
The Journal of Systems & Software 177 (2021) 110944

i
d
T
m
a
d
(

t
i
d
f
o
t

o

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Adapting Behavior Driven Development (BDD) for large-scale software
systems✩

Mohsin Irshad a,b,∗, Ricardo Britto a,b, Kai Petersen b

a Ericsson AB, Sweden
b Blekinge Institute of Technology, Sweden

a r t i c l e i n f o

Article history:
Received 14 May 2020
Received in revised form 28 February 2021
Accepted 5 March 2021
Available online 13 March 2021

Keywords:
Behavior-driven
Large-scale
BDD
Software processes
System of systems

a b s t r a c t

Context: Large-scale software projects require interaction between many stakeholders. Behavior-
driven development (BDD) facilitates collaboration between stakeholders, and an adapted BDD process
can help improve cooperation in a large-scale project.
Objective: The objective of this study is to propose and empirically evaluate a BDD based process
adapted for large-scale projects.
Method: A technology transfer model was used to propose a BDD based process for large-scale
projects. We conducted six workshop sessions to understand the challenges and benefits of BDD. Later,
an industrial evaluation was performed for the process with the help of practitioners.
Results: From our investigations, understanding of a business aspect of requirements, their improved
quality, a guide to system-level use-cases, reuse of artifacts, and help for test organization are found as
benefits of BDD. Practitioners identified the following challenges: specification and ownership of be-
haviors, adoption of new tools, the software projects’ scale, and versioning of behaviors. We proposed
a process to address these challenges and evaluated the process with the help of practitioners.
Conclusion: The evaluation proved that BDD could be adapted and used to facilitate interaction in
large-scale software projects in the software industry. The feedback from the practitioners helped in
improving the proposed process.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software development is a complex process that involves var-
ous stakeholders and their interaction to conceptualize, plan,
evelop, test, and release a software product (Pressman, 2005).
hese days, software products transform existing businesses into
ore agile, customer-oriented, and robust business setups by
utomating manual processes (Earley, 2014). These products are
eveloped to support a new or existing commercial business
e.g., industrial automation, telecommunication, robotics).

Large-scale software products are a fundamental part of this
ransformation of existing businesses, and products are becom-
ng software intensive with time. These large-scale products are
eveloped in large-scale projects (i.e., Dikert et al. (2016) de-
ined it as software development projects with 50 or more people
r at least six teams. Dikert et al. (2016). However, developing
hese large-scale software systems has proven to be a challenging

✩ Editor: Antonia Bertolino.
∗ Correspondence to: Software Engineering Research Lab, Blekinge Institute
f Technology, Valhallavägen 1, 371 41 Karlskrona, Sweden.

E-mail addresses: mohsin.irshad@bth.se (M. Irshad), ricardo.britto@bth.se
R. Britto), kai.petersen@bth.se (K. Petersen).
ttps://doi.org/10.1016/j.jss.2021.110944
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
task because of their characteristics such as parallel develop-
ment (Perry et al., 2001), distributed teams (Bass, 2015), misun-
derstood requirements (Kasauli et al., 2017), and effort estimation
issues (Usman et al., 2018). Researchers have explored possible
solutions to improve the development of large-scale products,
such as by reducing large-scale systems into smaller manageable
systems (Bui-Thanh et al., 2008), by improving the requirements
engineering process (Konrad and Gall, 2008), or by using knowl-
edge engineering (Scacchi, 1989) to facilitate the development
process. Large-scale system testing is a complex process that
requires interaction, communication, and verification activities
spreading over various sub-products (De Almeida et al., 2010).
As there are multiple sub-products involved in testing large-scale
systems, the synchronization of test activities and release man-
agement are challenges associated with testing large-scale sys-
tems (Linares-Vásquez et al., 2017). In the context of this study, a
sub-product is an independent unit of deployment (Obbink et al.,
2002), e.g., a micro-service, a component, or a library.

Dikert et al. (2016) described that in large-scale projects, re-
quirements are defined at a very abstract level, and it may be
a problem to transform the high-level requirements to correct
functional requirements. The alignment of requirements and ver-

ification phase is necessary to succeed in software development,

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110944
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110944&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mohsin.irshad@bth.se
mailto:ricardo.britto@bth.se
mailto:kai.petersen@bth.se
https://doi.org/10.1016/j.jss.2021.110944
http://creativecommons.org/licenses/by/4.0/

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

a
v
d
n
v
t
p
t

v
a
q
u
t
g
o
i
c
2

m
s
r
t
a
o
p
d
B

s
f
i
o
a
s
i
a
B
e
(
w
L
p

d
r
d
i
v
c

2

s
d
w
a

2

p
a

w

d

t
d
i
t
t
r

p
m
t
t
d
t
s
t
s
a
f
k
t
o
a

W

n
n
c
r
s
c

b
o
d
a
b
n

s described by Sabaliauskaite et al. (2010). Behavior-driven de-
elopment (referred to as BDD in this study) is a test-driven
evelopment methodology to align the business and technical
eeds of software (North, 2006a). In traditional software de-
elopment organizations, the business needs are unknown to
he developers, testers, and other engineers working on these
roducts (Sabaliauskaite et al., 2010). There is a gap between the
echnical and business aspects of software development.

Initially, when BDD was introduced, the objective was to pro-
ide a systematic process that supports a common vocabulary
nd shared understanding of requirements among customers, re-
uirements engineers, developers, and testers (North, 2006a). The
se of test cases as specifications placed this methodology into
he category of acceptance test-driven development methodolo-
ies (e.g., story-driven development, specification driven devel-
pment) (Lazar et al., 2010). Acceptance test-driven development
s commonly used to bridge the gap between the business of the
ustomer and technical aspects of software (Melnik and Maurer,
007; Otaduy and Díaz, 2017).
BDD was aimed at normal-scale software projects, without

ultiple teams or sites (North, 2006a). Furthermore, the current
tate of the art and practice lacks solutions or empirical evidence
elated to BDD in large-scale software projects. The majority of
he studies propose theoretical concepts associated with BDD that
re not yet evaluated in the industry and cover only a small part
f a software development cycle (e.g., implementation and testing
hases). While BDD is an approach that might improve software
evelopment in large-scale contexts, the empirical evidence of
DD’s usefulness in large-scale projects is missing.
As BDD aims to enhance communication between different

takeholders, it is crucial to propose a BDD-based process adapted
or large-scale software development. In this study, we have
ntroduced a BDD based process for large-scale software devel-
pment and performed an empirical investigation of the benefits
nd challenges associated with the introduction of BDD in large-
cale software projects. We start our investigation by understand-
ng the existing development process, identifying the challenges
nd benefits of BDD with the help of several workshop sessions.
ased on the outcome of workshop sessions, we propose and
valuate a BDD based process using industrial practitioners. They
practitioners) perceived the process as useful for large-scale soft-
are development and suggested improvements in the process.
ater, based on the feedback of the practitioners, we revised the
roposed software development process.
The study provides background and related work on behavior-

riven development in large-scale development in Section 2. The
esearch design and analysis are present in Section 3. Section 4
escribes the results and the discussion related to the results
s present in Section 5. The threats to the validity of our in-
estigation are presented in Section 6, and Section 7 contains
onclusions and view on future work.

. Background and related work

This section briefly describes the main concepts used in this
tudy, such as large-scale software development and behavior-
riven development. Furthermore, in the related work section,
e have described the studies that have used BDD practices in
software development process.

.1. Definition of behavior driven development

In BDD, requirements are described in two parts, the central
art referred to as ‘Narrative or feature or behavior’ and the
cceptance criteria referred to as “Scenario” (North, 2006b). There
2

can be multiple scenarios under one behavior/feature. An exam-
ple using a BDD template suggested by North (2006b) is shown
below:

Behavior/Feature:
As a user
I want to login
So that I can view products

Scenario 1: A user is able to login to the system
Given User enters its username and pass-

ord
When authentication is successful
Then user logs-in to the system

Scenario 2: A user is able to view products
Given User authenticates with correct cre-

entials
When user logs-in to the system
Then user can view the products

These behaviors (also known as features) are reported in fea-
ure files, and these feature files act as test and requirement
ocuments (Gohil et al., 2011). The vocabulary in the feature file
s used by the stakeholders (e.g., product managers, developers,
esters, architects) when communicating about the behaviors. In
his way, feature files promote the common understanding of the
equirements (Gohil et al., 2011).

Jørgensen (2018) suggested that agile software development
ractices (XP, Scrum, Test-Driven Development (TDD), etc.) are
ore suited for large-scale software development. However,

hese practices introduce new challenges that force the modifica-
ion of existing practices to form new practices. Behavior-driven
evelopment is one such example, which attempts to improve
he TDD by adding collaboration and coordination among all the
takeholders. Previous research has shown that the communica-
ion gap leads to failure to meet customer requirements (Bjarna-
on et al., 2011). Behavior-driven development’s main features
re user-acceptance criteria provided by the customer and to
oster a common vocabulary in the organization to improve
nowledge sharing, coordination, and collaboration. These fea-
ures make BDD a good fit for large-scale software development
rganizations that want to enhance the customer’s perspective
nd knowledge sharing in the organization.
Solis and Wang identified six characteristics of BDD (Solis and
ang, 2011), and these characteristics are:

• the use of ubiquitous language based on the business termi-
nologies,

• iterative decomposition process for the high-level specifica-
tions,

• templates to write user stories and scenarios,
• automated acceptance tests,
• readable specification code,
• elaboration of behaviors based on the needs of the develop-

ment phase

In their literature review, Solis and Wang found that a limited
umber of studies are present on BDD, and considerable work is
eeded to evaluate the BDD (Solis and Wang, 2011) in different
ontexts. BDD’s characteristics are still under investigation by the
esearch community, and a limited number of studies have de-
cribed the use of behavior-driven development in an industrial
ontext.
The Test-Driven development inspires BDD principles, and

ehaviors (or features) are specified at the start of the devel-
pment. These behaviors fail at the beginning since no product
evelopment is done yet. As the product development starts
nd the functionality is implemented in the product, the failing
ehaviors start to pass (North, 2006a). Here it is important to
ote that these behaviors (also known as“features”) are specified

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

b
B
b
(

2

p
b
j
(
r
p
c
d
r
e
t
w
s
s
R
t
m
i
c

p
e
z
t
o
a
b
t
i
d
t
c

c
a
l
m
c
T
o
t
e
e
c

s
a
s
f
p
o
t
t
d
s

ased on the business needs of the customer (North, 2006b).
DD does not specify an exact format for behaviors, although
ehaviors are often described using domain-specific languages
e.g., Gherkin) (Egbreghts, 2017).

.2. Large-scale software development

Large-scale software development is defined as a development
rocess in which several teams are involved. These teams can
e located across different sites and collaborate to develop a
oint product or system of systems, as defined by Dingsøyr et al.
2013) and by Dikert et al. (2016). The dependency of customer
equirements on various sub-products of a large-scale software
roduct makes the development and verification process diffi-
ult to manage. The difficulties in managing, developing, and
elivering large-scale projects are extensively described in the
esearch literature on large-scale product development (Dikert
t al., 2016). Helgesson et al. (2019) conducted an empirical study
hat identifies cognitive load drivers (i.e., tools, information, and
ork processes) as an issue for software practitioners in a large-
cale software project. Britto et al. (2019) conducted an empirical
tudy on the evaluation of developers in large-scale projects.
equirements engineering-related challenges are the most men-
ion challenges in the research literature on large-scale develop-
ent (Dikert et al., 2016) because of extensive co-ordination that

s required to write and communicate the software requirements
orrectly.
The software industry is using various solutions to address

roblems related to large-scale software development. Smite
t al. (2019) described a case-study from a large software organi-
ation that has used “Guilds” as a means to improve communica-
ion and coordination in an organization. In an industrial study
n large-scale software development projects, Ali et al. (2016)
ddressed the communication and information related challenges
y using the value stream mapping. Dingsøyr et al. (2017) found
hat a combination of scheduled and unscheduled meetings helps
mprove communication and coordination in large-scale software
evelopment projects. Kettunen and Laanti (2008) suggested that
o succeed in large-scale product development, a holistic view
overing all the phases of software development is needed.
Recent research in large-scale software development has fo-

used on the individual parts of software development processes,
nd very few studies address the complete software development
ife cycle. Coordination among different phases such as require-
ents, development, and verification phase is crucial for suc-
essfully delivering large-scale software development projects.
he results from a survey by Begel et al. (2009) show that 98%
f software practitioners need to coordinate closely with other
eams to deliver a successful large-scale software product. Usman
t al. (2018) found that in large-scale software projects, effort
stimation often overruns because of the difficulties related to
oordination in multi-site development settings.
Stray et al. (2019) provides empirical evidence that in large-

cale software development, meetings such as Scrum of Scrums
re not enough for coordination between different teams. They
uggested that additional coordination practices are required
or the successful delivery of large-scale software development
rojects. Customer collaboration and knowledge sharing are two
f the eight research areas in large-scale software development
hat Dingsøyr and Moe (2013) suggested for future research. In
his study, we have attempted to propose and evaluate these ad-
itional coordination practices, with BDD’s help, in a large-scale
oftware development context.
3

2.3. Large-scale software testing

Large-scale software testing leads to several challenges. Ali
et al. (2012) investigated the practices and challenges of testing
a complex system of systems in the telecommunication domain.
They observed that tests take place on multiple test levels, where
defect slippage occurs between the levels. That is, a defect that
should have been found in one level (e.g., unit testing) is located
at a later level (e.g., system test). Challenges in three areas (fault
slippage, maintenance of tests, and timeliness of testing) were
observed. Fault slippage was caused by the specific challenge in
large-scale development, such as unclear division of responsibil-
ities between test levels, vague requirements, and poor quality
tests. Vierhauser et al. (2014) also investigated the challenges
and practices in the large-scale system of systems testing. They
found that practices are team specific and that the tools used in
development were project-dependent. System size and complex-
ity as an issue concerning maintenance were also highlighted.
Furthermore, communication effort, difficulty in understanding
systems specifications, issues concerning tools, and coordination
were the challenges that were specified. Overall, the findings of
both studies (Ali et al., 2012) and (Vierhauser et al., 2014) are well
aligned. Minhas et al. (2020) investigated practices and challenges
with a focus on regression testing, highlighting time to test, the
maintenance of the test suit, communication, and issues in test
selection and prioritization as challenges.

