage of BDD in
software development processes. This study’s main objective is
to utilize the BDD-based development process in the context of
large-scale software development. In the research literature, very
few studies have used BDD practices in large-scale development.
We performed an informal literature review and found that most
previous studies only use BDD practices in one of the phases of
the software development process, as shown in Table 1.

A BDD inspired development technique (BLDD) is proposed
and evaluated by de Carvalho et al. (2013). The evaluation of

M. Irshad, R. Britto and K. Petersen

The Journal of Systems & Software 177 (2021) 110944

Table 1

Summary of the related work.
Study Objective Impacted phase Industrial

evaluation
de Carvalho et al. (2013) To provide traceability of requirements through BDD test cases. Requirements No
Cisneros et al. (2018) To identify the impact of BDD on Quality attributes Development No
Diepenbeck et al. (2012) To provide a new development flow, using the BDD, in context of hardware design and Complete life-cycle No
verification

Soeken et al. (2012) To reuse existing test steps for writing new BDD test steps. Development No
Carrera et al. (2014) To propose and evaluate development of BDD based development methodology. Complete life-cycle Yes
Rahman and Gao (2015) To propose an architecture that supports the reuse of BDD scenarios and test-steps Complete life-cycle No
Binamungu et al. (2018) To propose approach that detects duplication in BDD documents. Requirements No
Haser et al. (2016) To identify domain aware language supports in creating better BDD scenarios Requirements No
Liibke and van Lessen (2016) To combine BDD with a business process model to facilitate test automation. Testing Yes

this approach was conducted on open source software (ERP5).
The evaluation describes the mapping of “Given” “When” and
“Then” to the business processes. Cisneros et al. (2018) ana-
lyzed the impact of BDD on external code quality, internal code
quality, and productivity. The experiment was conducted using
the students for academia. Diepenbeck et al. (2012) proposed
a new development approach using the BDD in the context of
hardware design and verification. The proposed approach starts
with “Acceptance Tests” written before the development phase
starts. These tests incorporate the quality attributes of hardware
systems. Later, these tests are used to develop and verify the
implementation. Soeken et al. (2012) proposed an approach that
is used to generate the test case steps and their definitions
semi-automatically. A user enters information in the tool and
gets the recommendations to relate to the test steps and defini-
tions. Binamungu et al. (2018) proposed an approach that detects
duplication in BDD documents. Rocha et al. (2019) suggested a
method that predicts the code changes using the BDD (Cucum-
ber) test cases. The method was implemented using a tool and
evaluated using 18 open source projects.

Carrera et al. (2014) proposed and evaluated a BDD based
development framework. The proposed framework helps gener-
ate test-cases from the BDD scenarios and mocks to help during
the implementation of scenarios. It consists of four phases: (i)
writing the expected behavior, (ii) writing scenarios, (iii) break-
ing down scenarios, and (iv) to use the scenarios. Rahman and
Gao (2015) proposed an architecture that supports the reuse of
BDD scenarios and test-steps. Their study introduces the reuse
of BDD and the test-steps in the context of micro-service. The
approach was described, but the evaluation was missing relevant
example was not detailed enough to understand the working
of the approach. Haser et al. (2016) proposed a domain aware
language supports to create better BDD scenarios. An experi-
ment with groups of a student demonstrating that group using
business-aware domain language performed better.

We found only three studies (present in Table 1) that describe
the application of BDD on a complete-life cycle, and only two of
these studies were evaluated in the industry. These two industrial
studies were not applied in a large-scale context, or the context
was not clearly defined in the study. A summary of previous
related studies that describe the usage of BDD for improving the
software development process are listed in Table 1. From the
related work, we have found that there is a need to identify
the benefits and challenges of using BDD in a broad context and
provide a solution to address these challenges. The characteristics
of the studies are present in Table 1.

Binamungu et al. (2018) identified challenges and benefits
related to BDD by surveying the software practitioners. According
to their study, the most critical challenges associated with BDD
are (i) challenging to collaborate as it requires participants from
different phases, (ii) lack of coaching (iii) template to write BDD
specifications (iv) maintenance. The significant perceived benefits

of BDD, according to the participants of the survey, were (i) im-
proved test-ability of requirements, (ii) improved documentation,
(iii) better capturing of the domain knowledge, (iv) better un-
derstanding and implementation of the software. It is important
to note that the benefits mentioned earlier and challenges are
listed without any details of the context in which practitioners
are working, i.e., small organizations or large-scale organiza-
tions. Liibek and Lessen describe an experience from a large-scale
software project where BDD was combined with a business pro-
cess model to facilitate test automation activities. The approach
helped in using requirements modeled as a business process
model by the business analysts to be used as BDD-based test
scripts. In this study, we try to address this research gap using
BDD in a large-scale context, enlisting benefits, and its challenges.
In summary, existing literature shows that:

e Previous research has not described the benefits and chal-
lenges of using BDD in large-scale product development.
There is a need to evaluate the benefits and challenges of
BDD in a large-scale context

e BDD was not proposed for large-scale projects. However, the
benefits BDD offer can help in addressing the challenges of
large-scale projects (collaboration, communication, require-
ments elaboration, and verification).

3. Research approach

Our research approach is inspired by the technology transfer
model proposed by Gorschek et al. (2006). The study starts with
identifying improvement areas using the existing development
process and other means of information (such as documentation,
discussions, and observation of current practices as per Leth-
bridge et al. (2005)). Next, BDD is decided as a means to ad-
dress the improvement areas. We start with the identification
of benefits and challenges of BDD in a large-scale context, using
workshops. In the next step, using information collected during
the workshops, we proposed a BDD based process for large-scale
development. The parts of the BDD based process are imple-
mented and demoed in the laboratory setting. Later, evaluation of
the process is performed with software practitioners’ help using
industrial surveys and interviews as the data collection methods.
Based on the feedback from practitioners, the proposed process
was improved. The details of each step are described below.

The research approach used in this study is shown in Fig. 1.

3.1. Step 1: Identify potential improvement areas based on industry
needs

During this step, we assessed the existing development pro-
cess, the unit of analysis, and the industrial settings. The context
of industrial studies can help in understanding the applicability
and results of the studies (Petersen and Wohlin, 2009). This study

M. Irshad, R. Britto and K. Petersen

Based on existing
process & feedback

= - a BDD based Implement
Formulate problem o process is proposed and demofthe
and research . \ parts o
Step 3: \ ___|process in the
questions | Developing \ _

; — \ /7| candidate
| Step 2: !\ Solution
| Formulate a AN

| y Iaborfnory
/ s etting
/ / \
4 [stepa |
\ research agenda / - o Conducting lab |

) — \ validation |

[step1: y
[Identify \“ /
| improvement | [Step 5 T
\ areas / — | Performing static]
— A \ validation
Study existing | - \
process and \\ 43 (Industrial
identify Step 6: I _Survey
problems Dynamic
Validation

We iterated our
proposed process

In future work, process

needs to be applied and
evaluated in the industry

based on the feedback
from the practitioners.

Fig. 1. The research approach used in this study.

took place in one of the product development units (develop-
ing Business Support Systems) of an organization (i.e., Ericsson)
that develops a large-scale distributed product, a combination
of 12 sub-products. This organization is considered one of the
biggest telecommunication companies globally (i.e., more than a
hundred thousand employees), and the development model is a
hybrid of bespoke and market-driven development. The develop-
ment teams are spread across different sites (Sweden, Germany,
Canada, India) and collaborate using software tools (git, mingle,
etc.). The requirements, development, testing, and delivery orga-
nizations collaborate to deliver the product in time. This study’s
participants were experienced product managers, requirement
engineers, architects, managers, developers, testers, and service
delivery practitioners.

The unit of analysis is the development process of the or-
ganization. In the existing development process, product devel-
opment occurs using a hybrid model of the waterfall and agile
practices. The process is divided into three different phases, re-
quirements, development, and verification. In the requirements
phase, a requirements engineer develops software requirements
in system-level use-cases called business use-cases. These use-
cases are written in word documents following a defined tem-
plate. The vocabulary used by the requirement engineers is often
not consistent between different requirement documents. The
large-scale product consisted of more than a million lines of
product code with 21 sub-products developed by more than 30
development teams. The majority of the participants used in the
study were part of this large-scale product.

These business use-cases (system-level) are then broken into
sub-products business use-cases. The documents containing sub-
products business use-cases are not written by the author of
business use-cases, often resulting in misinterpretation of re-
quirements. In the development phase, product teams use ag-
ile practices such as stand-up meetings, test-first development,
sprint-based development, etc.,, and commits to their delivery
dates, regardless of other dependent sub-products. These devel-
opment teams use these sub-product use-cases as software re-
quirements. When all the sub-products are ready, these products
are sent to the test organization for verification. The test organiza-
tion prepares test-cases from system-level use-cases and is based
on their domain knowledge. When all the manual test-cases are
verified, then the product is released.

The Journal of Systems & Software 177 (2021) 110944

We identified that the automated test-cases are written using
Java, and the manual test-cases are written in natural language,
describing each test-step in human-readable form. There is a
loss of information when tests are written in code from natu-
ral language requirements. The test-case development does not
explicitly present the product manager’s input or the customer’s
presence. The test-cases’ quality and coverage are dependent
on the test developer as requirement engineers, or the prod-
uct managers do not review these test-cases. This lack of input
from requirement engineers often results in missed verification
of important functionalities required by the customer or spending
effort on verifying functionality not needed by the customer. The
existing development process of a use-case is shown in Fig. 2.
Fig. 2 shows only the parts of the development process that
are deemed necessary in the context of using BDD. Once a use-
case is released, any defects on the use-case are handled in the
maintenance phase while new use-cases are developed using the
process shown in Fig. 2. These lessons were learned after several
discussions with practitioners working with the process.

3.2. Step 2: Formulate a research agenda

BDD is used to overcome the issue with missed requirements
during test automation and lack of input from the business per-
spective (Solis and Wang, 2011). Our work starts by identifying
the strengths and weaknesses of BDD in the context of large-scale
product development. In the next step, we used BDD’s strengths
and weaknesses to propose a BDD-based process suitable for
large-scale software development. We formulated the following
research questions to evaluate the challenges and benefits of
using BDD in large-scale product development.

e RQ 1: What are the benefits practitioners associated with
BDD in large-scale software projects?

e RQ 2: What are the challenges that BDD leads to in large-
scale software projects?

e RQ 3: How can BDD be applied in large-scale software
development projects?
The RQ 3 is further divided into two sub-questions, provided
below.

- RQ 3.1: What are the activities needed for BDD to be
applied in large-scale software development projects?

- RQ 3.2: What conclusions (concerning the significance,
limitation, and completeness) can be drawn during the
industrial evaluation of the proposed process?

To get the software practitioners’ views on the usefulness
and challenges of BDD (RQ 1 and RQ 2) in large-scale product
development, we have used one-hour long workshop sessions as
a qualitative research method. Workshops are planned meetings
to obtain the views of the group members on a specific topic. In
the software engineering context, workshops have been used to
get feedback from the practitioners or subject matter experts.

To increase the validity of the workshop sessions, we per-
formed multiple tasks such as “peer debriefing”, “member check-
ing”, and systematic data collection (details described in Sec-
tion 6). Following steps were used as a primary source for de-
signing and execution of all workshop, as described below:

Defining the research problem: In our workshop sessions, the
objective was to identify issues related to the introduction of BDD
in product development.

Planning the workshop event: We planned six workshop ses-
sions, and each of these sessions lasted for around one hour.
The workshop’s agenda was shared with the participants before
the start of the meeting, in the form of details of the meeting
requests.

M. Irshad, R. Britto and K. Petersen

The Journal of Systems & Software 177 (2021) 110944

Agile
Practices

Sub-product
> Development
\ 4 Agile
Ag\l'e Q_ra\cﬂces
Requirements Requirements actices
Use-cases P»| Sub-use cases »| Sub-product - X
Creation creation Development | FETIEEE »{ Release
Verification
Agile
Practices
Sub-product
L—3»! Development
L J L J L J
Rl

Requirements Phase

Development Phase

Verification Phase

Fig. 2. Existing software development process of a use-case in the organization.

