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Abstract. [Context & motivation:] System behavior is often ex-
pressed by causal relations in requirements (e.g., If event 1, then event 
2 ). Automatically extracting this embedded causal knowledge supports 
not only reasoning about requirements dependencies, but also various 
automated engineering tasks such as seamless derivation of test cases. 
However, causality extraction from natural language (NL) is still an open 
research challenge as existing approaches fail to extract causality with 
reasonable performance. [Question/problem:] We understand causal-
ity extraction from requirements as a two-step problem: First, we need to 
detect if requirements have causal properties or not. Second, we need to 
understand and extract their causal relations. At present, though, we lack 
knowledge about the form and complexity of causality in requirements, 
which is necessary to develop a suitable approach addressing these two 
problems. [Principal ideas/results:] We conduct an exploratory case 
study with 14,983 sentences from 53 requirements documents originat-
ing from 18 different domains and shed light on the form and complexity 
of causality in requirements. Based on our findings, we develop a tool-
supported approach for causality detection (CiRA, standing for Causality 
in Requirement Artifacts). This constitutes a first step towards causality 
extraction from NL requirements. [Contribution:] We report on a case 
study and the resulting tool-supported approach for causality detection 
in requirements. Our case study corroborates, among other things, that 
causality is, in fact, a widely used linguistic pattern to describe system 
behavior, as about a third of the analyzed sentences are causal. We fur-
ther demonstrate that our tool CiRA achieves a macro-F1 score of 82 % 
on real word data and that it outperforms related approaches with an 
average gain of 11.06 % in macro-Recall and 11.43 % in macro-Precision. 
Finally, we disclose our open data sets as well as our tool to foster the 
discourse on the automatic detection of causality in the RE community. 

Keywords: Causality · Case Study · Requirements Engineering · Nat-
ural Language Processing 

1 Introduction 

System behavior is usually described by causal relations, e.g. “A confirmation 
message shall be shown if the system has successfully processed the data.” Hence, 
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causal relations are often inherently embedded in the textual descriptions of 
requirements. Understanding and extracting these causal relations offers great 
potential for Requirements Engineering (RE); for instance, by supporting the 
automated derivation of test cases and by facilitating reasoning about depen-
dencies between requirements [7]. However, automated causality extraction from 
requirements is still challenging for two reasons. First, requirements are mostly 
expressed by unrestricted natural language (NL) so that the system behavior 
is specified in arbitrarily complex ways. Second, causality can occur in different 
forms [2] such as marked/unmarked or explicit/implicit which makes it difficult 
to identify and extract the causes and effects. Existing approaches [1] fail to 
extract causality from NL with a performance that allows for use in practice. 
Therefore, we argue for the need of a novel method for the extraction of causality 
from requirements. We understand causality extraction as a two-step problem: 
We first need to detect whether requirements contain causal relations. Second, 
if they contain causal relations, we need to understand and extract them. To 
address both problems, we have to comprehend in which form and complexity 
requirements causality occurs in practice. This enables us to develop efficient 
approaches for the automated identification and extraction of causal relations. 
However, empirical evidence on causality in requirements is presently still weak. 
In this paper, we report on how we addressed this research gap and make the 
following contributions (C): 
– C 1: We report on an exploratory case study where we analyze form and 

complexity of causality in requirements based on 14,983 sentences emerging 
from 53 requirement documents. These documents originate from 18 different 
domains. We corroborate, for example, that causality tends to occur, in 
fact, in explicit and marked form, and that about 28 % of the analyzed 
sentences contain causal knowledge about the expected system behavior. 
This strengthens our confidence in the relevance of our approach. 

– C 2: We present our tool-supported approach named CiRA (Causality de-
tection in Requirement Artifacts), which forms a first step towards causality 
extraction from NL requirements. We train and empirically evaluate CiRA 
using the pre-analyzed data set and achieve an macro-F1 score of 82 %. 
Compared to baseline systems that classify causality based on the presence 
of certain cue phrases, or shallow ML models, CiRA leads to an average per-
formance gain of 11.43 % in macro-Precision and 11.06 % in macro-Recall. 

– C 3: To strengthen transparency and facilitate replication, we disclose our 
tool, code, and data set used in the case study.1 

2 Terminology 

Causality represents a semantic relation that has been studied by various disci-
plines, e.g. by psychology [27]. Before we can investigate in which form causality 
occurs in requirements, we must first understand what causality actually means. 

