
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 14th IEEE International Conference on
Software Testing, Verification and Validation, ICST 2021, 12 April 2021 through 16 April
2021.

Citation for the original published paper:

Alégroth, E., Petersén, E., Tinnerholm, J. (2021)
A Failed attempt at creating Guidelines for Visual GUI Testing: An industrial case study
In: Proceedings - 2021 IEEE 14th International Conference on Software Testing,
Verification and Validation, ICST 2021, 9438551 (pp. 340-350). Institute of Electrical
and Electronics Engineers Inc.
https://doi.org/10.1109/ICST49551.2021.00046

N.B. When citing this work, cite the original published paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21820



A Failed attempt at creating Guidelines for Visual GUI Testing: 
An industrial case study 

Emil Alégroth Elin Petersén John Tinnerholm 
SERL Sweden Insitution of Computer Science Insitution of Computer Science 

Blekinge Institute of Technology Linköping University Linköping University 
Karlskrona, Sweden 
emil.alegroth@bth.se 

Linköping, Sweden 
elipe344@student.liu.se 

Linköping, Sweden 
john.tinnerholm@liu.se 

Abstract—Software development is governed by guidelines that 
aim to improve the code’s qualities, such as maintainability. 
However, whilst coding guidelines are commonplace for software, 
guidelines for testware are much less common. In particular, for 
GUI-based tests driven with image recognition, also referred to as 
Visual GUI Testing (VGT), explicit coding guidelines are missing. 

In this industrial case study, performed at the Swedish defence 
contractor Saab AB, we propose a set of coding guidelines 
for VGT and evaluate their impact on test scripts for an 
industrial, safety-critical system. To study the guidelines’ effect 
on maintenance costs, fve representative manual test cases are 
each translated with and without the proposed guidelines in 
the two VGT tools SikuliX and EyeAutomate. As such, 20 test 
scripts were developed, with a combined development cost of 
more than 100 man-hours. Three of the tests are then maintained 
by one researcher and two practitioners for another version of 
the system and costs measured to evaluate return on investment. 
This analysis is complemented with observations and interviews 
to elicit practitioners’ perceptions and experiences with VGT. 

Results show that scripts developed with the guidelines had 
higher maintenance costs than scripts developed without guide-
lines. This is supported by qualitative results that many of the 
guidelines are considered inappropriate, superfuous or unnec-
essary due to the inherent properties of the scripts, e.g. their 
natural small size, linear fows, natural separation of concerns, 
and more. We conclude that there are differences between VGT 
scripts and software that prohibit direct translation of guidelines 
between the two. As such, we consider our study as a failure 
but argue that several lessons can be drawn from our results to 
guide future research into guidelines for VGT and GUI-based 
test automation. 

Index Terms—Automated Testing, Visual GUI testing, Guide-
lines for testing, Case study, Industrial study. 

I. INTRODUCTION 

Modern software development is team-based, governed by 
processes and supported by guidelines [1]. These guidelines 
aim to make the codebase consistent and thereby improve 
its qualities such as modifability, reusability, analyzability, 
modularity and testability and thereby the maintainability of 
the software (ISO 25010) [1], [2]. 

However, whilst coding guidelines for software are com-
mon, testware is not treated with the same rigor despite being 
subject to common challenges, such as technical debt [3]. For 
lower level tests, such as unit tests, coding guidelines have 
been proposed [4], but for higher level tests such as GUI tests 
that use image recognition, i.e. Visual GUI Testing (VGT) [5], 

[6], only high level adoption and usage guidelines have been 
proposed [7]. This is recognized as a challenge, since research 
has shown that poorly designed tests are associated with 
maintenance problems and higher costs [8], [9], [10]. 

VGT is a tool-driven technique, with tools such as 
SikuliX [11] and EyeAutomate [12], [13], which use im-
age recognition for interaction with the SUT. The technique 
has several benefts compared to other GUI-test automation 
techniques [14], [15] and has been shown to be both ap-
plicable [16] and feasible [6], [7] in practice. However, the 
technique is associated with challenges [5], [17], such as high 
maintenance costs. 

In this paper, we propose guidelines, derived from liter-
ature on guidelines for software, testware, and VGT expert 
knowledge that aim to improve maintainability of VGT scripts. 
The guidelines are evaluated in an industrial case study at the 
Swedish defence contractor Saab AB. In the study, manual 
tests are translated into VGT scripts, designed with and 
without the guidelines, in two VGT tools. The guidelines’ 
effectiveness is then measured based on how they affect the 
maintenance costs of the developed scripts. These measure-
ments are triangulated by interviews and observations from 
practitioners from Saab who participated in the study. 

Results show that VGT would not provide positive return on 
investment (ROI) compared to manual testing at Saab. More 
importantly, and contradictory to expected results, most of the 
tests developed with the proposed guidelines required more 
effort to maintain. Interview results highlight that many of the 
guidelines seem inappropriate, superfuous, or unnecessary for 
VGT scripts due to their inherent characteristics, which was 
an unexpected fnding. From these observations, we discuss 
important lessons learned and propose directions for future 
research. Hence, despite the unconventional nature of this 
paper within software engineering, which has a tradition of 
publishing positive results, we claim the following contribu-
tions from this work: 
C1: Contradictory results regarding the feasibility of the de-

velopment costs, maintenance costs and ROI of VGT 
from an industrial context. 

C2: Lessons learned from a failed attempt at creating coding 
guidelines for VGT and proposals for future research on 
automated GUI-testing guidelines. 



II. RELATED WORK 

Guidelines for automated testing have been proposed for 
tests on various levels of abstraction, with early examples 
of guidelines being presented already in the mid 80s [18]. 
Another example is Schneider et al. who propose guidelines 
for JUnit tests [4]. Guidelines for GUI-level tests have also 
been proposed, for instance by Hellman et al. [19] who found 
that test cases that contain complete series of GUI interactions 
(single-layer architectures) are more diffcult to understand, 
especially if the business logic is not clear. Thus, concluding 
that test scripts at the GUI-level, similar to software, should 
be modularised into areas of concern. In addition, due to 
high level tests’ fragility to change on multiple levels of SUT 
abstraction, care should be taken to minimize code duplication, 
which is also a cause of test technical debt [20], [3]. Instead, 
tests should be split into reusable units, which is once more 
a common software practice [21]. However, as presented by 
Qusef et al. the resulting quality of tests, developed with 
guidelines, is dependent on the competence and knowledge 
of the engineer [22]. 