Various solutions have been proposed to test large-scale soft-
ware systems. Concerning testing measurement and estimation,
Obara et al. (1996) highlighted the importance of measuring the
process, including the test phase. They provided and evaluated
a solution to estimate the effort of the test phase using various
factors. Dalal and McIntosh (1994) used measures to determine
when to stop testing, relying on ideas from software reliability
models. Cottam et al. (2008) takes test measures as input and
proposes a visualization of test results. The visualizations are
highlighted as important as with the system size test diversity,
and the number of tests increases. The visualization benefits have
been highlighted, such as timely updates of test status based on
test data. Practitioners provided positive feedback and found the
visualization to be a valuable addition to their current systems.

With the increase in size and complexity, automation and
tools have become important. Liu and Mei (2014) developed
a platform for automation. Their framework encompasses vari-
ous test activities, from management to execution and analysis,
including the following modules: test initialization, test scope
identification, data management, test procedure management,
automated test, and test data analysis. Given the high number of
tests to be managed and scheduled (Li et al., 2006), propose a unit
testing framework relying on grid technology. The framework is
built on a layer of specific grid services. The researchers com-
pared alternatives for scheduling the grid resources. Using swarm
intelligence for scheduling worked well concerning average task
completion time.

2.4. BDD studies

This section lists the related work for the usage of BDD in
software development processes. This study’s main objective is
to utilize the BDD-based development process in the context of
large-scale software development. In the research literature, very
few studies have used BDD practices in large-scale development.
We performed an informal literature review and found that most
previous studies only use BDD practices in one of the phases of
the software development process, as shown in Table 1.

A BDD inspired development technique (BLDD) is proposed
and evaluated by de Carvalho et al. (2013). The evaluation of

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
S

d
a
t
w
i
G
B
o
a
e
o
l
m
b

t
t
s
w
r
s
r
t
p
o

r
t
a
d
s

able 1
ummary of the related work.
Study Objective Impacted phase Industrial

evaluation

de Carvalho et al. (2013) To provide traceability of requirements through BDD test cases. Requirements No
Cisneros et al. (2018) To identify the impact of BDD on Quality attributes Development No
Diepenbeck et al. (2012) To provide a new development flow, using the BDD, in context of hardware design and

verification
Complete life-cycle No

Soeken et al. (2012) To reuse existing test steps for writing new BDD test steps. Development No
Carrera et al. (2014) To propose and evaluate development of BDD based development methodology. Complete life-cycle Yes
Rahman and Gao (2015) To propose an architecture that supports the reuse of BDD scenarios and test-steps Complete life-cycle No
Binamungu et al. (2018) To propose approach that detects duplication in BDD documents. Requirements No
Häser et al. (2016) To identify domain aware language supports in creating better BDD scenarios Requirements No
Lübke and van Lessen (2016) To combine BDD with a business process model to facilitate test automation. Testing Yes
this approach was conducted on open source software (ERP5).
The evaluation describes the mapping of “Given” “When” and
“Then” to the business processes. Cisneros et al. (2018) ana-
lyzed the impact of BDD on external code quality, internal code
quality, and productivity. The experiment was conducted using
the students for academia. Diepenbeck et al. (2012) proposed
a new development approach using the BDD in the context of
hardware design and verification. The proposed approach starts
with “Acceptance Tests” written before the development phase
starts. These tests incorporate the quality attributes of hardware
systems. Later, these tests are used to develop and verify the
implementation. Soeken et al. (2012) proposed an approach that
is used to generate the test case steps and their definitions
semi-automatically. A user enters information in the tool and
gets the recommendations to relate to the test steps and defini-
tions. Binamungu et al. (2018) proposed an approach that detects
duplication in BDD documents. Rocha et al. (2019) suggested a
method that predicts the code changes using the BDD (Cucum-
ber) test cases. The method was implemented using a tool and
evaluated using 18 open source projects.

Carrera et al. (2014) proposed and evaluated a BDD based
evelopment framework. The proposed framework helps gener-
te test-cases from the BDD scenarios and mocks to help during
he implementation of scenarios. It consists of four phases: (i)
riting the expected behavior, (ii) writing scenarios, (iii) break-

ng down scenarios, and (iv) to use the scenarios. Rahman and
ao (2015) proposed an architecture that supports the reuse of
DD scenarios and test-steps. Their study introduces the reuse
f BDD and the test-steps in the context of micro-service. The
pproach was described, but the evaluation was missing relevant
xample was not detailed enough to understand the working
f the approach. Häser et al. (2016) proposed a domain aware
anguage supports to create better BDD scenarios. An experi-
ent with groups of a student demonstrating that group using
usiness-aware domain language performed better.
We found only three studies (present in Table 1) that describe

he application of BDD on a complete-life cycle, and only two of
hese studies were evaluated in the industry. These two industrial
tudies were not applied in a large-scale context, or the context
as not clearly defined in the study. A summary of previous
elated studies that describe the usage of BDD for improving the
oftware development process are listed in Table 1. From the
elated work, we have found that there is a need to identify
he benefits and challenges of using BDD in a broad context and
rovide a solution to address these challenges. The characteristics
f the studies are present in Table 1.
Binamungu et al. (2018) identified challenges and benefits

elated to BDD by surveying the software practitioners. According
o their study, the most critical challenges associated with BDD
re (i) challenging to collaborate as it requires participants from
ifferent phases, (ii) lack of coaching (iii) template to write BDD

pecifications (iv) maintenance. The significant perceived benefits

4

of BDD, according to the participants of the survey, were (i) im-
proved test-ability of requirements, (ii) improved documentation,
(iii) better capturing of the domain knowledge, (iv) better un-
derstanding and implementation of the software. It is important
to note that the benefits mentioned earlier and challenges are
listed without any details of the context in which practitioners
are working, i.e., small organizations or large-scale organiza-
tions. Lübek and Lessen describe an experience from a large-scale
software project where BDD was combined with a business pro-
cess model to facilitate test automation activities. The approach
helped in using requirements modeled as a business process
model by the business analysts to be used as BDD-based test
scripts. In this study, we try to address this research gap using
BDD in a large-scale context, enlisting benefits, and its challenges.

In summary, existing literature shows that:

• Previous research has not described the benefits and chal-
lenges of using BDD in large-scale product development.
There is a need to evaluate the benefits and challenges of
BDD in a large-scale context

• BDD was not proposed for large-scale projects. However, the
benefits BDD offer can help in addressing the challenges of
large-scale projects (collaboration, communication, require-
ments elaboration, and verification).

3. Research approach

Our research approach is inspired by the technology transfer
model proposed by Gorschek et al. (2006). The study starts with
identifying improvement areas using the existing development
process and other means of information (such as documentation,
discussions, and observation of current practices as per Leth-
bridge et al. (2005)). Next, BDD is decided as a means to ad-
dress the improvement areas. We start with the identification
of benefits and challenges of BDD in a large-scale context, using
workshops. In the next step, using information collected during
the workshops, we proposed a BDD based process for large-scale
development. The parts of the BDD based process are imple-
mented and demoed in the laboratory setting. Later, evaluation of
the process is performed with software practitioners’ help using
industrial surveys and interviews as the data collection methods.
Based on the feedback from practitioners, the proposed process
was improved. The details of each step are described below.

The research approach used in this study is shown in Fig. 1.

3.1. Step 1: Identify potential improvement areas based on industry
needs

During this step, we assessed the existing development pro-
cess, the unit of analysis, and the industrial settings. The context
of industrial studies can help in understanding the applicability

and results of the studies (Petersen and Wohlin, 2009). This study

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

t
i
t
o
b
h
h
m
C
e
n
p
e
d

g
o
p
q
p
i
c
p
n
l
p
d
s

s
p
b
q
i
s
d
o
q
a
t
o
v

Fig. 1. The research approach used in this study.

ook place in one of the product development units (develop-
ng Business Support Systems) of an organization (i.e., Ericsson)
hat develops a large-scale distributed product, a combination
f 12 sub-products. This organization is considered one of the
iggest telecommunication companies globally (i.e., more than a
undred thousand employees), and the development model is a
ybrid of bespoke and market-driven development. The develop-
ent teams are spread across different sites (Sweden, Germany,
anada, India) and collaborate using software tools (git, mingle,
tc.). The requirements, development, testing, and delivery orga-
izations collaborate to deliver the product in time. This study’s
articipants were experienced product managers, requirement
ngineers, architects, managers, developers, testers, and service
elivery practitioners.
The unit of analysis is the development process of the or-

anization. In the existing development process, product devel-
pment occurs using a hybrid model of the waterfall and agile
ractices. The process is divided into three different phases, re-
uirements, development, and verification. In the requirements
hase, a requirements engineer develops software requirements
n system-level use-cases called business use-cases. These use-
ases are written in word documents following a defined tem-
late. The vocabulary used by the requirement engineers is often
ot consistent between different requirement documents. The
arge-scale product consisted of more than a million lines of
roduct code with 21 sub-products developed by more than 30
evelopment teams. The majority of the participants used in the
tudy were part of this large-scale product.
These business use-cases (system-level) are then broken into

ub-products business use-cases. The documents containing sub-
roducts business use-cases are not written by the author of
usiness use-cases, often resulting in misinterpretation of re-
uirements. In the development phase, product teams use ag-
le practices such as stand-up meetings, test-first development,
print-based development, etc., and commits to their delivery
ates, regardless of other dependent sub-products. These devel-
pment teams use these sub-product use-cases as software re-
uirements. When all the sub-products are ready, these products
re sent to the test organization for verification. The test organiza-
ion prepares test-cases from system-level use-cases and is based
n their domain knowledge. When all the manual test-cases are
erified, then the product is released.
5

We identified that the automated test-cases are written using
Java, and the manual test-cases are written in natural language,
describing each test-step in human-readable form. There is a
loss of information when tests are written in code from natu-
ral language requirements. The test-case development does not
explicitly present the product manager’s input or the customer’s
presence. The test-cases’ quality and coverage are dependent
on the test developer as requirement engineers, or the prod-
uct managers do not review these test-cases. This lack of input
from requirement engineers often results in missed verification
of important functionalities required by the customer or spending
effort on verifying functionality not needed by the customer. The
existing development process of a use-case is shown in Fig. 2.
Fig. 2 shows only the parts of the development process that
are deemed necessary in the context of using BDD. Once a use-
case is released, any defects on the use-case are handled in the
maintenance phase while new use-cases are developed using the
process shown in Fig. 2. These lessons were learned after several
discussions with practitioners working with the process.

3.2. Step 2: Formulate a research agenda

BDD is used to overcome the issue with missed requirements
during test automation and lack of input from the business per-
spective (Solis and Wang, 2011). Our work starts by identifying
the strengths and weaknesses of BDD in the context of large-scale
product development. In the next step, we used BDD’s strengths
and weaknesses to propose a BDD-based process suitable for
large-scale software development. We formulated the following
research questions to evaluate the challenges and benefits of
using BDD in large-scale product development.

• RQ 1: What are the benefits practitioners associated with
BDD in large-scale software projects?

• RQ 2: What are the challenges that BDD leads to in large-
scale software projects?

• RQ 3: How can BDD be applied in large-scale software
development projects?
The RQ 3 is further divided into two sub-questions, provided
below.

– RQ 3.1: What are the activities needed for BDD to be
applied in large-scale software development projects?

– RQ 3.2: What conclusions (concerning the significance,
limitation, and completeness) can be drawn during the
industrial evaluation of the proposed process?

To get the software practitioners’ views on the usefulness
and challenges of BDD (RQ 1 and RQ 2) in large-scale product
development, we have used one-hour long workshop sessions as
a qualitative research method. Workshops are planned meetings
to obtain the views of the group members on a specific topic. In
the software engineering context, workshops have been used to
get feedback from the practitioners or subject matter experts.

To increase the validity of the workshop sessions, we per-
formed multiple tasks such as “peer debriefing”, “member check-
ing”, and systematic data collection (details described in Sec-
tion 6). Following steps were used as a primary source for de-
signing and execution of all workshop, as described below:

Defining the research problem: In our workshop sessions, the
objective was to identify issues related to the introduction of BDD
in product development.

