
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 28th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2021, 9 March 2021 through 12
March 2021.

Citation for the original published paper:

Sousa, A., Rocha, L S., Britto, R., Gong, Z., Lyu, F. (2021)
Technical Debt in Large-Scale Distributed Projects: An Industrial Case Study
In: Proceedings - 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2021 (pp. 590-594). Institute of Electrical and
Electronics Engineers Inc.
https://doi.org/10.1109/SANER50967.2021.00071

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21604



Technical Debt in Large-Scale Distributed Projects: 
An Industrial Case Study 

Armando Sousa and Lincoln Rocha Ricardo Britto Zhixiong Gong and Feng Lyu 
Federal University of Ceará Ericsson AB Blekinge Institute of Technology 

Fortaleza, Brazil Blekinge Institute of Technology Karlskrona, Sweden 
armando.sousa@alu.ufc.br, lincoln@dc.ufc.br Karlskrona, Sweden {zhgo15, felv15}@student.bth.se 

ricardo.britto@{ericsson.com, bth.se} 

Abstract—Technical debt (TD) is a metaphor that refects the 
technical compromises that sacrifce the long-term health of a 
software product to achieve short term beneft. It is important 
to manage TD to avoid software degradation. In large-scale 
distributed projects, technical debt management (TDM) becomes 
more complex and challenging. There is a lack of empirical 
studies on the TD accumulation in large-scale distributed 
projects. Then, to address this gap, we conducted a case study 
in Ericsson (a European Telecom Company) to identify the 
relationship between TD accumulation and factors such as task 
complexity, lead time, total of developers, and task scaling. We 
used data from 33 projects extracted from managerial documents 
to conduct a regression analysis. We also conducted interviews 
with seniors developers of the team to interpret the results. 
We found out that Task Complexity has a strong relationship 
(p-value = 5.69 × 10−5) with Technical Debt, while Global 
Distance was mentioned by the interviewees as a relevant factor 
for TD accumulation (although not statistically signifcant in 
our regression analysis). Practitioners should consider avoiding 
complex/big tasks, breaking down big tasks into small ones (if 
possible). We also plan to analyze other projects in this company 
to confrm our fndings further. 

Index Terms—technical debt management, large-scale, global 
software engineering 

I. INTRODUCTION 

Organizations around the world develop software in a 
globally distributed way (Global Software Engineering – 
GSE) to achieve benefts such as reduced time-to-market and 
access to skilled people all over the world [1]–[3]. However, 
geographical, temporal, and cultural distances amplify the 
diffculties associated with coordination and communication 
in GSE projects [1]. 

It is often the case that GSE projects involve a large number 
of people (large-scale projects1). The combination of scale 
and global distribution may lead to problems, such as more 
software defects [5], schedule and budget overruns [6], and 
make it challenging to manage Technical Debt (TD) [7]. 

TD refects technical compromises to achieve short-term 
beneft at the cost of hurting a software product’s long-term 
health, which puts future development and maintenance at 
high potential risk [8]. TD refers to any incomplete, immature, 

1Dikert et al. [4] defne as large-scale software projects that involve at least 
50 human resources – not necessarily only developers, but also other staff 
collaborating in software development – or at least six teams. 

or inadequate artifact in the software development life cycle 
affecting subsequent development and maintenance activities, 
which is treated as a type of debt that the developers owe the 
system [9]. 

To keep TD accumulation under control, Technical Debt 
Management (TDM) is required throughout the development 
process. Part of TDM includes activities preventing potential 
TD from being incurred. Meanwhile, TDM also includes 
activities dealing with the accumulated TD to make it visible 
and controllable and balance the software project’s cost and 
value. TDM in large-scale GSE projects can be more complex. 
For example, it may be more challenging to ensure a common 
understanding of TD and TDM across multiple sites [7]. 
Moreover, factors such as distance [10], [11] are known to be 
associated with TD accumulation. Also, TD-related decisions 
are often not systematically used. There are no generic 
approaches used in the industry that facilitate systematic TDM 
(e.g., TD decisions are often not even explicitly captured) [12]. 

To the best of our knowledge, there is no investigation 
on the TD accumulation in large-scale globally distributed 
software projects. Given the relevance of the topic for both 
research and industry, we have made an attempt to fll the 
existing gap through conducting an industrial case study in 
Ericsson, a company that develop hardware and software 
telecommunication solutions. 