Many guideline studies highlight the similarities between 
code for test scripts (testware) and software, a connection 
further explored by Alégroth et al. in two studies where they 
map software code smells to testware [20], [3]. In fact, in 
one of these studies, 21 of the most common code smells for 
software are successfully mapped to testware, including smells 
such as long methods, divergent change, shotgun surgery, etc. 
As such, the need for testware coding guidelines is evident. 
However, for VGT, comprehensive analysis of such guidelines 
is lacking, although an attempt at some best practices has 
been presented [7]. These guidelines do, however, not cover 
development best practices exclusively, rather, they provide 
more general guidance for the adoption, organizational use 
and long-term use of VGT. 

VGT has been extensively studied, primarily through em-
pirical case studies where test cases have been developed 
to showcase the technique’s applicability and feasibility in 
industrial practice [16], [23], [5], [7]. The technique has also 
been studied from a technical perspective and how it could be 
integrated into automated model-based approaches [17] and 
what benefts it provides in a continuous integration context 
when compared to lower level test techniques [12]. Many of 
these studies, similar to the research in this paper, compare 
various tools (VGT tools and/or other GUI testing tools) in 
industrial environments. Another commonality in these studies 
is that the number of developed VGT test scripts are generally 
few, often only ranging between 5 to 15 tests. This is because 
VGT test development is time-consuming and considering the 
resource constraints, often associated with industrial research, 
this is the number of tests to be expected. As such, the 20 
test scripts produced for this study are on par with previously 
published works in this area, which should not be compared 
with the size of test suites reported in other automated testing 
research where hundreds or even thousands of test cases are 
often included due to industrial norms [24]. 

In summary, VGT is well studied in industrial practice but 
not with the explicit focus of identifying coding guidelines 
aimed at reducing VGT script maintenance costs. This study 
aims to fll this knowledge gap, drawing inspiration from 
previous research, using similar methods and procedures for 
data collection, sampling and analysis, to achieve results of 
rigor on par with previous works. 

III. METHODOLOGY 

This study’s objective was to identify and evaluate coding 
guidelines for VGT scripts and measure their impact on main-
tenance costs in industrial practice. These guidelines should 
serve to improve the quality of the automated tests in terms of 
modifability, reusability, analyzability, modularity and testa-
bility, which all have a positive impact on maintainability [1], 
[21]. This objective was chosen since maintainability of GUI 
test cases is a commonly reoccurring challenge in literature 
and perceived as one of the key grounds for VGT abandon-
ment in practice [5]. To improve the granularity, the research 
objective was broken down into two research questions: 
RQ1: What guidelines for software and testware can be used 

for developing Visual GUI testing scripts? 
RQ2: What is the return of investment, in terms of appli-

cability and cost, of using coding guidelines for the 
development of Visual GUI testing scripts? 

To answer research question 1 (RQ1), academic literature 
and industrial best practices are elicited to extrapolate a 
set of guidelines that we propose as suitable for VGT test 
development to improve test quality. These guidelines also 
serve as input to answer research question 2 (RQ2), where 
the answer to RQ2 serves to verify the applicability of the 
guidelines. 

The research questions were answered through an industrial 
case study performed at the Swedish military defence and 
civil security developer Saab AB. In particular, the study was 
performed in the business area of Aeronautics, i.e. software 
for aircraft. This software is GUI intensive, in the order of 
millions of lines of code, incorporating different technologies 
and third party components for a 3D computer-aided design 
(CAD) modeling tool. Due to the tool’s reliance on third party 
components, some components have restricted code access, 
which limits automated testing of these components, and the 
software at large, to GUI-based testing. This limitation is 
common in practice and presents challenges for test automa-
tion that VGT can mitigate due to the technique’s limited 
requirements on SUT access, i.e. it only needs access to the 
SUT’s GUI [6], [5], [7], [12]. These SUT characteristics are 
common to SUTs studied in previous VGT research [16], [5], 
[6] and make Saab’s product an ideal candidate to evaluate the 
applicability (usefulness and development costs) and feasibil-
ity (maintenance costs) of the technique. 

A. Visual GUI testing, Sikuli and EyeAutomate 

Visual GUI testing, also referred to as 3rd generation GUI-
based testing is a tool-driven technique with tool’s that use im-
age recognition [7], [14]. Image recognition allows the tools to 



2 wait{ 
C G I 

3 t ype { "WWW . wi kipedi a . O rg " + Key . ENTER) 

4 wait{[WIKIEEDJAJJ 
(A) 

CUck 

New Tab 
Check 

Type "www.wjkipedja.orofENTERl" 
Check 

(B) 

ACTIVITY 
>,~-----------~' --g I Step 1: literature and company h-' ----
'tr : analysis 

(1) I 

ci.. : Step 2: VGT Expert interview 

~---------- __________ ] 
> 1 ,.::..:==========:..; I 
~ Step 3: case company interviews r-1~ - --+I 

~ I 

OUTPUT 

General guidelines for 
maintainable software 

Complementary VGT 
specific guidelines 

Case company 
state-of-practice 

E ,--------~-------------------------------------
8 + : Development cost 
a, Step 4: VGT test development 

.s:::. .... 
::c 

Step s : VGT t est maintenance study 

Step 6: VGT guideline interviews 

--------- I 

measurements 

Maintenance cost 
measurements 

Perceptions/observations 
about gu idelines 

,-----
• !:!! I 

V'I I 

••••••••• J ••••••••••••••••••••••••••••••••••••• 
: I 

>1 ro I 
Cl 
<{ I 

Step 7: Analysis 

I 
I 

ROI of using guidelines 
User perceptions 
• Conclusions 

interact with any system with a GUI, sending inputs by using 
mouse and keyboard commands and reading outputs from the 
pictorial GUI as shown to the user. This means of interaction 
enables the tools to disregard how the SUT is implemented, 
allowing SUTs composed of several technologies, or that lack 
other interfaces for testing, to be automated. Additionally, 
since the technique utilizes the same interfaces as the human 
user, the test cases become more similar to how the end-
user will use the system. This characteristic has benefts when 
compared to other GUI testing techniques that rely on APIs, 
technical interfaces or document object models (DOM). For 
instance, Alégroth et al. demonstrated these differences in a 
study with the tool GUITAR where 3rd generation GUI based 
testing was compared to 2nd generation testing [17]. Their 
study found signifcant differences in how the two approaches 
report false positive and false negative test results. 

