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Units, zero-divisors and idempotents
in rings graded by torsion-free groups
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Abstract. The three famous problems concerning units, zero-divisors and idempotents in
group rings of torsion-free groups, commonly attributed to Kaplansky, have been around
for more than 60 years and still remain open in characteristic zero. In this article, we in-
troduce the corresponding problems in the considerably more general context of arbitrary
rings graded by torsion-free groups. For natural reasons, we will restrict our attention to
rings without non-trivial homogeneous zero-divisors with respect to the given grading. We
provide a partial solution to the extended problems by solving them for rings graded by
unique product groups. We also show that the extended problems exhibit the same (po-
tential) hierarchy as the classical problems for group rings. Furthermore, a ring which is
graded by an arbitrary torsion-free group is shown to be indecomposable, and to have
no non-trivial central zero-divisor and no non-homogeneous central unit. We also present
generalizations of the classical group ring conjectures.

1 Introduction

With a few exceptions, notably [19], the first articles on group rings of infinite
groups appeared in the early 1950s. A key person in that line of research was
Kaplansky, known for his many deep contributions to ring theory and operator al-
gebra. In his famous talk, given at a conference that was held on June 6–8, 1956 at
Shelter Island, Rhode Island, New York, he proposed twelve problems in the the-
ory of rings [22, 23], one of which has become known as the zero-divisor problem
(for group rings).

Although popularized by Kaplansky, the zero-divisor problem and its corre-
sponding conjecture had in fact already been introduced by Higman in his 1940
thesis [20, p. 77] (see also [48, p. 112]). In [20], Higman also introduced the so-
called unit problem and the corresponding unit conjecture. A third problem which
is closely related to the previous two is the idempotent problem. For clarity, we
now recall the exact formulation of the three problems.

Problem 1 (Higman/Kaplansky). Let K be a field, let G be a torsion-free group
and denote by KŒG� the corresponding group ring.
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(a) Is every unit in KŒG� necessarily trivial, i.e. a scalar multiple of an element
of G?

(b) Is KŒG� necessarily a domain?

(c) Is every idempotent in KŒG� necessarily trivial, i.e. either 0 or 1?

Many of the problems in Kaplansky’s original list [22] have been solved. The
zero-divisor problem and the unit problem have been solved, in the affirmative,
for several important classes of groups (see e.g. [7, 10, 13, 15, 25, 27]). Significant
progress has been made on the idempotent problem using algebraic as well as ana-
lytical methods (see e.g. [8,14] and [21,30,31,45]). For a thorough account of the
development on the above problems during the 1970s, we refer the reader to Pass-
man’s extensive monograph [42]. In recent years, computational approaches have
been proposed as means of attacking the zero-divisor problem (see [12, 49]). In
2021, there was a major breakthrough when Gardam [16] presented a counterex-
ample to the unit conjecture in characteristic 2 (see Remark 3.8). Soon thereafter,
Murray [32] presented counterexamples in arbitrary prime characteristic. Never-
theless, for a general group G, all three problems remain open for group rings of
characteristic zero.

We should point out that the problems exhibit a (potential) hierarchy. Indeed, an
affirmative answer to the unit problem, for a fixed group G, implies an affirmative
answer to the zero-divisor problem, which in turn implies an affirmative answer to
the idempotent problem for the same group G (see [53, Remark 1.1]).

In the last two decades, the idempotent problem has regained interest, mainly
due to its connection with the Baum–Connes conjecture in operator algebra (see
e.g. [53]) via the so-called Kadison–Kaplansky conjecture for reduced group C�-
algebras. The idempotent problem is also connected to the Farrell–Jones conjec-
ture (see [2]). Moreover, Lück [28] has shown that if G is a torsion-free group and
K is a subfield of C which satisfies the Atiyah conjecture [28, Conjecture 10.3]
with coefficients in K, then the zero-divisor problem has an affirmative answer
for KŒG�. Altogether, this shows that Problem 1, in particular in characteristic
zero, remains highly relevant to modern mathematics.

In this article, we will consider Problem 1 from a more general point of view,
namely that of group graded rings. Let G be a group with identity element e.
Recall that a ring R is said to beG-graded (or graded byG) if there is a collection
¹Rgºg2G of additive subgroups ofR such thatR D

L
g2G Rg andRgRh � Rgh

for all g; h 2 G. Furthermore, a G-graded ring R is called strongly G-graded (or
strongly graded by G) if RgRh D Rgh for all g; h 2 G.

Crossed products, and more generally group graded rings, appear naturally in
many branches of mathematics, e.g. in non-commutative geometry, in the repre-
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sentation theory of Artin algebras, in the computation of Grothendieck groups, in
the study of singularities, in orbifold theory, in the Galois theory of skew fields,
in the investigation of Calabi–Yau algebras derived from superpotentials, and in
the representation theory of certain preprojective algebras. For an introduction to
the theory of group graded rings, we refer the reader to the excellent monographs
[18, 33, 34, 43].

Note that the group ring KŒG� may be equipped with a canonical strong G-
grading by putting R WD KŒG� with Rg WD Kg for g 2 G. With this in mind, it
is natural to ask whether it would make sense to extend Problem 1 to the more
general context of strongly group graded rings. It turns out that it does. In fact, we
propose the following even more general set of problems which will be the main
focus of this article.

Problem 2. Let G be a torsion-free group and R a unital G-graded ring equipped
with a non-degenerate (see Definition 2.1) G-grading such that Re is a domain.

(a) Under the assumption that char.Re/ D 0, is every unit in R necessarily homo-
geneous with respect to the given G-grading?

(b) Is R necessarily a domain?