In this paper, we report the fndings of our investigation, 
which address the following research question: What factors 
are related to the TD accumulation in large-scale GSE 
projects? 

The remainder of this paper is organized as follows: Section 
II describes the background and related work. Section III 
presents the research design. Section IV presents the results 
and discussions. Validity threats are discussed in Section V. 
Finally, we provide our conclusions and view on future work 
in Section VI. 

II. BACKGROUND AND RELATED WORK 

In the GSE-related literature, the following topics stand 
out: the global distance (GD) between the teams, the form 
of communication between the project participants, and the 
developers’ level of maturity. 



GD measures the overhead of cooperation and coordination 
in communication between several sites. Effective 
communication between distributed sites is crucial for 
a successful distributed project [13]. However, distance 
negatively affects communication, which in turn reduces 
coordination effectiveness [14]. Thus, increasing the risk of 
incurring TD. Kazman et al. [15] used a model approach 
to analyze the software architecture as a set of design rules 
spaces. Heikkilä et al. [16] explored how hard communication 
is for the practitioners in large-scale globally distributed 
software projects. 

Team Maturity (TM) implies an increased capability of 
controlling and managing TD, with important historical data 
available for development teams to quantitatively manage and 
control key projects as well as organizational processes [17]. 
[18] shows that high maturity can reduce cycle time and 
development effort suggests a lower TD. 

Another aspect that makes software development more 
diffcult is task complexity (TC). Alzaghoul et al. [19] found 
that higher complexity may indicate higher rework costs. As a 
result, increased complexity might lead to an increase in TD. 

When a developer identifes a debt, documenting the debt 
helps to manage TD systematically. Formal documentation 
can make the TD traceable and increase the effectiveness of 
TDM [20]. Guo et al. [21] have proposed an approach to TDM 
based on systematic monitoring for each incremental release 
of a software product. 

TD monitoring and TD repayment are two of the most 
important TDM activities, which helps managers to see 
the changes in the cost and beneft of unresolved TD 
over time [22]. Seaman and Guo [9] suggest that through 
monitoring, development teams could fnd a proper guide 
using a TD list as the center of monitoring the status of TD. 
TD repayment has a strong relationship with TD measurement 
and monitoring because to repay the debt, the team should 
check how urgent the debt is and decide when to repay the 
debt, as mentioned. The perception of TD through monitoring 
and repayment was studied by Besker et al. [23] that explored 
the perception of TD in the software development cycle. They 
did a survey to estimate the time lost caused by the Technical 
Debt accumulation during the software life cycle. 

Digkas et al. [24] conducted a case study on 57 open-source 
Java projects from the Apache ecosystem to investigate how 
developers fx issues and payback TD over time. They found 
that a small portion of the issue types is responsible for the 
largest amount of TD repayment. 

To gain a better understanding of TD in industrial setups, 
Rios et al. [25] conducted a tertiary study to look into the 
state of practice in several companies to understand the cost of 
managing TD, how maturity is managed in TD, what tools are 
used to track TD, and how a TD tracking process is deployed 
in practice. 

Despite covering several TD issues, the reviewed papers 
do not focus on studying the TD accumulation in large-scale 
GSE projects. This paper flls the gaps mentioned above by 

employing an exploratory case study in a real and large-scale 
GSE project. 

III. RESEARCH DESIGN 

To address our research question, we have conducted an 
exploratory longitudinal case study [26]. 

A. The Case and Unit of Analysis 

The case and unit of analysis is a telecommunication 
software product developed by Ericsson. This software 
has been evolving for more than 24 years with several 
technological changes, such as the inclusion of additional 
programming languages (Java in addition to C++) and a 
change in development methodology from plan-driven to agile 
practices. 

The product is developed in a geographically distributed 
fashion and includes (or has included) sites located in the 
USA, Sweden, Italy, and India. It involves cross-functional 
teams that have from 4 to 7 developers and use agile practices. 
Project managers use a mix of agile and plan-driven practices 
to manage and coordinate teams across sites. The teams are 
responsible for tasks such as product customization (PC), bug 
fxing, and product refactoring. PCs are carried as independent 
projects that may take from 1 to 6 months. 

The data collected and used in our investigation comprises 
the period from January 2013 to August 2016. It includes only 
PC tasks because they have the most signifcant impact and 
value for the company’s customers who use the product. 