Selecting the participants: To increase the value of workshop
sessions, we decided to use only the experienced practition-
ers (more than five years of experience) who have worked on
large-scale software systems. These selected practitioners had
experience with software development, requirements, or product
management, and they were from three geographical sites. These
practitioners understood BDD concepts, and the participants un-
derstood test-first methodologies (e.g., TDD or have used BDD).
These practitioners were suitable subjects (i.e., experienced in
test-first methods and from large-scale software contexts) to
evaluate and identify the benefits and challenges of using BDD.

Conducting the workshop session: Each workshop session
started with background information on BDD, followed by a
discussion on BDD. Lastly, the discussion focused on the benefits
and limitations of BDD concerning the current context. These
three parts are described below:

Background Information: The purpose of this part was to
share the information about BDD with practitioners. Each session
started with a description of the topic by the moderator and back-
ground information on the BDD. This information was presented
using the presentation slides (also shared with participants after
the session). The first half of the workshop introduced BDD'’s
objectives, the concepts related to BDD, and the implication of
the concepts on current ways of working. An example of BDD
was also shown to the participants to help them understand the
concepts and usage.

Discussion on BDD: In this part, the practitioners discussed
their understanding of the BDD. They inquired about various as-
pects of BDD (such as requirement handling, configuration man-
agement, tool-support, etc.) Each participant shared their views
on BDD and how they see BDD usage in large-scale product
development.

Discussion on current context: Practitioners were asked to
reflect on BDD’s benefits and limitations concerning existing ways
of working. The notes were taken for each discussion item, and
the moderator helped keep the discussions relevant to BDD. In
the end, each participant was asked if they have any questions or
feedback about the workshop’s topic. Table 2 provides details of
each session.

The workshop notes contained anecdotes and statements by
the practitioners written on notebook pages during the session.
The summary of each session describing the relevant consider-
ations was sent to the workshop participants as the validation
process. The collected qualitative data from the workshops were
analyzed using the “constant comparison” approach for the quali-
tative analysis phase. Constant comparison method can help iden-
tify common themes and topics of the data and compare similar
themes from other qualitative data. Adolph et al. (2011) described

Table 2
Detail of the workshop participants.

Workshop Date No. of Roles of participants
partici-
pants
Wi 02/09/19 17 Developers, Test developers,
Test managers, Requirements
managers, Development
managers
w2 11/09/19 11 Developers, Test developers,
Development managers
w3 23/09/19 7 Product managers,
Requirements managers,
Process owners
w4 25/09/19 5 Requirements managers
W5 27/09/19 4 Test managers
W6 15/10/19 8 Test developers, Test managers

the guidelines for the constant comparison, and these guide-
lines were used in the data analysis. From the workshop’s notes,
the aim was to identify all the terminologies that practitioners
used when describing BDD characteristics. These terminologies
were then listed in groups of benefits and challenges. The dupli-
cate terms were removed, and the remaining terms were used
to generate results. The results of this step are described in
Section 4.1.

The details on the data collection and analysis of the RQ 3
(RQ3.1 and RQ 3.2) are provided in Sections 3.3 and 3.5.

3.3. Step 3: Developing a candidate solution (RQ3.1)

After identifying the key challenges, the next step was to
propose a method to address these challenges.

To support the use of BDD in large-scale projects, we de-
veloped a process. To do so, we accounted for activities in the
existing development process, the activities in a BDD process,
the benefits and challenges identified in our investigation. The
software practitioners suggested that BDD should be applied to
the whole development cycle (i.e., Challenge C5) for BDD to be
useful for the large-scale organization. It was also suggested that
good practices from the existing development process should be
utilized in the new BDD based process. BDD’s original process
inspires the proposed development process (in Fig. 3) and the
existing development process used in the organization, discussed
in Section 3.

The original BDD process assumes that BDD might help the
unit testing, where the scope of test cases is limited to testing
small functionality (North, 2006a). In the unit test cases, the

M. Irshad, R. Britto and K. Petersen

Search for
Existing
Reusable
Behaviors

Approved by
Product Manager
Or Customer?,

Specify new
Behaviors for
Product

Develop
System Level
Feature File

Start

The Journal of Systems & Software 177 (2021) 110944

Develop
feature files

All
behaviors
verified?

Execute
subsystem

per
sub-product feature files

~—

SR
All behaviors
Develop Successfully
hooks for Execute verified

system level system-level
feature feature file

files

All
behaviors
verified?

Fig. 3. A BDD based process for large-scale software projects.

objective is to verify that the product’s small functionality is
working fine. It also assumes that there is only one behavior (or
feature) file to develop the scenarios. We proposed changes to
adapt BDD for large-scale products, such as developing a system-
level feature file, using sub-feature files for sub-products of large-
scale products. We also adapted the BDD to incorporate the re-
quirements and verification phases of the software development
life-cycle.

The use of existing activities, tools, and practices can help
mitigate a lack of competence and the scale of software devel-
opment. Keeping in view these challenges, we have proposed a
development process (and the associated software artifacts) that
can help overcome the challenges related to BDD’s usefulness
in large-scale software development organizations. A significant
difference in the existing development process is related to an
earlier automated test case development phase. The automated
test-case development phase can take place in parallel to the
software development phase when using the process proposed
in Fig. 3.

The details of the activities and the expected input, output and
responsible actor is provided in Section 4.3.

3.4. Step 4: Conducting lab validation

During this step, the activities of the process are evaluated in
the experimental setting (Gorschek et al., 2006). The lab valida-
tion started with demonstrating two cases developed using the
part of the proposed process’s activities. The two industrial cases
were selected after discussion with software practitioners. These
two behaviors (features) described aspects of the large-scale sys-
tem in which the practitioners worked. The first behavior read
the balance and personal information of a customer configured in
the large-scale telecommunication system. The second behavior
created a customer and set the new customer with appropriate
settings, e.g., contract, phone number, prepaid balance, etc. The
authors of this study developed these two behaviors, one each
by Robot Framework (available at RobotFramework (2019)) and
Behave framework (available at BehaveFramework (2019)).

Later, these behaviors were presented to the practitioners
from various development phases such as product managers,
requirements engineers, developers, architects, verification en-
gineers, and development managers, demonstrating the usage
of feature files, technology stack, test-case flow, key-words, and
their association with back-end code, etc. These demonstrations
were conducted in two sessions. These behaviors were executed
on the organization’s test environment during the demonstration
to evaluate with realistic settings. These demonstrations were
made during two sessions, and the authors noted feedback from
the practitioners. Overall, practitioners liked the demonstration

of the activities and suggested that this process works, as orig-
inally proposed, for large-scale product development. However,
they showed concerns about supporting tools (already identified
during the outcome of step 2 4.2).

3.5. Step 5: Performing static validation (RQ3.2)

The static validation step consists of collecting feedback from
software practitioners using different means such as seminars,
presentations, survey questionnaires, and interviews (Gorschek
et al.,, 2006). Petersen and Wohlin (2011) suggested that when
developing a solution for industry, feedback from practitioners
could help identify the usefulness and drawbacks of the solution
before the solution is applied in the industry. During our in-
vestigation, we initially conducted a questionnaire-based survey
(available at Questionnaire (2019)) and improved our solution
based on the feedback. Later, interviews of software practitioners
(from Ericsson) were performed to further evaluate and improve
the proposed process. The details of these two evaluations are
provided below.

3.5.1. Survey questionnaire

In the first step of industrial evaluation, a questionnaire (avail-
able at Questionnaire (2019)) was developed containing four
parts: (a) background on behavior-driven development; (b) de-
scription of our proposed process; (c) an example of developing ‘A
login system’ using our proposed process, and (d) a questionnaire
to evaluate the process. Molléri et al. (2020) provided a checklist
to perform surveys in software engineering. This checklist was
utilized during the development of the questionnaire and data
analysis of the responses. As per the checklist, the questionnaire’s
design is classified as ‘self-administrated’, i.e., online form. The
questionnaire contained free text input-boxes for responses that
allow users to write a detailed answer to the questions. The
questionnaire attempted to evaluate the significance, limitations,
and completeness of the proposed process. Following questions
were part of the questionnaire:

Significance: In your opinion, what are the benefits of using
the proposed process?

Limitations: What are the drawbacks/limitations of the pro-
cess? How can we improve the process?

Completeness: (i) Are there steps that should be removed
from the process? If yes, then kindly list those items here and
also state why do you recommend removing them? (ii) Are there
any other steps that should be added to the process?

This questionnaire was sent to 30 practitioners of five large-
scale software organizations (including the organization where
the process was developed). A criterion (stated below) was de-
signed to involve only the subjects that are relevant for this
study.

M. Irshad, R. Britto and K. Petersen

The Journal of Systems & Software 177 (2021) 110944

Table 3 Table 4

Number of survey responses from industry practitioners. Details of interviewees and interview.
Role No of respondents Role Experience Role Setup Time
Requirements managers 2 taken
Requirements engineers 1 Interviewee 1 12 years Test engineer In-person 65 min
Architects 1 Interviewee 2 17 years Requirements engineer In-person 57 min
Developers 8 Interviewee 3 7 years Developer In-person 63 min
Test developers 2 Interviewee 4 14 years Test engineer In-person 65 min
Development managers 2 Interviewee 5 8 years Developer In-Person 50 min
Total 18 Interviewee 6 10 years Test engineer Online 73 min

Interviewee 7 8 years Requirements engineer In-Person 75 min

e The participant has worked with large-scale software sys-
tems.

e The participant should be an experienced professional in
software development (i.e., more than five years of experi-
ence).

e The participant should have an understanding of test-first
development methodologies.

Eighteen practitioners (from five large-scale organizations) re-
sponded to the questionnaire, and the feedback from these prac-
titioners was analyzed and later used to improve the proposed
process. The non-respondent practitioners were sent en email as
a reminder to get the maximum replies. The roles and number of
respondents are shown in Table 3.

Data analysis was performed systematically to reliably identify
the results and interpret the feedback from the questionnaire.
An excel sheet contained the answers to the questionnaire, and
the data analysis phase used this sheet. The collected qualita-
tive data from the responses were analyzed using the “constant
comparison” approach for the qualitative analysis phase (Glaser
et al., 1968). During the data analysis, the responses were broken
into themes related to challenges, benefits of using BDD, and
feedback on the proposed process. The terminologies belonging to
themes were categorized. The results of the analysis are present
in Section 4.

3.5.2. Practitioners interviews

In the next step, we interviewed experienced practitioners to
identify BDD’s perceived benefits and challenges in large-scale
development and evaluate the proposed process. These inter-
views helped in increasing the validity and credibility of the
results identified in this study.

As per Robson and McCartan’s classification (Robson and Mc-
Cartan, 2016), we conducted semi-structured interviews with
predetermined open-ended questions. The interview guide con-
sisted of three parts: (i) introduction of study, interviewer and
interviewee, (ii) introduction of BDD and evaluation of benefits
and challenges in a large-scale context, and (iii) evaluation of the
process and its activities. The objectives of conducting interviews
were to:

o identify strengths and weaknesses of BDD.

e evaluate the significance, limitations, and completeness of
the proposed process.

e identify activities in the proposed process that do not exist
in the current development process used in the organiza-
tion.

e get feedback on time to apply the process in the organiza-
tion.

The interview guide (available at Guide (2020)) was designed
by one of the authors of this study. Later, another author reviewed
the interview guide and suggested changes to the guide. These
changes were made, and the interview guide was piloted on
an industry practitioner. The interview guide (available at Guide
(2020)) helped in evaluating each activity present in the process
by asking interviewees questions such as:

e Do you currently apply the activity? If so, how?

Would you make modifications? If so, what would you
modify, and why?

e Reflections on the activity, and what alternative solutions do
they see to realize the activity?

How can we improve this activity?

What are your views on difficulty level when using this
process vs. what is already present today?