(c) Is every idempotent in R necessarily trivial?

This article is organized as follows. In Section 2, we record the most important
notation and preliminaries concerning group graded rings that we will need in the
sequel. In particular, we show that the assumptions on the grading in Problem 2
make our rings especially well-behaved (see Proposition 2.6 and Proposition 2.9).
In Section 3, using a result of Strojnowski, we solve Problem 2 for unique product
groups (see Theorem 3.4). In particular, this solves Problem 2 in the cases where
G is abelian or R is commutative (see Example 3.7 and Corollary 3.10). In Sec-
tion 4, we show that if G is an arbitrary torsion-free group and R is a G-graded
ring satisfying the assumptions in Problem 2, then R is a prime ring (see Theo-
rem 4.4). In Section 5, we employ the primeness result from Section 4 to show
that the unit, zero-divisor and idempotent problems for group graded rings exhibit
the same (potential) hierarchy as the classical problems for group rings (see The-
orem 5.2). In Section 6, we show that, for an arbitrary torsion-free group G and
a G-graded ring R with a non-degenerate grading such that Re is a domain (of
arbitrary characteristic), there is no non-homogeneous central unit, no non-trivial
central zero-divisor and no non-trivial central idempotent (see Theorem 6.2). In
Section 7, we obtain several useful results concerning gradings by quotient groups
(see e.g. Proposition 7.3 and Proposition 7.5) which are used to solve Problem 2
for G-crossed products when G belongs to a special class of solvable groups (see
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Theorem 7.7). In Section 8, we formulate a conjecture (see Conjecture 8.1) which
generalizes the classical unit, zero-divisor and idempotent conjectures for group
rings.

2 Preliminaries on group graded rings

Throughout this section, let G be a multiplicatively written group with identity
element e, and let R be a (not necessarily unital) G-graded ring.

Consider an arbitrary element r 2 R. Note that r 2 R has a unique decompo-
sition of the form r D

P
g2G rg , where rg 2 Rg is zero for all but finitely many

g 2 G. The support of r is defined as the finite set Supp.r/ WD ¹g 2 G j rg ¤ 0º.
If r 2 Rg for some g 2 G and r is nonzero, then r is said to be homogeneous of
degree g and we write deg.r/ D g. Note that Re is a subring of R. If R is unital,
then 1R 2 Re (see e.g. [34, Proposition 1.1.1]).

We shall now highlight two types of G-gradings which play central roles in this
article.

Definition 2.1. (a) R is said to have a non-degenerate G-grading (cf. [11, 39]) if,
for each g 2G and each nonzero rg 2Rg , we have rgRg�1 ¤ ¹0º,Rg�1rg ¤ ¹0º.

(b) R is said to have a fully component regular G-grading if rgsh ¤ 0 for any
g; h 2 G, rg 2 Rg n ¹0º and sh 2 Rh n ¹0º.

Remark 2.2. (a) Every strong G-grading on a unital ring R is non-degenerate.
Indeed, take g 2 G and rg 2 Rg , and suppose that rgRg�1 D ¹0º. Then

rg D rg1R 2 rgRe D rgRg�1Rg D ¹0º:

Thus, rg D 0. Similarly, Rg�1rg D ¹0º implies rg D 0.
(b) The term fully component regular has been chosen to capture the essence

of those gradings. There is no immediate connection to the component regular
gradings considered by Passman in e.g. [43, p. 16], which are in fact special types
of non-degenerate gradings.

A grading may be both non-degenerate and fully component regular, but, as the
following example shows, the two notions are quite independent.

Example 2.3. In the following two examples, the grading group is G WD .Z;C/.
(a) Consider the polynomial ring R WD RŒt � in one indeterminate. We may de-

fine a Z-grading on R by putting Rn WD Rtn for n � 0, and Rn WD ¹0º for n < 0.
Clearly, this grading is fully component regular, but it is degenerate.
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(b) Consider the ring of 2 � 2-matrices with real entries, R WDM2.R/. We may
define a Z-grading on R by putting

R0 WD

�
R 0

0 R

�
; R1 WD

�
0 R

0 0

�
; R�1 WD

�
0 0

R 0

�
and Rn WD

�
0 0

0 0

�
whenever jnj > 1. This grading is neither fully component regular, nor strong, but
one easily sees that it is non-degenerate.

Given a subgroup H � G, we may define the subset RH WD
L
h2H Rh of R.

Note that RH is an H -graded subring of R. If R is unital, then RH is also unital
with 1R D 1RH

2 Re. The corresponding projection map fromR toRH is defined
by

�H WR! RH ;
X
g2G

rg 7!
X
h2H

rh;

and it is clearly additive. In fact, it is an RH -bimodule homomorphism.

Lemma 2.4. Let H be a subgroup of G. If a 2 R and b 2 RH , then we have
�H .ab/ D �H .a/b and �H .ba/ D b�H .a/.

Proof. Take a 2 R and b 2 RH . Put a0 WD a � �H .a/. Clearly, a D a0 C �H .a/
and Supp.a0/ � G nH . If g 2 G nH and h 2 H , then gh … H . Thus, we have
Supp.a0b/ � G nH . Hence,

�H .ab/ D �H ..a
0
C �H .a//b/ D �H .a

0b/C �H .�H .a/b/

D 0C �H .a/b D �H .a/b:

Analogously, one may show that �H .ba/ D b�H .a/.

Lemma 2.5. Suppose that theG-grading on R is non-degenerate. LetH be a sub-
group of G and let r 2 RH . The following assertions hold:

(i) r is a left (right) zero-divisor inRH if and only if r is a left (right) zero-divisor
in R;

(ii) r is left (right) invertible in RH if and only if r is left (right) invertible in R.