Planning the workshop event: We planned six workshop ses-
sions, and each of these sessions lasted for around one hour.
The workshop’s agenda was shared with the participants before
the start of the meeting, in the form of details of the meeting
requests.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

s
e
l
e
m
p
d
T
t
e

s
d
a
t

s
s
g
u
t
o
t
w
c

t
p
a
o
d

r
o
t
t
f
e

t
T
a
p
a
t
t
t

Fig. 2. Existing software development process of a use-case in the organization.
Selecting the participants: To increase the value of workshop
essions, we decided to use only the experienced practition-
rs (more than five years of experience) who have worked on
arge-scale software systems. These selected practitioners had
xperience with software development, requirements, or product
anagement, and they were from three geographical sites. These
ractitioners understood BDD concepts, and the participants un-
erstood test-first methodologies (e.g., TDD or have used BDD).
hese practitioners were suitable subjects (i.e., experienced in
est-first methods and from large-scale software contexts) to
valuate and identify the benefits and challenges of using BDD.
Conducting the workshop session: Each workshop session

tarted with background information on BDD, followed by a
iscussion on BDD. Lastly, the discussion focused on the benefits
nd limitations of BDD concerning the current context. These
hree parts are described below:

Background Information: The purpose of this part was to
hare the information about BDD with practitioners. Each session
tarted with a description of the topic by the moderator and back-
round information on the BDD. This information was presented
sing the presentation slides (also shared with participants after
he session). The first half of the workshop introduced BDD’s
bjectives, the concepts related to BDD, and the implication of
he concepts on current ways of working. An example of BDD
as also shown to the participants to help them understand the
oncepts and usage.
Discussion on BDD: In this part, the practitioners discussed

heir understanding of the BDD. They inquired about various as-
ects of BDD (such as requirement handling, configuration man-
gement, tool-support, etc.) Each participant shared their views
n BDD and how they see BDD usage in large-scale product
evelopment.
Discussion on current context: Practitioners were asked to

eflect on BDD’s benefits and limitations concerning existing ways
f working. The notes were taken for each discussion item, and
he moderator helped keep the discussions relevant to BDD. In
he end, each participant was asked if they have any questions or
eedback about the workshop’s topic. Table 2 provides details of
ach session.
The workshop notes contained anecdotes and statements by

he practitioners written on notebook pages during the session.
he summary of each session describing the relevant consider-
tions was sent to the workshop participants as the validation
rocess. The collected qualitative data from the workshops were
nalyzed using the “constant comparison” approach for the quali-
ative analysis phase. Constant comparison method can help iden-
ify common themes and topics of the data and compare similar
hemes from other qualitative data. Adolph et al. (2011) described
6

Table 2
Detail of the workshop participants.
Workshop Date No. of

partici-
pants

Roles of participants

W1 02/09/19 17 Developers, Test developers,
Test managers, Requirements
managers, Development
managers

W2 11/09/19 11 Developers, Test developers,
Development managers

W3 23/09/19 7 Product managers,
Requirements managers,
Process owners

W4 25/09/19 5 Requirements managers

W5 27/09/19 4 Test managers

W6 15/10/19 8 Test developers, Test managers

the guidelines for the constant comparison, and these guide-
lines were used in the data analysis. From the workshop’s notes,
the aim was to identify all the terminologies that practitioners
used when describing BDD characteristics. These terminologies
were then listed in groups of benefits and challenges. The dupli-
cate terms were removed, and the remaining terms were used
to generate results. The results of this step are described in
Section 4.1.

The details on the data collection and analysis of the RQ 3
(RQ3.1 and RQ 3.2) are provided in Sections 3.3 and 3.5.

3.3. Step 3: Developing a candidate solution (RQ3.1)

After identifying the key challenges, the next step was to
propose a method to address these challenges.

To support the use of BDD in large-scale projects, we de-
veloped a process. To do so, we accounted for activities in the
existing development process, the activities in a BDD process,
the benefits and challenges identified in our investigation. The
software practitioners suggested that BDD should be applied to
the whole development cycle (i.e., Challenge C5) for BDD to be
useful for the large-scale organization. It was also suggested that
good practices from the existing development process should be
utilized in the new BDD based process. BDD’s original process
inspires the proposed development process (in Fig. 3) and the
existing development process used in the organization, discussed
in Section 3.

The original BDD process assumes that BDD might help the
unit testing, where the scope of test cases is limited to testing
small functionality (North, 2006a). In the unit test cases, the

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

o
w
f
a
l
s
q
l

m
o
d
c
i
d
e
t
s
i

r

3

t
t
p
w
t
t
t
t
c
s
a
b
B

f
r
g
o
t
w
o
t
m
t

Fig. 3. A BDD based process for large-scale software projects.
f
a
a

s
t
s

bjective is to verify that the product’s small functionality is
orking fine. It also assumes that there is only one behavior (or

eature) file to develop the scenarios. We proposed changes to
dapt BDD for large-scale products, such as developing a system-
evel feature file, using sub-feature files for sub-products of large-
cale products. We also adapted the BDD to incorporate the re-
uirements and verification phases of the software development
ife-cycle.

The use of existing activities, tools, and practices can help
itigate a lack of competence and the scale of software devel-
pment. Keeping in view these challenges, we have proposed a
evelopment process (and the associated software artifacts) that
an help overcome the challenges related to BDD’s usefulness
n large-scale software development organizations. A significant
ifference in the existing development process is related to an
arlier automated test case development phase. The automated
est-case development phase can take place in parallel to the
oftware development phase when using the process proposed
n Fig. 3.

The details of the activities and the expected input, output and
esponsible actor is provided in Section 4.3.

.4. Step 4: Conducting lab validation

During this step, the activities of the process are evaluated in
he experimental setting (Gorschek et al., 2006). The lab valida-
ion started with demonstrating two cases developed using the
art of the proposed process’s activities. The two industrial cases
ere selected after discussion with software practitioners. These
wo behaviors (features) described aspects of the large-scale sys-
em in which the practitioners worked. The first behavior read
he balance and personal information of a customer configured in
he large-scale telecommunication system. The second behavior
reated a customer and set the new customer with appropriate
ettings, e.g., contract, phone number, prepaid balance, etc. The
uthors of this study developed these two behaviors, one each
y Robot Framework (available at RobotFramework (2019)) and
ehave framework (available at BehaveFramework (2019)).
Later, these behaviors were presented to the practitioners

rom various development phases such as product managers,
equirements engineers, developers, architects, verification en-
ineers, and development managers, demonstrating the usage
f feature files, technology stack, test-case flow, key-words, and
heir association with back-end code, etc. These demonstrations
ere conducted in two sessions. These behaviors were executed
n the organization’s test environment during the demonstration
o evaluate with realistic settings. These demonstrations were
ade during two sessions, and the authors noted feedback from

he practitioners. Overall, practitioners liked the demonstration
 s

7

of the activities and suggested that this process works, as orig-
inally proposed, for large-scale product development. However,
they showed concerns about supporting tools (already identified
during the outcome of step 2 4.2).

3.5. Step 5: Performing static validation (RQ3.2)

The static validation step consists of collecting feedback from
software practitioners using different means such as seminars,
presentations, survey questionnaires, and interviews (Gorschek
et al., 2006). Petersen and Wohlin (2011) suggested that when
developing a solution for industry, feedback from practitioners
could help identify the usefulness and drawbacks of the solution
before the solution is applied in the industry. During our in-
vestigation, we initially conducted a questionnaire-based survey
(available at Questionnaire (2019)) and improved our solution
based on the feedback. Later, interviews of software practitioners
(from Ericsson) were performed to further evaluate and improve
the proposed process. The details of these two evaluations are
provided below.

3.5.1. Survey questionnaire
In the first step of industrial evaluation, a questionnaire (avail-

able at Questionnaire (2019)) was developed containing four
parts: (a) background on behavior-driven development; (b) de-
scription of our proposed process; (c) an example of developing ‘A
login system’ using our proposed process, and (d) a questionnaire
to evaluate the process. Molléri et al. (2020) provided a checklist
to perform surveys in software engineering. This checklist was
utilized during the development of the questionnaire and data
analysis of the responses. As per the checklist, the questionnaire’s
design is classified as ‘self-administrated’, i.e., online form. The
questionnaire contained free text input-boxes for responses that
allow users to write a detailed answer to the questions. The
questionnaire attempted to evaluate the significance, limitations,
and completeness of the proposed process. Following questions
were part of the questionnaire:

Significance: In your opinion, what are the benefits of using
the proposed process?

Limitations: What are the drawbacks/limitations of the pro-
cess? How can we improve the process?

Completeness: (i) Are there steps that should be removed
rom the process? If yes, then kindly list those items here and
lso state why do you recommend removing them? (ii) Are there
ny other steps that should be added to the process?
This questionnaire was sent to 30 practitioners of five large-

cale software organizations (including the organization where
he process was developed). A criterion (stated below) was de-
igned to involve only the subjects that are relevant for this

tudy.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
N

s
t
p
a
r

t
A
t
t
c
e
i
f
t
i

3

i
d
v
r

C
p
s
i
a
p
w

b
t
c
a
(
b

able 3
umber of survey responses from industry practitioners.
Role No of respondents

Requirements managers 2
Requirements engineers 1
Architects 1
Developers 8
Test developers 2
Development managers 2
Total 18

• The participant has worked with large-scale software sys-
tems.

• The participant should be an experienced professional in
software development (i.e., more than five years of experi-
ence).

• The participant should have an understanding of test-first
development methodologies.

Eighteen practitioners (from five large-scale organizations) re-
ponded to the questionnaire, and the feedback from these prac-
itioners was analyzed and later used to improve the proposed
rocess. The non-respondent practitioners were sent en email as
reminder to get the maximum replies. The roles and number of
espondents are shown in Table 3.

Data analysis was performed systematically to reliably identify
he results and interpret the feedback from the questionnaire.
n excel sheet contained the answers to the questionnaire, and
he data analysis phase used this sheet. The collected qualita-
ive data from the responses were analyzed using the “constant
omparison” approach for the qualitative analysis phase (Glaser
t al., 1968). During the data analysis, the responses were broken
nto themes related to challenges, benefits of using BDD, and
eedback on the proposed process. The terminologies belonging to
hemes were categorized. The results of the analysis are present
n Section 4.

.5.2. Practitioners interviews
In the next step, we interviewed experienced practitioners to

dentify BDD’s perceived benefits and challenges in large-scale
evelopment and evaluate the proposed process. These inter-
iews helped in increasing the validity and credibility of the
esults identified in this study.

As per Robson and McCartan’s classification (Robson and Mc-
artan, 2016), we conducted semi-structured interviews with
redetermined open-ended questions. The interview guide con-
isted of three parts: (i) introduction of study, interviewer and
nterviewee, (ii) introduction of BDD and evaluation of benefits
nd challenges in a large-scale context, and (iii) evaluation of the
rocess and its activities. The objectives of conducting interviews
ere to:

• identify strengths and weaknesses of BDD.
• evaluate the significance, limitations, and completeness of

the proposed process.
• identify activities in the proposed process that do not exist

in the current development process used in the organiza-
tion.

• get feedback on time to apply the process in the organiza-
tion.

The interview guide (available at Guide (2020)) was designed
y one of the authors of this study. Later, another author reviewed
he interview guide and suggested changes to the guide. These
hanges were made, and the interview guide was piloted on
n industry practitioner. The interview guide (available at Guide
2020)) helped in evaluating each activity present in the process
y asking interviewees questions such as:
8

Table 4
Details of interviewees and interview.
Role Experience Role Setup Time

taken

Interviewee 1 12 years Test engineer In-person 65 min
Interviewee 2 17 years Requirements engineer In-person 57 min
Interviewee 3 7 years Developer In-person 63 min
Interviewee 4 14 years Test engineer In-person 65 min
Interviewee 5 8 years Developer In-Person 50 min
Interviewee 6 10 years Test engineer Online 73 min
Interviewee 7 8 years Requirements engineer In-Person 75 min

• Do you currently apply the activity? If so, how?
• Would you make modifications? If so, what would you

modify, and why?
• Reflections on the activity, and what alternative solutions do

they see to realize the activity?
• How can we improve this activity?
• What are your views on difficulty level when using this

process vs. what is already present today?

These questions (and other questions in the interview guide)
were developed to evaluate the process in detail and get feedback
from the practitioners to improve the process. For each part of
the process, the practitioners were asked to map the activity on
their current context and provide a similarity level. The practi-
tioners were asked to suggest any changes in the process that
can improve the process.

We interviewed seven experienced software practitioners who
have worked in large-scale software development and under-
stand the test-first development methodologies. These practition-
ers were from the same organization (and from the same site)
where this study was conducted (i.e., Ericsson). Table 4 provides
information on the background of the practitioners.

The interview sessions lasted between 50 and 75 min. The
interviews were recorded (with permission), and during the in-
terview, notes were taken by the author conducting the inter-
view. The data collected from the interviews were transcribed to
identify important and irrelevant information. The data analysis
on the qualitative data (interview) was performed using thematic
analysis as described by Braun and Clarke. The thematic analysis
helps in identifying and reporting patterns within the data (Clarke
et al., 2015). The relevant quotes were coded into short sentences.
Later these codes were used to identify the themes. An example
of this process:

• Data: “I think this provides a good way to describe re-
quirements before the development organization accepts
these.”

• Code: “good way to write requirements before development
starts”

• Theme: “Improved quality of requirements”

After analyzing the data and extracting useful information,
we sent an email to each interviewee listing the interview’s
corresponding results. They were asked to re-confirm that cor-
rect information is extracted from the raw data of the inter-
view. Section 4 contains the results from the interviews of the
practitioners.

3.6. Step 6: Dynamic validation

During the dynamic validation, the process is piloted in in-
dustry settings. In our investigation, some activities (see details
in Step 4) are already validated in the industry settings during
candidate design; however, the application of complete process
in the industry is part of our future work. This requires extensive

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
I

o

4
l

l
o
q
i
e
p

4

q
o
o
u
d

w
s
o
m
h

able 5
dentified benefits per workshop and interview.
Method Identified benefits

Workshop 1 Understanding of business aspect of requirements,
Improved quality of requirements, Guide to system
level use-cases, Reuse of artifacts in large-scale
projects, Help for test organization.

Workshop 2 Understanding of business aspect of requirements,
Improved quality of requirements, Reuse of
artifacts in large-scale projects.

Workshop 3 Improved quality of requirements, Guide to system
level use-cases.

Workshop 4 Improved quality of requirements, Reuse of
artifacts in large-scale projects.

Workshop 5 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Workshop 6 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Interview 1 Guide to system level use-cases, Help for test
organization.

Interview 2 Improved quality of requirements.

Interview 3 Improved quality of requirements, Understanding of
business aspect of requirements.

Interview 4 Improved quality of requirements, Guide to system
level use-cases.

Interview 5 Guide to system level use-cases.

Interview 6 Improved quality of requirements, Guide to system
level use-cases, Help for test organization.

Interview 7 Guide to system level use-cases, Understanding of
business aspect of requirements.

resources and long term commitment from the management
before the dynamic validation is conducted. In the future, we
want to focus on the dynamic validation of the activities.

4. Results

In this section, we present the results of our investigation are
rganized per the research question.

.1. RQ1: What are the benefits practitioners associated with BDD in
arge-scale software projects?