B. Variables 

In this paper, the following variables were used for analysis: 
Technical Debt (TD), Task Complexity (TC), Lead Time (LT), 
Global Distance (GD), Total Developers (DV), Task Scaling 
(TS), and Team Maturity (TM). We selected these variables 
due to their relevance in GSE contexts and also due to the 
possibility to measure them in the investigated case [27], [28]. 
Table I presents a description of the investigated variables. 

C. Data Collection and Data Analysis 

To collect the data associated with the investigated variables, 
we employed three data collection methods: archival research, 
semi-structured interviews, and repository mining. 

We employed archival research to measure LT, TS, from 
the 33 investigated PCs. TD was measured through repository 
mining, while TC and TM were measured through interviews 
in a previous investigation conducted by the second author of 
this paper [28]. 

To analyze this data, we employed the data analysis 
method hierarchical multiple regression analysis, aiming at 
understanding the relationship between the selected factors 
and TD accumulation. More details can be viewed in the 
replication kit available in the data repository2 of this study. 

To support the interpretation of the regression analysis 
results, we conducted two semi-structured interviews: we 
frst interviewed a Software Architect (SA1) in June 2017. 

2https://github.com/Technical-Debt-Large-Scale/tdmls 

https://2https://github.com/Technical-Debt-Large-Scale/tdmls


TABLE I 
STUDY VARIABLES 

ID Name Type Data Collection Description 

TD Technical Debt Dependent Repository Mining Is the amount of dollars calculated by using SonarQube needed to fx all problems 
(duplication, violations, comments, coverage, complexity, bugs, bad design) in the code 
base. 

TC 

LT 
TS 
GD 

DV 
TM 

Task Complexity 

Lead Time 
Task Scaling 
Global Distance 

Total Developers 
Team Maturity 

Independent 

Independent 
Independent 
Independent 

Independent 
Independent 

Interviews 

Archival Research 
Archival Research 
Archival Research 

Archival Research 
Interviews 

Is the parameter used to describe how complex the task. Each PC was estimated by a 
positive integer (complexity points) [28]. 
Is the total time needed to deliver a task, counted by days. 
Is the capacity of a task resizes according to the increase in demand for this task. 
Is the metric that measures the complexity of communication between sites, which 
represents the overhead of cooperation and coordination when more than one site is 
involved [29]. 
Is the number of developers involved in the development of each task. 
Is the parameter to describe the level of how a team can deliver the product 
independently [28]. 

TABLE II 
FACTORS CORRELATED TO TD 

Factors Impact Spearman’s ρ p-value Correlated 

LT 
TC 
DV 
TS 
TM 
GD 

Positive 
Positive 
Positive 
Negative 

N/A 
N/A 

0.486 
0.650 
0.505 

-0.439 
-0.135 
0.034 

−35.00 × 10
−55.69 × 10
−33.00 × 10
−21.20 × 10
−14.62 × 10
−18.55 × 10

YES 
YES 
YES 
YES 
NO 
NO 

In a second moment, we conducted a group semi-structured 
interview with two other software architects and another a 
semi-structured interview with 2 Software Architects (SA2 
and SA3) in January 2018. Each meeting took approximately 
one hour. All interviewees had more than ten years of large-
scale GSE experience. The questions can be viewed in the data 
repository of this study. 

The semi-structured interview results were analyzed using 
content analysis since it is a systematic and rule-guided 
technique used for analyzing all sorts of textual data. It 
provides a brief and broad description of the phenomenon and 
allows researchers to enhance the understanding of raw data 
[30]. 

IV. RESULTS AND DISCUSSION 

This section presents and discuss the results of the 
conducted regression analysis. We frst present the results of 
checking the assumptions of the employed method, which is 
followed by the actual results of the analysis and discussion. 

A. Regression Analysis Assumptions 

We created a box-plot to analyze the TD values among all 
involved sites. As a result we identifed two outliers. Only one 
was removed since the other was deemed as relevant for the 
analysis. 

First, to check correlation among the selected features and 
TD (and identify linear relationships), we used Spearman’s 
rank coeffcient (Table II). As a result, we identifed that four 
features (LT, TC, DV and TS) correlated with TD (p-value < 
than 0.05). 