These questions (and other questions in the interview guide)
were developed to evaluate the process in detail and get feedback
from the practitioners to improve the process. For each part of
the process, the practitioners were asked to map the activity on
their current context and provide a similarity level. The practi-
tioners were asked to suggest any changes in the process that
can improve the process.

We interviewed seven experienced software practitioners who
have worked in large-scale software development and under-
stand the test-first development methodologies. These practition-
ers were from the same organization (and from the same site)
where this study was conducted (i.e., Ericsson). Table 4 provides
information on the background of the practitioners.

The interview sessions lasted between 50 and 75 min. The
interviews were recorded (with permission), and during the in-
terview, notes were taken by the author conducting the inter-
view. The data collected from the interviews were transcribed to
identify important and irrelevant information. The data analysis
on the qualitative data (interview) was performed using thematic
analysis as described by Braun and Clarke. The thematic analysis
helps in identifying and reporting patterns within the data (Clarke
et al., 2015). The relevant quotes were coded into short sentences.
Later these codes were used to identify the themes. An example
of this process:

e Data: “I think this provides a good way to describe re-
quirements before the development organization accepts
these.”

e Code: “good way to write requirements before development
starts”

e Theme: “Improved quality of requirements”

After analyzing the data and extracting useful information,
we sent an email to each interviewee listing the interview’s
corresponding results. They were asked to re-confirm that cor-
rect information is extracted from the raw data of the inter-
view. Section 4 contains the results from the interviews of the
practitioners.

3.6. Step 6: Dynamic validation

During the dynamic validation, the process is piloted in in-
dustry settings. In our investigation, some activities (see details
in Step 4) are already validated in the industry settings during
candidate design; however, the application of complete process
in the industry is part of our future work. This requires extensive

M. Irshad, R. Britto and K. Petersen

Table 5
Identified benefits per workshop and interview.

Method Identified benefits

Workshop 1 Understanding of business aspect of requirements,
Improved quality of requirements, Guide to system
level use-cases, Reuse of artifacts in large-scale
projects, Help for test organization.

Workshop 2 Understanding of business aspect of requirements,
Improved quality of requirements, Reuse of
artifacts in large-scale projects.

Workshop 3 Improved quality of requirements, Guide to system
level use-cases.

Workshop 4 Improved quality of requirements, Reuse of
artifacts in large-scale projects.

Workshop 5 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Workshop 6 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Interview 1 Guide to system level use-cases, Help for test
organization.

Interview 2 Improved quality of requirements.

Interview 3 Improved quality of requirements, Understanding of
business aspect of requirements.

Interview 4 Improved quality of requirements, Guide to system
level use-cases.

Interview 5 Guide to system level use-cases.

Interview 6 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Interview 7 Guide to system level use-cases, Understanding of

business aspect of requirements.

resources and long term commitment from the management
before the dynamic validation is conducted. In the future, we
want to focus on the dynamic validation of the activities.

4. Results

In this section, we present the results of our investigation are
organized per the research question.

4.1. RQ1: What are the benefits practitioners associated with BDD in
large-scale software projects?

We identified five main benefits related to the use of BDD in
large-scale software projects. These benefits are; understanding
of a business aspect of requirements, improved quality of re-
quirements, a guide to system-level use-cases, reuse of artifacts
in large-scale projects, and help for test organization. The ben-
efits identified per workshop session are shown in Table 5. We
provided more details about the benefit in the subsections below.

4.1.1. Understanding of business aspect of requirements (B1)

Participants of our investigation suggest that by having re-
quirements in the form of the executable test case, from the start
of the development process, a uniform and clear understanding
of requirements from the business aspect can be achieved. A
uniform understanding can help in reducing the re-work required
due to requirements’ misunderstandings.

Previous research has also associated this as a benefit of BDD,
where test cases are expressed in developing a uniform under-
standing of requirements (Lethbridge et al., 2003). According to
one of our investigation participants, this alignment on require-
ments between product managers, developers, and testers can
help in collaboration and improved the quality of the product.

The Journal of Systems & Software 177 (2021) 110944

4.1.2. Improved quality of requirements (B2)

Participants of our investigation believe that BDD may help
improve the quality of requirements documents in large-scale
projects. By writing the requirements in the form of test cases,
the end user’s perspective and software requirements can be
combined in the same test case.

According to one of our investigation participants, the format
of the BDD test case, using Given, When and Then can help
isolate the preconditions, business logic, and post-conditions of
requirements, thus improving the quality of requirements. This
template can help in getting detailed product requirements from
product managers.

4.1.3. Guide to system level use-cases (B3)

Participants of our investigation agreed that the BDD tests’
textual and meaningful nature makes these a suitable way to
understand the system’s expected behavior. They suggested that
often their developers find it hard to understand the system level
use-case since they are working with just a small part of the
use-cases.

With the usage of BDD test cases, a developer can easily un-
derstand the system level use-case. According to one participant,
these tests can help identify the priority of tasks, i.e., where to
spend the effort, since we know what we need to deliver for the
use case to work correctly. This ease of understanding can help
the developers and testers perform their work in a better way
since many of the new developers and new testers depend on
their experience to understand the use-cases of software prod-
ucts. A participant in the workshop also mentioned that these
system-level test cases could be shipped to the customer, which
is a significant competitive advantage for the organization.

4.1.4. Reuse of artifacts in large-scale projects (B4)

In large-scale projects, it can be time-consuming and costly to
develop each new artifact from scratch. The behavior (or features)
described in BDD are useful artifacts for the development and ver-
ification phases. Practitioners suggested that these behaviors can
be reused by the test organization when developing automated
test cases. Furthermore, the behaviors can also be reused to serve
the purpose of the product’s documentation.

4.1.5. Help for test organization (B5)

The test automation developers, in workshops, revealed that
the test organization is already developing BDD like scenarios.
However, these scenarios are written at the end of the project,
i.e., during the verification phase. With the introduction of BDD,
where requirements are in the form of high-level test cases, their
test automation can start as early as the development phase’s
starting time. The time saved at the end of the development
cycle can be added to the exploratory testing, thus increasing
the product’s quality. Furthermore, participants of one workshop
suggested that BDD’s benefits can increase further if the BDD test
cases are complemented with a data-driven approach. In another
session, participants suggested that test organization can save
costs related to automation and tool development if the whole
development cycle uses a BDD process from requirements to the
verification.

4.2. RQ2: What are the challenges that BDD leads to in large-scale
software projects?

We identified seven challenges: the scale of the software
projects, ownership, lack of Competence, cost benefits, speci-
fication of behaviors in large-scale projects, difficulty writing
system-level test-cases, and versioning control of behaviors. The
challenges identified per workshop session are shown in Ta-
ble 6. We provide more details about these challenges in the
subsections below.

M. Irshad, R. Britto and K. Petersen

Table 6
Identified challenges per workshop and interview.

Method Identified challenges
Workshop 1

Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Adoption of new tools and
technologies, Cost Benefits of BDD in large-scale.

Workshop 2 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing

system-level test-cases.

Workshop 3 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Cost Benefits of BDD in

large-scale, Versioning Control of behaviors.

Workshop 4 Specification of behaviors in Large-scale projects,
Scale of the software projects, Difficulty in writing

system-level test-cases.

Workshop 5 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing

system-level test-cases.

Workshop 6 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing

system-level test-cases.

Interview 1 Specification of behaviors in Large-scale projects,
Adoption of new tools and technologies, Cost

Benefits of BDD in large-scale.

Interview 2 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in

large-scale projects.

Interview 3 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in

large-scale projects.

Interview 4 Adoption of new tools and technologies, Cost

Benefits of BDD in large-scale.

Interview 5 Difficulty in writing system-level test-cases,

Specification of behaviors in Large-scale projects.

Interview 6 Scale of the software projects, Cost Benefits of BDD

in large-scale.

Interview 7 Specification of behaviors in Large-scale projects,
Adoption of new tools and technologies, Cost

Benefits of BDD in large-scale.

4.2.1. Specification of behaviors in large-scale projects (C1)

A critical challenge identified during workshops relates to the
specifying behaviors (as described in Section 2) for new develop-
ment. According to the practitioners, in large-scale projects, the
exact requirements are not known in advance, and the require-
ments are clarified and elaborated during the development phase.
It is often the case that practitioners have a very high-level idea
of a feature, and it requires many iterations with domain experts
to understand how the potential users will use it. They suggested
that it may be challenging to specify exact behaviors at the start
of the BDD when things are not clear.

4.2.2. Ownership and maintenance of behaviors in large-scale
projects (C2)

Another vital challenge pointed out by the participants is
related to the BDD artifacts’ ownership and the BDD process.
There may be a lack of ownership when it comes to BDD since all
software development phases share these artifacts and processes.
This can result in confusion, a lack of guidance for the practition-
ers using the process, and a lack of maintenance support for these
artifacts. Furthermore, the ubiquitous nature of BDD test cases
can result in maintenance-related challenges as well. Participants
of the workshops believed that the maintenance of these tests

10

The Journal of Systems & Software 177 (2021) 110944

could be a complicated process because of the textual nature of
test cases and corresponding code implementation.

4.2.3. Adoption of new tools and technologies (C3)

In large-scale projects, the introduction of new tools and tech-
nologies can be difficult and time-consuming. The practitioners
may require training and education to be productive in a BDD
setup. Practitioners belonging to the test organization recom-
mended that a proof of concept be conducted to evaluate BDD
tools’ suitability for current product interfaces. Lack of familiarity
with the new tools supporting BDD is identified as a challenge
that impacts BDD adaptation in a large-scale project.

4.2.4. Cost benefits of BDD in large-scale (C4)

According to the practitioners, BDD’s process and artifacts can
be costly to develop in large-scale projects. The analysis and mod-
eling of BDD test cases, in a large-scale context, can take more
time than the ordinary requirement documents. Modeling the
BDD test-cases can require rigorous analysis and adequate system
knowledge from a practitioner. The development of test-cases
involves collaboration between stakeholders like requirements,
development, and test organizations. All of this collaboration
can result in higher development costs and time. Practitioners
also mentioned that the organization had invested a lot in the
existing test framework, and replacing that test framework with
a new BDD test framework may result in higher costs. The storage
and retrieval of BDD test cases also require new documentation
storage setup, which can also result in higher costs.

4.2.5. Scale of the software projects (C5)

Large-scale software products, where components are devel-
oped across different sites, require a great deal of communication,
iterations, and inter-connected work. According to practitioners,
attending the workshops can be a limiting factor for the BDD
process, as BDD assumes close collaboration between different
stakeholders and on-time delivery of sub-components of large-
scale products. An example was provided by the practitioners,
where a single-use case involves multiple components to be
delivered and tested together, and often, a use case is changed
at very late in the development cycle.

4.2.6. Versioning control of behaviors (C6)

Another identified challenge is the versioning control of the
behaviors (as described in Section 2) in large-scale projects. With
many stakeholders and the associated artifacts, it may be hard to
keep track of required changes e.g., product managers realize that
behavior is not entirely correct. Then this needs to be reflected in
all artifacts.

4.2.7. Difficulty in writing system-level test-cases (C7)

It was also pointed out that large-scale products and projects
meant that it is hard to write a system-level test case with only
one use-case in mind. The use-cases are often inter-dependent on
other use-cases, and verification may be stopped even if one use-
case is missing. This difficulty in writing system-level test cases
can be a challenge when using BDD in large-scale products.

Furthermore, it was mentioned that specifying system-level
behaviors may require collaboration from various stakeholders
keeping in view the needed business and technical skills. One of
the workshop participants believed that BDD might increase the
time to develop and deliver the behaviors in large-scale projects.
Practitioners believed that requirements and test artifacts and
processes have different needs, and combining these processes,
as done by BDD, may not be very efficient.

M. Irshad, R. Britto and K. Petersen

4.3. RQ3: How can BDD be applied in large-scale software develop-
ment projects?

This research question consists of two sub-questions describ-
ing the proposed process’s activities and the industrial evaluation
details. The results of the two sub-questions are described below.