Concept of Causality Causality is a relation between two events: a causing event 
(the cause) and a caused event (the effect). An event is “any situation (including 

1 A demo of CiRA can be accessed at cira.diptsrv003.bth.se. Our code and annotated 
data sets can be found at https://github.com/fischJan/CiRA. 

cira.diptsrv003.bth.se
https://github.com/fischJan/CiRA
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a process or state) that happens or occurs either instantaneously (punctual) or 
during a period of time (durative)” [19]. The connection between causes and 
effects is counterfactual [17]: If a cause c1 did not occur, then an effect e1 could 
not have occurred either. Consequently, a causal relation requires that the effect 
may only occur if and only if the cause has occurred. Therefore, in the view of 
Boolean algebra, a causal relation can be interpreted as an equivalence between 
a cause and effect (c1 ⇐⇒ e1). If the cause is true, the effect is true and if the 
cause is false, the effect is also false. The relation between a cause and effect can 
be defined in three different ways [26]: as a cause, enable or prevent relationship. 
– c1 causes e1: If c1 occurs, e1 also occurs (c1 ⇐⇒ e1). This can be illustrated 

by REQ 1: “After the user enters a wrong password, a warning window shall 
be shown.” In this case, the wrong input is the trigger to display the window. 

– c1 enables e1: If c1 does not occur, e1 does not occur either (e1 is not 
enabled). REQ 2: “As long as you are a student, you are allowed to use 
the sport facilities of the university (c1 ⇐⇒ e1).” Only the student status 
enables to do sports on campus. 

– c1 prevents e1: If c1 occurs, e1 does not occur (c1 ⇐⇒ ¬e1). REQ 3: 
“Data redundancy is required to prevent a single failure from causing the 
loss of collected data.” There will be no data loss due to data redundancy. 

Temporal Ordering of Causes and Effects Causes and effects can occur in three 
different temporal relations [19]. In the first temporal relation, the cause occurs 
before the effect (before relation). REQ 1 requires the user to enter a wrong 
password before the warning window will be displayed. In this example, the cause 
and effect represent two punctual events. In the second temporal relation, the 
occurrence of the cause and effect overlaps: “The fire is burning down the house.” 
In this case, the occurrence of the emerging fire overlaps with the occurrence of 
the increasingly brittle house (overlaps relation). In the third temporal relation 
(during relation), cause and effect occur simultaneously. REQ 2 describes such 
a relation, as the effect that you are allowed to do sports on the campus is only 
valid as long as you have the student status. The start and end time of the cause 
is therefore also the start and end of the effect. Here, both events are durative. 

Forms of Causality Causality can be expressed in different forms [2]: marked 
and unmarked causality, explicit and implicit causality, and ambiguous and non-
ambiguous cue phrases. 
– Marked and unmarked: A causal relation is marked if a certain cue phrase 

indicates causality. The requirement “If the user presses the button, a win-
dow appears” is marked by the cue phrase “if”, while “The user has no 
admin rights. He cannot open the folder.” is unmarked. 

– Explicit and implicit: An explicit causal relation provides information 
about both the cause and effect. The requirement “In case of an error, the 
systems prints an error message to the console” is explicit as it contains 
the cause (error) and effect (error message). “A parent process kills a child 
process” is implicit because the effect that the child process is terminated is 
not explicitly stated. 

– Ambiguous and non-ambiguous cue phrases: Given the difference be-
tween marked and unmarked causality, it seems feasible to deduce the pres-
ence of causality in a sentence from the occurrence of certain cue phrases. 
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However, there are cue phrases (e.g. since) that may indicate causality, but 
also occur in other contexts (e.g. to denote time constraints). Such cue 
phrases are called ambiguous, while cue phrases (e.g. because) that mostly 
indicate causality are called non-ambiguous. 

Complexity of Causality Our previous explanations refer to the simplest case 
where the causal relation consists of a single cause and effect. With increasing 
system complexity, however, the expected system behaviour is described by mul-
tiple causes and effects that are connected to each other. They are linked either 
by conjunctions (c1 ∧ c2 ∧ · · · ⇐⇒ e1) or disjunctions (c1 ∨ c2 ∨ · · · ⇐⇒ e1) 
or a combination of both which increases the complexity of the causal relation. 
Furthermore, causal relations can not only be contained in a single sentence, but 
also span over multiple sentences, which is a significant challenge for causality 
extraction. Additionally, the complexity increases when several causal relations 
are linked together, i.e. if the effect of a relation r1 represents a cause in another 
relation r2. We define such causal relations, where r2 is dependent on r1, as event 
chains (e.g. r1 : c1 ⇐⇒ e1 and r2 : e1 ⇐⇒ e2). 

3 Case Study: Causality in Requirement Documents 

The case study was performed according to the guidelines of Runeson and 
Höst [23]. Based on the classification of Robson [22], our case study is exploratory 
as we seek for new insights into causality in requirement documents. In this sec-
tion, we describe our research questions, study objects, study design, study results, 
and threats to validity. We also give an overview of the implications of the study 
on the causality detection and extraction from requirements. 

3.1 Research Questions 

We are interested in the form and complexity of causality in requirement doc-
uments. Based on the terminology introduced in Section 2, we investigate the 
following research questions (RQ): 
– RQ 1: To which degree does causality occur in requirement documents? 
– RQ 2: How often do the relations cause, enable and prevent occur? 
– RQ 3: How often do the temporal relations before, overlap and during occur? 
– RQ 4: In which form does causality occur in requirement documents? 