Proof. The “only if” statements are trivial. We only need to show the “if” state-
ments. The proofs of the right-handed claims are treated analogously and are there-
fore omitted.

(i) Suppose that rs D 0 for some nonzero s 2 R. Then, by Lemma 2.4,

0 D �H .rs/ D r�H .s/:
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Without loss of generality we may assume that Supp.s/ \H ¤ ¿, and thus we
have 0 ¤ �H .s/ 2 RH . For otherwise, we may take some g 2 Supp.s/ and some
nonzero xg�1 2 Rg�1 such that e 2 Supp.sxg�1/. Note that r.sxg�1/ D 0 and
Supp.sxg�1/ \H ¤ ¿.

(ii) Suppose that sr D 1R for some s 2 R. Then, by Lemma 2.4,

1RH
D �H .1R/ D �H .sr/ D �H .s/r

in RH .

The following result highlights a crucial property of the rings appearing in Prob-
lem 2.

Proposition 2.6. If the G-grading on R is non-degenerate and Re is a domain,
then the G-grading is fully component regular.

Proof. Take g; h 2 G, rg 2 Rg and sh 2 Rh. Suppose that rgsh D 0. Then

Rg�1rgshRh�1 D ¹0º:

Using the fact that Re is a domain, we get that Rg�1rg D ¹0º or shRh�1 D ¹0º.
By the non-degeneracy of the grading, we conclude that rg D 0 or sh D 0.

Remark 2.7. There are large classes of group graded rings whose gradings are
non-degenerate but not necessarily strong. For example, crystalline graded rings
[35], (nearly) epsilon-strongly graded rings [37, 38], and in particular Leavitt path
algebras and crossed products by unital twisted partial actions. However, it should
be noted that an epsilon-strongly G-graded ring R, and in particular a partial
crossed product, for whichRe is a domain, is necessarily strongly graded by a sub-
group of G.

Definition 2.8. (a) The support of the G-grading on R is defined as the set

Supp.R/ WD ¹g 2 G j Rg ¤ ¹0ºº:

(b) If Supp.R/ D G, then the G-grading on R is said to be fully supported.

It is easy to see that any strongG-grading must be fully supported. For a general
G-grading, however, Supp.R/ need not even be a subgroup ofG. As illustrated by
Example 2.3 (a), Supp.R/ may fail to be a subgroup of G even if the G-grading is
fully component regular. As the following result shows, we are in a rather fortunate
situation.

Proposition 2.9. If the G-grading on R is non-degenerate and Re is a domain,
then Supp.R/ is a subgroup of G.



Rings graded by torsion-free groups 7

Proof. Take g; h 2 Supp.R/. Using Proposition 2.6, we conclude that

Rgh � RgRh ¤ ¹0º:

Thus, gh 2 Supp.R/. Moreover, by the non-degeneracy of the grading, it is clear
that Rg�1 ¤ ¹0º. Thus, g�1 2 Supp.R/. This shows that Supp.R/ is a subgroup
of G.

The following result follows immediately from Propositions 2.9 and 2.6.

Corollary 2.10. If theG-grading onR is non-degenerate andRe is a domain, then
R has a natural grading by the subgroup H WD Supp.R/ of G. This H -grading
is non-degenerate and ReG

D ReH
is a domain. Moreover, the H -grading is fully

supported and fully component regular.

3 Unique product groups

In this section, we will solve Problem 2 for unique product groups (see Theo-
rem 3.4). Unique product groups were introduced by Rudin and Schneider [47]
who called them �-groups.

Definition 3.1. Let G be a group.

(a) G is said to be a unique product group if, given any two non-empty finite
subsets A and B of G, there exists at least one element g 2 G which has
a unique representation of the form g D ab with a 2 A and b 2 B .

(b) G is said to be a two unique products group if, given any two non-empty finite
subsets A and B of G with jAj C jBj > 2, there exist at least two distinct
elements g and h ofG which have unique representations of the form g D ab,
h D cd with a; c 2 A and b; d 2 B .

It is clear that every two unique products group is a unique product group. In
1980, Strojnowski showed that the two properties are in fact equivalent.

Lemma 3.2 (Strojnowski [52]). A group G is a unique product group if and only
if it is a two unique products group.

Remark 3.3. Every unique product group is necessarily torsion-free.

We shall now state and prove the main result of this section, and thereby simul-
taneously generalize e.g. [19, Theorem 12], [19, Theorem 13], [47, Theorem 3.2],
[4, Proposition 3.6 (a)] and [41, Theorem 26.2]. The following result solves Prob-
lem 2 for unique product groups.
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Theorem 3.4. Let G be a unique product group and R a unital G-graded ring.
Furthermore, suppose that the G-grading on R is non-degenerate and that Re is
a domain. The following assertions hold:

(i) every unit in R is homogeneous;

(ii) R is a domain;

(iii) every idempotent in R is trivial.

Proof. (i) Take x; y 2 R which satisfy xy D 1R. Put

A WD Supp.x/ and B WD Supp.y/:

By assumption, jAj and jBj are positive. We want to show that jAj D jBj D 1.
Seeking a contradiction, suppose that jAj > 1. Then jAj C jBj > 2. Using the
fact that G is a unique product group and hence, by Lemma 3.2, a two unique
products group, there are two distinct elements g; h 2 AB such that g D ab and
h D cd with a; c 2 A and b; d 2 B . We must have xayb D 0 or xcyd D 0 since
jSupp.xy/j D jSupp.1R/j D j¹eºj D 1. But, by Proposition 2.6, R is fully com-
ponent regular, and hence neither of the two equalities can hold. This is a con-
tradiction. We conclude that jAj D 1, i.e. x is homogeneous. From the equality
xy D 1R and the full component regularity of the grading, we get that y is also
homogeneous.