4.3.1. RQ3.1: What are the activities needed for BDD to be applied
in large-scale software development projects?

The process’s activities are described below, and the input/
output of each activity is described in Table 7. Table 7 contains
the name of the activity, the actor acting, and the expected input
and output of the activity. Each activity in the process requires an
input and produces an output for the next activity. Each of these
activities has defined actors responsible for performing the tasks
needed to fulfill that activity, e.g., a requirements engineer work-
ing with stakeholders (testers, domain experts, etc.) to complete
a system-level feature file.

Specify new Behaviors for Product: The product manager,
acting on customer request, write new behaviors (also called
features, described in Section 2) to be added to the product. These
new behaviors can be in the form of textual statements or short
descriptions.

Search for Existing Reusable Behaviors: During this activity,
a requirements engineer searchers for existing similar behaviors
that can be adapted and reused. This activity is needed to avoid
developing and testing behaviors when similar behaviors are al-
ready present. This can lead to the reuse of the features and tests.
The presence of a similar feature means that development and
testing phases can also reuse existing artifacts. A few methods to
conduct the searching for reusable behaviors are provided below:

e In a large-scale organization, document searching is com-
monly used by the practitioners to identify reusable arti-
facts.

o Text classification approaches used in natural language pro-
cessing can help identify reusable behaviors (see, for exam-
ple, Zaiane and Antonie (2002)).

e Normalized Compression Distance: The similar artifacts are
identified using a script based on normalized compression
distance (c.f., Feldt et al. (2016)).

e Similarity Ration: Irshad and Petersen (2020) defined a sim-
ilarity measure and process to identify similar reusable doc-
uments. This approach can be used to identify reusable
behaviors (see details at Irshad and Petersen (2020)).

e Searching in a repository management service (e.g., Gerrit,
Stash) can help identify similar behaviors.

Example: To exemplify the searching process, we can take the
example of a search using the normalized compression distance.
We assume that a requirement engineer must write a new BDD
behavior on a feature with the description: “A login system is
supported by the product”. Following steps are required for this
activity:

1. The requirement engineer selects the text (or keywords) of
the feature’s description.

2. The requirement engineer selects an automated script im-
plementing NCD (an implementation available at Script
(2020)).

3. The existing feature files are placed in a folder, each feature
file having a unique name.

4. The search is performed using the feature’s description
or keywords. NCD works by comparing the compressed
sizes of the description of new behavior and compressed
size of each feature file with their concatenation’s com-
pressed size. NCD values lie between “0” and “1”, where

The Journal of Systems & Software 177 (2021) 110944

a value closer to “0” means that the similar feature file is
found while a value closer to “1” represents that no similar
feature file is found.

5. The requirements engineer reviews the feature files with
values closer to “0” and assesses the relevance of the
behaviors inside the feature files for reuse.

6. The requirement engineer identifies the closest matching
behavior from the feature files.

7. The behavior is modified for reuse.

For other search techniques (such as text classification, simi-
larity ratio), steps 2 and step 5 are changed based on the tech-
nique’s implementation. The reuse process’s complete details are
described and evaluated in another study by the authors (avail-
able at Irshad and Petersen (2020)).

Develop System Level Feature File: In this activity, the re-
quirements engineer, elaborates on the behaviors and adds more
details (e.g., steps to perform actions, expected inputs/outputs,
etc.). A system-level feature file is developed that contains ex-
ecutable scenarios contained in a behavior. This file (contain-
ing behaviors) is approved by a customer or product managers
to have an agreed executable feature file and agreed customer
requirements.

Develop hooks for System Level Feature File: In this ac-
tivity, test developers develop hooks (or glue code (Coveros,
2019)) for the feature files. The hooks are the implementation
of keywords/sentences created in the previous step, e.g., a key-
word “A login system is present for the product” is connected
with test-code written in any programming language. Similarly,
all keywords are linked to unique test methods written in a
programming language. Once these hooks are developed, the
feature file (along with hooks/glue code) keeps executing in the
integration test-case environment.

Develop feature files per sub-product: The behaviors in the
system-level feature file are defined for a single black-box like
system. However, in this step, the behaviors (and corresponding
hooks) are divided as per the division of sub-products in a large-
scale system. Next, each sub-product develops the product code
against the features files belonging to their sub-product. The
product code is tested using the sub-feature file.

Execute sub-system feature files: This activity belongs to the
sub-products that are developing their corresponding sub-feature
files. This activity helps the developing team of the sub-product
to identify when their new behaviors are complete. When the
corresponding behaviors are ready, the behaviors’ code is sent for
system-level verification (see next activity).

Execute system-level feature file: The system-level feature
files execute the behaviors written during the phase “Develop
System Level Feature File”. Initially, all the behaviors may fail.
When the sub-features are complete, and the behaviors are veri-
fied, the feature is considered completed and ready for release.

Example of Usage of Process in Large-scale Organization In
this section, we demonstrate the use of activities of the proposed
process in a large-scale context. The example is based on the
use case belonging to the authors’ large-scale organization. The
example concerns a large-scale system having three components
as described below:

e A sub-product contains all the customer-related functional-
ity (called Product X in this example).

e A sub-product contains all the user contracts related func-
tionality (called Product Y in this example).

e A sub-product contains all the packages offered to the cus-
tomer (called Product Z in this example).

Start: A telecommunication customer requests a software de-
velopment organization to develop a feature described as “A

M. Irshad, R. Britto and K. Petersen

Table 7

Description of activities in proposed process.

The Journal of Systems & Software 177 (2021) 110944

Activity

Actor

Input

Output

Specify new Behaviors
for Product

Product manager

An idea from Product manager or
requirements from customer for adding
new behaviors in the product.

A product manager communicates description
of behaviors expected in the product to
requirements engineers.

Search for Existing
Reusable Behaviors

Requirements
engineers, Domain
experts

Description of new behaviors from
product manager is provided.

If similar existing behaviors exists in products,
then these are identified and adapted for new
cases.

Develop System Level
Feature File

Requirements
engineers, Architects,
Verification engineers

Description of new behaviors from
product manager is provided.

A BDD feature file containing the behaviors
that may be developed. The behaviors are in
the form of executable scenarios (test-cases).

Develop hooks for
system level feature files

Test Developers

A BDD feature file containing the
behaviors as executable test-cases.

Executable keywords and the back-end
implementation to make the behaviors
executable as automated test cases.

Develop feature files per

Architects and

Executable keywords and BDD feature

Sub-feature file containing relevant behaviors

sub-product Developers file from activity “Develop System Level for each sub-product and the implemented
Feature File”. product code of the new behavior.
Execute sub-system Developers Executable sub-feature file and A test case execution report for each

feature file

corresponding product code.

sub-product and behavior.

Execute system-level

Developers, Test

Executable feature file containing

A test case execution report.

feature file engineers behaviors.

customer goes to the franchise store to sign up for a data package.
As an agent, orders and activates the required package for the
customer.”

Activity: Specify new Behaviors for Product: The product man-
ager, acting on customer requests for a new feature, writes new
behaviors for the large-scale system to fulfill the feature.

e Behavior 1: Create and activate a customer in the system.
e Behavior 2: Create and activate a contract in the system.
e Behavior 3: Start contract with details of Data Package.

Activity: Search for Existing Reusable Behaviors: For the sake of
this example, we assume that no reusable behaviors are present;
therefore, the behaviors need to be developed from scratch. The
remaining activities are performed based on this assumption.
An example of this activity is already provided in the activity
description.

Activity: Develop System Level Feature File: The behaviors are
elaborated and written in a system Level “Feature File”. These
elaborated behaviors are:

Behavior 1: Create and activate a customer in the system.

Given Send a Create Customer request with
ID 1 to Product X

When Activate Customer with ID 1 in Prod-
uct X

Then Verify Customer with ID 1 is active in
Product X

Behavior 2: Create and activate a contract in the system

Given Send a Create contract request with
ID A to Product Y

When Activate contract with Id A in Prod-
uctY

Then Verify contract with ID A is active in
Product Y

Behavior 3: Start contract with details of Data Package
Given An item called Data Package is

present in Product Z

When Data Package is fetched correctly

And Data Package item is added to Contract
A in Product Y

Then Verify Contract is updated in Product
Y

Activity: Develop hooks for system level feature files: The hooks
are the implementation of keywords/sentences created in the

12

previous step. The following examples show the hooks corre-
sponding to keywords from Behavior 1. Similar hooks are devel-
oped for Behavior 2 and Behavior 3 as well.

Q@Given(’Send a Create Customer request with ID 1 to Product X’)
def create_customer_product_X():
Code that sends the request to create customer in Product X

@When (’When Activate Customer with ID 1 in Product X’)
def activate_customer_product_x():
Code that activates the customer in Product X.

@Then(’Verify Customer with ID 1 is active in Product X’)
def verify_customer_active():
Code that verifies customer is active in Product X

Activity: Develop Feature Files Per sub-product: In our example,
the behaviors are based on (1) Customer related functionality
from Sub-product X, (2) Contract related functionality from Sub-
product Y, (3) Package related functionality from Sub-product Z.
These three correspond to three different sub-systems; hence the
system-level behaviors are divided into three sub-system feature
files as described below:

e Sub-feature file 1: Contains the elaborated Behavior 1 and
hooks used by Product X’s development teams. The devel-
opment team uses the sub-feature file 1 as a requirement
and test document to develop the product code for Behavior
1.

e Sub-feature file 2: Contains the elaborated Behavior 2 and
hooks used by Product Y development teams. The develop-
ment team uses the sub-feature file 1 as a requirement and
test document to develop the product code for Behavior 2.

e Sub-feature file 3: Contains the elaborated Behavior 3 and
hooks used by Product Z's development teams. The develop-
ment team uses the sub-feature file 1 as a requirement and
test document to develop the product code for Behavior 3.

The development teams then develop product code to fulfill
the requirements present in their corresponding sub-feature file,
e.g., Behavior 1 is developed in Product X by using Sub-feature
file 1.

Activity: Execute subsystem Feature Files: The automated sub-
feature 1 behaviors are tested against the product code developed
for Behavior 1. A test report is generated for the sub-product
development teams and stakeholders.

M. Irshad, R. Britto and K. Petersen

Table 8
Significance: Summary of feedback from industrial evaluation.

The Journal of Systems & Software 177 (2021) 110944

Table 9
Limitations: Summary of feedback from industrial evaluation.

Significance of using the process Noted in Limitations of using the process Noted in
Improved communication between stakeholders 7 replies Dependence on far too many stakeholders. 8 replies
It helps in understanding end-user needs and focus on essentials. 5 replies Behaviors may not be easy to define for large-scale systems with 3 reply
It helps in the early detection of interface non-alignments 4 replies many dependencies and requirements e.g., non-functional

between large-scale systems. requirements

Structured way to write requirements. 1 reply It requires learning of new technologies. 2 replies
Non-technical communication between stakeholders. 1 reply Customer may not be interested in Feature file iterations. 1 reply
Out of the box documentation of the whole system. 1 reply Lesser involvement of Architects as compared to Product 1 reply
Real-Time tracking of progress of development in distributed 1 reply managers.

software systems. Time-consuming and costly process. 1 reply
Clearly defined responsibilities. 1 reply Difficult to develop sub-feature files. 1 reply
Supports the reuse culture in the organization. 1 reply Maintenance of test-cases can be a problem. 1 reply
Involvement of customer before development starts. 1 reply No support for the delivery of partially complete solution. 1 reply
Improved quality of the product with this process. 1 reply No drawbacks mentioned by practitioners 6 replies

Activity: Execute System Level Feature Files: The execution of a
system-level feature file generates reports describing each key-
word’s status, e.g., if keywords of Behavior 1 are passing or failing.
An example report containing results from Behavior 1 is shown
in Fig. 4.

4.3.2. RQ3.2: What conclusions (concerning the significance, limita-
tion, and completeness) can be drawn during the industrial evalua-
tion of the proposed process?

The proposed process and its components were evaluated
with industrial practitioners’ help, and their feedback helped im-
prove the process. In general, practitioners were optimistic about
the proposed process and suggested four changes to improve
the proposed process. The results of each aspect of evaluation
(significance, limitation, and completeness) are provided below.