RQ 4a: How often does marked and unmarked causality occur? 
RQ 4b: How often does explicit and implicit causality occur? 
RQ 4c: Which causal cue phrases are used? Are they mainly ambiguous or 
non-ambiguous? 

– RQ 5: At which complexity does causality occur in requirement documents? 
RQ 5a: How often do multiple causes occur? 
RQ 5b: How often do multiple effects occur? 
RQ 5c: How often does two sentence causality occur? 
RQ 5d: How often do event chains occur? 

3.2 Study Objects 

We considered three criteria when selecting a suitable data set for our case 
study: 1) the data set shall contain requirements documents that are/were used 
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in practice, 2) the data set shall not be domain-specific, rather it shall contain 
documents from different domains, and 3) the documents shall originate from 
different years. Consequently, our analysis is not restricted to a single year or 
domain, but rather allows for a comprehensive view on causality in requirements. 
Based on these criteria, we selected the data set provided by Fischbach et al. [7]. 
To the best of our knowledge, this data set is currently the most extensive collec-
tion of requirements available in the RE community. It contains 463 documents, 
from which the authors extracted and pre-processed 212k sentences. For our 
analysis, we have randomly selected 53 documents from the data set. Our final 
data set consists of 14,983 sentences from 18 different domains (see Fig. 1). 
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Fig. 1. Descriptive statistics of our data set. The left graph shows the number of 
sentences per domain. The right graph depicts the year of creation per document. 

3.3 Study Design 

Model the phenomenon In order to answer our RQ, we need to annotate the 
sentences in our data set with respect to certain categories (e.g. explicit or im-
plicit causality). According to Pustejovsky and Stubbs [21], the first step in each 
annotation process is to “model the phenomenon” that needs to be annotated. 
Specifically, it should be defined as a model M that consists of a vocabulary T, 
the relations R between the terms as well as the interpretations I of terms. RQ 
1 can be understood as a binary annotation problem, which can be modeled as: 
– T: {sentence, causal, not causal}
– R: {sentence ::= causal | not causal}
– I: {causal = “A sentence is causal if it contains a relation between at least 

two events, where e1 causes the occurrence of e2”, ¬causal = “A sentence is 
not causal if it describes a state that is independent on any events”}

Modeling an annotation problem has two advantages: It contributes to a clear 
definition of the research problem and can be used as a guide for the annotators 
to explain the meaning of the labels. We have modeled each RQ and discussed 
it with the annotators. In addition to interpretation I, we have also provided 
an example for each label to avoid misunderstandings. After modeling all RQs, 
the following nine categories emerged, according to which we annotated our 
data set: Causality , Single Cause ,Single Sentence ,Marked ,Explicit , 

Single Effect , and 

Annotation Environment We developed our own annotation platform tailored 
to our research questions.2 Contrary to other annotation platforms [20] which 
only show single sentences to the annotators, we also show the predecessor and 

Event Chain , Temporality .Relationship 

2 The platform can be accessed at clabel.diptsrv003.bth.se. 

clabel.diptsrv003.bth.se
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successor of each sentence. This is required to determine whether the causality 
extends over one sentence or across multiple ones (see RQ 5c). For the binary 
annotation problems (see RQ 1, RQ 4a, RQ 4b, RQ 5a - d), we provide two labels 
for each category. Cue phrases present in the sentence can either be selected by 
the annotator from a list of already labeled cue phrases or new cue phrases can 
be added using a text input field (see RQ 4c). Since RQ 2 and RQ 3 are ternary 
annotation problems, the platform provides three labels for these categories. 

Annotation Guideline Prior to the labeling process, we conducted a workshop 
with all annotators to ensure a common understanding of causality. The results 
of the workshop were recorded in the form of an annotation guideline. All an-
notators were instructed to observe the following annotation rules: First, you 
should not just check for cue phrases and label the sentence directly as causal, 
but rather read the sentence completely before making a labeling decision. Oth-
erwise, too many False Positives will be introduced. Second, you should check if 
the cause is really necessary for the effect to occur. Only if the cause is mandatory 
for the effect, it is a causal relation. 

Table 1. Inter-annotator agreement statistics per category. The two categories Re-
lationship and Temporality were jointly labeled by the first and second author and 
therefore do not require a reliability assessment. 

Single Single Single Event 
Causal Explicit Marked Sentence Cause Effect Chain avg. 