Image recognition-based testing is, however, associated with 
many challenges [5]. Some are VGT specifc, such as image 
recognition fragility when the SUT changes, non-deterministic 
widget identifcation and high test execution costs. Others are 
general for automated GUI testing, such as synchronization 
problems since the tests run asynchronously against the SUT. 
Automated GUI testing, including VGT, is also associated with 
high maintenance costs, since the tests are affected by not only 
changes to the SUT’s GUI but also all changes that affect the 
SUT’s behavior. 

Despite these challenges, VGT is both applied and has 
been used long-term in industrial practice [7]. However, it has 
been observed that many companies that adopt the technique, 
quickly abandon it due to maintenance costs. One observation 
that explains this abandonment is that VGT tests are intu-
itive to develop and are therefore seldom properly designed, 
modularized, and broken into reusable items to make them 
maintainable over time. 

The tools used in the study are SikuliX [11] and EyaAu-
tomate [14] (Formarly known as JAutomate [13]). SikuliX 
is an open source tool, written in Java, with an Integrated 
Development Environment (IDE) that allows users to write 
test scripts in Python. The IDE visualizes target images in the 
scripts, making them intuitive (an example is shown in Figure 
1 A). 

EyeAutomate has a similar looking IDE to SikuliX but 
adopts a custom scripting language for test scripts. The tool 
is written in Java, enabling its use on most platforms and 
environments. The tool is freeware, designed for commercial 
use and as such includes features such as continuous integra-
tion support, test log generation, test recording, and more. An 
example EyeAutomate script is shown in Figure 1 B. 

B. Research procedure 

The study followed the seven steps presented in Figure 2, 
which can be split into three phases: 

1) Pre-study: This phase sought to answer RQ1 by col-
lecting coding guidelines from literature, VGT experts 
and the studied company, to compile applicable coding 
guidelines for VGT. 

Fig. 1. Example snippets of SikuliX (A) and EyeAutomate (B) scripts for a 
web application. 

Fig. 2. Visualization of the methodology used during the case study. 

2) At the company: This phase served to collect input 
for RQ2 through the development of VGT scripts that 
were later maintained by practitioners from Saab. These 
practitioners were also observed and interviewed. 

3) Analysis: This phase served to analyze the collected data 
and answer RQ2. 

In the continuation of this section, a break-down of the 
methodology’s steps will be presented, including the outputs 
from each step. 

Step 1: Literature and company analysis - To formulate 
a basis for the VGT guidelines, we performed an unstruc-
tured literature review, looking particularly at the guidelines 
proposed by Visser et al. [2] and the guidelines proposed 



I I I I I 

by the Software Improvement Group (SIG). These guidelines 
were of interest since they focus on building maintainable 
software, which includes several sub-characteristics such as 
modifability and reusability [1], [21], as defned in ISO 25010. 
However, additional inspiration was taken from literature on 
automated GUI testing [19], guidelines for VGT [7] and 
research on code- and test-smells [3], [20]. We are aware that 
there is a myriad of standards and code smells to consider, 
and although we took many of these into consideration, we 
delimited us to a subset of more general guidelines explicitly 
for maintainability due to the study’s research objective. 

To complement the literature, Saab’s coding standards and 
naming conventions (e.g. for classes, methods, and variables) 
were studied. These guidelines serve to improve understand-
ability of the produced software and have been designed by 
developers at Saab with at least 5 years of software develop-
ment experience. It was perceived that utilizing these domain-
specifc guidelines would be benefcial for the acceptance of 
the VGT guidlines since they would be used by practitioners 
at the company. Note that these context-specifc guidelines 
have purposefully been omitted from the paper to improve its 
generalizability. Instead, we simply stress the need of using 
common naming conventions (See Section III-C). 

Step 2: VGT Expert interview - To complement the results 
of the literature review and gain understanding about how to 
adopt the coding guidelines, an interview was held with a 
VGT expert. We label this individual as an expert since he 
has created several VGT tools, worked with the technique in 
practice for more than 15 years and published his work [13]. 

The expert interview was open-ended, was 60 minutes in 
length, and focused on VGT best practices. Five best practices 
were identifed that were incorporated in the proposed VGT 
guidelines (See Section III-C). Three of these guidelines are 
VGT specifc whilst two are more generic for automated 
testing or GUI testing in general. 

Step 3: Case company interviews - In the frst step 
of the second phase (Step 3), interviews were conducted to 
elicit background information about the company and its GUI 
testing practices. These interviews provided an overview of 
how testing is conducted as well as insights into how tests 
are structured, what test cases could be suitable for the study 
and other contextual information. In addition, cost information 
about the current practices was elicited, in particular how much 
time is spent on manual GUI-based testing. 

Eight semi-structured interviews were conducted, ranging 
from 15 to 30 minutes in length with different roles, includ-
ing fve system/software developers, one tester, one system 
architect and one test lead. The participants were involved in 
two different projects at Saab and they had between one to 
fve (average 2.75) years of industrial experience. 

Step 4: VGT test development - In the second step of 
the second phase (Step 4), manual test cases for one of the 
company’s products were chosen through a process based on 
three exclusion criteria. These criteria aimed to exclude: 

• Tests that were only in one release of the SUT. 
• Tests that did not require maintenance in any release. 

• Tests that could not be performed manually without 
additional training due to the SUT’s requirements for 
domain-specifc knowledge. 