(ii) Take two nonzero elements x; y 2 R. Seeking a contradiction, suppose that
xy D 0. Using the fact thatG is a unique product group, there is some a 2 Supp.x/
and some b 2 Supp.y/ such that xayb D 0. By Proposition 2.6, this is a contra-
diction.

(iii) This follows from (ii) since u2 D u, u.u � 1R/ D 0.

Remark 3.5. Note that Theorem 3.4 (ii) also holds if R is non-unital. We want to
point out that Malman has already proved Theorem 3.4 (ii) in [29, Lemma 3.13].

Remark 3.6. The proof of Theorem 3.4 (i) yields a seemingly stronger conclusion
than the one we aim to prove. But in fact, note that, for a G-graded ring R with
a fully component regular grading, the following three assertions are equivalent:

(L) every left invertible element in R is homogeneous;

(R) every right invertible element in R is homogeneous;

(U) every unit in R is homogeneous.

There is an abundance of classes of groups to which Theorem 3.4 can be ap-
plied.
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Example 3.7. Typical examples of unique product groups are the diffuse groups
(see [6, 24]) and in particular the right (or left) orderable groups, including e.g.
all free groups, all torsion-free nilpotent groups, and hence all torsion-free abelian
groups.

Remark 3.8. For many years, it was not known whether every torsion-free group
necessarily had the unique product property. However, in 1987, Rips and Segev
[46] presented an example of a torsion-free group without the unique product prop-
erty. Since then, a growing number of examples of torsion-free non-unique prod-
uct groups have surfaced (see e.g. [1, 9, 17, 44, 50]). Notably, Passman [42, p. 606]
showed that the so-called (Passman) fours group

P WD ha; b j b�1a2b D a�2; a�1b2a D b�2i

is torsion-free and non-right-orderable. Promislow [44] later showed that P is not
a unique product group. And more than 30 years later, Gardam [16] showed that
the group ring KŒP � has non-trivial units, where K is the field of two elements. It
is interesting to note that P is a solvable group, and henceKŒP � is in fact a domain
(see [25, Theorem 1.4]).

For an arbitrary torsion-free group G, we have that Z.G/ is a torsion-free abel-
ian group, and thus a unique product group. Theorem 3.4 now yields the following
result.

Corollary 3.9. Let G be a torsion-free group and R a unital G-graded ring whose
G-grading is non-degenerate. If Re is a domain, then every unit in RZ.G/ is ho-
mogeneous, RZ.G/ is a domain and every idempotent in RZ.G/ is trivial.

Corollary 3.10. Let G be a torsion-free group and R a unital commutative G-
graded ring whose G-grading is non-degenerate. If Re is a domain, then every
unit in R is homogeneous, R is an integral domain and every idempotent in R is
trivial.

Proof. By Corollary 2.10, there is a torsion-free group H such that R may be
equipped with anH -grading which is fully supported and fully component regular.
Take g; h 2 H . There are nonzero homogeneous elements rg 2 Rg and rh 2 Rh
such that rgrh D rhrg ¤ 0. Thus, Rgh \Rhg ¤ ¿, which yields gh D hg. This
shows that H is a torsion-free abelian group. The result now follows from Theo-
rem 3.4.

Theorem 3.4, Corollary 3.9 and Corollary 3.10 may be applied to G-crossed
products, and in particular to group rings, but more generally to strongly group
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graded rings. We shall now apply the aforementioned theorem to a few examples
of group graded rings whose gradings are (typically) not strong.

Example 3.11. (a) Let F be a field and consider the first Weyl algebra

R WD Fhx; yi=.yx � xy � 1/:

It is an easy exercise to show that R is a domain, but this elementary fact is also an
immediate consequence of Theorem 3.4. Indeed, note that, by assigning suitable
degrees to the generators, deg.x/ WD 1 and deg.y/ WD �1, R becomes graded by
the unique product group .Z;C/. Moreover, R0 D F Œxy� is a domain and the Z-
grading is non-degenerate. Thus, the first Weyl algebra R is a domain.

(b) More generally, letD be a ring, let � WD .�1; : : : ; �n/ be a set of commuting
automorphisms ofD, and let a WD .a1; : : : ; an/ be an n-tuple with nonzero entries
from Z.D/ satisfying �i .aj / D aj for i ¤ j . Given this data, it is possible to
define the corresponding generalized Weyl algebra R WD D.�; a/ (see [3] or [35]).
One may show that R is Zn-graded with Re D D. If D is a domain, then the Zn-
grading is non-degenerate and Theorem 3.4 yields that R is a domain. Thus, we
have recovered [3, Proposition 1.3 (2)].

(c) Any crystalline graded ringR WD A ˘˛� G (see [35]) is equipped with a non-
degenerate G-grading with Re D A. If A is a domain and G is a unique product
group, then R is a domain by Theorem 3.4.

4 Primeness

As a preparation for Section 5, in this section, we will give a sufficient condition
for a ring R graded by a torsion-free group G to be prime (see Theorem 4.4).

Recall that a group G is said to be an FC-group if each g 2 G has only a finite
number of conjugates in G. Equivalently, G is an FC-group if ŒG W CG.g/� <1
for each g 2 G. Given a group G, we define the subset

�.G/ WD ¹g 2 G j g has only finitely many conjugates in Gº:

It is not difficult to see that �.G/ is a subgroup of G.
The following useful lemma can be shown in various ways (see e.g. [36]).