Confusion 0 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 

86.3 % 

2034 193 24 25 1 22 12 8 41 77 63 72 450 27 

Matrix 1 274 499 39 411 12 464 17 462 43 338 46 318 13 9 

Agreement 84.4 % 87.2 % 93.1 % 95.0 % 76.0 % 76.4 % 92.0 % 

Cohen’s Kappa 0.579 0.358 0.023 0.464 0.261 0.362 0.27 0.331 

Gwet’s AC1 0.753 0.84 0.926 0.945 0.645 0.625 0.91 0.806 

Annotation Validity To verify the reliability of our annotations, we calculated 
the inter-annotator agreement. We assigned 3,000 sentences to each annotator, of 
which 2,500 are unique and 500 overlapping. Based on the overlapping sentences, 
we calculated the Cohen’s Kappa [3] measure to evaluate how well the annotators 
can make the same annotation decision for a given category. We chose Cohen’s 
Kappa since it is widely used for assessing inter-rater reliability [25]. However, 
a number of statistical problems are known to exist with this measure [18]. 
In case of a high imbalance of ratings, Cohen’s Kappa is low and indicates 
poor inter-rater reliability even if there is a high agreement between the raters 
(Kappa paradox [6]). Thus, Cohen’s Kappa is not meaningful in such scenarios. 
Consequently, studies [28] suggest that Cohen’s Kappa should always be reported 
together with the percentage of agreement and other paradox resistant measures 
(e.g. Gwet’s AC1 measure [10]) in order to make a valid statement about the 
inter-rater reliability. We involved six annotators in the creation of the corpus 
and assessed the inter-rater reliability on the basis of 3,000 overlapping sentences, 
which represents about 20 % of the total data set. We calculated all measures 
(see Tab. 1) using the cloud-based version of AgreeStat [11]. Cohen’s Kappa 
and Gwet’s AC1 can both be interpreted using the taxonomy developed by 
Landis and Koch [16]: values ≤ 0 as indicating no agreement and 0.01–0.20 as 
none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, 

https://0.61�0.80
https://0.41�0.60
https://0.21�0.40
https://0.01�0.20
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Answer to RQ3: Interestingly, we found that causes and effects occur almost 
equally often in a before and during relation. With about 48 %, the before relation 
is the most frequent temporal relation in our data set, but only with a difference 
of about 6 % compared to the during relation. The overlap relation occurred 
only in a minority (8.78 % of the sentences). 
Answer to RQ4a: Fig. 2 shows that the majority of causal sentences contain 

one or more cue phrases to indicate the causal relationship between certain 
events. Unmarked causality occurs only in about 15 % of the analyzed sentences. 
Answer to RQ4b: Most causal sentences are explicit, i.e. they contain infor-

mation about both the cause and the effect. Only about 10 % of causal sentences 
are implicit. 
Answer to RQ4c: Tab. 2 provides an overview of the causal cue phrases used 

in the requirement documents. The left side of the table shows the different cue 
phrases ordered by word group. On the right side, all verbs used to express causal 
relations are listed. We order the verbs according to whether they express a cause, 
enable or prevent relationship. To measure the ambiguity of the individual cue 
phrases, we introduce the ambiguity factor (AF). We define AF for a cue phrase x 
as the conditional probability that a sentence is causal given that the cue phrase 
x occurs in the sentence: Pr(Causal | X is present in sentence). Hence, a high AF 
value indicates a non-ambiguous cue phrase, while low values indicate strongly 
ambiguous cue phrases. Tab. 2 demonstrates that a number of different cue 
phrases are used to express causality in requirement documents. Not surprisingly, 
cue phrases like “if”, “because” and “therefore” show AF values of more than 
90 %. However, there is a variety of cue phrases that indicate causality in some 
sentences but also occur in other non-causal contexts. This is especially evident 
in the case of pronouns. Relative sentences can indicate causality, but not in 
every case, which is reflected by the low AF value. A similar pattern emerges 
with regard to the used verbs. Only a few verbs (e.g., “leads to, degrade and 
enhance”) show a high AF value. Consequently, the majority of used verbs do 
not necessarily indicate a causal relation if they are present in a sentence. 
Answer to RQ 5a: Fig. 2 illustrates that a causal relation in requirement 

documents often includes only a single cause. Multiple causes occur in only 
19.1 % of analyzed causal sentences. The exact number of causes was not doc-
umented during the annotation process. However, the participating annotators 
reported consistently that in the case of complex causal relations, two to three 
causes were usually included. More than three causes were rare. 
Answer to RQ5b: Interestingly, the distribution of effects is similar to that 

of causes. Likewise, single effects occur significantly more often than multiple 
effects. According to the annotators, the number of effects in case of complex 
relations is limited to two effects. Three or more effects occur rarely. 
Answer to RQ5c: Most causal relations can be found in single sentences. 

Relations where cause and effect are distributed over several sentences occur only 
in about 7 % of the analyzed data. The annotators reported that most often the 
cue phrase “therefore” was used to express two-sentence causality. 
Answer to RQ5d: Fig. 2 shows that event chains are rarely used in require-

ment documents. Most causal sentences contain isolated causal relations and 
only a few event chains. 
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Table 2. Overview of cue phrases used to indicate causality in requirement docu-
ments. Bold AF values highlight non-ambiguous phrases that mostly indicated causal-
ity (Pr(Causal | X is present in sentence) ≥ 0.8). 