The entire test suite consists of 60 test cases, but after exclu-
sion, 13 test cases were identifed as candidates. However, due 
to the resource constraints (i.e. amount of given access to the 
SUT, personnel, and time constraints), it was not possible to 
automate all 13 tests. The test cases were therefore prioritized 
based on size, complexity, and number of updates/maintenance 
instances correlated to SUT updates to identify a minimal, but 
representative, sample. The size was quantifed based on the 
number of test steps where a small test case had less than 
15 steps, a medium test had between 14 to 30 steps and 
a large had more than 30 steps. Complexity was evaluated 
based on the amount of required domain-specifc knowledge 
to execute, give correct inputs, and interpret outputs of the test. 
Additionally, the number of subsystems, six in total (denoted 
Subsystem A to F) involved in the tests were also considered. 
These subsystems differed in functionality and size but, since 
they were blackbox tested during the study, their size was 
not accounted for in the test case selection process. The 
number of updates in each release was also, as previously 
stated, considered to ensure that the selected tests required 
maintenance. 

TC ID Size Complexity Updates Subsystems 
TC1 Medium Low >1 A and B 
TC2 Small High >1 A, B, and C 
TC4 Large High >1 A, B, C, D, and E 
TC10 Large Low 1 A, B, D, and F 
TC11 Small Low 1 A and B 

TABLE I 
SUMMARY OF THE TEST CASES CHOSEN FOR DEVELOPMENT IN STEP 4 OF 

THE STUDY. 

Using these metrics, fve test cases were chosen for au-
tomation, labeled TC1, TC2, TC4, TC10, and TC11. Table I 
presents an overview of these tests. 

Those fve were then developed for version V0 of the 
SUT. Five more versions were made available, denoted V1-
V5, to measure the maintenance costs (presented further in 
Step 5). The test cases were automated with and without the 
proposed guidelines using EyeAutomate [13] and Sikuli [11]. 
This resulted in 4 test suites of fve test scripts each (20 
scripts in total). The two tools were chosen due to their 
use in industrial practice and academic research, where they 
have been previously compared based on features, cost, and 
effectiveness [12], [6], [14]. 

To mitigate learning bias during automation, the order 
of how test cases were implemented was randomized. For 
example, the order TC1 was automated was frst Sikuli without 
guidelines, followed by Sikuli with guidelines, followed by 
EyeAutomate without guidelines, and fnally EyeAutomate 
with guidelines. The order the test cases were implemented 
was also randomized, giving the order TC4, TC2, TC1, TC10, 
and fnally TC11. The tests were implemented by one of the 
authors of the paper who spearheaded the study. 



Time was measured by tracking time from start of de-
velopment until the test script executed successfully. Thus, 
development time includes test execution time for one or 
several test runs but excludes breaks or other interruptions. 

Step 5: VGT test maintenance study - In the third step of 
the second phase (Step 5), three developed test cases from Step 
4 (TC1, TC2, and TC4) were chosen to study the maintenance 
costs of VGT scripts developed with and without guidelines. 
The reason why not all fve tests developed in Step 4 were 
maintained was due to time and resource constraints. 

As stated in Step 4, all test cases were developed for 
version V0 of the SUT. To emulate an actual maintenance 
scenario, the SUT was changed to version V2, which included 
changes to the SUT that required the three test cases to be 
maintained. Four other versions of the SUT had been identifed 
that required tests to be maintained, but due to the resource 
constraints of the study, it was determined that having to 
switch versions several times would not be possible. 

Maintenance was conducted by three individuals; the driv-
ing researcher who maintained all three test cases (TC1, TC2, 
and TC4) and two employees from Saab. Employee 1, who 
had 1.5 years of industrial experience at the company and who 
was familiar with the test cases, maintained TC4. Employee 
2, who had 6 years of industrial experience and 1.5 years of 
experience at the company but was not familiar with the test 
cases, maintained TC1. The allocated time, by the company, to 
use the employees for the study was 20 hours, which was the 
limiting factor why each employee only maintained one test 
case each. However, by having an overlap between which test 
cases the researcher and employees maintained, comparisons 
could be made to get more insight into the maintenance costs. 

At the start of the maintenance procedure, the company’s 
employees were given a tutorial of the tools and the VGT 
development guidelines. The employees were then instructed 
to maintain their allotted tests with and without the guide-
lines and asked to randomize the order of what tool and 
test (with/without guidelines) to start with. Employee 1 frst 
maintained TC4 developed in Sikuli without guidelines, fol-
lowed by TC4 developed in EyeAutomate with guidelines, 
followed by TC4 developed in Sikuli with guidelines, and 
fnally TC4 developed in EyeAutomate without guidelines. 
Employee 2 frst maintained TC1 developed in EyeAutomate 
without guidelines, followed by TC1 developed in Sikuli 
with guidelines, followed by TC1 developed in Sikuli without 
guidelines, and fnally TC1 developed in EyeAutomate with 
guidelines. This procedure aimed to reduce learning bias, 
but since each test is semantically equivalent regardless of 
implementation, such bias cannot be ruled out. 

Maintenance included updates to script logic, imagery and 
synchronization and was observed, with the talk-/think-aloud 
protocol [25], to acquire insights about the Saab employees’ 
perceptions and experience with VGT and the guidelines. 
The observations were unstructured, documented using note-
taking, and carried out during the entire duration the employ-
ees spent on maintaining the scripts. 

Step 6: VGT guideline interviews - In the fnal step of the 

second phase (Step 6), semi-structured interviews were carried 
out with the employees who performed the maintenance of 
the tests. These interviews served to triangulate the results 
from the observations, in particular focusing on the employees’ 
perceptions of the different tests and tools as well as their 
feedback on the guidelines. In particular, each suggested 
guideline was discussed to gain insights if it provided value, 
was cumbersome or not considered applicable. 

Step 7: Analysis - In the third phase of the study, the 
collected results were synthesised to evaluate the effects of the 
guidelines on the VGT script development and maintenance. 
Qualitative data was analyzed using simple semantic coding 
and clustering of interview statements whilst quantitative data 
was analyzed using descriptive statistics, plotting the develop-
ment, maintenance costs, and approximating ROI, similar to 
previous works by Alégroth et al. [6]. As such, the qualitative 
data was used to explain the quantitative fndings. In particular, 
to identify which guidelines were perceived to have a positive 
effect, no effect, or a negative effect on the maintenance effort. 
It also served as input to answer the research questions and 
draw the study’s conclusions regarding the effectiveness of 
the guidelines, presented in Section IV, and implications of 
the results discussed further in Section V. 