Significance of using the process: The results from the in-
dustrial evaluation show that practitioners believe that several
benefits are associated with this process, such as improved com-
munication and collaboration between stakeholders for technical
as well as non-technical communication. They believe that the
proposed process enhances communication by involving stake-
holders in discussions related to the feature files. They also sug-
gested that the system-level feature file can develop a better
end-to-end understanding of the product’s use-cases. Few prac-
titioners suggested that the process may result in early detection
of the misaligned interfaces of the sub-product. A practitioner
with a background in requirements engineering believed that the
structured way of writing scenarios and behaviors might improve
the quality of the requirements and provide out-of-box documen-
tation of a large-scale product’s behavior. The recommendation
on the actors for each activity was also considered a benefit of
this process as this defines and delegates the responsibilities in a
better way. The support for reuse culture and tracking of progress
with executable system-level feature files were also mentioned as
strengths of this process.

The significance of using the proposed process and the number
of corresponding replies from industrial surveys and interviews
are described in Table 8.

Some quotations from the survey respondents regarding the
benefits are given below:

“Improves communication between all stake holders and en-
ables them to easily engage in product development cycle. And
BDD focuses on the functionality more which ensures you are
delivering the value business needs.”

“It can definitely solve misunderstandings between product
management and development organization.”

“By defining tests and preparing for automated tests before
anything is developed, a faster, and more business-driven
approach of the development can be achieved. Preferably,
for a contract with a customer, each paragraph/clause in the
contract should be managed and validated in the same way
(TDD).”

“The main benefit is the increased focus on the business value
for the user/customer. The BDD emphasize focus on ‘WHAT
shall be achieved.”

Limitations of using the process: During the evaluation, prac-
titioners were asked to identify the drawbacks or weaknesses of
the proposed process. According to the practitioners, the pro-
cess requires collaboration between many stakeholders, which
makes it a costly and time-consuming process at the start. One
practitioner mentioned that it is challenging to develop a sub-
feature file. The practitioners also suggested that maintenance
of the feature files and the sub-feature files can be a possible
drawback due to these feature files’ textual nature. One practi-
tioner described that defining behaviors, the first activity of the
process, may not be straightforward. This compulsory activity of
defining the behaviors at the start of the process can be con-
sidered a drawback. In rare cases, requirements are understood
with the help of experimentation during development phases.
One interviewee mentioned that involving customer to approve
the feature file before the development starts can become a
bottle-neck and delay the development. During the evaluation,
a practitioner mentioned that sometimes our organization sends
partial deliveries to the customer to secure milestones, and with
this process, only finished features can be delivered.

Table 9 shows the limitations (and the number of replies)
found during the evaluation of the process.

Some quotations from the survey respondents regarding the
drawbacks are given below:

“Can be hard to write correct testcases since nothing is imple-
mented. Testcases for all sub-product and a “final” testcases
that connects all the dots (sub-products) that finalizes the
customers requirements.”

“I think in this process few people/teams need to work in-
between and this might be a problem if there are not enough
resources available/allocated for doing this.”

“The main Pro for BDD is also the main limitation which is
availability of all stake holders. Absence of any team/member
can cause ambiguities in overall process.”

M. Irshad, R. Britto and K. Petersen

Create and activate a customer in t

Test Statistics

Total Statistics
Critical Tests
All Tests

Statistics by Tag
No Tags

Statistics by Suite
Create and activate a customer in the system

Test Execution Log

- [EEED Create and activate a customer in the system
Full Name:
Documentation:
Source:

Start/ End / Elapsed:
Status:

20190711 09:21:42.388 /

1 critical test, 0 passed,
1 test total, O passed, 1

+ Create and activate a customer in the system.

Greate and activate a customer in the system

The behavior to create a customer in the Product X
C:\Users\virtualEnvirobot_Example\systemfile.robot

0711 09:21:43.148 / 00:00:00.760

he system Log

The Journal of Systems & Software 177 (2021) 110944

Generated
20190711 09:21:43 UTC+02:00
1 year 120 days ago

Total = Fail = Pass / Fail
-

Elapsed ¢
00:00:00
00:00:00

Total = Pass ¢ Fail ¢ Elapsed ¢ Pass / Fail

Total = Pass = Fail = Pass / Fail

Elapsed =
00:00:01

Fig. 4. An example report from the activity 'Execute System Level Feature Files’.

Completeness: Steps to be removed from the process: The
practitioners were asked to identify activities that are not neces-
sary or important for the proposed process. Only one practitioner
(during the interview) suggested removing the searching for ex-
isting reusable artifacts as a mandatory activity of the process.
The practitioners motivated his suggestion that this activity is
often performed based on the practitioner’s expertise and expe-
rience. Therefore, there are no clear guidelines present for this
activity. A quotation from another practitioner is given below.

“No, I belive that all the steps are nessesary but in time, when
the process get’s more established steps might be changed or
removed naturally, because both dev teams and clients get
more experience on handling the process.”

Completeness: Steps to be added to the process: To improve
the process using the practitioners’ feedback, the questionnaire
and interview guide asked for suggestions to add a new activity
in the proposed process.

There were four leading suggestions by practitioners, and
these suggestions are quoted below:

1. Architectural changes: “I think that there can be a case
when an architectural design problem is not found until later
test phases. There could be a loop back to development to re-
engineer the added feature. Maybe not the wanted behavior
but sometimes a necessary evil...”

2. Consistent Terminologies: “BDD requires you to be ex-
tremely stringent about your tests, keywords, format, and how
they are structured. But I'd say that’s a benefit as well.”

3. Interface changes: “Activity for approval of interfaces where
two subsystem needs to communicate with each other.”

4. Collaboration: “Like I said above, the process works well
if it is being applied to a single element/TPG of a larger and
complex system. For developing complex, compound system
level features and functions need a heavy co-operation, mak-
ing sure everyone understands and follows the process in the
same way. This is a challenge for which there are no proven
steps that can be implemented.”

Table 10 contains a summary of feedback related to the com-
pleteness of the process from the practitioners provided during
industrial evaluation.

14

Table 10

Completeness: Summary of feedback from industrial evaluation.
Steps to be added to the process Noted in
Architectural problems discovered very late in 10 replies
development should be handled.
A step to verify if interfaces are defined and agreed 9 replies
between sub-systems.
A step to verify if interfaces are defined and agreed 2 replies
between sub-systems.
A step that verifies the conformance of feature file 1 reply
with organization guidelines.
Steps to be removed from the process Noted in
The Step “Search for Existing reusable Behavior” 1 reply

should be removed as it is not necessary for the
process.

Final version of proposed process - After the feedback

The practitioners’ feedback was considered, and the proposed
process was improved based on the suggestions from them. Fol-
lowing changes were introduced in the process:

e A new check was introduced to validate that the developed
system-level feature file is according to the standard, and
ontology is consistent with organizational concepts and con-
tent of previously developed feature files. This validation
may help in developing a feature file consisting of already
agreed keywords.

e A new activity is introduced that deals with the inter-
face and architectural changes. In this activity, architectural
changes are evaluated, and all sub-products agree on new
or modified interfaces.

e To accommodate architectural changes found late in the de-
velopment process, as suggested by practitioners, a check is
introduced to counter such a scenario. This check may revert
the process to the activity where architectural changes are
evaluated.

The final version of the proposed process is shown in Fig. 5.
Lead time to apply the process

During the interviews, we asked the practitioners to estimate
the time to apply this process in the organization based on their
previous experience of similar changes. Interviewees described
that the process requires lesser lead time related to new activities.
However, the bigger change is to educate and convince the practi-
tioners regarding the benefits of BDD based process. Practitioners

M. Irshad, R. Britto and K. Petersen

|

Develop
System
Level
Feature
File

Specify

Search for
Existing

Reusable
Behaviors

/Approved by

Follow Product Manager
(o]

Guidelines &

2
Ontology? Customer?

Product

Evaluate
Architecture
Changes

The Journal of Systems & Software 177 (2021) 110944

New
Architectural
Changes

Found?

Execute

subsystem

feature
files

Develop

feature files| &

behaviors
verified?

per
sub-product|

Develop
hooks for
system
level
feature
files

Execute
system
level
feature file

All behaviors
Successfully
verified

Al
behaviors
verified?

Fig. 5. Final Version: A process for large-scale product development.

estimated that it might take from 1 year to 2 years before the pro-
cess is fully implemented in large-scale organizations. Table 11
provides the different estimates provided by the interviewees.

Common and different activities

During the interviews, we asked the practitioners to identify:
(i) the activities that do not exist in the current development
process, (ii) the activities that exist or partially exist in the current
development process. We found that most activities partially
exist, and the activities that do not exist are “Search for Existing
Reusable Behaviors”, and “Develop hooks for subsystem level
feature files”. Table 12 shows the reply to this question provided
by each interviewee. The notation “Not Present” describes when
no similar activity is present, “Partially Present” describes when
the activities exist in some form (may need modifications before
applying), e.g., features are written in word documents but not in
feature files as process demands.

5. Discussion

This section provides a discussion on the crucial aspects of the
research questions and industrial evaluation.

5.1. Characteristics of the proposed process

In Section 4, we have proposed a development process that
utilizes BDD practices for large-scale software development. Es-
sential characteristics of the process are discussed below:

System level feature file for large-scale development: The
system-level feature files, developed at the start of the process,
contains vocabulary and terms that are used and understood
by the whole organization. A check is introduced to validate
that feature files include commonly understood business needs,
ontology, and vocabulary. This helps in large-scale development
as different teams, and development units have less chance of
misunderstanding the requirements (Solis and Wang, 2011). The
involvement and approval of feature files from the product man-
agers or customers help reduce the chances of missed require-
ments. Furthermore, the system-level feature file can help de-
velop business-critical features since the feature file contains
scenarios describing the business needs.

Saved effort with parallel product and test development:
According to Kumar and Mishra (2016) test automation develop-
ment takes around 30% of costs of software development (Kumar
and Mishra, 2016). As the feature file contains executable test
scenarios, this feature file can be used by product development

15

teams as a requirement, and the system-level test organization
can use the feature file as an automatic system test. In this way,
product development and system-level test automation phases
can be executed parallel, thus, saving time to verify and deliver
the product. In our proposed process, test automation and prod-
uct development can run in parallel, resulting in reducing time to
deliver by 30%.

Early feedback loops: Previous research in software integra-
tion projects has shown that rapid feedback loops are essential
to identify, evaluate, and fix the problems with software artifacts
cheaply and quickly (Martensson et al., 2018). As large-scale
product development is an iterative process; therefore, quick
feedback loops regarding requirements, architecture, and testing
can help identify and resolve the issues quickly. In our proposed
process, multiple feedback loops are present, helping identify
the potential problems relatively quickly. These feedback loops
are on completeness of requirements, uniform vocabulary, struc-
tural misalignment, and verification of requirements, as shown
in Fig. 5. The process assumes that a BDD-based use-case is
only released when development is complete and sub-products
are ready. However, in exceptional circumstances, when a par-
tial delivery is needed, then gateways may be overridden, and
remaining parts of the BDD use-case are released in the next
iteration, thus completing the process’s flow.

Less coupled team practices: The characteristics related to
software teams such as the process that the team follows, the
technology that the team uses to play an essential role in the
success of a team (Guinan et al,, 1998). Therefore, any devel-
opment process must empower the teams to select the team’s
internal development practices and only guide the process level.
In our proposed process, we have not limited the development
or verification teams to use any particular tools (e.g., Jenkins,
JUnit, etc.), processes (e.g., XP, pair programming), or technology
(e.g., Java, Python). The process operates at an abstract level
without impacting the internal process of teams. This transforms
our proposed BDD based process more natural as the teams are
not impacted internally.