Ambiguity 
Type Phrase Causal Not Causal Type Phrase Causal Not Causal AF 

Factor (AF) 

conjunctions if 
as 
because 
but 
in order to 
so (that) 
unless 
while 
once 
except 
as long as 

387 
607 
78 
100 
141 
88 
23 
71 
48 
9 
12 

41 
1313 
7 
204 
33 
86 
4 
90 
15 
5 
1 

0.90 
0.32 
0.92 
0.33 
0.81 
0.51 
0.85 
0.44 
0.76 
0.64 
0.92 

Cause force(s/ed) 
cause(s/ed) 
lead(s) to 
reduce(s/ed) 
minimize(s/ed) 
affect(s/ed) 
maximize(s/ed) 
eliminate(s/ed) 
result(s/ed) in 
increase(s/ed) 
decrease(s/ed) 
impact(s) 
degrade(s/ed) 
introduce(s/ed) 
enforce(s/ed) 
trigger(s/ed) 

21 
32 
5 
48 
28 
13 
11 
8 
50 
49 
5 
37 
11 
11 
2 
11 

18 
10 
0 
28 
11 
19 
5 
11 
43 
34 
8 
68 
2 
12 
1 
7 

0.54 
0.76 
1.00 
0.63 
0.72 
0.41 
0.69 
0.42 
0.54 
0.59 
0.38 
0.35 
0.85 
0.48 
0.67 
0.61 

adverbs therefore 
when 
whenever 
hence 
where 
since 
consequently 
wherever 
rather 
to this/that end 
thus 
for this reason 
due to 
thereby 
as a result 
for this purpose 

61 
331 
10 
21 
213 
65 
2 
5 
16 
12 
66 
7 
91 
4 
11 
1 

6 
64 
0 
9 
150 
32 
6 
2 
30 
0 
17 
3 
26 
2 
4 
2 

0.91 
0.84 
1.00 
0.70 
0.59 
0.67 
0.25 
0.71 
0.35 
1.00 
0.80 
0.70 
0.78 
0.67 
0.73 
0.33 

Enable depend(s) on 
require(s/ed) 
allow(s/ed) 
need(s/ed) 
necessitate(s/ed) 
facilitate(s/ed) 
enhance(s/ed) 
ensure(s/ed) 
achieve(s/ed) 
support(s/ed) 
enable(s/ed) 
permit(s/ed) 
rely on 

28 
316 
187 
98 
7 
29 
16 
145 
30 
128 
75 
10 
3 

21 
262 
130 
162 
2 
28 
4 
66 
24 
301 
36 
13 
5 

0.57 
0.55 
0.59 
0.38 
0.78 
0.51 
0.80 
0.69 
0.56 
0.30 
0.68 
0.43 
0.38 

pronouns which 
who 
that 
whose 

277 
28 
732 
16 

608 
52 
1178 
11 

0.31 
0.35 
0.38 
0.59 

Prevent hinder(s/ed) 
prevent(s/ed) 
avoid(s/ed) 

1 
38 
14 

1 
17 
23 

0.50 
0.69 
0.38adjectives only 

prior to 
imperative 
necessary (to) 

127 
26 
1 
36 

126 
20 
3 
19 

0.50 
0.57 
0.25 
0.65 

preposition for 
during 
after 
by 
with 
in the course of 
through 
as part of 
in this case 
before 
until 
upon 
in case of 
in both cases 
in the event of 
in response to 
in the absence of 

1209 
327 
133 
506 
680 
2 
114 
19 
18 
54 
33 
25 
30 
1 
15 
6 
8 

2753 
137 
57 
1171 
1554 
1 
204 
51 
3 
27 
11 
48 
7 
0 
2 
7 
1 

0.31 
0.70 
0.70 
0.30 
0.30 
0.67 
0.36 
0.27 
0.86 
0.67 
0.75 
0.34 
0.81 
1.00 
0.88 
0.46 
0.89 

3.5 Implications for Causality Detection and Extraction 

Based on the results of our case study, we draw the following conclusions: Causal-
ity matters in requirements documents, which underlines the necessity of an ap-
proach for the automatic detection and extraction of causal requirements. The 
complexity of causal relations ranges from low to medium, since they usually 
consist of a single cause and effect relationship. However, for the approaches to 
be applicable in practice, they need to comprehend also more complex relations 
containing between two to three causes and two effects. Hence, the approaches 
must be capable of understanding conjunctions, disjunctions and negations in 
the sentences to fully capture the relationships between causes and effects. Two-
sentence causality and event chains occur only rarely. Thus, both aspects can 
initially be neglected in the development of the approaches, while still more than 
92 % of the analyzed sentences can be covered. Since most causal relations in 
requirements documents are explicit, the detection and extraction of causality is 
simplified. The information about both causes and effects is embedded directly 
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in the sentences, so that the approaches require little or no implicit knowledge. 
The analysis of the AF values reveals that most of the used cue phrases are am-
biguous. Consequently, our methods require a deep understanding of language 
as causality can not only be deduced from the presence of certain cue phrases 
but rather from a combination of the syntax and semantics of the sentence. 