TABLE III 
TESTING MULTICOLLINEARITY - (VIF, TOLERANCE) 

Model LT TC DV TS 

model1 (1,1) - - -
model2 (1.12, 0.89) (1.12, 0.89) - -
model3 (1.60, 0.62) (1.14, 0.88) (1.57, 0.64) -
model4 (1.76, 0.57) (1.50, 0.67) (1.82, 0.55) (1.51, 0.66) 

Second, to further investigate the nature of the relationship 
between TD and the factors with signifcant correlation, we 
used partial regression plots [31]. As a result, the plots 
confrmed that there is some level of linearity between TD 
and LT, TC, DV and TS. 

Third, we tested for auto-correlation using the Durbin-
Watson test. If the Durbin-Watson test’s value is between 
1.5 and 2.5, there is no linear auto-correlation in the data. 
The Durbin-Watson values in our tests are the following: lead 
time = 1.614, task complexity = 2.155, total developers=1.230, 
task scaling = 1.727, and technical debt=2.041, which were 
acceptable. So, the residuals are independent in our data. 

Fourth, we tested the normality of the residuals. To do so, 
we used P-P plots. The points on the plot remain close to the 
diagonal line, which means residuals are normally distributed. 

Fifth, we tested the assumption of homoscedasticity. To do 
so, we used the Breusch-Pagan test. The Lagrange multiplier 
statistic was 2.326 and p-value was 0.676, i.e., the assumption 
of homoscedasticity was met. 

Finally, to verify the presence or absence of 
multicollinearity, we used Tolerance/VIF (Variance Infation 
Factor). The tolerance of independent variables should be 
greater than 0.1 and VIF less than 10. Table III shows that 
the tolerance values in our study are all greater than 0.1 and 
the VIF values all less than 10. 

As a result, the following regression model was presented 
where TD is the dependent variable and LT, TC , DV, and TS 
are the predictors. Equation (1) presents the resulting model 
used in our analysis: 

TD = 1048.31 + 311.52 ⁄ LT + 3234.82 ⁄ TC + 1241.58 ⁄ DV − 1495.39 ⁄ TS (1) 



B. Results and Discussions of Factors related to TD 

According to the interviewees, all four factors (TC, LT, DV, 
and TS), relate to TD accumulation. Although the interviewees 
mentioned that TM and GD are also somehow related to TD, 
we could not confrm this in the conducted regression analysis. 

Architect SA1 said that task complexity (TC) has a strong 
relation to TD since complicated tasks tend to have more debt. 
However, it was hard for the architect to judge exactly what 
can be seen as a complicated task. The SA2 confrmed this: 

SA2: “what is a complex task is hard to say, when a task 
contains a lot of lines of code, but from the functional 
perspective, it is very easy to build and will not create any 
debts at all, do we still think it has low complexity?” 

Alzaghoul and Bahsoon [19] found that increase in a 
software’s complexity leads to an increase in TD. If the 
complexity increases due to changes in a software’s structure, 
the dependencies between different parts of the software may 
become more complex as well, which may cause potential 
extra work to maintain the software. 

We also learned that the longer it takes to complete a 
product customization developemnt cycle, the higher the TD. 
Besker et al. [32] identifed that the shorter lead times (LT) 
can help to maintain costs under control, through using good 
planning between the moment of the product customer’s 
order until the delivery can offer many advantages like cost 
reduction. 

Regarding task scaling (TS), we observed that as the size of 
TS increases, the amount of TD tends to decrease. This looks 
counter-intuitive at frst. For example, Guo et al. [21] identifed 
that for large systems developed in a collocated manner, it is 
easy to lose track of delayed tasks or to misunderstand their 
impact. In our case, which does not go in the same direction 
of Guo et al., we believe that the observed relationship may 
relate to the fact that tasks with high TS often involved senior 
developers to support newcomers, which might have lead to 
lower TD in those cases. 

In the case of total developers (DV), the total number of 
developers in a software project is critical factor in GSE 
projects, due to the diffculty communicate when there is a 
large amount of people [10], [1]. 

Regarding global distance (GD), although we did not 
identify a statistical signifcant relationship between GD and 
TD accumulation, software architect SA2 mentioned: 

SA2: “The worst case is that people working with the 
same functionality are sitting in different places and doing 
different phases of the work.” 

Architect SA2 also mentioned team maturity (TM), although 
it was not statistically signifcantly related to TD in our results. 
Although not signifcant, we identifed that maturity tends to 
relate to TD accumulation (the higher the maturity, the higher 
the TD). After investigating our dataset, we identifed that the 
largest and most complex tasks tend to be attributed to the 
mature teams in the investigated case. This means that the 

observed correlation between TM and TD is likely affected 
by the complexity and the size of the PCs. 