Controlled architectural evolution: Large-scale software
products are developed in multiple iterations, and each iter-
ation results in architectural changes (evolution). Studies had
shown that structural degradation might happen to a product’s
architecture when it evolved multiple times (Jazayeri, 2002).
By introducing a separate activity that evaluates architectural
changes, the proposed process provides a controlled way to
evaluate and change architecture. The architects can also use this
activity to agree on the interfaces and other technical details
(e.g., headers in the requests, responses).

M. Irshad, R. Britto and K. Petersen

Table 11
Lead time for applying this process.

The Journal of Systems & Software 177 (2021) 110944

Interviewee 1 Interviewee 2 Interviewee 3

Interviewee 4

Interviewee 5 Interviewee 6 Interviewee 7

1 year 1-2 years 1-2 years

10-12 months

1-2 years 1.5 years 1 year

Table 12
Common and different activities. Partially present = 9, Not present = ©.

Activity Interviewee 1 Interviewee 2

Interviewee 3

Interviewee 4 Interviewee 5 Interviewee 6 Interviewee 7

il
©
il
©
d
d

Specify new Behaviors for Product

Search for Existing Reusable Behaviors
Develop System Level Feature File

Develop hooks for subsystem level feature files
Develop feature files per sub-product

Execute system-level feature file

@m@@@@
cogepe
cegepw
cegepe

Support for reuse: An initial activity in the process (i.e., Search
for Existing Reusable Behaviors) requires that requirements engi-
neer looks for similar behaviors that can be reused for creating a
new feature. Identifying related items at the start of the process
has a significant impact on the cost, quality, and development
time of new features. The similarity of features may help identify
similar code and similar test artifacts developed previously. How-
ever, it is essential to mention that this study’s scope is limited
to the BDD based process for large-scale product development,
and the scope does not cover the reuse related practices such as
developing for reuse, searching for reusable BDD based artifacts,
etc. A separate study is planned to focus on the reuse potential of
BDD based artifacts (i.e., human-readable documents) in a large-
scale context similar to the work by Rahman and Gao (2015) in
the context of microservices architecture.

5.2. Addressing the challenges identified by software practitioners

In Section 4, practitioners suggested challenges that prevented
them from adopting BDD. The proposed process in this study
attempts to mitigate a few of these challenges, as described
below.

Challenge: Specification of behaviors In the new proposed
process, specific actors are assigned to specify the behaviors early
in the development life-cycle. Moreover, checks have been intro-
duced to get the customers’ approval of behaviors (or product
managers). With the help of these two steps, the specifications of
behaviors in large-scale projects can be improved. Furthermore,
activity is introduced to search for similar existing behaviors,
making it easier to specify the behaviors.

Challenge: Ownership and Maintenance The new process
clearly defined responsibility matrix (Actors in Table 7) that can
help reduce the confusion related to ownership. A product man-
ager can be considered as the owner of the BDD related processes.
However, the feature file and corresponding sub-feature files are
owned and maintained by their corresponding product develop-
ment teams. The maintenance-related challenge can be tackled
using a similar approach as used in version control and mainte-
nance of requirements documents. The organization already uses
versioning control software.

The maintenance-related challenge to the different versions
of the system-level feature file, sub-system feature file, and the
hooks can be resolved with software traceability. Organizations
can utilize information retrieval techniques to trace the link be-
tween different software artifacts, as demonstrated by Cleland-
Huang et al. (2014). The maintenance of the system-level behav-
iors can be resolved by performing refactoring on the behaviors
each time a new behavior is added to the system level feature
file. A separate study provides an approach and guidelines on
the refactoring of BDD behaviors (Irshad et al., 2020). The hooks
implementing the test code are written in modern programming

16

languages. The IDEs (such as Eclipse, Intelli]) contains plugins that
support the maintenance of BDD behaviors and hooks, e.g., when
a hook is no longer used when a keyword is missing for a
hook (Borg and Kropp, 2011).

Challenge: Adoption of new tools and technologies As men-
tioned previously, the proposed process uses existing tools and
practices, and impact is least on the development team; hence
there is a less likely scenario when competence is not present in
the organization. Furthermore, each new change in the organiza-
tion requires strategic investment from management to keep the
organization competitive (Gebhart et al.,, 2016). For this change
to happen, education and training sessions may be needed. Fur-
thermore, an industrial evaluation showed that two use-cases
were developed with relative ease, confirming that improving
the competence may be easier than what practitioners initially
suggested.

Challenge: Cost Benefits of BDD in large-scale To make the
process less expensive, an activity was introduced in the new
process that identified the reusable content already present that
can be used for the new feature file. The development process
may be expensive, but future benefits such as reduced defects and
improved product quality may balance out the expensive process
in the long term.

Challenge: Scale of software products The new proposed
process keeps in view the large and distributed scale of the
product. It identifies that it is important to agree on: uniformly
understood system-level feature files, using commonly under-
stood vocabulary and well-defined interfaces and architectural
changes. These two steps can ensure that deviation from software
requirements and architecture principles is reduced in large-scale
products.

5.3. Adaptation constraints for organizations

Based on the results of the industrial evaluation, the applica-
tion of the proposed process is a time-consuming and compli-
cated task that requires an organization’s long-term commitment
and budget for incremental transformation. Organizations need
to allocate budget and personnel to plan and transform the or-
ganization to use the proposed process. This adaptation of a new
process may require competence upgrade (e.g., training for new
product managers), re-organizing resources, and organizational
guidelines (e.g., ontology, architectural, BDD templates). A sep-
arate and long term study is required to plan, apply, observe, and
report the findings of this process’s application.

5.4. Comparison with similar approaches

As mentioned in Section 2 three studies, according to informal
literature review, have proposed to use BDD for the complete
life-cycle of product development (Carrera et al., 2014; Diepen-
beck et al., 2012). A discussion on the comparison of approaches

M. Irshad, R. Britto and K. Petersen

present in each of these three studies and our proposed approach
is provided in this section.

In their study on circuit design, Diepenbeck et al. (2012)
suggested a product development method that uses the BDD
feature file as a first requirement document. Each step in the
feature film is then developed in a single iteration using the
programming language VHDL. The approach suggested that test-
data (configurations) and BDD test-cases should be separated
from each other to use the formal verification methods for testing.
The approach is limited to small scale software product devel-
opment. There are two main differences between our proposed
approach and the approach proposed by Diepenbeck et al. (2012):
(i) their approach is not suitable for a product with multiple sub-
products since the flow assumes that only one statement may
be developed each time, making it difficult to perform parallel
development, secondly, (ii) the approach is not applied on any in-
dustrial case instead the demonstration of approach is conducted
using a simple example. Essential aspects of development, such
as reuse, system-level testing, and customer involvement, are not
mentioned in the study (Diepenbeck et al., 2012).

Carrera et al. (2014) proposed a development methodology
called a BEAST Methodology that is applied in the context of
multi-agent systems. The method has few similarities with our
proposed approach, i.e., the product owner suggests the behav-
iors, and later, these are elaborated and described for indus-
trial use. However, there are some fundamental differences be-
tween our proposed approach and the approach proposed by Car-
rera et al. (2014), such as there is no uniformly used system-
level feature file, there is no support for reuse, the development
and testing are sequential processes. Our proposed approach
provides a mechanism to support a common understanding of
BDD in large-scale systems, which is another essential difference
between these approaches.

Rahman and Gao (2015) conducted their study on BDD in a
product’s life-cycle in the context of microservices architecture. A
micro-services architecture does not necessarily mean it involves
a large-scale software organization (as defined in Section 1). This
study deals with reuse and maintenance aspects of BDD test-
cases in a complete product life-cycle. The study does not propose
any development process for large-scale software development.
Hence, our research is different concerning the context and the
objective than the study by Rahman and Gao (2015). However,
the reuse of BDD test-cases and their maintenance-related ap-
proaches are proposed by Rahman and Gao (2015) in combination
with our proposed approach.

In short, all of these approaches and our approach are pro-
viding the solution to different problems even though these are
using BDD on complete software development life-cycle.

6. Threats to validity

Runeson et al. (2012) classifies the validity threats into four
types and suggests ways to improve the validity threats. These
four validity threats are reliability, construct validity, internal va-
lidity, external validity. These four validity threats and measures
to improve the validity are discussed in this section.

Reliability deals with the extent to which the data collection
and data analysis are dependent on the researcher (Runeson et al.,
2012). To minimize this threat, Runeson et al. (2012) suggested
using ‘peer debriefing’ where more than one researcher is in-
volved in reviewing and interpreting documents. During each
workshop session, one of the researchers took notes, and after the
session, these notes were discussed and finalized with the help of
the second researcher. In a few cases, meeting notes (in the form
of meeting minutes) were sent to the workshop participants for
their feedback or clarifications. Later, an analysis was systemat-
ically performed on these notes using the constant comparison

17

The Journal of Systems & Software 177 (2021) 110944

method. The results from the analysis were also discussed and
agreed upon by two researchers (peer debriefing). In industrial
evaluation, the data was collected in an automatic way using the
web forms, reducing the chance of missing valuable information
by the researcher. Later, the two researchers agreed to interpret
the practitioners’ feedback before using this feedback to improve
the proposed method. In short, we have tried to mitigate this
validity threat by involving two researchers (i.e., peer debriefing),
using automatic data collection and storage (i.e., audit trail, as
suggested by Runeson et al. (2012)), and using a systematic
method for data analysis. To triangulate the findings, interviews
were conducted to re-confirm the results from the workshops
and industrial surveys. These interviews were recorded, and the
findings from each interview were sent to the interviewee to
increase our investigation’s reliability, i.e., known as member
checking as per (Runeson et al., 2012).

Internal Validity concerns the factors studied by the re-
searchers, i.e. if these factors are affected by any other factor
unknown to the researcher (Runeson et al., 2012). This threat
applies to the study’s part, where participants listed the benefits
and challenges of adapting a BDD based process. The practition-
ers may identify the benefits and challenges because of other
non-BDD-related factors (e.g., problems with BDD based process
maybe because of other issues that the practitioner did not
account for). To mitigate this threat, Runeson et al. (2012) recom-
mended using triangulation — to use data from different sources.
Therefore we have conducted multiple workshop sessions with
multiple participants located at various sites. To mitigate the
researcher’s bias during an industrial evaluation, two researchers
were involved in the preparation, writing questionnaire, and
analysis of the feedback to improve validity. Similarly, the inter-
view guide was finalized by two researchers as well, and member
checking was conducted to reduce this threat to the validity of
our study.

External Validity deals with the extent to which the results
can be generalized, and the results are of interest for people
outside the organization (Runeson et al.,, 2012). Even though
the first part of this study took place in one software develop-
ment organization, we have included industrial practitioners from
four other organizations working in large-scale software prod-
ucts during the industrial evaluation. Furthermore, the industrial
practitioners who were part of this study belonged to different
roles with different experience levels, e.g., product managers, ar-
chitects, developers, tester, etc. This involvement of practitioners
from multiple software organizations and multiple roles may help
mitigate this threat to our study’s validity.

The evaluation was conducted with experienced practitioners
working in different roles (e.g., developers, testers, requirement
engineers) in the organization who have a prior understanding
of test-first methodologies; therefore, it was challenging to select
practitioners from the organization randomly. We developed se-
lection criteria before sending the survey and interview calls to
reduce the bias. These measures might have helped in reducing
the potential bias, but there is a possibility that the researcher’s
bias exists when selecting the participants.

Construct Validity concerns with how well the study cap-
tures the construct what it intends to capture (Runeson et al.,
2012). To mitigate this threat, the researchers presented BDD’s
background in each workshop, and participants inquired about
any missed/not understood parts of the BDD. Furthermore, the
researchers had considerable experience working in the company,
and they were able to explain the concepts in vocabulary under-
stood by the practitioners from the organization. Runeson et al.
(2012) has described this usage of standard terms and vocabulary
as a way to reduce this threat to the study’s validity. For industrial
evaluation, a detailed description, background, related concepts,

M. Irshad, R. Britto and K. Petersen

and example were provided to each participant to understand the
concepts correctly. For the participants from outside organiza-
tions, an additional step was taken where a researcher explained
to them the intended concepts behind the proposed method.