C. VGT guidelines 

Table II summarizes the 12 VGT coding guidelines that 
were identifed during the frst phase of the study and used in 
the second phase to evaluate their effect on the maintainability 
of VGT scripts. The guidelines are derived from commonly 
used coding standards, combined with input from best prac-
tices obtained from VGT research and one VGT expert. In the 
continuation of this section, we will present the guidelines in 
more detail. 

G1: Write short units of code - Short units of code are 
associated with easier analysis, reuse, and quality assurance 
compared to longer units. This is achieved by ensuring that 
each unit has a single responsibility, which in the case of 
VGT implies that scripts should focus on specifc test actions, 
with few steps and single assertions that verify well defned 
SUT functionality. No unit should be larger than 15 lines of 
code [21]. However, we stress that this quantity is a guideline 
as the level of programming language must also be accounted 
for, i.e. 15 lines of Java code do not necessarily have the same 
semantic meaning as, for instance, Python code. 

G2: Write simple units of code - By minimizing the 
number of branch conditions, cyclomatic/McCabe complexity, 
units become easier to analyze, understand, and modify. In 
the case of VGT, this implies keeping smaller units clear of 
decision points, isolating test functionality, and ensuring that 
the test suites are well designed, utilizing reusable artifacts. 
According to guidelines for software development, the number 
of branch points in a unit should not exceed four [21]. 

G3: Write code once - Avoiding duplication is paramount 
for VGT tests since script maintenance is often required and 
should there be minimized to as few scripts as possible. 
Requiring several tests to be maintained in the same way 



# Description Rationale 
G1 Write short units of code (less than 15 

lines [2]) 
Avoid units with mixed responsibilities to maximize code reuse and understandability of the code. 

G2 Write simple units of code Avoid branch conditions (mitigate cyclomatic complexity [2]) to maximize test code readability. 
G3 Write code once Avoid code duplication to minimize need for repeated bug fxes (Avoid identical snippets longer than 

6 lines of code [2]). 
G4 Keep unit interfaces small Avoid more than 4 input parameters to maximize readability and reuse (Many parameters indicate 

multiple responsibilities [2]). 
G5 Separate test cases according to manual 

test steps 
Avoid tight coupling (Separation of concerns [19]) of units to maximize modularity, modifability of 
individual units and unit reuse. 

G6 Refer to images once Avoid multiple instances of the same image to minimize repeated maintenance [7] (Derived from 
G3). 

G7 Keep the codebase as small as possible Avoid unnecessary code base growth to minimize need for code analysis [7]. 
G8 Use descriptive and uniform naming 

conventions 
Avoid inconsistent naming of variables and methods to maximize readability and understandability 
of code. 

G9 Use synchronization checks Avoid static synchronization (Halt execution of X seconds) to minimize the need for performance 
related maintenance. 

G10 Take a screenshot when tests fail Avoid unnecessary fault analysis by providing a screenshot of system state at failure [23] (Only 
necessary for Sikuli in this case). 

G11 Take care to choose suitable imagery Avoid development cost associated with image refnement by taking unique, information rich, 
screenshots of suitable size. 

G12 Write clean code Avoid decreased productivity of team members by removing code smells, dead code, bad comments, 
commented code, long identifer names, magic constants and badly handled exceptions. 

TABLE II 
SUMMARY OF GUIDELINES FOR VGT THAT WERE EXTRACTED AND USED DURING THE STUDY. 

increases the risk of human error and that some tests are 
maintained differently. Additionally, copy and paste of test 
script functionality should be avoided. 

Keep unit interfaces small - Units with many parameters 
become cumbersome to reuse and is often a sign that the unit 
has multiple responsibilities. Hence, developers should strive 
to minimize the number of used parameters, which should not 
exceed more than four per unit. 

G5: Separate test cases according to manual steps - Sim-
ilar to separation of unit concerns [19], separating test scripts 
into units with well-defned test focus helps with test suite 
design. Designing tests with loose coupling helps improve 
modularity and eases maintenance by improving analyzability 
and readability of the scripts. In particular, VGT scripts that 
have several test focuses, e.g. test several features, should be 
split into multiple scripts. 

G6: Refer to images once - This guideline is derived from 
G3, and aims to reduce maintenance effort, and human error, 
by storing each image used in the test suite only once and 
referring to it through variables. This enables maintenance of 
all broken test cases that use the affected image at once. It 
also ensures consistency of used imagery throughout the test 
suite. 

G7: Keep the codebase as small as possible - By avoiding 
unnecessary growth of the codebase, the test suite becomes 
easier to analyze and maintain. For VGT this means to actively 
consider the design and architecture of the tests as well as 
refactoring the scripts. 

G8: Use descriptive and uniform naming conventions -
By using consistent and descriptive naming conventions, the 
scripts should become easier to analyze and understand. This 
also makes the code-base easier to search and thus easier 
to reuse. In the case of VGT scripts that follow G5, using 
descriptive variable names for images is also essential to make 

the tests understandable without having to lookup the actual 
code or image being used. 

G9: Use synchronization checks - To ensure synchronous 
execution, all actions that trigger state transitions in the SUT 
with possible loading times must be followed by synchroniza-
tion checks. These checks should be dynamic, i.e. wait for 
a specifc visual state, rather than static, e.g. wait for a set 
amount of time. Dynamic checks have the beneft of adapting 
to varying SUT delays as well as minimizing the amount of 
time the script has to wait before the next action is taken. 
Thus, minimizing overall test execution time. 

G10: Take a screenshot when tests fail - To ease SUT 
maintenance and test failure replication, it is good practice 
to automatically capture screenshots of failed actions or state 
transitions when a test fails [23]. This functionality is inherent 
to some VGT tools but for some, e.g. SikuliX, it must be added 
by the test developer. 

G11: Take care to choose suitable imagery - The image 
recognition is highly dependent on images being taken of 
suitable size. Using larger images provide the algorithms with 
more information but increases the risk of changes within 
the image that may cause failure. Using images that are too 
small may not contain enough information for the algorithm 
to fnd a unique match. Unfortunately, no general guideline 
can be given of what is the best image to capture, since it 
is context-dependent. Instead, developers are encouraged to 
actively consider what works in their environment and adapt 
through gained experiences. 