Lemma 4.1 (Neumann [36]). Every torsion-free FC-group is abelian.

The next lemma is used in the work of Passman and can be shown by induction
on the number of subgroups. We omit the proof and instead refer the reader to
[41, Lemma 1.2].
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Lemma 4.2 (Passman [41]). Let L be a group and let H1;H2; : : : ;Hn be a finite
number of subgroups of L. Suppose that there exists a finite collection of elements
si;j 2 L for i 2 ¹1; : : : ; nº and j 2 ¹1; : : : ; mº such that L D

S
i;j Hisi;j . Then

for some k 2 ¹1; : : : ; nº, we have ŒL W Hk� <1.

Now we use Passman’s lemma to prove the next lemma which is crucial to this
section.

Lemma 4.3. Let G be a group and consider the subgroup H WD �.G/. Suppose
that F is a non-empty finite subset ofH and thatA;B are non-empty finite subsets
ofG nH . Let f 2 F and h 2 H be arbitrary. There exists some g 2 CG.F / such
that f h … g�1AgB .

Proof. Put L WD CG.F / and suppose that A D ¹a1; : : : ; anº, B D ¹b1; : : : ; bmº.
Let f 2 F and h 2 H be arbitrary. Seeking a contradiction, suppose that

f h 2 g�1AgB for all g 2 L:

For each i 2 ¹1; : : : ; nº, we define the subgroup Hi WD L \ CG.ai /.
For .i; j / 2 ¹1; : : : ; nº � ¹1; : : : ; mº, if ai is conjugate to f hb�1j by an ele-

ment ofL, then choose si;j 2 L such that s�1i;j aisi;j D f hb
�1
j . Otherwise, choose

si;j D e. Note that L �
S
i;j Hisi;j .

Now, let g 2 L be arbitrary. By our assumption, there exist i and j such that
f h D g�1aigbj . That is, f hb�1j D g�1aig D s

�1
i;j aisi;j . From the last equality,

we get that gs�1i;j 2 L \ CG.ai / D Hi . Thus, g 2 Hisi;j . Since g was arbitrarily
chosen, it is clear that L �

S
i;j Hisi;j . This shows that L D

S
i;j Hisi;j .

By Lemma 4.2, there is some k 2 ¹1; : : : ; nº such that ŒL W Hk� <1. Con-
sider the chains of subgroups G � L � Hk and G � CG.ak/ � Hk . Recall that
ŒG W CG.r/� <1 for each r 2 F . Thus, ŒG W L� <1, and hence ŒG W Hk� <1.
This shows that ŒG W CG.ak/� <1. But this is a contradiction since ak 2 G nH .

Theorem 4.4. Let G be a torsion-free group and R a G-graded ring. If the G-
grading on R is non-degenerate and Re is a domain, then R is a prime ring.

Proof. By Corollary 2.10, G0 WD Supp.R/ is a torsion-free subgroup of G. More-
over, R can be equipped with a non-degenerate and fully supported G0-grading.
Thus, we will without loss of generality assume that the G-grading on R is fully
supported.

Put H WD �.G/. Note that H is a torsion-free FC-group. Thus, by Lemma 4.1,
H is torsion-free abelian. Theorem 3.4 now yields that RH is a domain.



12 J. Öinert

Seeking a contradiction, suppose that there are nonzero ideals I and J of R
such that I � J D ¹0º. By Proposition 2.6, the G-grading on R is fully component
regular. Using this and Lemma 2.4, it is clear that �H .I / and �H .J / are nonzero
ideals of RH .

Choose some x 2 I and y 2 J such that �H .x/ ¤ 0 and �H .y/ ¤ 0. Put

x0 WD �H .x/ and x00 WD x � x0:

Note that F WD Supp.x0/ � H and A WD Supp.x00/ � G nH . Similarly, put

y0 WD �H .y/ and y00 WD y � y0;

and note that Supp.y0/ � H and B WD Supp.y00/ � G nH .
Choose some f 2 F and h 2 Supp.y0/. Put L WD CG.F / and let g 2 L be

arbitrary. Choose some nonzero elements rg 2Rg and rg�1 2Rg�1 . Then we have
rg�1xrg � I , and thus

0 D rg�1xrg � y D .rg�1x0rg C rg�1x00rg/.y
0
C y00/

D rg�1x0rgy
0
C rg�1x00rgy

0
C rg�1x0rgy

00
C rg�1x00rgy

00:

Now, by combining the facts that the G-grading on R is fully supported and
fully component regular and that RH is a domain, it is not difficult to see that
rg�1x0rgy

0 ¤ 0. In fact, f h 2 Supp.rg�1x0rgy
0/ D Supp.x0y0/ � H . Using the

fact that H is a subgroup of G which is closed under conjugation, we note that
Supp.rg�1x00rgy

0/ \ H D ¿ and Supp.rg�1x0rgy
00/ \ H D ¿, and hence we

must have f h 2 Supp.rg�1x00rgy
00/ D g�1AgB . But g 2 L may be chosen arbi-

trarily, and thus Lemma 4.3 yields a contradiction. This shows that R is prime.

If R is a unital ring and x; y 2 Z.R/ are nonzero elements satisfying xy D 0,
then I WD xR and J WD yR are nonzero ideals of R such that I � J D ¹0º. Thus,
we obtain the following corollary which generalizes a conclusion which, using
results of Burns [8], is already well known for group rings.

Corollary 4.5. Let G be a torsion-free group and R a unital G-graded ring. If the
G-grading on R is non-degenerate and Re is a domain, then Z.R/ is an integral
domain. In particular, every central idempotent in R is trivial.