We identified five main benefits related to the use of BDD in
arge-scale software projects. These benefits are; understanding
f a business aspect of requirements, improved quality of re-
uirements, a guide to system-level use-cases, reuse of artifacts
n large-scale projects, and help for test organization. The ben-
fits identified per workshop session are shown in Table 5. We
rovided more details about the benefit in the subsections below.

.1.1. Understanding of business aspect of requirements (B1)
Participants of our investigation suggest that by having re-

uirements in the form of the executable test case, from the start
f the development process, a uniform and clear understanding
f requirements from the business aspect can be achieved. A
niform understanding can help in reducing the re-work required
ue to requirements’ misunderstandings.
Previous research has also associated this as a benefit of BDD,

here test cases are expressed in developing a uniform under-
tanding of requirements (Lethbridge et al., 2003). According to
ne of our investigation participants, this alignment on require-
ents between product managers, developers, and testers can
elp in collaboration and improved the quality of the product.
9

4.1.2. Improved quality of requirements (B2)
Participants of our investigation believe that BDD may help

improve the quality of requirements documents in large-scale
projects. By writing the requirements in the form of test cases,
the end user’s perspective and software requirements can be
combined in the same test case.

According to one of our investigation participants, the format
of the BDD test case, using Given, When and Then can help
isolate the preconditions, business logic, and post-conditions of
requirements, thus improving the quality of requirements. This
template can help in getting detailed product requirements from
product managers.

4.1.3. Guide to system level use-cases (B3)
Participants of our investigation agreed that the BDD tests’

textual and meaningful nature makes these a suitable way to
understand the system’s expected behavior. They suggested that
often their developers find it hard to understand the system level
use-case since they are working with just a small part of the
use-cases.

With the usage of BDD test cases, a developer can easily un-
derstand the system level use-case. According to one participant,
these tests can help identify the priority of tasks, i.e., where to
spend the effort, since we know what we need to deliver for the
use case to work correctly. This ease of understanding can help
the developers and testers perform their work in a better way
since many of the new developers and new testers depend on
their experience to understand the use-cases of software prod-
ucts. A participant in the workshop also mentioned that these
system-level test cases could be shipped to the customer, which
is a significant competitive advantage for the organization.

4.1.4. Reuse of artifacts in large-scale projects (B4)
In large-scale projects, it can be time-consuming and costly to

develop each new artifact from scratch. The behavior (or features)
described in BDD are useful artifacts for the development and ver-
ification phases. Practitioners suggested that these behaviors can
be reused by the test organization when developing automated
test cases. Furthermore, the behaviors can also be reused to serve
the purpose of the product’s documentation.

4.1.5. Help for test organization (B5)
The test automation developers, in workshops, revealed that

the test organization is already developing BDD like scenarios.
However, these scenarios are written at the end of the project,
i.e., during the verification phase. With the introduction of BDD,
where requirements are in the form of high-level test cases, their
test automation can start as early as the development phase’s
starting time. The time saved at the end of the development
cycle can be added to the exploratory testing, thus increasing
the product’s quality. Furthermore, participants of one workshop
suggested that BDD’s benefits can increase further if the BDD test
cases are complemented with a data-driven approach. In another
session, participants suggested that test organization can save
costs related to automation and tool development if the whole
development cycle uses a BDD process from requirements to the
verification.

4.2. RQ2: What are the challenges that BDD leads to in large-scale
software projects?

We identified seven challenges: the scale of the software
projects, ownership, lack of Competence, cost benefits, speci-
fication of behaviors in large-scale projects, difficulty writing
system-level test-cases, and versioning control of behaviors. The
challenges identified per workshop session are shown in Ta-
ble 6. We provide more details about these challenges in the
subsections below.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
I

s
m
e
m
I
o
t
t
o

4
p

r
T
s
T
e
a
c
o

able 6
dentified challenges per workshop and interview.
Method Identified challenges

Workshop 1 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Adoption of new tools and
technologies, Cost Benefits of BDD in large-scale.

Workshop 2 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing
system-level test-cases.

Workshop 3 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Cost Benefits of BDD in
large-scale, Versioning Control of behaviors.

Workshop 4 Specification of behaviors in Large-scale projects,
Scale of the software projects, Difficulty in writing
system-level test-cases.

Workshop 5 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing
system-level test-cases.

Workshop 6 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects, Difficulty in writing
system-level test-cases.

Interview 1 Specification of behaviors in Large-scale projects,
Adoption of new tools and technologies, Cost
Benefits of BDD in large-scale.

Interview 2 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects.

Interview 3 Specification of behaviors in Large-scale projects,
Ownership and maintenance of behaviors in
large-scale projects.

Interview 4 Adoption of new tools and technologies, Cost
Benefits of BDD in large-scale.

Interview 5 Difficulty in writing system-level test-cases,
Specification of behaviors in Large-scale projects.

Interview 6 Scale of the software projects, Cost Benefits of BDD
in large-scale.

Interview 7 Specification of behaviors in Large-scale projects,
Adoption of new tools and technologies, Cost
Benefits of BDD in large-scale.

4.2.1. Specification of behaviors in large-scale projects (C1)
A critical challenge identified during workshops relates to the

pecifying behaviors (as described in Section 2) for new develop-
ent. According to the practitioners, in large-scale projects, the
xact requirements are not known in advance, and the require-
ents are clarified and elaborated during the development phase.

t is often the case that practitioners have a very high-level idea
f a feature, and it requires many iterations with domain experts
o understand how the potential users will use it. They suggested
hat it may be challenging to specify exact behaviors at the start
f the BDD when things are not clear.

.2.2. Ownership and maintenance of behaviors in large-scale
rojects (C2)
Another vital challenge pointed out by the participants is

elated to the BDD artifacts’ ownership and the BDD process.
here may be a lack of ownership when it comes to BDD since all
oftware development phases share these artifacts and processes.
his can result in confusion, a lack of guidance for the practition-
rs using the process, and a lack of maintenance support for these
rtifacts. Furthermore, the ubiquitous nature of BDD test cases
an result in maintenance-related challenges as well. Participants
f the workshops believed that the maintenance of these tests
10
could be a complicated process because of the textual nature of
test cases and corresponding code implementation.

4.2.3. Adoption of new tools and technologies (C3)
In large-scale projects, the introduction of new tools and tech-

nologies can be difficult and time-consuming. The practitioners
may require training and education to be productive in a BDD
setup. Practitioners belonging to the test organization recom-
mended that a proof of concept be conducted to evaluate BDD
tools’ suitability for current product interfaces. Lack of familiarity
with the new tools supporting BDD is identified as a challenge
that impacts BDD adaptation in a large-scale project.

4.2.4. Cost benefits of BDD in large-scale (C4)
According to the practitioners, BDD’s process and artifacts can

be costly to develop in large-scale projects. The analysis and mod-
eling of BDD test cases, in a large-scale context, can take more
time than the ordinary requirement documents. Modeling the
BDD test-cases can require rigorous analysis and adequate system
knowledge from a practitioner. The development of test-cases
involves collaboration between stakeholders like requirements,
development, and test organizations. All of this collaboration
can result in higher development costs and time. Practitioners
also mentioned that the organization had invested a lot in the
existing test framework, and replacing that test framework with
a new BDD test framework may result in higher costs. The storage
and retrieval of BDD test cases also require new documentation
storage setup, which can also result in higher costs.

4.2.5. Scale of the software projects (C5)
Large-scale software products, where components are devel-

oped across different sites, require a great deal of communication,
iterations, and inter-connected work. According to practitioners,
attending the workshops can be a limiting factor for the BDD
process, as BDD assumes close collaboration between different
stakeholders and on-time delivery of sub-components of large-
scale products. An example was provided by the practitioners,
where a single-use case involves multiple components to be
delivered and tested together, and often, a use case is changed
at very late in the development cycle.

4.2.6. Versioning control of behaviors (C6)
Another identified challenge is the versioning control of the

behaviors (as described in Section 2) in large-scale projects. With
many stakeholders and the associated artifacts, it may be hard to
keep track of required changes e.g., product managers realize that
behavior is not entirely correct. Then this needs to be reflected in
all artifacts.

4.2.7. Difficulty in writing system-level test-cases (C7)
It was also pointed out that large-scale products and projects

meant that it is hard to write a system-level test case with only
one use-case in mind. The use-cases are often inter-dependent on
other use-cases, and verification may be stopped even if one use-
case is missing. This difficulty in writing system-level test cases
can be a challenge when using BDD in large-scale products.

Furthermore, it was mentioned that specifying system-level
behaviors may require collaboration from various stakeholders
keeping in view the needed business and technical skills. One of
the workshop participants believed that BDD might increase the
time to develop and deliver the behaviors in large-scale projects.
Practitioners believed that requirements and test artifacts and
processes have different needs, and combining these processes,
as done by BDD, may not be very efficient.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

4
m

i
d

4
i

o
t
a
i
a
n
i
a

a
f
n
d

a
t
d
r
T
t
c

e
W
b
s
a

s
s
h
s
a
p

s
f
t
c
s

f
S
W
f

t
p
u
e
a

v

.3. RQ3: How can BDD be applied in large-scale software develop-
ent projects?

This research question consists of two sub-questions describ-
ng the proposed process’s activities and the industrial evaluation
etails. The results of the two sub-questions are described below.

.3.1. RQ3.1: What are the activities needed for BDD to be applied
n large-scale software development projects?

The process’s activities are described below, and the input/
utput of each activity is described in Table 7. Table 7 contains
he name of the activity, the actor acting, and the expected input
nd output of the activity. Each activity in the process requires an
nput and produces an output for the next activity. Each of these
ctivities has defined actors responsible for performing the tasks
eeded to fulfill that activity, e.g., a requirements engineer work-
ng with stakeholders (testers, domain experts, etc.) to complete
system-level feature file.
Specify new Behaviors for Product: The product manager,

cting on customer request, write new behaviors (also called
eatures, described in Section 2) to be added to the product. These
ew behaviors can be in the form of textual statements or short
escriptions.
Search for Existing Reusable Behaviors: During this activity,

requirements engineer searchers for existing similar behaviors
hat can be adapted and reused. This activity is needed to avoid
eveloping and testing behaviors when similar behaviors are al-
eady present. This can lead to the reuse of the features and tests.
he presence of a similar feature means that development and
esting phases can also reuse existing artifacts. A few methods to
onduct the searching for reusable behaviors are provided below:

• In a large-scale organization, document searching is com-
monly used by the practitioners to identify reusable arti-
facts.

• Text classification approaches used in natural language pro-
cessing can help identify reusable behaviors (see, for exam-
ple, Zaïane and Antonie (2002)).

• Normalized Compression Distance: The similar artifacts are
identified using a script based on normalized compression
distance (c.f., Feldt et al. (2016)).

• Similarity Ration: Irshad and Petersen (2020) defined a sim-
ilarity measure and process to identify similar reusable doc-
uments. This approach can be used to identify reusable
behaviors (see details at Irshad and Petersen (2020)).

• Searching in a repository management service (e.g., Gerrit,
Stash) can help identify similar behaviors.

Example: To exemplify the searching process, we can take the
xample of a search using the normalized compression distance.
e assume that a requirement engineer must write a new BDD
ehavior on a feature with the description: “A login system is
upported by the product”. Following steps are required for this
ctivity:

1. The requirement engineer selects the text (or keywords) of
the feature’s description.

2. The requirement engineer selects an automated script im-
plementing NCD (an implementation available at Script
(2020)).

3. The existing feature files are placed in a folder, each feature
file having a unique name.

4. The search is performed using the feature’s description
or keywords. NCD works by comparing the compressed
sizes of the description of new behavior and compressed
size of each feature file with their concatenation’s com-
pressed size. NCD values lie between ‘‘0’’ and ‘‘1’’, where
11
a value closer to ‘‘0’’ means that the similar feature file is
found while a value closer to ‘‘1’’ represents that no similar
feature file is found.

5. The requirements engineer reviews the feature files with
values closer to ‘‘0’’ and assesses the relevance of the
behaviors inside the feature files for reuse.

6. The requirement engineer identifies the closest matching
behavior from the feature files.

7. The behavior is modified for reuse.

For other search techniques (such as text classification, simi-
larity ratio), steps 2 and step 5 are changed based on the tech-
nique’s implementation. The reuse process’s complete details are
described and evaluated in another study by the authors (avail-
able at Irshad and Petersen (2020)).

Develop System Level Feature File: In this activity, the re-
quirements engineer, elaborates on the behaviors and adds more
details (e.g., steps to perform actions, expected inputs/outputs,
etc.). A system-level feature file is developed that contains ex-
ecutable scenarios contained in a behavior. This file (contain-
ing behaviors) is approved by a customer or product managers
to have an agreed executable feature file and agreed customer
requirements.

Develop hooks for System Level Feature File: In this ac-
tivity, test developers develop hooks (or glue code (Coveros,
2019)) for the feature files. The hooks are the implementation
of keywords/sentences created in the previous step, e.g., a key-
word “A login system is present for the product” is connected
with test-code written in any programming language. Similarly,
all keywords are linked to unique test methods written in a
programming language. Once these hooks are developed, the
feature file (along with hooks/glue code) keeps executing in the
integration test-case environment.

Develop feature files per sub-product: The behaviors in the
ystem-level feature file are defined for a single black-box like
ystem. However, in this step, the behaviors (and corresponding
ooks) are divided as per the division of sub-products in a large-
cale system. Next, each sub-product develops the product code
gainst the features files belonging to their sub-product. The
roduct code is tested using the sub-feature file.
Execute sub-system feature files: This activity belongs to the

ub-products that are developing their corresponding sub-feature
iles. This activity helps the developing team of the sub-product
o identify when their new behaviors are complete. When the
orresponding behaviors are ready, the behaviors’ code is sent for
ystem-level verification (see next activity).
Execute system-level feature file: The system-level feature

iles execute the behaviors written during the phase “Develop
ystem Level Feature File”. Initially, all the behaviors may fail.
hen the sub-features are complete, and the behaviors are veri-

ied, the feature is considered completed and ready for release.
Example of Usage of Process in Large-scale Organization In

his section, we demonstrate the use of activities of the proposed
rocess in a large-scale context. The example is based on the
se case belonging to the authors’ large-scale organization. The
xample concerns a large-scale system having three components
s described below:

• A sub-product contains all the customer-related functional-
ity (called Product X in this example).