V. VALIDITY THREATS 

The validity threats associated with our investigation are 
discussed using the categories internal and external validity 
described by Runeson and Höst [26]. 

In relation to internal validity, one limitation is that we 
were able to investigate a subset of factors that potentially 
relate to TD accumulation. Other factors can still be studied, 
such as social, cultural, and other technical factors not 
evaluated in this study. 

Regarding external validity, since we employed the case 
study method, our fndings are strongly bound by our research 
context. In addition, the investigated case involved only one 
product in one company. To mitigate this threat, we described 
the context of our study in as much detail as possible so that 
the readers can identify if the context of our investigation is 
similar to theirs and reuse our fndings whenever applicable. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper reports the results of a case study conducted in 
Ericsson that aimed at investigating the accumulation of TD 
in a large-scale globally distributed software project. 

The overall conclusion is that TD accumulation strongly 
correlates with specifcs factors of GSE projects. We believe 
that the process of TDM becomes more complex in globally 
distributed projects with different sites and different teams. 
Thus, a suitable TDM process must consider the GSE factors 
that correlate with TD accumulation, which we plan to 
investigate in a future study. 

Our investigation has some implications for both researchers 
and practitioners. Regarding researchers, we believe that it is 
still necessary to conduct similar research in other companies 
to learn more about the accumulation of TD in large-scale 
globally distributed software projects. 

We identifed that task complexity is the factor most related 
to TD accumulation. Thus, practitioners should be aware of 
this and try to avoid complex projects and subdivide them 
into less complex projects as much as possible to prevent TD 
accumulation. 

Finally, we plan to continue investigating other cases in this 
company to strengthen the empirical evidence reported herein. 

REFERENCES 

[1] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE 
software, vol. 18, no. 2, pp. 16–20, 2001. 

[2] E. Conchúir, P. J. Ågerfalk, H. Holmstrom, and B. Fitzgerald, “Global 
software development: Where are the benefts?” Communications of the 
ACM, vol. 52, no. 8, pp. 127–131, aug 2009. 

[3] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb, 
“Confguring global software teams: A multi-company analysis of 
project productivity, quality, and profts,” in Proceedings of the 33rd 
International Conference on Software Engineering - ICSE’11, 2011, pp. 
261–270. 

[4] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success 
factors for large-scale agile transformations: A systematic literature 
review,” Journal of Systems and Software, vol. 119, pp. 87–108, 2016. 



[5] J. A. Espinosa, N. Nan, and E. Carmel, “Do gradations of time zone 
separation make a difference in performance? a frst laboratory study,” in 
Second IEEE International Conference on Global Software Engineering 
- ICGSE’07., Aug 2007, pp. 12–22. 

[6] J. D. Herbsleb and A. Mockus, “An empirical study of speed and 
communication in globally distributed software development,” IEEE 
Transactions on Software Engineering, vol. 29, no. 6, pp. 481–494, June 
2003. 

[7] R. Bavani, “Distributed agile, agile testing, and technical debt,” IEEE 
Software, vol. 29, no. 6, pp. 28–33, Nov 2012. 

[8] W. Cunningham, “The wycash portfolio management system,” in 
Addendum to the Proceedings on Object-oriented Programming Systems, 
Languages, and Applications (Addendum), ser. OOPSLA ’92. New 
York, NY, USA: ACM, 1992, pp. 29–30. 

[9] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” in 
Advances in Computers. Elsevier, 2011, vol. 82, pp. 25–46. 

[10] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance 
in global software development,” IEEE Software, vol. 18, no. 2, pp. 
22–29, 2001. 

[11] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is social 
debt in software engineering?” in 2013 6th International Workshop on 
Cooperative and Human Aspects of Software Engineering (CHASE). 
IEEE, 2013, pp. 93–96. 

[12] J. Holvitie, V. Leppanen, and S. Hyrynsalmi, “Technical debt and 
the effect of agile software development practices on it-an industry 
practitioner survey,” in 2014 Sixth International Workshop on Managing 
Technical Debt. IEEE, 2014, pp. 35–42. 

[13] Y. Yao, S. Huang, L. Jie, and X. ming Liu, “Structural characteristic of 
large-scale software development network,” in 2010 2nd International 
Conference on Computer Engineering and Technology. IEEE, 2010. 