5 A potential hierarchy between the three problems

For group rings (cf. Problem 1), it is well known that an affirmative answer to
the unit conjecture, for a fixed field K, would yield an affirmative answer to the
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zero-divisor conjecture, which in turn would yield an affirmative answer to the
idempotent conjecture (see e.g. [53, p. 12]). However, it is not known whether two
(or all) of the three conjectures are equivalent.

In this section, we will use the main result from Section 4 to show that the
corresponding problems for group graded rings (see Problem 2) exhibit the same
potential hierarchy. In fact, the hierarchy is not only manifested for the family of all
torsion-free groups, but already at the level of every fixed torsion-free group (see
Theorem 5.2). Recall that a ring is called reduced if it has no nonzero nilpotent el-
ement. We begin by showing the following generalization of [42, Lemma 13.1.2].

Proposition 5.1. Let G be a torsion-free group and R a G-graded ring whose G-
grading is non-degenerate. Then R is a domain if and only if R is reduced and Re
is a domain.

Proof. The “only if” statement is trivial. We proceed by showing the “if” state-
ment. To this end, suppose that Re is a domain and that R is not a domain. We
need to show thatR is not reduced. By Theorem 4.4, we conclude thatR is a prime
ring. Choose some nonzero elements x; y 2 R which satisfy xy D 0. By prime-
ness of R, we have yRx ¤ ¹0º. Note that .yRx/2 � yRxyRx D ¹0º. Thus, there
is some nonzero z 2 yRx which satisfies z2 D 0. This shows that R is not re-
duced.

We are now ready to state and prove the main result of this section. It generalizes
e.g. [42, Lemma 13.1.2]. See also [53, Remark 1.1].

Theorem 5.2. Let G be a torsion-free group and R a unital G-graded ring. Fur-
thermore, suppose that theG-grading onR is non-degenerate and thatRe is a do-
main. Consider the following assertions:

(i) every unit in R is homogeneous;

(ii) R is reduced;

(iii) R is a domain;

(iv) every idempotent in R is trivial.

Then (i)) (ii)) (iii)) (iv). Moreover, (iii)) (ii).

Proof. (i)) (ii) Suppose that every unit in R is homogeneous. Let x 2 R be an
element which satisfies x2 D 0. Note that

.1R C x/.1R � x/ D .1R � x/.1R C x/ D 1R:
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This shows that 1R � x is a unit inR, and hence, by assumption, 1R � x 2 Rg for
some g 2 G. Put rg WD 1R � x andH WD hgi, the subgroup of G generated by g.
Consider the subring RH whose H -grading is non-degenerate. Using the fact that
1R 2 Re, we note that x D 1R � rg 2 RH . We claim that RH is a domain. If we
assume that the claim holds, then x2 D 0 implies x D 0 and we are done. Now we
show the claim.

Case 1 (g D e): By assumption, RH D Re is a domain.

Case 2 (g ¤ e): H is an infinite cyclic group which can be ordered. The desired
conclusion follows from Theorem 3.4 (ii).

(ii), (iii) This follows from Proposition 5.1.
(iii)) (iv) This is trivial.

In Section 6, we will record an alternative proof of (ii)) (iv) in the above
theorem (see Corollary 6.5).

Remark 5.3. If u D u2 2 R is an idempotent, then

.1R � 2u/
2
D 1R � 4uC 4u D 1R:

Thus, if 2 is invertible in Re, then one can directly, without invoking a primeness
argument, show that (i)) (iv) in Theorem 5.2 by proceeding as in the proof of
(i)) (ii).

For a G-graded ring R to be a domain, it is obviously also necessary for Re
to be a domain. However, as the following example shows, it is possible for R to
have only homogeneous units without Re being a domain.

Example 5.4. If G is a unique product group and A is a unital commutative ring,
then the group ring AŒG� has only trivial units if and only if A is reduced and
indecomposable (see [51, Proposition 2.1]).

Let G be a unique product group and let A WD C1.R/ be the algebra of all
smooth functions R! R with pointwise addition and multiplication. Note that A
is not a domain. However, A is reduced and indecomposable. Thus, AŒG� has only
trivial units.

Remark 5.5. (a) While torsion-freeness of G is clearly a necessary condition for
a group ring KŒG� to be a domain, this is not the case for strongly G-graded rings
in general. Indeed, consider for instance the real quaternion algebra H which is
a division ring, and which is strongly graded by the finite group Z=2Z � Z=2Z.
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(b) Example 5.4 shows that Theorem 5.2 fails to hold if the assumption on Re
is dropped.

(c) Non-degeneracy of the grading is not a necessary condition for a group
graded ring to be a domain. To see this, consider e.g. Example 2.3 (a).

6 Central elements

The aim of this section is to obtain a strengthening of Corollary 4.5 by completely
solving Problem 2 for central elements (see Theorem 6.2).

Proposition 6.1. LetG be a group andR a unitalG-graded ring whoseG-grading
is non-degenerate. Furthermore, suppose that Re is a domain and that the G-
grading is fully supported. If x is a central element in R, then the subgroup of G
generated by Supp.x/ is an FC-group.

Proof. Let x D
P
g2G xg be a central element in R. Take s 2 G. Choose some

nonzero rs 2 Rs and, using Proposition 2.6, note that

s Supp.x/ D Supp.rsx/ D Supp.xrs/ D Supp.x/s:

This shows that Supp.x/ is closed under conjugation by elements of G. Thus, by
finiteness of Supp.x/, we get that Supp.x/ � �.G/. Let H be the subgroup of G
generated by Supp.x/. Using the fact that H is finitely generated, we conclude
that H is an FC-group.