G12: Write clean code - Keeping TODOs, comments, and 
dead code in the code-base makes the scripts harder to read and 
analyze. Additionally, code should be devoid of code smells 
or other bad patterns that should be removed if identifed. An 
example of such a smell is “shotgun surgery”, which implies 
that to maintain a test case, changes are required to many 



6 

5.5 

4.5 

10 
~ , 
l 3.5 

" ~ 3 -
2.5 

-

-

1.5 

_j I 
~ 

TC4 Pl TC4P2 TC2Pl TCl Pl TC1P3 

~ IDD EyeAutomate DVl IIEyeAutomate DV2 D □Sikuli DVl IISikuli DV2 I 

i -
- ~ ~ 

TC4 TC2 TClO TCll 

IDD EyeAutomate DVl IIEyeAutomate DV2 D□Sikuli DVl IISiku li DV2 I 

units spread across a single or several test scripts [3]. Other 
examples include removal of bad comments, long identifer 
names and magic constants. 

IV. RESULTS 

In the frst part of this section, we will present the quan-
titative results on development and maintenance costs that 
were collected in the study. These results are also used to 
approximate the return on investment (ROI) of automating 
manual test cases with VGT with and without the proposed 
VGT guidelines. In the second part, we present the qualitative 
results. 

A. Development/maintenance costs and ROI 

Fig. 3. Time spent to develop VGT tests, written in Sikuli and EyeAutomate, 
with and without the proposed coding guidelines. 

Development costs: Figure 3 presents the time that each test 
case took to develop without guidelines (denoted Development 
Version 1 (DV1) in the graph) and with guidelines (denoted 
DV2 in the graph) in the two VGT tools SikuliX and EyeAu-
tomate. In the graph, the developed test cases are presented 
in the order they were randomly selected to be developed in. 
The order of individual bars also varies based on what tool and 
scripting approach (DV1 or DV2) that was randomly selected 
to be used frst. 

As shown, the tests developed without guidelines (DV1) 
were consistently quicker to develop. This could be explained 
by the additional cognitive load that the guidelines placed on 
the developer as well as the additional work required to follow 
the guidelines, e.g. split tests into modules and add suitable 
synchronization checks. Worth noting is that the development 
time does not refect the complexity of the manual tests, i.e. 
more complex manual test cases do not consistently take more 
time to implement (Complexity of tests shown in Table I). 
However, the size of the manual tests correlates with the 

development time as TC1, TC4, and TC10 were of medium 
to large size (more than 15 steps) whilst TC2 and TC11 were 
considered small (less than 15 steps). Also worth noting is 
that the development time of each set of test cases was on 
average 21 hours (standard deviation 8) and over 100 hours 
in total for all 20 test cases. Additionally, we observe that the 
development time per individual test case is in the same order 
of magnitude (on average 5.7 hours) as reported in previous 
research (average 3 hours per test) [6]. 

Fig. 4. Time spent to maintain VGT tests, written in Sikuli and EyeAutomate, 
which follow/do not follow best practice guidelines for script development. 

Maintenance costs: Figure 4 presents the time each test 
case took to maintain without guidelines (denoted DV1 in 
the graph) and with guidelines (denoted DV2 in the graph). 
The graphs are presented chronically in the order they were 
maintained and by which developer, where P1 was the driving 
researcher, whilst P2 and P3 were employees at Saab. These 
measurements were acquired by applying the test cases devel-
oped for version V0 of the SUT on version V2 of the SUT, 
as presented in Section III-B. 

Note that TC4 was maintained by both P1 and P2 whilst 
TC 1 was maintained by both P1 and P3 to make comparison 
of the costs possible. 

As can be seen, the maintenance costs of TC1 and TC4 
do vary between developers, but not necessarily due to VGT 
knowledge since it is observed that P2 (with no previous VGT 
experience) was able to maintain the test cases quicker in 
most cases than P1 (the driving researcher who developed 
all the tests). More importantly, we see that the guidelines 
do not have a positive effect on reducing maintenance costs. 
Exceptions to these observations are for TC4, maintained by 
P2 with EyeAutomate, where a marginal decrease is observed. 
Similarly, the maintenance cost of TC1, with both tools, is 
lower when developed/maintained with the guidelines by P1 
and for TC1 written in EyeAutomate, maintained by P3. 



140 

120 

100 

I 80 

~ 
e 
i= 60 

40 

20 

E)'eAutomate OVI: best eASe 

• • • E)'eAutomate OV2: best case 
Sikuli OVI: best CilSt' 

- - - Sikt.ali OV2: best Ci).9t' 

f - ~)'~Automate OVI: ~uirtd 
i V / - E)'t:Automate 0 V2: required 

• --=:: :r.!::::::: . .... ::: : : : ::::: :: : : - ~~::g~ ::~::: 
~

. E)'eAutomate OVt: worst case 

••• : .. : . ::::: · ··· EyeAutomate OV2: worst c:-ase 
Sikuli DYi: worst case 

• ·••· Sikuli OV2:: worst ease 
- Manual 

10 15 20 25 30 35 40 45 
Number of times the test cases are executed 

50 

Consequently, we observe that the proposed guidelines do 
not have conclusive impact on the maintenance costs of VGT 
scripts. Qualitative observations to support this conclusion are 
presented in Section IV-B. 

Furthermore, comparing the maintenance costs of the 
scripts, we can once more see that they are in the same order 
of magnitude (on average 2.8 hours per test script) as the 
maintenance costs presented in previous research (on average 
2 hours per test) [6]. 

Fig. 5. ROI approximation of VGT automation compared to manual testing 
when using, or not using, best practice design guidelines. 

Return on Investment (ROI): Figure 5 presents an approx-
imation of the time it would take for the developed test suites 
to provide positive ROI compared to manual testing, inspired 
by [6]. Positive ROI would be achieved when the total cost for 
VGT (colored lines) intersect the linear cost of manual testing 
(solid black line). 