3.6 Threats to Validity 

Internal Validity : A major threat to internal validity are the annotations them-
selves as an annotation task is to a certain degree subjective. To minimize the 
bias of the annotators, we performed two mitigation actions: First, we conducted 
a workshop prior to the annotation process to ensure a common understanding 
of causality. Second, we assessed the inter-rater agreement by using multiple 
metrics (Gwet’s AC1 etc.). External Validity : To achieve reasonable generaliz-
ability, we selected requirements documents from different domains and years. 
As Fig. 1 shows, our data set covers a variety of domains, but the distribution of 
the sentences is imbalanced. The domains aerospace, data analytics, and smart 
city account for a large part of the data set (9,724 sentences), while the other 15 
domains are underrepresented. Hence, our results do not allow a general conclu-
sion about causality in requirements documents. Future studies should expand 
to more documents from these underrepresented as well as further domains to 
achieve a more global insight into causality in requirements documents. 

4 Approach: Detecting Causal Requirements 

This section presents the implementation of our causal classifier. Initially, we de-
scribe our applied methods followed by a report of the results of our experiments, 
in which we compare the performance of the individual methods. 

4.1 Methods 
Rule Based Approach The baseline approach for causality detection involves 
the use of simple regex expressions. We iterate through all sentences in the test 
set and check if one of the phrases listed in Tab. 2 is included. For the positive 
case, the sentence is classified as causal and vice versa. 

Machine Learning Based Approach As a second approach, we investigate 
the use of supervised ML models that learn to predict causality based on the 
labeled data set. Specifically, we employ established binary classification algo-
rithms: Naive Bayes (NB), Support Vector Machines (SVM), Random Forest 
(RF), Decision Tree (DT), Logistic Regression (LR), Ada Boost (AB) and K-
Nearest Neighbor (KNN). To determine the best hyperparameters for each bi-
nary classifier, we apply Grid Search, which fits the model on every possible com-
bination of hyperparameters and selects the most performant. We use two dif-
ferent methods as word embeddings: Bag of Words (BoW) and Term Frequency-
Inverse Document Frequency (TF-IDF). In Tab. 3 we report the classification 
results of each algorithm as well as the best combination of hyperparameters. 

Deep Learning Based Approach With the rise of Deep Learning (DL), more 
and more researchers are using DL models for Natural Language Processing 
(NLP) tasks. In this context, the Bidirectional Encoder Representations from 
Transformers (BERT) model [4] is prominent and has already been used for 
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question answering and named entity recognition. BERT is pre-trained on large 
corpora and can therefore easily be fine tuned for any downstream task without 
the need for much training data (Transfer Learning). In our paper, we make 
use of the fine tuning mechanism of BERT and investigate to which extent it 
can be used for causality detection of requirement sentences. First, we tokenize 
each sentence. BERT requires input sequences with a fixed length (maximum 
512 tokens). Therefore, for sentences that are shorter than this fixed length, 
padding tokens (PAD) are inserted to adjust all sentences to the same length. 
Other tokens, such as the classification (CLS) token, are also inserted in order 
to provide further information of the sentence to the model. CLS is the first 
token in the sequence and represents the whole sentence (i.e. it is the pooled 
output of all tokens of a sentence). For our classification task, we mainly use 
this token because it stores the information of the whole sentence. We feed the 
pooled information into a single-layer feedforward neural network that uses a 
softmax layer, which calculates the probability that a sentence is causal or not. 
We tune BERT in three different ways and investigate their performance: 
– BERTBase In the base variant, the sentences are tokenized as described 

above and put into the classifier. To choose a suitable fixed length for our 
input sequences, we analyzed the lengths of the sentences in our data set. 
Even with a fixed length of 128 tokens we cover more than 97 % of the 
sentences. Sentences containing more tokens are shortened accordingly. Since 
this is only a small amount, only little information is lost. Thus, we chose 
a fixed length of 128 tokens instead of the maximum possible 512 tokens to 
keep BERT’s computational requirements to a minimum. 

– BERTPOS Studies have shown that the performance of NLP models can be 
improved by providing explicit prior knowledge of syntactic information to 
the model [24]. Therefore, we enrich the input sequence with syntactic infor-
mation and feed it into BERT. More specifically, we add the corresponding 
Part-of-speech (POS) tag to each token by using the spaCy NLP library [12]. 
One way to encode the input sequence with the corresponding POS tags is to 
concatenate each token embedding with a hot encoded vector representing 
the POS tag. Since the BERT token embeddings are high dimensional, the 
impact of a single added feature (i.e. the POS tag) would be low. Contrary, 
we hypothesize that the syntactic information has a higher impact if we 
annotate the input sentences directly with the POS tags and then put the 
annotated sentences into BERT. This way of creating linguistically enriched 
input sequences has already proven to be promising during the development 
of the NLPL word embeddings [5]. Fig. 3 shows how we incorporated the 
POS tags into the input sequence. By extending the input sequence, the fixed 
length for the BERT model has to be adapted accordingly. After a further 
analysis, a length of 384 tokens proved to be reasonable. 