• A sub-product contains all the user contracts related func-
tionality (called Product Y in this example).

• A sub-product contains all the packages offered to the cus-
tomer (called Product Z in this example).

Start: A telecommunication customer requests a software de-
elopment organization to develop a feature described as “A

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
D

a
b

t
t
r
A
d

able 7
escription of activities in proposed process.
Activity Actor Input Output

Specify new Behaviors
for Product

Product manager An idea from Product manager or
requirements from customer for adding
new behaviors in the product.

A product manager communicates description
of behaviors expected in the product to
requirements engineers.

Search for Existing
Reusable Behaviors

Requirements
engineers, Domain
experts

Description of new behaviors from
product manager is provided.

If similar existing behaviors exists in products,
then these are identified and adapted for new
cases.

Develop System Level
Feature File

Requirements
engineers, Architects,
Verification engineers

Description of new behaviors from
product manager is provided.

A BDD feature file containing the behaviors
that may be developed. The behaviors are in
the form of executable scenarios (test-cases).

Develop hooks for
system level feature files

Test Developers A BDD feature file containing the
behaviors as executable test-cases.

Executable keywords and the back-end
implementation to make the behaviors
executable as automated test cases.

Develop feature files per
sub-product

Architects and
Developers

Executable keywords and BDD feature
file from activity “Develop System Level
Feature File”.

Sub-feature file containing relevant behaviors
for each sub-product and the implemented
product code of the new behavior.

Execute sub-system
feature file

Developers Executable sub-feature file and
corresponding product code.

A test case execution report for each
sub-product and behavior.

Execute system-level
feature file

Developers, Test
engineers

Executable feature file containing
behaviors.

A test case execution report.
customer goes to the franchise store to sign up for a data package.
As an agent, orders and activates the required package for the
customer.”

Activity: Specify new Behaviors for Product: The product man-
ger, acting on customer requests for a new feature, writes new
ehaviors for the large-scale system to fulfill the feature.

• Behavior 1: Create and activate a customer in the system.
• Behavior 2: Create and activate a contract in the system.
• Behavior 3: Start contract with details of Data Package.

Activity: Search for Existing Reusable Behaviors: For the sake of
his example, we assume that no reusable behaviors are present;
herefore, the behaviors need to be developed from scratch. The
emaining activities are performed based on this assumption.
n example of this activity is already provided in the activity
escription.
Activity: Develop System Level Feature File: The behaviors are

elaborated and written in a system Level “Feature File”. These
elaborated behaviors are:

Behavior 1: Create and activate a customer in the system.
Given Send a Create Customer request with

ID 1 to Product X
When Activate Customer with ID 1 in Prod-

uct X
Then Verify Customer with ID 1 is active in

Product X
Behavior 2: Create and activate a contract in the system

Given Send a Create contract request with
ID A to Product Y

When Activate contract with Id A in Prod-
uct Y

Then Verify contract with ID A is active in
Product Y

Behavior 3: Start contract with details of Data Package
Given An item called Data Package is

present in Product Z
When Data Package is fetched correctly
And Data Package item is added to Contract

A in Product Y
Then Verify Contract is updated in Product

Y
Activity: Develop hooks for system level feature files: The hooks

are the implementation of keywords/sentences created in the
12
previous step. The following examples show the hooks corre-
sponding to keywords from Behavior 1. Similar hooks are devel-
oped for Behavior 2 and Behavior 3 as well.

@Given(’Send a Create Customer request with ID 1 to Product X’)
def create_customer_product_X():

Code that sends the request to create customer in Product X

@When(’When Activate Customer with ID 1 in Product X’)
def activate_customer_product_x():

Code that activates the customer in Product X.

@Then(’Verify Customer with ID 1 is active in Product X’)
def verify_customer_active():

Code that verifies customer is active in Product X

Activity: Develop Feature Files Per sub-product: In our example,
the behaviors are based on (1) Customer related functionality
from Sub-product X, (2) Contract related functionality from Sub-
product Y, (3) Package related functionality from Sub-product Z.
These three correspond to three different sub-systems; hence the
system-level behaviors are divided into three sub-system feature
files as described below:

• Sub-feature file 1: Contains the elaborated Behavior 1 and
hooks used by Product X’s development teams. The devel-
opment team uses the sub-feature file 1 as a requirement
and test document to develop the product code for Behavior
1.

• Sub-feature file 2: Contains the elaborated Behavior 2 and
hooks used by Product Y development teams. The develop-
ment team uses the sub-feature file 1 as a requirement and
test document to develop the product code for Behavior 2.

• Sub-feature file 3: Contains the elaborated Behavior 3 and
hooks used by Product Z’s development teams. The develop-
ment team uses the sub-feature file 1 as a requirement and
test document to develop the product code for Behavior 3.

The development teams then develop product code to fulfill
the requirements present in their corresponding sub-feature file,
e.g., Behavior 1 is developed in Product X by using Sub-feature
file 1.

Activity: Execute subsystem Feature Files: The automated sub-
feature 1 behaviors are tested against the product code developed
for Behavior 1. A test report is generated for the sub-product
development teams and stakeholders.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
S

s
w
A
i

4
t
t

w
p
t
t
(

d
b
m
a
p
h
g
e
t
o
w
s
t
t
o
t
b
w
s

o
a

b

t
t
c
m
p
f
o
d
t
p
d
s
w
O
t
b
a
p
t

f

d

able 8
ignificance: Summary of feedback from industrial evaluation.
Significance of using the process Noted in

Improved communication between stakeholders 7 replies
It helps in understanding end-user needs and focus on essentials. 5 replies
It helps in the early detection of interface non-alignments
between large-scale systems.

4 replies

Structured way to write requirements. 1 reply
Non-technical communication between stakeholders. 1 reply
Out of the box documentation of the whole system. 1 reply
Real-Time tracking of progress of development in distributed
software systems.

1 reply

Clearly defined responsibilities. 1 reply
Supports the reuse culture in the organization. 1 reply
Involvement of customer before development starts. 1 reply
Improved quality of the product with this process. 1 reply

Activity: Execute System Level Feature Files: The execution of a
ystem-level feature file generates reports describing each key-
ord’s status, e.g., if keywords of Behavior 1 are passing or failing.
n example report containing results from Behavior 1 is shown
n Fig. 4.

.3.2. RQ3.2: What conclusions (concerning the significance, limita-
ion, and completeness) can be drawn during the industrial evalua-
ion of the proposed process?

The proposed process and its components were evaluated
ith industrial practitioners’ help, and their feedback helped im-
rove the process. In general, practitioners were optimistic about
he proposed process and suggested four changes to improve
he proposed process. The results of each aspect of evaluation
significance, limitation, and completeness) are provided below.

Significance of using the process: The results from the in-
ustrial evaluation show that practitioners believe that several
enefits are associated with this process, such as improved com-
unication and collaboration between stakeholders for technical
s well as non-technical communication. They believe that the
roposed process enhances communication by involving stake-
olders in discussions related to the feature files. They also sug-
ested that the system-level feature file can develop a better
nd-to-end understanding of the product’s use-cases. Few prac-
itioners suggested that the process may result in early detection
f the misaligned interfaces of the sub-product. A practitioner
ith a background in requirements engineering believed that the
tructured way of writing scenarios and behaviors might improve
he quality of the requirements and provide out-of-box documen-
ation of a large-scale product’s behavior. The recommendation
n the actors for each activity was also considered a benefit of
his process as this defines and delegates the responsibilities in a
etter way. The support for reuse culture and tracking of progress
ith executable system-level feature files were also mentioned as
trengths of this process.
The significance of using the proposed process and the number

f corresponding replies from industrial surveys and interviews
re described in Table 8.
Some quotations from the survey respondents regarding the

enefits are given below:

“Improves communication between all stake holders and en-
ables them to easily engage in product development cycle. And
BDD focuses on the functionality more which ensures you are
delivering the value business needs.”

“It can definitely solve misunderstandings between product
management and development organization.”
13
Table 9
Limitations: Summary of feedback from industrial evaluation.
Limitations of using the process Noted in

Dependence on far too many stakeholders. 8 replies
Behaviors may not be easy to define for large-scale systems with
many dependencies and requirements e.g., non-functional
requirements

3 reply

It requires learning of new technologies. 2 replies
Customer may not be interested in Feature file iterations. 1 reply
Lesser involvement of Architects as compared to Product
managers.

1 reply

Time-consuming and costly process. 1 reply
Difficult to develop sub-feature files. 1 reply
Maintenance of test-cases can be a problem. 1 reply
No support for the delivery of partially complete solution. 1 reply
No drawbacks mentioned by practitioners 6 replies

“By defining tests and preparing for automated tests before
anything is developed, a faster, and more business-driven
approach of the development can be achieved. Preferably,
for a contract with a customer, each paragraph/clause in the
contract should be managed and validated in the same way
(TDD).”

“The main benefit is the increased focus on the business value
for the user/customer. The BDD emphasize focus on ‘WHAT’
shall be achieved.”

Limitations of using the process: During the evaluation, prac-
itioners were asked to identify the drawbacks or weaknesses of
he proposed process. According to the practitioners, the pro-
ess requires collaboration between many stakeholders, which
akes it a costly and time-consuming process at the start. One
ractitioner mentioned that it is challenging to develop a sub-
eature file. The practitioners also suggested that maintenance
f the feature files and the sub-feature files can be a possible
rawback due to these feature files’ textual nature. One practi-
ioner described that defining behaviors, the first activity of the
rocess, may not be straightforward. This compulsory activity of
efining the behaviors at the start of the process can be con-
idered a drawback. In rare cases, requirements are understood
ith the help of experimentation during development phases.
ne interviewee mentioned that involving customer to approve
he feature file before the development starts can become a
ottle-neck and delay the development. During the evaluation,
practitioner mentioned that sometimes our organization sends
artial deliveries to the customer to secure milestones, and with
his process, only finished features can be delivered.

Table 9 shows the limitations (and the number of replies)
ound during the evaluation of the process.

Some quotations from the survey respondents regarding the
rawbacks are given below:

“Can be hard to write correct testcases since nothing is imple-
mented. Testcases for all sub-product and a ‘‘final’’ testcases
that connects all the dots (sub-products) that finalizes the
customers requirements.”

“I think in this process few people/teams need to work in-
between and this might be a problem if there are not enough
resources available/allocated for doing this.”

“The main Pro for BDD is also the main limitation which is
availability of all stake holders. Absence of any team/member
can cause ambiguities in overall process.”

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

p
s
(
i
T
o
r
a

t
a
i

t

Fig. 4. An example report from the activity ’Execute System Level Feature Files’.
Completeness: Steps to be removed from the process: The
ractitioners were asked to identify activities that are not neces-
ary or important for the proposed process. Only one practitioner
during the interview) suggested removing the searching for ex-
sting reusable artifacts as a mandatory activity of the process.
he practitioners motivated his suggestion that this activity is
ften performed based on the practitioner’s expertise and expe-
ience. Therefore, there are no clear guidelines present for this
ctivity. A quotation from another practitioner is given below.

“No, I belive that all the steps are nessesary but in time, when
the process get’s more established steps might be changed or
removed naturally, because both dev teams and clients get
more experience on handling the process.”

Completeness: Steps to be added to the process: To improve
he process using the practitioners’ feedback, the questionnaire
nd interview guide asked for suggestions to add a new activity
n the proposed process.

There were four leading suggestions by practitioners, and
hese suggestions are quoted below:

1. Architectural changes: “I think that there can be a case
when an architectural design problem is not found until later
test phases. There could be a loop back to development to re-
engineer the added feature. Maybe not the wanted behavior
but sometimes a necessary evil...”

2. Consistent Terminologies: “BDD requires you to be ex-
tremely stringent about your tests, keywords, format, and how
they are structured. But I’d say that’s a benefit as well.”

3. Interface changes: “Activity for approval of interfaces where
two subsystem needs to communicate with each other.”

4. Collaboration: “Like I said above, the process works well
if it is being applied to a single element/TPG of a larger and
complex system. For developing complex, compound system
level features and functions need a heavy co-operation, mak-
ing sure everyone understands and follows the process in the
same way. This is a challenge for which there are no proven
steps that can be implemented.”

Table 10 contains a summary of feedback related to the com-
pleteness of the process from the practitioners provided during
industrial evaluation.
14
Table 10
Completeness: Summary of feedback from industrial evaluation.
Steps to be added to the process Noted in

Architectural problems discovered very late in
development should be handled.

10 replies

A step to verify if interfaces are defined and agreed
between sub-systems.

9 replies

A step to verify if interfaces are defined and agreed
between sub-systems.

2 replies

A step that verifies the conformance of feature file
with organization guidelines.

1 reply

Steps to be removed from the process Noted in

The Step “Search for Existing reusable Behavior”
should be removed as it is not necessary for the
process.

1 reply

Final version of proposed process - After the feedback

The practitioners’ feedback was considered, and the proposed
process was improved based on the suggestions from them. Fol-
lowing changes were introduced in the process:

• A new check was introduced to validate that the developed
system-level feature file is according to the standard, and
ontology is consistent with organizational concepts and con-
tent of previously developed feature files. This validation
may help in developing a feature file consisting of already
agreed keywords.

• A new activity is introduced that deals with the inter-
face and architectural changes. In this activity, architectural
changes are evaluated, and all sub-products agree on new
or modified interfaces.

• To accommodate architectural changes found late in the de-
velopment process, as suggested by practitioners, a check is
introduced to counter such a scenario. This check may revert
the process to the activity where architectural changes are
evaluated.