In the fgure, short-dashed lines show an approximation of 
the maintenance costs based on the costs measured in the study 
(denoted worst case), i.e. assuming that the maintenance cost 
for each test run would be equal to the costs measured during 
the study. These lines indicate that the measured costs would 
never provide positive ROI compared to manual testing. In 
contrast, the long-dashed lines indicate the best case, where 
no maintenance is required. These lines show that positive ROI 
could be achieved in 9-12 executions of the scripts developed 
without guidelines and 16-17 executions for scripts developed 
with guidelines. Finally, the solid colored lines are approxima-
tions of the maximum allowed maintenance cost that would 
achieve positive ROI given the measured development costs. 
These approximations show that the maintenance costs had 
to be lower than 23 percent of the measured maintenance 
costs for scripts developed without guidelines, and less than 17 
percent of the measured costs for scripts developed with the 
guidelines. However, whilst this is a substantial reduction in 
cost, it is not improbable to achieve, as indicated in previous 

research [6]. We base this conclusion on the observation 
that test scripts should not require maintenance for each test 
execution and will elaborate further on this conclusion in 
Section V. 

B. Practitioners’ perceptions and observations about the 
guidelines 

The following section provides a synthesis of the obser-
vations and interview results acquired about each proposed 
guideline. 

G1: Write short units of code - This guideline was 
identifed as inappropriate for VGT scripting since it lead 
to unnatural division of test functionality. VGT scripts have 
natural units of functionality, connected to the test steps, 
and forcing further division, although generating unique units, 
was not perceived to provide any advantages, e.g. improved 
reusability. It was therefore concluded that longer units pro-
vided more value but what the cut-off number of lines of 
code per script should be was not comprehensibly determined. 
Instead it is assumed that lines of code per unit should be 
determined by the unit’s intended functionality. 

G2: Write simple units of code - This guideline was 
implicitly ignored by the participants since it was perceived as 
redundant. This perception was determined to be due to VGT 
scripts’ inherent scenario-based, often linear design (i.e. lack 
of branch conditions), and high level, intuitive, syntax. 

G3: Write code once - This guideline was applied and was 
perceived appropriate because it eased reuse of units when 
applicable. However, the guidelines specifed that duplicate 
code of six or more lines of code should be refactored into 
a reusable unit. This limit was perceived by the practitioners 
as high, but was considered a good starting point. The reason 
for this perception is that common actions, e.g. to login or 
toggling between windows, can generally be performed with 
VGT tools in fewer than 6 lines of code. 

G4: Keep unit interfaces small - This guideline was 
ignored by the practitioners because it did not feel appli-
cable. Both VGT tools support parameter-based scripting, 
SikuliX through defnition of Python methods and EyeAuto-
mate through data-driven test scripts with input parameters. 
The practitioners instead opted for the use of clear and well-
structured interfaces. 

G5: Separate test cases according to manual steps -
This guideline was applied but the practitioners had different 
perceptions about its value and application. On the positive 
side, the employees agreed on the guideline to be appropriate 
and that it provided clear alignment between the manual test 
case steps and the units of the test script. However, this 
separation of concerns and units was observed as excessive 
and clumsy in some cases where there were better, more cross-
cutting, concerns that could improve the scripts’ qualities. 
This way of scripting also required excessive modularization 
and therefore descriptive names to be generated for all the 
units, which was considered time-consuming. In addition, 
maintenance of multiple units was considered more diffcult 
since it lead to jumping around between units of the scripts. 



Instead, it was observed that script code for manual test steps 
of similar functionality should be kept in the same unit based 
on semantic purpose of the steps. 

G6: Refer to images once - This guideline was valuable 
and perceived appropriate for the VGT scripts. However, it was 
also considered time-consuming, similar to G5, to come up 
with suitable names for the images and even fnd what images 
that are available for reuse. In some cases, it was perceived 
quicker to simply take a new image than to go through the list 
of available images. 

G7: Keep the codebase as small as possible - This guide-
line seemed superfuous since unnecessary code is seldom 
added to VGT scripts. The reason is because of the scripts’ 
high level of abstraction that aims to replicate human user 
inputs, which are generally the minimum number of actions 
required to correctly stimulate the SUT’s behavior. Hence, for 
more advanced applications of VGT, this guideline could be 
appropriate, but for translated, scenario-based, manual tests it 
is not. 

G8: Use descriptive and uniform naming conventions -
This guideline was valuable and was considered a good prac-
tice to summarize the functionality of test units. However, as 
pointed out by the employees, what is considered descriptive 
may be subjective for different developers. Implying the need 
for additional guidelines on how to construct suitable variable 
names. For the study, Saab’s existing naming conventions were 
used, but as they are context-dependent, other conventions are 
required in other contexts. 

G9: Use synchronization checks - This guideline was 
considered fundamental to make the tests work and to avoid 
unnecessary maintenance. The use of dynamic synchronization 
checks was found to be appropriate but was not employed 
in all scripts. Examples where static delays were used was 
when no suitable target was available for a dynamic wait, 
or when smaller delays were required, e.g. when providing 
textual inputs. 

G10: Take a screenshot when tests fail - This guideline 
was perceived as appropriate for VGT but was used sparingly 
by the participants since they were actively observing the test 
executions during development and maintenance. However, 
this guideline should be used if the tests are run unsupervised, 
for instance in a CI environment. 

G11: Take care to choose suitable imagery - This 
guideline was used and perceived as appropriate, but also 
challenging. The practitioners opted for keeping images as 
small as possible since it was observed that images with 
unnecessary pixel information were more prone to failure, 
which caused unnecessary maintenance. The trade-off between 
suitable image size and uniqueness is however still considered 
a fundamental challenge and is left out as future work. 

G12: Write clean code - This guideline was ignored for the 
same reasons as G7 but was perceived by the study participants 
as a valuable guideline. Hence, minimizing out-commented 
code, dead code, etc. to enhance readability of the scripts. 