For the interview studies, we carefully designed the interview
guide; we provided examples of each step in the proposed pro-
cess so that the interviewee can understand all the details. A
presentation was made to the interviewees on the basic concepts
and working of BDD as well. Thus to counter this threat, we
used multiple research methods and presented BDD concepts to
the participants. Furthermore, during interviews, we inquired the
participants if they understood the BDD concepts and proposed
process that we presented to them.

7. Conclusion

Large-scale product development involves a high level of com-
plexity and requires interaction and collaboration among mul-
tiple stakeholders from various sub-products. Previous research
has identified various aspects of large-scale product development
that need improvement and further research. Behavior-driven
development was introduced to facilitate product development
by enhancing collaboration and by educating the practitioners
about the business use-cases. In this study, we have evaluated the
suitability of behavior-driven development (BDD) in the context
of large-scale product development with the help of six workshop
sessions, two sessions of BDD demonstrations for practitioners, by
involving eighteen industrial practitioners from five large-scale
organizations, and by interviewing seven experienced practition-
ers from industry. The study starts by identifying the supposed
benefits and challenges related to the adaptation of BDD in a
large-scale context. Later, a BDD inspired development process
is proposed for large-scale product development. This process
was evaluated in the industry and improved with the help of
the feedback of practitioners. A summary of the three research
questions is provided here.

RQ 1: What are the benefits practitioners associated with
BDD in large-scale software projects? During multiple work-
shop sessions, practitioners were asked about the benefits they
associated with a BDD based product development. Improved
quality of software requirements is seen as a benefit as the
template, Given, When, and Then, can help in describing require-
ments. Practitioners believed that the feature files containing
system-level use-cases could help in developing a uniform un-
derstanding of requirements, which is perceived as a benefit of
BDD. The reuse of artifacts in large-scale projects is also consid-
ered a benefit in a large-scale project. Furthermore, practitioners
believed that test organization could benefit more if the orga-
nization moves to BDD. BDD reduces the chance of ambiguous
requirements, and the stakeholders already agree with accep-
tance tests before the development start. These benefits can help
in improving the overall quality of verification in a large-scale
project.

RQ 2: What are the challenges that BDD leads to in large-
scale software projects? Software practitioners were asked about
the most significant challenges in the context of large-scale soft-
ware development. They suggested that a lack of clear ownership
in BDD and competence are critical challenges in the context of
large-scale projects. The practitioner also believed that BDD is
an expensive process to follow, as BDD requires detailed analysis
and modeling of the scenarios, which can be costly in large-scale
projects. They also listed that maintenance of BDD scenarios can
be challenging because of the textual nature of scenarios. The
difficulty in writing system-level test-case was also a challenge
that practitioners mentioned. Lastly, the Versioning Control of
BDD artifacts is also considered as a challenge in a large-scale
context.

18

The Journal of Systems & Software 177 (2021) 110944

RQ 3: How can BDD be applied in large-scale software
development projects? Based on the challenges listed in the
previous research question, a BDD inspired development process
is proposed in this study. The development process starts when a
product manager suggests new behaviors for the product. These
behaviors are then used by requirements engineers to search for
existing similar behaviors to reuse the existing artifacts. In the
next activity, the requirements engineer develops a system-level
feature file that elaborates on the new behaviors in the form of
features and scenarios. These scenarios are then developed into
executable test-cases with the help of hooks (also called glue
code). For the system-level verification, this executable system-
level feature file provides the status of development completed
for the new behaviors. This system-level feature file is then
broken down into several sub-feature files belonging to each sub-
product of large-scale products. Each sub-product then develops
and verifies the sub-product code based on the sub-feature file.
Once all the sub-feature files are verified, the feature moves to the
verification unit. In the last stage, if the system-level behaviors
pass, then features are considered as ready for release.

The process was evaluated in three steps, (i) by validating
few activities of the process with the help of two industrial use-
cases, (ii) by evaluating the complete process with the help of
eighteen practitioners from five large-scale product development
organizations, and (iii) by presenting and interviewing expe-
rienced software practitioners. Practitioners found this process
useful, and they believe that the process can improve communi-
cation, quality, reuse, and documentation of large-scale produc-
tion. However, few practitioners believed that the process could
be costly to implement as it requires the involvement of multiple
stakeholders, and their availability can be a bottleneck in the
process. Practitioners suggested changes in the proposed process,
such as a phase for architectural alignment and validating the
format of feature files. Later, these changes were included in the
final version of the proposed process. Practitioners were inquired
about time to apply the process, and all of them believed that it
might take more than a year to make this change in a large-scale
development organization.

Future Work As mentioned by some of our investigation par-
ticipants, introducing the proposed process in our organization
may take more than a year. As a consequence, we could not
perform the dynamic validation of our approach. Thus, we plan
to run the dynamic validation as part of our future work. This ap-
plication may help us in better understanding the characteristics
of the process so that we can improve it further before releasing
it for the software industry. Furthermore, we want to investigate
the reusability of behaviors in BDD based methodology, providing
guidelines to increase the reuse potential of these behaviors.

CRediT authorship contribution statement

Mohsin Irshad: Conceptualization, Methodology, Investiga-
tion, Formal analysis, Writing - original draft, Writing - review &
editing. Ricardo Britto: Conceptualization, Methodology, Writing
- review & editing, Supervision. Kai Petersen: Writing - review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

M. Irshad, R. Britto and K. Petersen
References

Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the
experience of software development. Empir. Softw. Eng. 16 (4), 487-513.
Ali, N.B., Petersen, K., Mantyld, M.V.,, 2012. Testing highly complex system
of systems: an industrial case study. In: Proceedings of the 2012 ACM-
IEEE International Symposium on Empirical Software Engineering and

Measurement. IEEE, pp. 211-220.

Ali, N.B., Petersen, K., Schneider, K., 2016. Flow-assisted value stream mapping
in the early phases of large-scale software development. J. Syst. Softw. 111,
213-227.

Bass, J.M., 2015. How product owner teams scale agile methods to large
distributed enterprises. Empir. Softw. Eng. 20 (6), 1525-1557.

Begel, A., Nagappan, N., Poile, C., Layman, L., 2009. Coordination in large-scale
software teams. In: Proceedings of the 2009 ICSE Workshop on Cooperative
and Human Aspects on Software Engineering. IEEE Computer Society, pp.
1-7.

BehaveFramework, 2019. Behave. In https://behave.readthedocs.io/.

Binamungu, L.P., Embury, S.M. Konstantinou, N., 2018. Detecting duplicate
examples in behaviour driven development specifications. In: 2018 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests (VST).
IEEE, pp. 6-10.

Bjarnason, E., Wnuk, K. Regnell, B., 2011. Requirements are slipping through
the gaps—A case study on causes & effects of communication gaps in large-
scale software development. In: 2011 IEEE 19th International Requirements
Engineering Conference. IEEE, pp. 37-46.

Borg, R., Kropp, M., 2011. Automated acceptance test refactoring. In: Proceedings
of the 4th Workshop on Refactoring Tools. ACM, pp. 15-21.

Britto, R., Smite, D., Damm, L.-O., Borstler, J., 2019. Performance evolution of
newcomers in large-scale distributed software projects: an industrial case
study. In: 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE). IEEE, pp. 1-11.

Bui-Thanh, T., Willcox, K., Ghattas, 0., 2008. Model reduction for large-scale
systems with high-dimensional parametric input space. SIAM]. Sci. Comput.
30 (6), 3270-3288.

Carrera, A, Iglesias, CA. Garijo, M., 2014. Beast methodology: An agile
testing methodology for multi-agent systems based on behaviour driven
development. Inf. Syst. Front. 16 (2), 169-182.

Cisneros, LA, Reis, CI., Maximiano, M., Quifia, J.A, 2018. An experimental
evaluation of itl, tdd and bdd. In: ICSEA 2018, the Thirteenth International
Conference on Software Engineering Advances. ThinkMind, pp. 20-24.

Clarke, V., Braun, V., Hayfield, N., 2015. Thematic analysis. Qual. Psychol. Pract.
Guide Res. Methods 222-248.

Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mdder, P., Zisman, A., 2014.
Software traceability: trends and future directions. In: Future of Software
Engineering Proceedings. pp. 55-69.

Cottam, J.A., Hursey, J., Lumsdaine, A., 2008. Representing unit test data for large
scale software development. In: Proceedings of the 4th ACM Symposium on
Software Visualization. pp. 57-66.

Coveros, 2019. Exploring glue code with cucumber-jvm. In https://www.coveros.
com/exploring-glue-code-with-cucumber-jvm.

Dalal, S.R., McIntosh, A.A., 1994. When to stop testing for large software systems
with changing code. IEEE Trans. Softw. Eng. 20 (4), 318-323.

De Almeida, E.C., Marynowski, J.E., Sunyé, G. Le Traon, Y. Valduriez, P.,
2010. Efficient distributed test architectures for large-scale systems. In: IFIP
International Conference on Testing Software and Systems. Springer, pp.
174-187.

de Carvalho, R.A,, e Silva, F.L.d.C., Manhdes, R.S., de Oliveira, G.L, 2013. Imple-
menting behavior driven development in an open source erp. In: Enterprise
Information Systems of the Future. Springer, pp. 242-249.

Diepenbeck, M., Soeken, M., GroRe, D., Drechsler, R., 2012. Behavior driven
development for circuit design and verification. In: 2012 IEEE International
High Level Design Validation and Test Workshop (HLDVT). IEEE, pp. 9-16.

Dikert, K., Paasivaara, M., Lassenius, C., 2016. Challenges and success factors
for large-scale agile transformations: A systematic literature review. J. Syst.
Softw. 119, 87-108.

Dingseyr, T., Fegri, T.E., Itkonen, J., 2013. What is large in large-scale? A taxon-
omy of scaling in agile software development. In: International Conference
on Product-Focused Software Process Improvement. Springer, pp. 273-276.

Dingseyr, T., Moe, N.B.,, 2013. Research challenges in large-scale agile software
development. ACM SIGSOFT Softw. Eng. Notes 38 (5), 38-39.

Dingseyr, T., Rolland, K., Moe, N.B., Seim, E.A., 2017. Coordination in multi-
team programmes: An investigation of the group mode in large-scale agile
software development. Procedia Comput. Sci. 121, 123-128.

Earley, S., 2014. The digital transformation: staying competitive. IT Prof. 16 (2),
58-60.
Egbreghts, A., 2017. A literature review of behavior driven de-
velopment using grounded theory. In: 27th Twente Student
Conference on IT. Available at: https://pdfs.semanticscholar.org/4f03/

Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf.

19

The Journal of Systems & Software 177 (2021) 110944

Feldt, R., Poulding, S., Clark, D., Yoo, S., 2016. Test set diameter: Quantifying
the diversity of sets of test cases. In: 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 223-233.

Gebhart, M., Giessler, P., Abeck, S., 2016. Challenges of the digital transformation
in software engineering. In: ICSEA 2016. p. 149.

Glaser, B.G., Strauss, A.L., Strutzel, E., 1968. The discovery of grounded theory;
strategies for qualitative research. Nurs. Res. 17 (4), 364.

Gohil, K., Alapati, N., Joglekar, S., 2011. Towards behavior driven operations
(bdops). In: 3rd International Conference on Advances in Recent Technologies
in Communication and Computing (ARTCom 2011). IET, pp. 262-264.

Gorschek, T., Garre, P., Larsson, S., Wohlin, C., 2006. A model for technology
transfer in practice. IEEE Softw. 23 (6), 88-95.

Guide, I, 2020. The interview guide to evaluate the process. In shorturl.at/hAHJS.

Guinan, PJ., Cooprider,].G., Faraj, S., 1998. Enabling software development team
performance during requirements definition: A behavioral versus technical
approach. Inf. Syst. Res. 9 (2), 101-125.

Haser, F., Felderer, M., Breu, R, 2016. Is business domain language support
beneficial for creating test case specifications: A controlled experiment. Inf.
Softw. Technol. 79, 52-62.