[14] V. Casey and I. Richardson, “Uncovering the reality within virtual 
software teams,” in Proceedings of the 2006 International Workshop 
on Global Software Development for the Practitioner, ser. GSD ’06. 
New York, NY, USA: ACM, 2006, pp. 66–72. 

[15] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, 
and A. Shapochka, “A case study in locating the architectural roots of 
technical debt,” in 2015 IEEE/ACM 37th IEEE International Conference 
on Software Engineering. IEEE, may 2015. 

[16] V. Heikkila, M. Paasivaara, C. Lasssenius, D. Damian, and C. Engblom, 
“Managing the requirements fow from strategy to release in large-
scale agile development: a case study at ericsson,” Empirical Software 
Engineering, vol. 22, no. 6, pp. 2892–2936, 2017, cited By 1. 

[17] D. Falessi, M. A. Shaw, F. Shull, K. Mullen, and M. Stein, 
“Practical considerations, challenges, and requirements of tool-support 
for managing technical debt,” in Proceedings of the 4th International 
Workshop on Managing Technical Debt, ser. MTD ’13. Piscataway, 
NJ, USA: IEEE Press, 2013, pp. 16–19. 

[18] D. E. Harter, M. S. Krishnan, and S. A. Slaughter, “Effects of 
process maturity on quality, cycle time, and effort in software product 
development,” Manage. Sci., vol. 46, no. 4, pp. 451–466, apr 2000. 

[19] E. Alzaghoul and R. Bahsoon, “Evaluating technical debt in cloud-
based architectures using real options,” in 2014 23rd Australian Software 
Engineering Conference, April 2014, pp. 1–10. 

[20] S. Das, W. G. Lutters, and C. B. Seaman, “Understanding documentation 
value in software maintenance,” in Proceedings of the 2007 Symposium 
on Computer Human Interaction for the Management of Information 
Technology, ser. CHIMIT ’07. New York, NY, USA: ACM, 2007. 

[21] Y. Guo, R. Spinola, and C. Seaman, “Exploring the costs of technical 
debt management – a case study,” Empirical Software Engineering, 
vol. 21, no. 1, pp. 159–182, 2016, cited By 7. 

[22] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on 
technical debt and its management,” J. Syst. Softw., vol. 101, no. C, 
pp. 193–220, mar 2015. 

[23] T. Besker, A. Martini, and J. Bosch, “The pricey bill of technical debt: 
When and by whom will it be paid?” in 2017 IEEE International 
Conference on Software Maintenance and Evolution (ICSME), Sept 
2017, pp. 13–23. 

[24] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and 
A. Ampatzoglou, “How do developers fx issues and pay back technical 
debt in the apache ecosystem?” in 2018 IEEE 25th International 
Conference on Software Analysis, Evolution and Reengineering 
(SANER). IEEE, mar 2018. 

[25] N. Rios, M. G. de Mendonça Neto, and R. O. Spínola, “A tertiary 
study on technical debt: Types, management strategies, research trends, 

and base information for practitioners,” Information and Software 
Technology, vol. 102, pp. 117–145, oct 2018. 

[26] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research 
in Software Engineering: Guidelines and Examples. John Wiley Sons, 
2012. 

[27] R. Britto, D. Šmite, and L.-O. Damm, “Experiences from measuring 
learning and performance in large-scale distributed software 
development,” in Proceedings of the 10th ACM/IEEE International 
Symposium on Empirical Software Engineering and Measurement. 
ACM, 2016, p. 17. 

[28] R. Britto, D. Smite, and L.-O. Damm, “Software architects in large-scale 
distributed projects: An ericsson case study,” IEEE Software, vol. 33, 
no. 6, pp. 48–55, 2016. 

[29] A. Avritzer, S. Beecham, R. Britto, J. Kroll, D. S. Menasche, J. Noll, 
and M. Paasivaara, “Extending survivability models for global software 
development with media synchronicity theory,” in Global Software 
Engineering (ICGSE), 2015 IEEE 10th International Conference on. 
IEEE, 2015, pp. 23–32. 

[30] P. Mayring, “Qualitative content analysis: theoretical foundation, basic 
procedures and software solution,” 2014. 

[31] J. Fox, Applied regression analysis and generalized linear models. Sage 
Publications, 2015. 

[32] T. Besker, A. Martini, and J. Bosch, “Technical debt triage in 
backlog management,” in 2019 IEEE/ACM International Conference on 
Technical Debt (TechDebt). IEEE, 2019, pp. 13–22. 