The final version of the proposed process is shown in Fig. 5.

Lead time to apply the process

During the interviews, we asked the practitioners to estimate
the time to apply this process in the organization based on their
previous experience of similar changes. Interviewees described
that the process requires lesser lead time related to new activities.
However, the bigger change is to educate and convince the practi-
tioners regarding the benefits of BDD based process. Practitioners

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944
Fig. 5. Final Version: A process for large-scale product development.
estimated that it might take from 1 year to 2 years before the pro-
cess is fully implemented in large-scale organizations. Table 11
provides the different estimates provided by the interviewees.

Common and different activities

During the interviews, we asked the practitioners to identify:
(i) the activities that do not exist in the current development
process, (ii) the activities that exist or partially exist in the current
development process. We found that most activities partially
exist, and the activities that do not exist are “Search for Existing
Reusable Behaviors”, and “Develop hooks for subsystem level
feature files”. Table 12 shows the reply to this question provided
by each interviewee. The notation “Not Present” describes when
no similar activity is present, “Partially Present” describes when
the activities exist in some form (may need modifications before
applying), e.g., features are written in word documents but not in
feature files as process demands.

5. Discussion

This section provides a discussion on the crucial aspects of the
research questions and industrial evaluation.

5.1. Characteristics of the proposed process

In Section 4, we have proposed a development process that
utilizes BDD practices for large-scale software development. Es-
sential characteristics of the process are discussed below:

System level feature file for large-scale development: The
system-level feature files, developed at the start of the process,
contains vocabulary and terms that are used and understood
by the whole organization. A check is introduced to validate
that feature files include commonly understood business needs,
ontology, and vocabulary. This helps in large-scale development
as different teams, and development units have less chance of
misunderstanding the requirements (Solis and Wang, 2011). The
involvement and approval of feature files from the product man-
agers or customers help reduce the chances of missed require-
ments. Furthermore, the system-level feature file can help de-
velop business-critical features since the feature file contains
scenarios describing the business needs.

Saved effort with parallel product and test development:
According to Kumar and Mishra (2016) test automation develop-
ment takes around 30% of costs of software development (Kumar
and Mishra, 2016). As the feature file contains executable test

scenarios, this feature file can be used by product development

15
teams as a requirement, and the system-level test organization
can use the feature file as an automatic system test. In this way,
product development and system-level test automation phases
can be executed parallel, thus, saving time to verify and deliver
the product. In our proposed process, test automation and prod-
uct development can run in parallel, resulting in reducing time to
deliver by 30%.

Early feedback loops: Previous research in software integra-
tion projects has shown that rapid feedback loops are essential
to identify, evaluate, and fix the problems with software artifacts
cheaply and quickly (Mårtensson et al., 2018). As large-scale
product development is an iterative process; therefore, quick
feedback loops regarding requirements, architecture, and testing
can help identify and resolve the issues quickly. In our proposed
process, multiple feedback loops are present, helping identify
the potential problems relatively quickly. These feedback loops
are on completeness of requirements, uniform vocabulary, struc-
tural misalignment, and verification of requirements, as shown
in Fig. 5. The process assumes that a BDD-based use-case is
only released when development is complete and sub-products
are ready. However, in exceptional circumstances, when a par-
tial delivery is needed, then gateways may be overridden, and
remaining parts of the BDD use-case are released in the next
iteration, thus completing the process’s flow.

Less coupled team practices: The characteristics related to
software teams such as the process that the team follows, the
technology that the team uses to play an essential role in the
success of a team (Guinan et al., 1998). Therefore, any devel-
opment process must empower the teams to select the team’s
internal development practices and only guide the process level.
In our proposed process, we have not limited the development
or verification teams to use any particular tools (e.g., Jenkins,
JUnit, etc.), processes (e.g., XP, pair programming), or technology
(e.g., Java, Python). The process operates at an abstract level
without impacting the internal process of teams. This transforms
our proposed BDD based process more natural as the teams are
not impacted internally.

Controlled architectural evolution: Large-scale software
products are developed in multiple iterations, and each iter-
ation results in architectural changes (evolution). Studies had
shown that structural degradation might happen to a product’s
architecture when it evolved multiple times (Jazayeri, 2002).
By introducing a separate activity that evaluates architectural
changes, the proposed process provides a controlled way to
evaluate and change architecture. The architects can also use this
activity to agree on the interfaces and other technical details
(e.g., headers in the requests, responses).

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

T
L

f
n
n
h
t
s
e
t
a
d
e
B
s
t

5

t
a
b

p
i
d
m
b
a
m

c
h
a
H
o
m
u
n
v

o
h
c
t
H
i
e
f
t
i

able 11
ead time for applying this process.
Interviewee 1 Interviewee 2 Interviewee 3 Interviewee 4 Interviewee 5 Interviewee 6 Interviewee 7

1 year 1–2 years 1–2 years 10–12 months 1–2 years 1.5 years 1 year
Table 12
Common and different activities. Partially present = ∂ , Not present = ⊙.
Activity Interviewee 1 Interviewee 2 Interviewee 3 Interviewee 4 Interviewee 5 Interviewee 6 Interviewee 7

Specify new Behaviors for Product ∂ ∂ ∂ ∂ ∂ ∂ ∂

Search for Existing Reusable Behaviors ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Develop System Level Feature File ∂ ∂ ∂ ∂ ∂ ∂ ∂

Develop hooks for subsystem level feature files ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

Develop feature files per sub-product ∂ ∂ ∂ ∂ ∂ ∂ ∂

Execute system-level feature file ∂ ∂ ∂ ∂ ∂ ∂ ∂
Support for reuse: An initial activity in the process (i.e., Search
or Existing Reusable Behaviors) requires that requirements engi-
eer looks for similar behaviors that can be reused for creating a
ew feature. Identifying related items at the start of the process
as a significant impact on the cost, quality, and development
ime of new features. The similarity of features may help identify
imilar code and similar test artifacts developed previously. How-
ver, it is essential to mention that this study’s scope is limited
o the BDD based process for large-scale product development,
nd the scope does not cover the reuse related practices such as
eveloping for reuse, searching for reusable BDD based artifacts,
tc. A separate study is planned to focus on the reuse potential of
DD based artifacts (i.e., human-readable documents) in a large-
cale context similar to the work by Rahman and Gao (2015) in
he context of microservices architecture.

.2. Addressing the challenges identified by software practitioners

In Section 4, practitioners suggested challenges that prevented
hem from adopting BDD. The proposed process in this study
ttempts to mitigate a few of these challenges, as described
elow.
Challenge: Specification of behaviors In the new proposed

rocess, specific actors are assigned to specify the behaviors early
n the development life-cycle. Moreover, checks have been intro-
uced to get the customers’ approval of behaviors (or product
anagers). With the help of these two steps, the specifications of
ehaviors in large-scale projects can be improved. Furthermore,
ctivity is introduced to search for similar existing behaviors,
aking it easier to specify the behaviors.
Challenge: Ownership and Maintenance The new process

learly defined responsibility matrix (Actors in Table 7) that can
elp reduce the confusion related to ownership. A product man-
ger can be considered as the owner of the BDD related processes.
owever, the feature file and corresponding sub-feature files are
wned and maintained by their corresponding product develop-
ent teams. The maintenance-related challenge can be tackled
sing a similar approach as used in version control and mainte-
ance of requirements documents. The organization already uses
ersioning control software.
The maintenance-related challenge to the different versions

f the system-level feature file, sub-system feature file, and the
ooks can be resolved with software traceability. Organizations
an utilize information retrieval techniques to trace the link be-
ween different software artifacts, as demonstrated by Cleland-
uang et al. (2014). The maintenance of the system-level behav-
ors can be resolved by performing refactoring on the behaviors
ach time a new behavior is added to the system level feature
ile. A separate study provides an approach and guidelines on
he refactoring of BDD behaviors (Irshad et al., 2020). The hooks
mplementing the test code are written in modern programming
16
languages. The IDEs (such as Eclipse, IntelliJ) contains plugins that
support the maintenance of BDD behaviors and hooks, e.g., when
a hook is no longer used when a keyword is missing for a
hook (Borg and Kropp, 2011).

Challenge: Adoption of new tools and technologies As men-
tioned previously, the proposed process uses existing tools and
practices, and impact is least on the development team; hence
there is a less likely scenario when competence is not present in
the organization. Furthermore, each new change in the organiza-
tion requires strategic investment from management to keep the
organization competitive (Gebhart et al., 2016). For this change
to happen, education and training sessions may be needed. Fur-
thermore, an industrial evaluation showed that two use-cases
were developed with relative ease, confirming that improving
the competence may be easier than what practitioners initially
suggested.

Challenge: Cost Benefits of BDD in large-scale To make the
process less expensive, an activity was introduced in the new
process that identified the reusable content already present that
can be used for the new feature file. The development process
may be expensive, but future benefits such as reduced defects and
improved product quality may balance out the expensive process
in the long term.

Challenge: Scale of software products The new proposed
process keeps in view the large and distributed scale of the
product. It identifies that it is important to agree on: uniformly
understood system-level feature files, using commonly under-
stood vocabulary and well-defined interfaces and architectural
changes. These two steps can ensure that deviation from software
requirements and architecture principles is reduced in large-scale
products.

5.3. Adaptation constraints for organizations

Based on the results of the industrial evaluation, the applica-
tion of the proposed process is a time-consuming and compli-
cated task that requires an organization’s long-term commitment
and budget for incremental transformation. Organizations need
to allocate budget and personnel to plan and transform the or-
ganization to use the proposed process. This adaptation of a new
process may require competence upgrade (e.g., training for new
product managers), re-organizing resources, and organizational
guidelines (e.g., ontology, architectural, BDD templates). A sep-
arate and long term study is required to plan, apply, observe, and
report the findings of this process’s application.

5.4. Comparison with similar approaches

As mentioned in Section 2 three studies, according to informal
literature review, have proposed to use BDD for the complete
life-cycle of product development (Carrera et al., 2014; Diepen-
beck et al., 2012). A discussion on the comparison of approaches

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

p
i

s
f
f
p
d
f
T
o
a
(
p
b
d
d
u
a
m

c
m
p
i
t
t
r
l
a
p
B
b

p
m
a
s
c
a
H
o
t
p
w

v
u

6

t
f
l
t

a
2
u
v
w
s
t
o
t
i

c
o
t
m
f
u
p
r
c
f
m

w
e
o
p
l
r
t
b

t
2
b
a
r
a
s
(
a
e

resent in each of these three studies and our proposed approach
s provided in this section.

In their study on circuit design, Diepenbeck et al. (2012)
uggested a product development method that uses the BDD
eature file as a first requirement document. Each step in the
eature film is then developed in a single iteration using the
rogramming language VHDL. The approach suggested that test-
ata (configurations) and BDD test-cases should be separated
rom each other to use the formal verification methods for testing.
he approach is limited to small scale software product devel-
pment. There are two main differences between our proposed
pproach and the approach proposed by Diepenbeck et al. (2012):
i) their approach is not suitable for a product with multiple sub-
roducts since the flow assumes that only one statement may
e developed each time, making it difficult to perform parallel
evelopment, secondly, (ii) the approach is not applied on any in-
ustrial case instead the demonstration of approach is conducted
sing a simple example. Essential aspects of development, such
s reuse, system-level testing, and customer involvement, are not
entioned in the study (Diepenbeck et al., 2012).
Carrera et al. (2014) proposed a development methodology

alled a BEAST Methodology that is applied in the context of
ulti-agent systems. The method has few similarities with our
roposed approach, i.e., the product owner suggests the behav-
ors, and later, these are elaborated and described for indus-
rial use. However, there are some fundamental differences be-
ween our proposed approach and the approach proposed by Car-
era et al. (2014), such as there is no uniformly used system-
evel feature file, there is no support for reuse, the development
nd testing are sequential processes. Our proposed approach
rovides a mechanism to support a common understanding of
DD in large-scale systems, which is another essential difference
etween these approaches.
Rahman and Gao (2015) conducted their study on BDD in a

roduct’s life-cycle in the context of microservices architecture. A
icro-services architecture does not necessarily mean it involves
large-scale software organization (as defined in Section 1). This
tudy deals with reuse and maintenance aspects of BDD test-
ases in a complete product life-cycle. The study does not propose
ny development process for large-scale software development.
ence, our research is different concerning the context and the
bjective than the study by Rahman and Gao (2015). However,
he reuse of BDD test-cases and their maintenance-related ap-
roaches are proposed by Rahman and Gao (2015) in combination
ith our proposed approach.
In short, all of these approaches and our approach are pro-

iding the solution to different problems even though these are
sing BDD on complete software development life-cycle.

. Threats to validity

Runeson et al. (2012) classifies the validity threats into four
ypes and suggests ways to improve the validity threats. These
our validity threats are reliability, construct validity, internal va-
idity, external validity. These four validity threats and measures
o improve the validity are discussed in this section.

Reliability deals with the extent to which the data collection
nd data analysis are dependent on the researcher (Runeson et al.,
012). To minimize this threat, Runeson et al. (2012) suggested
sing ‘peer debriefing’ where more than one researcher is in-
olved in reviewing and interpreting documents. During each
orkshop session, one of the researchers took notes, and after the
ession, these notes were discussed and finalized with the help of
he second researcher. In a few cases, meeting notes (in the form
f meeting minutes) were sent to the workshop participants for
heir feedback or clarifications. Later, an analysis was systemat-
cally performed on these notes using the constant comparison
17
method. The results from the analysis were also discussed and
agreed upon by two researchers (peer debriefing). In industrial
evaluation, the data was collected in an automatic way using the
web forms, reducing the chance of missing valuable information
by the researcher. Later, the two researchers agreed to interpret
the practitioners’ feedback before using this feedback to improve
the proposed method. In short, we have tried to mitigate this
validity threat by involving two researchers (i.e., peer debriefing),
using automatic data collection and storage (i.e., audit trail, as
suggested by Runeson et al. (2012)), and using a systematic
method for data analysis. To triangulate the findings, interviews
were conducted to re-confirm the results from the workshops
and industrial surveys. These interviews were recorded, and the
findings from each interview were sent to the interviewee to
increase our investigation’s reliability, i.e., known as member
checking as per (Runeson et al., 2012).