Helgesson, D., Engstrom, E., Runeson, P., Bjarnason, E., 2019. Cognitive load
drivers in large scale software development. In: Proceedings of the 12th
International Workshop on Cooperative and Human Aspects of Software
Engineering. IEEE Press, pp. 91-94.

Irshad, M., Petersen, K., 2020. A method for supporting reuse of automated
acceptance test. In Submission to a Conference But Available at: www.
shorturl.at/aghyL.

Irshad, M., Petersen, K., Borstler, J, 2020. Reuse-potential: A measure to
support refactoring in BDD. In Submission in a Journal But Available
at: https://drive.google.com/file/d/ THWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-
/view?usp=sharing.

Jazayeri, M., 2002. On architectural stability and evolution. In: International
Conference on Reliable Software Technologies. Springer, pp. 13-23.

Jorgensen, M., 2018. Do agile methods work for large software projects?.
In: International Conference on Agile Software Development. Springer, pp.
179-190.

Kasauli, R., Liebel, G., Knauss, E., Gopakumar, S., Kanagwa, B., 2017. Requirements
engineering challenges in large-scale agile system development. In: 2017
IEEE 25th International Requirements Engineering Conference (RE). IEEE, pp.
352-361.

Kettunen, P., Laanti, M., 2008. Combining agile software projects and large-scale
organizational agility. Softw. Process Improv. Pract. 13 (2), 183-193.

Konrad, S., Gall, M., 2008. Requirements engineering in the development of large-
scale systems. In: 2008 16th IEEE International Requirements Engineering
Conference. IEEE, pp. 217-222.

Kumar, D., Mishra, K., 2016. The impacts of test automation on software’s cost,
quality and time to market. Procedia Comput. Sci. 79, 8-15.

Lazar, I, Motogna, S., Parv, B., 2010. Behaviour-driven development of foun-
dational uml components.. Electron. Notes Theor. Comput. Sci. 264 (1),
91-105.

Lethbridge, T.C., Sim, S.E., Singer, J., 2005. Studying software engineers: Data
collection techniques for software field studies. Empir. Softw. Eng. 10 (3),
311-341.

Lethbridge, T.C., Singer, J., Forward, A. 2003. How software engineers use
documentation: The state of the practice. IEEE Softw. 20 (6), 35-39.

Li, Y., Dong, T., Zhang, X., Song, Y.-d., Yuan, X., 2006. Large-scale software unit
testing on the grid. In: GrC. pp. 596-599.

Linares-Vasquez, M., Moran, K., Poshyvanyk, D., 2017. Continuous, evolutionary
and large-scale: A new perspective for automated mobile app testing. In:
2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. 399-410.

Liu, Z., Mei, P., 2014. Automated testing for large-scale critical software systems.
In: 2014 IEEE 5th International Conference on Software Engineering and
Service Science. IEEE, pp. 200-203.

Liibke, D., van Lessen, T., 2016. Modeling test cases in bpmn for behavior-driven
development. IEEE Softw. 33 (5), 15-21.

Martensson, T., Stdhl, D., Bosch, J., 2018. Enable more frequent integration of
software in industry projects. J. Syst. Softw. 142, 223-236.

Melnik, G., Maurer, F., 2007. Multiple perspectives on executable acceptance test-
driven development. In: International Conference on Extreme Programming
and Agile Processes in Software Engineering. Springer, pp. 245-249.

Minhas, N.M., Petersen, K., Borstler, J., Wnuk, K., 2020. Regression testing for
large-scale embedded software development-exploring the state of practice.
Inf. Softw. Technol. 120, 106254.

Molléri,].S., Petersen, K., Mendes, E., 2020. An empirically evaluated checklist
for surveys in software engineering. Inf. Softw. Technol. 119, 106240.

North, D., 2006a. Introducing behaviour driven development. Better Softw. Mag..

North, D., 2006b. What's in a story?.

Obara, E., Kawasaki, T., Ookawa, Y., Maeda, N., 1996. Metrics and analyses in
the test phase of large-scale software. In: Achieving Quality in Software.
Springer, pp. 133-144.

http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
https://behave.readthedocs.io/
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
https://www.shorturl.at/hAHJS
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://www.shorturl.at/aghyL
http://www.shorturl.at/aghyL
http://www.shorturl.at/aghyL
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb56
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb57
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58

M. Irshad, R. Britto and K. Petersen

Obbink, H., van Ommering, R., Wijnstra, J.G., America, P., 2002. Component
oriented platform architecting for software intensive product families. In:
Software Architectures and Component Technology. Springer, pp. 99-141.

Otaduy, I, Diaz, O., 2017. User acceptance testing for agile-developed web-based
applications: Empowering customers through wikis and mind maps. J. Syst.
Softw. 133, 212-229.

Perry, D.E., Siy, H.P., Votta, L.G., 2001. Parallel changes in large-scale software
development: an observational case study. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 10 (3), 308-337.

Petersen, K., Wohlin, C, 2009. Context in industrial software engineering
research. In: 2009 3rd International Symposium on Empirical Software
Engineering and Measurement. IEEE, pp. 401-404.

Petersen, K., Wohlin, C., 2011. Measuring the flow in lean software development.
Softw. - Pract. Exp. 41 (9), 975-996.

Pressman, R.S., 2005. Software Engineering: A Practitioner’s Approach. Palgrave
macmillan.

Questionnaire, 2019. Questionnaire. In Available at: www.shorturl.at/aghyL.

Rahman, M., Gao, J., 2015. A reusable automated acceptance testing architecture
for microservices in behavior-driven development. In: 2015 IEEE Symposium
on Service-Oriented System Engineering. IEEE, pp. 321-325.

RobotFramework, 2019. Robot framework. In https://robotframework.org.

Robson, C., McCartan, K., 2016. Real World Research. John Wiley & Sons.

Rocha, T., Borba, P., Santos,]J.P., 2019. Using acceptance tests to predict files
changed by programming tasks. J. Syst. Softw. 154, 176-195.

Runeson, P., Host, M., Rainer, A. Regnell, B.,, 2012. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons.

Sabaliauskaite, G., Loconsole, A., Engstrom, E., Unterkalmsteiner, M., Regnell, B.,
Runeson, P., Gorschek, T., Feldt, R., 2010. Challenges in aligning requirements
engineering and verification in a large-scale industrial context. In: Inter-
national Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, pp. 128-142.

Scacchi, W., 1989. Engineering large-scale software systems: an organizational
knowledge base approach. In: Digest of Papers. COMPCON Spring 89.
Thirty-Fourth IEEE Computer Society International Conference: Intellectual
Leverage. IEEE, pp. 232-235.

Script, J., 2020. The script to calculate ncd. In shorturl.at/agjlO.

Smite, D., Moe, N.B., Levinta, G., Floryan, M., 2019. Spotify guilds: How to succeed
with knowledge sharing in large-scale agile organizations. IEEE Softw. 36 (2),
51-57.

Soeken, M., Wille, R., Drechsler, R., 2012. Assisted behavior driven development
using natural language processing. In: International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer, pp.
269-287.

Solis, C., Wang, X., 2011. A study of the characteristics of behaviour driven de-
velopment. In: 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, pp. 383-387.

Stray, V., Moe, N.B., Aasheim, A., 2019. Dependency management in large-scale
agile: a case study of DevOps teams. In: Proceedings of the 52nd Hawaii
International Conference on System Sciences.

20

The Journal of Systems & Software 177 (2021) 110944

Usman, M., Britto, R, Damm, L.-O., Borstler,]., 2018. Effort estimation in large-
scale software development: An industrial case study. Inf. Softw. Technol.
99, 21-40.

Vierhauser, M., Rabiser, R., Griinbacher, P., 2014. A case study on testing,
commissioning, and operation of very-large-scale software systems. In:
Companion Proceedings of the 36th International Conference on Software
Engineering. pp. 125-134.

Zaiane, O.R, Antonie, M.-L.,, 2002. Classifying text documents by associating
terms with text categories. In: Proceedings of the 13th Australasian Database
Conference-Volume 5. pp. 215-222.

Mohsin Irshad (mohsin.irshad@bth.se): Mohsin Irshad is a software engineer at
Ericsson, Sweden, and a Ph.D. student at Blekinge Institute of Technology (BTH),
Sweden. Mohsin has a proven track record in the software industry with 10+
years of experience working with different telecommunication vendors. In 2018,
Mohsin earned Licentiate in Software Engineering from the Blekinge Institute of
Technology (BTH), Sweden. His research interests are in Software development,
Software Testing, Machine learning, and Evidence-Based Software Engineering.

Affiliation: Ericsson AB, Karlskrona & Blekinge Institute of Technology, Soft-
ware Engineering Research Lab, Blekinge Institute of Technology, Valhallavgen
1, 371 41 Karlskrona, Sweden

Ricardo Britto (ricardo.britto@bth.se): Ricardo Britto is a data-driven change
leader at Ericsson and an adjunct lecturer of the Department of Software
Engineering at Blekinge Institute of Technology. Britto received a Ph.D. in
Software Engineering from the Blekinge Institute of Technology (BTH), Sweden.
Between 2009 and 2013, Britto worked as researcher and project manager
at Federal University of Piaui-Brazil. His research interests include large-scale
agile software development, global software engineering, search-based software
engineering and software process improvement.

Affiliation: Ericsson AB, Karlskrona & Blekinge Institute of Technology, Soft-
ware Engineering Research Lab, Blekinge Institute of Technology, Valhallavigen
1, 371 41 Karlskrona, Sweden

Kai Petersen (kai.petersen@bth.se): Kai Petersen is a professor of software
engineering at Blekinge Institute of Technology (BTH), Sweden and University
of Applied Sciences Flensburg, Germany. He received his Ph.D. from BTH in
2010. His research interests are Agile Software Development, Software Testing,
Evidence-Based Software Engineering and Software Measurement. His research
has been conducted in close collaboration with companies and with an empirical
focus.

Affiliation: Blekinge Institute of Technology, Software Engineering Research
Lab, Blekinge Institute of Technology, Valhallavigen 1, 371 41 Karlskrona,
Sweden

http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://www.shorturl.at/aghyL
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
https://robotframework.org
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb68
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
https://www.shorturl.at/agjIO
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
mailto:mohsin.irshad@bth.se
mailto:ricardo.britto@bth.se
mailto:kai.petersen@bth.se

	Adapting Behavior Driven Development (BDD) for large-scale software systems
	Introduction
	Background and related work
	Definition of behavior driven development
	Large-scale software development
	Large-scale software testing
	BDD studies

	Research approach
	Step 1: Identify potential improvement areas based on industry needs
	Step 2: Formulate a research agenda
	Step 3: Developing a candidate solution (RQ3.1)
	Step 4: Conducting lab validation
	Step 5: Performing static validation (RQ3.2)
	Survey questionnaire
	Practitioners interviews

	Step 6: Dynamic validation

	Results
	RQ1: What are the benefits practitioners associated with BDD in large-scale software projects?
	Understanding of business aspect of requirements (B1)
	Improved quality of requirements (B2)
	Guide to system level use-cases (B3)
	Reuse of artifacts in large-scale projects (B4)
	Help for test organization (B5)

	RQ2: What are the challenges that BDD leads to in large-scale software projects?
	Specification of behaviors in large-scale projects (C1)
	Ownership and maintenance of behaviors in large-scale projects (C2)
	Adoption of new tools and technologies (C3)
	Cost benefits of BDD in large-scale (C4)
	Scale of the software projects (C5)
	Versioning control of behaviors (C6)
	Difficulty in writing system-level test-cases (C7)

	RQ3: How can BDD be applied in large-scale software development projects?
	RQ3.1: What are the activities needed for BDD to be applied in large-scale software development projects?
	RQ3.2: What conclusions (concerning the significance, limitation, and completeness) can be drawn during the industrial evaluation of the proposed process?

	Final Version of Proposed Process - After the feedback
	Lead time to apply the process
	Common and Different Activities

	Discussion
	Characteristics of the proposed process
	Addressing the challenges identified by software practitioners
	Adaptation constraints for organizations
	Comparison with similar approaches

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