– BERTDEP Similar to the previous fine-tuning approach, we follow the idea 
of enriching the input sequence by linguistic features. Instead of using the 
POS tags, we use the dependency (DEP) tags (see Fig. 3) of each token. 
Thus, we provide knowledge about the grammatical structure of the sentence 
to the classifier. We hypothesize that this knowledge has a positive effect 
on the model performance, as a causal relation is a specific grammatical 
structure (e.g. it often contains an adverbial clause) and the classifier can 
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learn causal specific patterns in the grammatical structure of the training 
instances. The fixed token length was also increased to 384 tokens. 

BertBase: If the process fails, an error message is shown. 

BertPOS: If SCONJ the DET process NOUN fails VERB , PUNCT an DET er-

ror NOUN message NOUN is AUX shown VERB . PUNCT 

BertDEP : If mark the det process nsubj fails advcl , punct an det error compound mes-

sage nsubjpass is auxpass shown ROOT . punct 

Fig. 3. Input sequences used for our different BERT fine tuning models. POS tags are 
marked orange and DEP tags are marked blue. 

4.2 Evaluation Procedure 
Our labeled data set is imbalanced as only 28.1 % are positive samples. To avoid 
the class imbalance problem, we apply Random Under Sampling (see Fig. 4). 
We randomly select sentences from the majority class and exclude them from 
the data set until a balanced distribution is achieved. Our final data set consists 
of 8,430 sentences of which 4,215 are equally causal and non-causal. We follow 
the idea of Cross Validation and divide the data set in a training, validation and 
test set. The training set is used for fitting the algorithm while the validation set 
is used to tune its parameters. The test set is utilized for the evaluation of the 
algorithm based on real world unseen data. We opt for a 10-fold Cross Validation 
as a number of studies have shown that a model that has been trained this way 
demonstrates low bias and variance [13]. We use standard metrics, for evaluating 
our approaches: Accuracy, Precision, Recall and F1 score [13]. When interpreting 
the metrics, it is important to consider which misclassification (False Negative 
or False Positive) matters most resp. causes the highest costs. Since causality 
detection is supposed to be the first step towards automatic causality extraction, 
we favor Recall over Precision. A high Recall corresponds to a greater degree of 
automation of causality extraction, because it is easier for users to discard False 
Positives then to manually detect False Negatives. Consequently, we seek high 
Recall to minimize the risk of missed causal sentences and acceptable Precision 
to ensure that users are not overwhelmed by False Positives. 

Labeled Data Set 

1 2 3 4 k…

Training Set Test Set

Balanced Data Set 

Random Under

Sampling

Training folds Validation fold

DL 

Approaches

ML 

Approaches

Add POS and 

DEP tags
Training

Trained Models

Rule-based

Approach

Tune Hyperparameters / 

Adjust Model Weights

4,215 causal

4,215 not causal

Evaluate

Generalization

Best Performing 

Model (CiRA)

4,215 causal

10,786 not causal

Fig. 4. Implementation and Evaluation Procedure of our Binary Classifier 

4.3 Experimental Results 
Tab. 3 demonstrates the inability of the baseline approach to distinguish between 
causal (F1 score: 66 %) and non-casual (F1 score: 64 %) sentences. This coin-
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cides with our observation from the case study that searching for cue phrases is 
not suitable for causality detection. In comparison, most ML based approaches 
(except KN and DT) show a better performance. The best performance in this 
category is achieved by RF with an Accuracy of 78 % (gain of 13 % compared 
to baseline approach). The overall best classification results are achieved by our 
DL based approaches. All three variants were trained with the hyperparameters 
recommended by Devlin et al. [4]. Even the vanilla BERTBase model shows a 
great performance in both classes (F1 score ≥ 80 % for causal and non-causal). 
Interestingly, enriching the input sequences with syntactic information did not 
result in a significant performance boost. BERTPOS even has a slightly worse 
Accuracy value of 78 % (difference of 2 % compared to BERTBase). An im-
provement of the performance can be observed in the case of BERTDEP, which 
has the best F1 score for both classes among all the other approaches and also 
achieves the highest Accuracy value of 82 %. Compared to the rule based and ML 
based approaches, BERTDEP yields an average gain of 11.06 % in macro-Recall 
and 11.43 % in macro-Precision. Interesting is a comparison with BERTBase. 
BERTDEP shows better values across all metrics, but the difference is only 
marginal. This indicates that BERTBase already has a deep language under-
standing due to its pre-training and therefore can be tuned well for causality 
detection without much further input. However, over all five runs, the use of the 
DEP tags shows a small but not negligible performance gain - especially regard-
ing our main decision criterion: the Recall value (85 % for causal and 79 % for 
non-causal). Therefore, we choose BERTDEP as our final approach (CiRA). 