Internal Validity concerns the factors studied by the re-
searchers, i.e. if these factors are affected by any other factor
unknown to the researcher (Runeson et al., 2012). This threat
applies to the study’s part, where participants listed the benefits
and challenges of adapting a BDD based process. The practition-
ers may identify the benefits and challenges because of other
non-BDD-related factors (e.g., problems with BDD based process
maybe because of other issues that the practitioner did not
account for). To mitigate this threat, Runeson et al. (2012) recom-
mended using triangulation — to use data from different sources.
Therefore we have conducted multiple workshop sessions with
multiple participants located at various sites. To mitigate the
researcher’s bias during an industrial evaluation, two researchers
were involved in the preparation, writing questionnaire, and
analysis of the feedback to improve validity. Similarly, the inter-
view guide was finalized by two researchers as well, and member
checking was conducted to reduce this threat to the validity of
our study.

External Validity deals with the extent to which the results
an be generalized, and the results are of interest for people
utside the organization (Runeson et al., 2012). Even though
he first part of this study took place in one software develop-
ent organization, we have included industrial practitioners from

our other organizations working in large-scale software prod-
cts during the industrial evaluation. Furthermore, the industrial
ractitioners who were part of this study belonged to different
oles with different experience levels, e.g., product managers, ar-
hitects, developers, tester, etc. This involvement of practitioners
rommultiple software organizations and multiple roles may help
itigate this threat to our study’s validity.
The evaluation was conducted with experienced practitioners

orking in different roles (e.g., developers, testers, requirement
ngineers) in the organization who have a prior understanding
f test-first methodologies; therefore, it was challenging to select
ractitioners from the organization randomly. We developed se-
ection criteria before sending the survey and interview calls to
educe the bias. These measures might have helped in reducing
he potential bias, but there is a possibility that the researcher’s
ias exists when selecting the participants.
Construct Validity concerns with how well the study cap-

ures the construct what it intends to capture (Runeson et al.,
012). To mitigate this threat, the researchers presented BDD’s
ackground in each workshop, and participants inquired about
ny missed/not understood parts of the BDD. Furthermore, the
esearchers had considerable experience working in the company,
nd they were able to explain the concepts in vocabulary under-
tood by the practitioners from the organization. Runeson et al.
2012) has described this usage of standard terms and vocabulary
s a way to reduce this threat to the study’s validity. For industrial
valuation, a detailed description, background, related concepts,

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

a
c
t
t

g
c
p
a
u
t
p
p

7

p
t
h
t
d
b
a
s
o
s
i
o
e
b
l
i
w
t
q

B
s
a
q
t
m
s
d
B
e
b
n
r
t
i
p

s
t
w
i
l
a
a
p
b
d
t
B
c

nd example were provided to each participant to understand the
oncepts correctly. For the participants from outside organiza-
ions, an additional step was taken where a researcher explained
o them the intended concepts behind the proposed method.

For the interview studies, we carefully designed the interview
uide; we provided examples of each step in the proposed pro-
ess so that the interviewee can understand all the details. A
resentation was made to the interviewees on the basic concepts
nd working of BDD as well. Thus to counter this threat, we
sed multiple research methods and presented BDD concepts to
he participants. Furthermore, during interviews, we inquired the
articipants if they understood the BDD concepts and proposed
rocess that we presented to them.

. Conclusion

Large-scale product development involves a high level of com-
lexity and requires interaction and collaboration among mul-
iple stakeholders from various sub-products. Previous research
as identified various aspects of large-scale product development
hat need improvement and further research. Behavior-driven
evelopment was introduced to facilitate product development
y enhancing collaboration and by educating the practitioners
bout the business use-cases. In this study, we have evaluated the
uitability of behavior-driven development (BDD) in the context
f large-scale product development with the help of six workshop
essions, two sessions of BDD demonstrations for practitioners, by
nvolving eighteen industrial practitioners from five large-scale
rganizations, and by interviewing seven experienced practition-
rs from industry. The study starts by identifying the supposed
enefits and challenges related to the adaptation of BDD in a
arge-scale context. Later, a BDD inspired development process
s proposed for large-scale product development. This process
as evaluated in the industry and improved with the help of
he feedback of practitioners. A summary of the three research
uestions is provided here.
RQ 1: What are the benefits practitioners associated with

DD in large-scale software projects? During multiple work-
hop sessions, practitioners were asked about the benefits they
ssociated with a BDD based product development. Improved
uality of software requirements is seen as a benefit as the
emplate, Given, When, and Then, can help in describing require-
ents. Practitioners believed that the feature files containing
ystem-level use-cases could help in developing a uniform un-
erstanding of requirements, which is perceived as a benefit of
DD. The reuse of artifacts in large-scale projects is also consid-
red a benefit in a large-scale project. Furthermore, practitioners
elieved that test organization could benefit more if the orga-
ization moves to BDD. BDD reduces the chance of ambiguous
equirements, and the stakeholders already agree with accep-
ance tests before the development start. These benefits can help
n improving the overall quality of verification in a large-scale
roject.
RQ 2: What are the challenges that BDD leads to in large-

cale software projects? Software practitioners were asked about
he most significant challenges in the context of large-scale soft-
are development. They suggested that a lack of clear ownership

n BDD and competence are critical challenges in the context of
arge-scale projects. The practitioner also believed that BDD is
n expensive process to follow, as BDD requires detailed analysis
nd modeling of the scenarios, which can be costly in large-scale
rojects. They also listed that maintenance of BDD scenarios can
e challenging because of the textual nature of scenarios. The
ifficulty in writing system-level test-case was also a challenge
hat practitioners mentioned. Lastly, the Versioning Control of
DD artifacts is also considered as a challenge in a large-scale
ontext.
18
RQ 3: How can BDD be applied in large-scale software
development projects? Based on the challenges listed in the
previous research question, a BDD inspired development process
is proposed in this study. The development process starts when a
product manager suggests new behaviors for the product. These
behaviors are then used by requirements engineers to search for
existing similar behaviors to reuse the existing artifacts. In the
next activity, the requirements engineer develops a system-level
feature file that elaborates on the new behaviors in the form of
features and scenarios. These scenarios are then developed into
executable test-cases with the help of hooks (also called glue
code). For the system-level verification, this executable system-
level feature file provides the status of development completed
for the new behaviors. This system-level feature file is then
broken down into several sub-feature files belonging to each sub-
product of large-scale products. Each sub-product then develops
and verifies the sub-product code based on the sub-feature file.
Once all the sub-feature files are verified, the feature moves to the
verification unit. In the last stage, if the system-level behaviors
pass, then features are considered as ready for release.

The process was evaluated in three steps, (i) by validating
few activities of the process with the help of two industrial use-
cases, (ii) by evaluating the complete process with the help of
eighteen practitioners from five large-scale product development
organizations, and (iii) by presenting and interviewing expe-
rienced software practitioners. Practitioners found this process
useful, and they believe that the process can improve communi-
cation, quality, reuse, and documentation of large-scale produc-
tion. However, few practitioners believed that the process could
be costly to implement as it requires the involvement of multiple
stakeholders, and their availability can be a bottleneck in the
process. Practitioners suggested changes in the proposed process,
such as a phase for architectural alignment and validating the
format of feature files. Later, these changes were included in the
final version of the proposed process. Practitioners were inquired
about time to apply the process, and all of them believed that it
might take more than a year to make this change in a large-scale
development organization.

Future Work As mentioned by some of our investigation par-
ticipants, introducing the proposed process in our organization
may take more than a year. As a consequence, we could not
perform the dynamic validation of our approach. Thus, we plan
to run the dynamic validation as part of our future work. This ap-
plication may help us in better understanding the characteristics
of the process so that we can improve it further before releasing
it for the software industry. Furthermore, we want to investigate
the reusability of behaviors in BDD based methodology, providing
guidelines to increase the reuse potential of these behaviors.

CRediT authorship contribution statement

Mohsin Irshad: Conceptualization, Methodology, Investiga-
tion, Formal analysis, Writing - original draft, Writing - review &
editing. Ricardo Britto: Conceptualization, Methodology, Writing
- review & editing, Supervision. Kai Petersen: Writing - review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

R

A

A

A

B

B

B
B

B

B

B

B

C

C

C

C

C

C

D

D

d

D

D

D

D

D

E

E

eferences

dolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the
experience of software development. Empir. Softw. Eng. 16 (4), 487–513.

li, N.B., Petersen, K., Mäntylä, M.V., 2012. Testing highly complex system
of systems: an industrial case study. In: Proceedings of the 2012 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement. IEEE, pp. 211–220.

li, N.B., Petersen, K., Schneider, K., 2016. Flow-assisted value stream mapping
in the early phases of large-scale software development. J. Syst. Softw. 111,
213–227.

ass, J.M., 2015. How product owner teams scale agile methods to large
distributed enterprises. Empir. Softw. Eng. 20 (6), 1525–1557.

egel, A., Nagappan, N., Poile, C., Layman, L., 2009. Coordination in large-scale
software teams. In: Proceedings of the 2009 ICSE Workshop on Cooperative
and Human Aspects on Software Engineering. IEEE Computer Society, pp.
1–7.

ehaveFramework, 2019. Behave. In https://behave.readthedocs.io/.
inamungu, L.P., Embury, S.M., Konstantinou, N., 2018. Detecting duplicate

examples in behaviour driven development specifications. In: 2018 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests (VST).
IEEE, pp. 6–10.

jarnason, E., Wnuk, K., Regnell, B., 2011. Requirements are slipping through
the gaps—A case study on causes & effects of communication gaps in large-
scale software development. In: 2011 IEEE 19th International Requirements
Engineering Conference. IEEE, pp. 37–46.

org, R., Kropp, M., 2011. Automated acceptance test refactoring. In: Proceedings
of the 4th Workshop on Refactoring Tools. ACM, pp. 15–21.

ritto, R., Smite, D., Damm, L.-O., Börstler, J., 2019. Performance evolution of
newcomers in large-scale distributed software projects: an industrial case
study. In: 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE). IEEE, pp. 1–11.

ui-Thanh, T., Willcox, K., Ghattas, O., 2008. Model reduction for large-scale
systems with high-dimensional parametric input space. SIAM J. Sci. Comput.
30 (6), 3270–3288.

arrera, Á., Iglesias, C.A., Garijo, M., 2014. Beast methodology: An agile
testing methodology for multi-agent systems based on behaviour driven
development. Inf. Syst. Front. 16 (2), 169–182.

isneros, L.A., Reis, C.I., Maximiano, M., Quiña, J.A., 2018. An experimental
evaluation of itl, tdd and bdd. In: ICSEA 2018, the Thirteenth International
Conference on Software Engineering Advances. ThinkMind, pp. 20–24.

larke, V., Braun, V., Hayfield, N., 2015. Thematic analysis. Qual. Psychol. Pract.
Guide Res. Methods 222–248.

leland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zisman, A., 2014.
Software traceability: trends and future directions. In: Future of Software
Engineering Proceedings. pp. 55–69.

ottam, J.A., Hursey, J., Lumsdaine, A., 2008. Representing unit test data for large
scale software development. In: Proceedings of the 4th ACM Symposium on
Software Visualization. pp. 57–66.

overos, 2019. Exploring glue code with cucumber-jvm. In https://www.coveros.
com/exploring-glue-code-with-cucumber-jvm.

alal, S.R., McIntosh, A.A., 1994. When to stop testing for large software systems
with changing code. IEEE Trans. Softw. Eng. 20 (4), 318–323.

e Almeida, E.C., Marynowski, J.E., Sunyé, G., Le Traon, Y., Valduriez, P.,
2010. Efficient distributed test architectures for large-scale systems. In: IFIP
International Conference on Testing Software and Systems. Springer, pp.
174–187.

e Carvalho, R.A., e Silva, F.L.d.C., Manhães, R.S., de Oliveira, G.L., 2013. Imple-
menting behavior driven development in an open source erp. In: Enterprise
Information Systems of the Future. Springer, pp. 242–249.

iepenbeck, M., Soeken, M., Große, D., Drechsler, R., 2012. Behavior driven
development for circuit design and verification. In: 2012 IEEE International
High Level Design Validation and Test Workshop (HLDVT). IEEE, pp. 9–16.

ikert, K., Paasivaara, M., Lassenius, C., 2016. Challenges and success factors
for large-scale agile transformations: A systematic literature review. J. Syst.
Softw. 119, 87–108.

ingsøyr, T., Fægri, T.E., Itkonen, J., 2013. What is large in large-scale? A taxon-
omy of scaling in agile software development. In: International Conference
on Product-Focused Software Process Improvement. Springer, pp. 273–276.

ingsøyr, T., Moe, N.B., 2013. Research challenges in large-scale agile software
development. ACM SIGSOFT Softw. Eng. Notes 38 (5), 38–39.

ingsøyr, T., Rolland, K., Moe, N.B., Seim, E.A., 2017. Coordination in multi-
team programmes: An investigation of the group mode in large-scale agile
software development. Procedia Comput. Sci. 121, 123–128.

arley, S., 2014. The digital transformation: staying competitive. IT Prof. 16 (2),
58–60.

gbreghts, A., 2017. A literature review of behavior driven de-
velopment using grounded theory. In: 27th Twente Student
Conference on IT. Available at: https://pdfs.semanticscholar.org/4f03/
Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf.
19
Feldt, R., Poulding, S., Clark, D., Yoo, S., 2016. Test set diameter: Quantifying
the diversity of sets of test cases. In: 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 223–233.

Gebhart, M., Giessler, P., Abeck, S., 2016. Challenges of the digital transformation
in software engineering. In: ICSEA 2016. p. 149.