We now state and prove the main result of this section.

Theorem 6.2. Let G be a torsion-free group and R a unital G-graded ring. If
the G-grading on R is non-degenerate and Re is a domain, then the following
assertions hold:

(i) every central unit in R is homogeneous;

(ii) R has no non-trivial central zero-divisor;

(iii) R is indecomposable, i.e. every central idempotent in R is trivial.

Proof. By Corollary 2.10, G0 WD Supp.R/ is a torsion-free subgroup of G. More-
over, R can be equipped with a non-degenerate and fully supported G0-grading.
Thus, we will without loss of generality assume that the G-grading on R is fully
supported.

(i) Let x 2 Z.R/ be a unit in R. Denote by H the subgroup of G generated by
Supp.x/. Note that, by Lemma 2.5 (ii), x is a unit in RH . By Proposition 6.1, H
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is a torsion-free FC-group. Thus, using Lemma 4.1 and Theorem 3.4, we conclude
that x is homogeneous.

(ii) Let x 2 Z.R/ be nonzero. Suppose that xy D 0 for some y 2 R. Denote by
H the subgroup of G generated by Supp.x/. By Proposition 6.1, H is a torsion-
free FC-group. Using Lemma 4.1 and Theorem 3.4, we conclude that RH is a do-
main. Thus, x is not a zero-divisor in RH , and by Lemma 2.5 (i), we conclude that
y D 0.

(iii) This follows from (ii) or from Corollary 4.5.

Remark 6.3. (a) Malman has essentially proved Theorem 6.2 (ii) in [29, Proposi-
tion 3.14]. Thanks to Neumann’s lemma (Lemma 4.1), our proof is shorter.

(b) Note that we can immediately recover Corollary 3.10 from Theorem 6.2.

We record the following well-known lemma.

Lemma 6.4. If R is a reduced ring, then every idempotent in R is central in R.

Proof. Let u 2 R be an idempotent. Take any r 2 R. Note that .ur � uru/2 D 0
and .ru � uru/2 D 0. Using the fact that R is reduced, we conclude that

ur � uru D 0 and ru � uru D 0:

Hence, ur D ru. This shows that u 2 Z.R/.

By combining Lemma 6.4 and Theorem 6.2, we get the following result.

Corollary 6.5. Let G be a torsion-free group and R a unital G-graded ring. Fur-
thermore, suppose that theG-grading onR is non-degenerate and thatRe is a do-
main. If R is reduced, then every idempotent in R is trivial.

Note that the above corollary allows us to establish the implication (ii)) (iv)
in Theorem 5.2 without relying on the primeness argument from Section 4.

7 Gradings by quotient groups

In this section, we will show that Problem 2 can be approached by considering
gradings by quotient groups (see Proposition 7.3). For G-crossed products, we
obtain a more explicit connection (see Proposition 7.5), and as an application,
we generalize a result of Bovdi for a special class of solvable groups (see Theo-
rem 7.7).
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Remark 7.1. Let G be a group and R a G-graded ring. If N is a normal subgroup
of G, then R may be viewed as a G=N -graded ring. Indeed, by writing

R D
M
g2G

Rg D
M

C2G=N

�M
h2C

Rh

�
;

it is easy to see that this yields a G=N -grading.

For a proof of the next lemma, we refer the reader to [26, Proposition 2.21].

Lemma 7.2. Let G be a group and R a G-graded ring whose G-grading is non-
degenerate. If N is a normal subgroup of G, then the canonical G=N -grading on
R is non-degenerate.

The following result generalizes [42, Lemma 13.1.9 (i)] and [40, Corollary 3.6].

Proposition 7.3. LetG be a group andR a unitalG-graded ring whoseG-grading
is non-degenerate. If N is a normal subgroup of G and Re is a domain, then the
following assertions hold:

(i) If RN WD
L
n2N Rn is a domain and G=N is a unique product group, then R

is a domain.

(ii) Suppose that N is torsion-free, that G=N is a unique product group and that
every unit in R which is contained in RgN for some g 2 G must be homo-
geneous with respect to the G-grading. Then every unit in R is homogeneous
with respect to the G-grading.

Proof. (i) We will view

R D
M
g2G

Rg D
M

C2G=N

�M
h2C

Rh

�
as a G=N -graded ring. By Lemma 7.2, the G=N -grading is non-degenerate, and
by assumption, RN is a domain. The desired conclusion now follows immediately
from Theorem 3.4.

(ii) We begin by noting that, by assumption, every unit in RN must be homo-
geneous. Thus, by Theorem 5.2, RN is a domain. Take x; y 2 R which satisfy
xy D 1R. Let Supp.x/ and Supp.y/ denote the support of x and y, respectively,
with respect to the G-grading. Let �WG ! G=N denote the quotient homomor-
phism. Define a and b to be the cardinalities of �.Supp.x// and �.Supp.y//,
respectively. If aC b > 2, then by the unique product property of G=N (and
Lemma 3.2), we will reach a contradiction in the same way as in the proof of
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Theorem 3.4, by instead considering the G=N -grading. Thus, a D b D 1. This
means that there is some g 2 G such that x 2 RgN and y 2 Rg�1N . Now, by as-
sumption, both x and y must be homogeneous with respect to the G-grading.

Remark 7.4. By taking N D ¹eº, note that, from Proposition 7.3 (i), we recover
Theorem 3.4 (ii), and from Proposition 7.3 (ii), we recover Theorem 3.4 (i).