Table 3. Recall, Precision, F1 scores (per class) and Accuracy. We report the averaged 
scores over five repetitions and highlight in bold the best results for each metric. 

Rule based 

NB 

Best hyperparameters 
-
alpha: 1, fit prior: True, 
embed: BoW 

Causal (Support: 435) 
Recall Precision F1 
0.65 0.66 0.66 

0.71 0.7 0.71 

Not Causal (Support: 408) 
Recall Precision F1 
0.65 0.63 0.64 

0.68 0.69 0.69 

Accuracy 
0.65 

0.7 

ML based 

SVM 

RF 

DT 

LR 

C: 50, gamma: 0.001, 
kernel: rbf, embed: BoW 

criterion: entropy, max features: auto, 
n estimators: 500, embed: BoW 

criterion: gini, max features: auto, 
splitter: random, embed: TF-IDF 

C: 1, solver: liblinear, 
embed: TF-IDF 

0.68 0.8 0.73 

0.72 0.82 0.77 

0.65 0.68 0.66 

0.71 0.78 0.74 

0.82 0.71 0.76 

0.84 0.74 0.79 

0.67 0.65 0.66 

0.79 0.72 0.75 

0.75 

0.78 

0.66 

0.75 

AB 
algorithm: SAMME.R, n estimators: 200, 
embed: BoW 

0.67 0.78 0.72 0.8 0.7 0.75 0.74 

KNN 
algorithm: ball tree, n neighbors: 20, 
weights: distance, embed: TF-IDF 

0.61 0.68 0.64 0.7 0.63 0.66 0.65 

BERTBase batch size: 16, learning rate: 2e-05, 0.83 0.80 0.82 0.78 0.82 0.80 0.81 
DL based BERTPOS weight decay: 0.01, optimizer: 0.82 0.76 0.79 0.71 0.83 0.77 0.78 

BERTDEP (CiRA) AdamW 0.85 0.81 0.83 0.79 0.84 0.81 0.82 

5 Related Work 
As indicated in Section 2, many disciplines have already dealt with causality. 
To the best of our knowledge, we are the first to focus on causality from the 
perspective of RE. In our previous paper [7], we motivated why the RE com-
munity should engage with causality, while in this paper we provide empirical 
evidence for the relevance of causality in requirement documents and an in-
sight into its form and complexity. Detecting causality in natural language has 
been investigated by several studies. Multiple papers [14,29] use handcrafted 
patterns to identify causal sentences. These approaches are highly dependent 
on the manually created patterns and show weak performance. Recent papers 
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apply neural networks and exploit, similarly to us, the Transfer Learning capa-
bility of BERT [15]. However, we see a number of problems with these papers 
regarding the realization of our described RE use cases: First, neither the code 
nor a demo is published, making it difficult to reproduce the results and testing 
the performance on RE data. Second, they train and evaluate their approaches 
on strongly unbalanced data sets with causal to non-causal ratios of 1:2 and 
1:3, but only report the macro-Recall and macro-Precision values and not the 
metrics per class. Thus, it is not clear whether the classifier has a bias towards 
the majority class or not. 

6 Conclusion and Next Steps 
System behavior is often specified by causal relations in requirements. Extract-
ing this causal knowledge supports automatic test case derivation and reasoning 
about requirement dependencies [7]. However, existing methods fail to extract 
causality with reasonable performance [1]. Therefore, we argue for the need of 
a novel method for causality extraction. We understand causality extraction as 
a two-step problem: First, we need to detect if requirements have causal prop-
erties. Second, we need to comprehend and extract their causal relations. At 
present, however, we lack knowledge about the form and complexity of causality 
in requirements, which is needed to develop suitable approaches for these two 
problems. In this paper, we address this research gap and contribute: (1) an 
exploratory case study with 14,983 sentences from 53 requirements documents 
originating from 18 different domains. We found that causality is a widely used 
linguistic pattern to describe system functionalities and that it mainly occurs in 
explicit, marked form. (2) CiRA as an approach for the automatic detection of 
causality in requirements documents. This constitutes a first step towards causal-
ity extraction from NL requirements. We empirically evaluate our approach and 
achieve a macro-F1 score of 82 % on real word data. (3) we disclose our code, 
tool and annotated data set to facilitate replication. 
Two further research directions exist: First, extending the case study and 

analyzing the sentences from the requirements documents in a more granular way 
by categorizing them e.g. in functional and non-functional requirements. This 
would expand our current insight into causality in requirements documents in 
general by an insight into causality in specific requirement categories. Second, we 
are enhancing our previous approaches [8,9] to address the second sub-problem: 
the actual extraction of causal relations. 
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