Glaser, B.G., Strauss, A.L., Strutzel, E., 1968. The discovery of grounded theory;
strategies for qualitative research. Nurs. Res. 17 (4), 364.

Gohil, K., Alapati, N., Joglekar, S., 2011. Towards behavior driven operations
(bdops). In: 3rd International Conference on Advances in Recent Technologies
in Communication and Computing (ARTCom 2011). IET, pp. 262–264.

Gorschek, T., Garre, P., Larsson, S., Wohlin, C., 2006. A model for technology
transfer in practice. IEEE Softw. 23 (6), 88–95.

Guide, I., 2020. The interview guide to evaluate the process. In shorturl.at/hAHJS.
Guinan, P.J., Cooprider, J.G., Faraj, S., 1998. Enabling software development team

performance during requirements definition: A behavioral versus technical
approach. Inf. Syst. Res. 9 (2), 101–125.

Häser, F., Felderer, M., Breu, R., 2016. Is business domain language support
beneficial for creating test case specifications: A controlled experiment. Inf.
Softw. Technol. 79, 52–62.

Helgesson, D., Engström, E., Runeson, P., Bjarnason, E., 2019. Cognitive load
drivers in large scale software development. In: Proceedings of the 12th
International Workshop on Cooperative and Human Aspects of Software
Engineering. IEEE Press, pp. 91–94.

Irshad, M., Petersen, K., 2020. A method for supporting reuse of automated
acceptance test. In Submission to a Conference But Available at: www.
shorturl.at/aghyL.

Irshad, M., Petersen, K., Borstler, J., 2020. Reuse-potential: A measure to
support refactoring in BDD. In Submission in a Journal But Available
at: https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-
/view?usp=sharing.

Jazayeri, M., 2002. On architectural stability and evolution. In: International
Conference on Reliable Software Technologies. Springer, pp. 13–23.

Jørgensen, M., 2018. Do agile methods work for large software projects?.
In: International Conference on Agile Software Development. Springer, pp.
179–190.

Kasauli, R., Liebel, G., Knauss, E., Gopakumar, S., Kanagwa, B., 2017. Requirements
engineering challenges in large-scale agile system development. In: 2017
IEEE 25th International Requirements Engineering Conference (RE). IEEE, pp.
352–361.

Kettunen, P., Laanti, M., 2008. Combining agile software projects and large-scale
organizational agility. Softw. Process Improv. Pract. 13 (2), 183–193.

Konrad, S., Gall, M., 2008. Requirements engineering in the development of large-
scale systems. In: 2008 16th IEEE International Requirements Engineering
Conference. IEEE, pp. 217–222.

Kumar, D., Mishra, K., 2016. The impacts of test automation on software’s cost,
quality and time to market. Procedia Comput. Sci. 79, 8–15.

Lazar, I., Motogna, S., Pârv, B., 2010. Behaviour-driven development of foun-
dational uml components.. Electron. Notes Theor. Comput. Sci. 264 (1),
91–105.

Lethbridge, T.C., Sim, S.E., Singer, J., 2005. Studying software engineers: Data
collection techniques for software field studies. Empir. Softw. Eng. 10 (3),
311–341.

Lethbridge, T.C., Singer, J., Forward, A., 2003. How software engineers use
documentation: The state of the practice. IEEE Softw. 20 (6), 35–39.

Li, Y., Dong, T., Zhang, X., Song, Y.-d., Yuan, X., 2006. Large-scale software unit
testing on the grid. In: GrC. pp. 596–599.

Linares-Vásquez, M., Moran, K., Poshyvanyk, D., 2017. Continuous, evolutionary
and large-scale: A new perspective for automated mobile app testing. In:
2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. 399–410.

Liu, Z., Mei, P., 2014. Automated testing for large-scale critical software systems.
In: 2014 IEEE 5th International Conference on Software Engineering and
Service Science. IEEE, pp. 200–203.

Lübke, D., van Lessen, T., 2016. Modeling test cases in bpmn for behavior-driven
development. IEEE Softw. 33 (5), 15–21.

Mårtensson, T., Ståhl, D., Bosch, J., 2018. Enable more frequent integration of
software in industry projects. J. Syst. Softw. 142, 223–236.

Melnik, G., Maurer, F., 2007. Multiple perspectives on executable acceptance test-
driven development. In: International Conference on Extreme Programming
and Agile Processes in Software Engineering. Springer, pp. 245–249.

Minhas, N.M., Petersen, K., Börstler, J., Wnuk, K., 2020. Regression testing for
large-scale embedded software development–exploring the state of practice.
Inf. Softw. Technol. 120, 106254.

Molléri, J.S., Petersen, K., Mendes, E., 2020. An empirically evaluated checklist
for surveys in software engineering. Inf. Softw. Technol. 119, 106240.

North, D., 2006a. Introducing behaviour driven development. Better Softw. Mag..
North, D., 2006b. What’s in a story?.
Obara, E., Kawasaki, T., Ookawa, Y., Maeda, N., 1996. Metrics and analyses in

the test phase of large-scale software. In: Achieving Quality in Software.
Springer, pp. 133–144.

http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb1
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb2
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb3
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb4
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb5
https://behave.readthedocs.io/
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb7
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb8
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb9
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb10
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb11
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb12
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb13
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb14
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb15
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
https://www.coveros.com/exploring-glue-code-with-cucumber-jvm
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb18
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb19
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb20
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb21
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb22
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb23
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb24
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb25
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb26
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/Ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb28
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb29
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb30
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb31
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb32
https://www.shorturl.at/hAHJS
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb34
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb35
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb36
http://www.shorturl.at/aghyL
http://www.shorturl.at/aghyL
http://www.shorturl.at/aghyL
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
https://drive.google.com/file/d/1HWci8V-R5Ns0XpC1aP7G98LuLXmDLZH-/view?usp=sharing
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb39
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb40
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb41
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb42
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb43
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb44
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb45
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb46
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb47
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb48
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb49
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb50
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb51
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb52
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb53
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb54
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb55
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb56
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb57
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb58

M. Irshad, R. Britto and K. Petersen The Journal of Systems & Software 177 (2021) 110944

O

O

P

P

P

P

Q
R

R
R
R

R

S

S

S
S

S

S

S

bbink, H., van Ommering, R., Wijnstra, J.G., America, P., 2002. Component
oriented platform architecting for software intensive product families. In:
Software Architectures and Component Technology. Springer, pp. 99–141.

taduy, I., Díaz, O., 2017. User acceptance testing for agile-developed web-based
applications: Empowering customers through wikis and mind maps. J. Syst.
Softw. 133, 212–229.

erry, D.E., Siy, H.P., Votta, L.G., 2001. Parallel changes in large-scale software
development: an observational case study. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 10 (3), 308–337.

etersen, K., Wohlin, C., 2009. Context in industrial software engineering
research. In: 2009 3rd International Symposium on Empirical Software
Engineering and Measurement. IEEE, pp. 401–404.

etersen, K., Wohlin, C., 2011. Measuring the flow in lean software development.
Softw. - Pract. Exp. 41 (9), 975–996.

ressman, R.S., 2005. Software Engineering: A Practitioner’s Approach. Palgrave
macmillan.

uestionnaire, 2019. Questionnaire. In Available at: www.shorturl.at/aghyL.
ahman, M., Gao, J., 2015. A reusable automated acceptance testing architecture

for microservices in behavior-driven development. In: 2015 IEEE Symposium
on Service-Oriented System Engineering. IEEE, pp. 321–325.

obotFramework, 2019. Robot framework. In https://robotframework.org.
obson, C., McCartan, K., 2016. Real World Research. John Wiley & Sons.
ocha, T., Borba, P., Santos, J.P., 2019. Using acceptance tests to predict files

changed by programming tasks. J. Syst. Softw. 154, 176–195.
uneson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in

Software Engineering: Guidelines and Examples. John Wiley & Sons.
abaliauskaite, G., Loconsole, A., Engström, E., Unterkalmsteiner, M., Regnell, B.,

Runeson, P., Gorschek, T., Feldt, R., 2010. Challenges in aligning requirements
engineering and verification in a large-scale industrial context. In: Inter-
national Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, pp. 128–142.

cacchi, W., 1989. Engineering large-scale software systems: an organizational
knowledge base approach. In: Digest of Papers. COMPCON Spring 89.
Thirty-Fourth IEEE Computer Society International Conference: Intellectual
Leverage. IEEE, pp. 232–235.

cript, J., 2020. The script to calculate ncd. In shorturl.at/agjIO.
mite, D., Moe, N.B., Levinta, G., Floryan, M., 2019. Spotify guilds: How to succeed

with knowledge sharing in large-scale agile organizations. IEEE Softw. 36 (2),
51–57.

oeken, M., Wille, R., Drechsler, R., 2012. Assisted behavior driven development
using natural language processing. In: International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer, pp.
269–287.

olis, C., Wang, X., 2011. A study of the characteristics of behaviour driven de-
velopment. In: 2011 37th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, pp. 383–387.

tray, V., Moe, N.B., Aasheim, A., 2019. Dependency management in large-scale
agile: a case study of DevOps teams. In: Proceedings of the 52nd Hawaii
International Conference on System Sciences.
20
Usman, M., Britto, R., Damm, L.-O., Börstler, J., 2018. Effort estimation in large-
scale software development: An industrial case study. Inf. Softw. Technol.
99, 21–40.

Vierhauser, M., Rabiser, R., Grünbacher, P., 2014. A case study on testing,
commissioning, and operation of very-large-scale software systems. In:
Companion Proceedings of the 36th International Conference on Software
Engineering. pp. 125–134.

Zaïane, O.R., Antonie, M.-L., 2002. Classifying text documents by associating
terms with text categories. In: Proceedings of the 13th Australasian Database
Conference-Volume 5. pp. 215–222.

Mohsin Irshad (mohsin.irshad@bth.se): Mohsin Irshad is a software engineer at
Ericsson, Sweden, and a Ph.D. student at Blekinge Institute of Technology (BTH),
Sweden. Mohsin has a proven track record in the software industry with 10+
years of experience working with different telecommunication vendors. In 2018,
Mohsin earned Licentiate in Software Engineering from the Blekinge Institute of
Technology (BTH), Sweden. His research interests are in Software development,
Software Testing, Machine learning, and Evidence-Based Software Engineering.

Affiliation: Ericsson AB, Karlskrona & Blekinge Institute of Technology, Soft-
ware Engineering Research Lab, Blekinge Institute of Technology, Valhallavgen
1, 371 41 Karlskrona, Sweden

Ricardo Britto (ricardo.britto@bth.se): Ricardo Britto is a data-driven change
leader at Ericsson and an adjunct lecturer of the Department of Software
Engineering at Blekinge Institute of Technology. Britto received a Ph.D. in
Software Engineering from the Blekinge Institute of Technology (BTH), Sweden.
Between 2009 and 2013, Britto worked as researcher and project manager
at Federal University of Piaui-Brazil. His research interests include large-scale
agile software development, global software engineering, search-based software
engineering and software process improvement.

Affiliation: Ericsson AB, Karlskrona & Blekinge Institute of Technology, Soft-
ware Engineering Research Lab, Blekinge Institute of Technology, Valhallavägen
1, 371 41 Karlskrona, Sweden

Kai Petersen (kai.petersen@bth.se): Kai Petersen is a professor of software
engineering at Blekinge Institute of Technology (BTH), Sweden and University
of Applied Sciences Flensburg, Germany. He received his Ph.D. from BTH in
2010. His research interests are Agile Software Development, Software Testing,
Evidence-Based Software Engineering and Software Measurement. His research
has been conducted in close collaboration with companies and with an empirical
focus.

Affiliation: Blekinge Institute of Technology, Software Engineering Research
Lab, Blekinge Institute of Technology, Valhallavägen 1, 371 41 Karlskrona,
Sweden

http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb59
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb60
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb61
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb62
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb63
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb64
http://www.shorturl.at/aghyL
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb66
https://robotframework.org
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb68
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb69
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb70
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb71
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb72
https://www.shorturl.at/agjIO
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb74
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb75
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb76
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb78
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
http://refhub.elsevier.com/S0164-1212(21)00041-8/sb79
mailto:mohsin.irshad@bth.se
mailto:ricardo.britto@bth.se
mailto:kai.petersen@bth.se

	Adapting Behavior Driven Development (BDD) for large-scale software systems
	Introduction
	Background and related work
	Definition of behavior driven development
	Large-scale software development
	Large-scale software testing
	BDD studies

	Research approach
	Step 1: Identify potential improvement areas based on industry needs
	Step 2: Formulate a research agenda
	Step 3: Developing a candidate solution (RQ3.1)
	Step 4: Conducting lab validation
	Step 5: Performing static validation (RQ3.2)
	Survey questionnaire
	Practitioners interviews

	Step 6: Dynamic validation

	Results
	RQ1: What are the benefits practitioners associated with BDD in large-scale software projects?
	Understanding of business aspect of requirements (B1)
	Improved quality of requirements (B2)
	Guide to system level use-cases (B3)
	Reuse of artifacts in large-scale projects (B4)
	Help for test organization (B5)

	RQ2: What are the challenges that BDD leads to in large-scale software projects?
	Specification of behaviors in large-scale projects (C1)
	Ownership and maintenance of behaviors in large-scale projects (C2)
	Adoption of new tools and technologies (C3)
	Cost benefits of BDD in large-scale (C4)
	Scale of the software projects (C5)
	Versioning control of behaviors (C6)
	Difficulty in writing system-level test-cases (C7)

	RQ3: How can BDD be applied in large-scale software development projects?
	RQ3.1: What are the activities needed for BDD to be applied in large-scale software development projects?
	RQ3.2: What conclusions (concerning the significance, limitation, and completeness) can be drawn during the industrial evaluation of the proposed process?

	Final Version of Proposed Process - After the feedback
	Lead time to apply the process
	Common and Different Activities

	Discussion
	Characteristics of the proposed process
	Addressing the challenges identified by software practitioners
	Adaptation constraints for organizations
	Comparison with similar approaches

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