Recall that a unital G-graded ring R is said to be a G-crossed product if, for
each g 2 G, the homogeneous componentRg contains an element which is invert-
ible in R (see [34, Chapter 1]). Every G-crossed product is necessarily strongly
G-graded (see e.g. [34, Remark 1.1.2]), and in particular, its G-grading is non-
degenerate (see Remark 2.2 (a)).

The following result generalizes [42, Lemma 13.1.9 (ii)].

Proposition 7.5. Let G be a group and R a G-crossed product. Suppose that N
is a torsion-free normal subgroup of G, that G=N is a unique product group and
that Re is a domain. The following two assertions are equivalent:

(i) every unit in R D
L
g2G Rg is homogeneous with respect to the G-grading;

(ii) every unit inRN WD
L
n2N Rn is homogeneous with respect to theN -grading.

Proof. (i)) (ii) This is trivial.
(ii)) (i) TheG-grading onR is non-degenerate. Thus, the first part of the proof

may be carried out in the same way as the proof of Proposition 7.3 (ii). Indeed,
for elements x; y 2 R which satisfy xy D yx D 1R, we get that x 2 RgN and
y 2 Rg�1N for some g 2 G. Using the fact that R is a G-crossed product, we
may choose homogeneous units x0 and y0 of degree g�1 and g, respectively, such
that x0y0 D y0x0 D 1R. Note that

1R D x
0y0 D x0.xy/y0 D .x0x/.yy0/ D .yy0/.x0x/;

where x0x 2 RN and yy0 2 RN . By assumption, x0x and yy0 are homogeneous
with respect to the N -grading on RN . Using the fact that x0 and y0 are homo-
geneous, we conclude that x and y must be homogeneous with respect to the
G-grading.

By invoking Theorem 3.4, Example 3.7 and Theorem 5.2, we obtain the follow-
ing result.

Corollary 7.6. LetG be a torsion-free group andR aG-crossed product for which
Re is a domain. If N is an abelian normal subgroup of G such that G=N is
a unique product group, then every unit in R is homogeneous with respect to the
G-grading. Moreover, R is a domain and every idempotent in R is trivial.
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As an application of the above results, we will solve Problem 2 for G-crossed
products by a special class of solvable groups and thereby generalize [5, Theo-
rem 1].

Theorem 7.7. Let G be a group and suppose that G has a finite subnormal series

hei D G0 C G1 C � � � C Gk D G

with quotients GiC1=Gi all of which are torsion-free abelian. If R is a G-crossed
product with Re a domain, then every unit in R is homogeneous with respect to
the G-grading, and R is a domain. In particular, every idempotent in R is trivial.

Proof. Using that G0 is a torsion-free normal subgroup of G1, that RG0
D Re is

a domain and thatG1=G0 is a unique product group, we get by Proposition 7.5 that
every unit in RG1

is homogeneous. More generally, if Gi is torsion-free and every
unit in RGi

is homogeneous, then, by Theorem 5.2, RGi
is a domain. Using the

fact thatGi is normal inGiC1 and thatGiC1=Gi is a unique product group, Propo-
sition 7.5 yields that every unit inRGiC1

is homogeneous. Furthermore, since both
GiC1=Gi and Gi are torsion-free, we notice that GiC1 is also torsion-free. By in-
duction over i , we conclude that every unit in R is homogeneous with respect
to the G-grading. Clearly, G is torsion-free. Thus, Theorem 5.2 yields that R is
a domain and that every idempotent in R is trivial.

Remark 7.8. It is also possible to obtain Theorem 7.7 directly from Theorem 3.4.
Indeed, one can show that the group G in Theorem 7.7 is right-ordered (see [42,
Lemma 13.1.6]), and hence a unique product group.

8 A conjecture

Recall that, up until now, we have been able to solve Problem 2 in the affirmative
in the following important cases:

� when G is a unique product group, including e.g. all torsion-free abelian groups
(see Theorem 3.4 and Example 3.7);

� when R is commutative (see Corollary 3.10);

� for central elements (see Theorem 6.2).

Despite the fact that the list of torsion-free non-unique product groups is grow-
ing (see Remark 3.8), we dare, in view of our findings, present the following gen-
eralizations of the Higman–Kaplansky conjectures for group rings.
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Conjecture 8.1. LetG be a torsion-free group andR a unitalG-graded ring whose
G-grading is non-degenerate. If Re is a domain with char.Re/ D 0, then the fol-
lowing assertions hold:

(a) every unit in R is homogeneous;

(b) R is a domain;

(c) every idempotent in R is trivial.

Remark 8.2. Using Lemma 2.5, it is not difficult to see that, in order to resolve
Conjecture 8.1, it is enough to consider the case where G is finitely generated.

Remark 8.3. In their work, Dykema, Heister and Juschenko [12], and indepen-
dently Schweitzer [49], identified certain classes of finitely presented torsion-free
groups. Amongst other results, they showed that, in order to prove the zero-divisor
conjecture for group rings over the field of two elements, it is sufficient to prove the
conjecture for groups coming from the aforementioned classes of finitely presented
groups. Further investigation is needed to determine whether a similar reduction is
possible for group rings in general, and even more generally for the group graded
rings appearing in Problem 2.

As mentioned in Section 1, the idempotent conjecture for group rings is related
to the Kadison–Kaplansky conjecture for group C*-algebras, to the Baum–Connes
conjecture and to the Farrell–Jones conjecture. Moreover, the zero-divisor con-
jecture for group rings is related to the Atiyah conjecture [28, Conjecture 10.3].
Further investigations are required to determine which relationship (if any) Con-
jecture 8.1 may have to other well-known conjectures.
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