V. DISCUSSION AND FUTURE WORK 

Previous research into VGT has shown that the technique 
can provide positive ROI over time compared to manual 
testing [6]. However, our results go against this result since 
approximations based on the measured maintenance costs 
never provide ROI. In fact, the maximum maintenance cost 
to make VGT at all viable is substantially lower, i.e. 17-23 
percent of the measured costs. The ratio between development 
and maintenance cost was in this study 0.493, comparable 
to the worst case maintenance cost ratio of 0.44 observed in 
previous work [6]. In contrast, the assumed best case scenario, 
i.e. no maintenance, would provide positive ROI between 
9 to 12 test runs for scripts written without the guidelines 
and about 16 to 17 runs with the guidelines. However, six 
versions of Saab’s SUT were identifed as potential targets for 
the study, each with varying degrees of changes that would 
require test maintenance. As such it is unlikely that neither 
the best or worst case maintenance scenarios will be achieved 
and we can therefore not conclude that the approximations 
of unattainable ROI are true. In previous work, the best 
case maintenance (frequent maintenance) still had a ratio 
of 0.09 compared to development cost [13], implying that 
some maintenance is always required. However, the choice of 
which tests to automate must also be considered. New tests, 
associated with immature SUT functionality will be subject to 
more maintenance as the functionality matures. Instead, scripts 
should be developed primarily for stable functionality that is 
less likely to change. 

The most important, yet surprising, fnding was that the 
proposed guidelines had a negative effect on the maintenance 
costs. A couple of reasons can be identifed to explain this 
result. First, the guidelines were developed assuming that there 
are inherent similarities between VGT scripts and traditional 
software. It seems that this assumption was partially false and 
can be attributed to the VGT scripts inherent properties of 
being short, linear and have a natural separation of concerns. 
This conclusion is also supported by the fnding that the 
guidelines perceived most effective were more VGT specifc, 
i.e. guidelines G6, G9 and G11. 

Second, the number of guidelines were extensive (12 in 
total), implying that they add considerable cognitive load to 
the developer. This load consists in part of remembering what 
the guidelines are and secondly how to apply them correctly. 
As a result, the guidelines cause overhead that outweigh their 
intended benefts. For instance, it was observed that high 
modularization made it diffcult to navigate the scripts and 
identify where/how to maintain them. This observation can be 
explained by the VGT scripts’ logical (i.e. test sequences) and 
chronological (i.e. synchronization) components. Splitting the 
sequences into different units require the developer/tester to 
keep more information in their head, adding more cognitive 
load. This observation implies that there must be a balance 
between the amount of modularization that is added to the 
scripts contra the readability of said scripts. 

Consequently, even though the practitioners that took part 



-

in the study highlight both the need and potential value of 
guidelines for VGT, they also believe that these particular 
guidelines were not generally suitable. This conclusion implies 
a continued need for research in this area, building upon our 
mistakes. Primarily, that VGT scripts, due to their inherent 
properties, cannot be dealt with in the same way as software, 
despite previous research that presents results to the con-
trary [3]. Future research should investigate these differences, 
which could also provide a more general contribution to 
automated GUI-based testing. 

Second, the results indicate that modularization has a direct 
impact on the readability of the test scripts, supported by 
related work [1], [21], and is fundamental in many coding 
guidelines. However, it seems that the trade-off between these 
two qualities is more sensitive for VGT scripts than for 
software. This observation explains why software guidelines 
like keeping modules to a maximum of 15 lines of code less 
applicable. One possible reason is that the scripts are highly 
dependent on the aforementioned chronological component, 
i.e. need for synchronization. Future research should therefore 
study how to modularize VGT scripts to instead achieve a 
positive effect. 

Finally, coding guidelines add cognitive load, which can be 
controlled with the type and number of guidelines used. If the 
cognitive load is not controlled for, it could add overhead that 
nullifes potential benefts. The results of this study provide 
some support for this conclusion. While not strictly related 
to the examined guidelines, similar observations have been 
made in the context of design patterns where structure imposed 
by patterns might lead to systems becoming more diffcult to 
maintain [26]. 

Future research should therefore not only look at what 
guidelines to use, but also how many and which are more 
suitable in different contexts. For such work, researchers 
should be inspired by the results presented in this paper, 
especially the practitioners’ perceptions of each suggested 
guideline. 

A. Threats to validity 

In this section we summarize threats to validity based on 
guidelines by Runeson and Höst. [27]. 

Construct validity: The study was conducted in situ at 
Saab AB, with test cases for a live SUT, representative of 
a safety-critical GUI-based system. Whilst this could limit the 
results to safety-critical software, most GUI-driven systems 
share common types of GUI components, limiting the threat. 
Additionally, results were collected from practitioners working 
in the environment with both industrial experience and domain 
knowledge. However, the scripts were not integrated into day-
to-day operations and the industrial participants of the study 
had limited knowledge of VGT prior to the study. We see these 
as minor threats, however, since the development costs are on 
par with previous industrial research in similar domains [6]. 

Internal validity: The study was performed using two 
commonly used VGT tools, in a setting similar to previous 
research [16], [5], [6], [7]. The research methods and the 

collected data were similar to previous studies. The results 
provide a basis for our stated conclusions and show that 
the tests developed with guidelines are more costly than the 
tests developed without them. Qualitative observations support 
these quantitative results. 

External validity: The study was performed at one com-
pany with a limited number of practitioners. However, the 
case company is very similar to other case companies in 
previous studies and the acquired results are in line with 
previously reported results [6]. Regardless, it is unknown if the 
same results would be observed in other contexts with more 
developers or other software. As such, researchers should learn 
from our results, tailor them, and re-evaluate further, 

Reliability: Empirical, industrial, case studies are never 
fully replicable since they, per defnition, change the en-
vironment where they are performed. Instead, we’ve ded-
icated a considerable portion of the paper to detail our 
research procedure and the steps taken to reach the re-
sults. Raw quantitative data and qualitative data summaries 
have also been made available for replication purposes at: 
http://mimicservice.com/resources/Replication package.zip. 

VI. CONCLUSIONS 

Programming guidelines are commonplace for software, uti-
lized to improve its qualities, such as maintainability. However, 
for testware such guidelines are far less common, despite many 
perceived similarities between software and testware. For GUI-
based tests driven by image recognition, VGT, guidelines have 
not been previously suggested to our knowledge. 

In this study, we proposed a set of guidelines for VGT and 
evaluated them in an industrial case study. This study shows 
that the guidelines were ineffective and had detrimental effects 
on the developed scripts’ maintenance costs. The lessons 
learned from this observation, coupled with qualitative data 
from observations and interviews, are: 

1) VGT scripts have characteristics that set them apart from 
software, prohibiting software guidelines to be directly 
reused. 

2) Programming guidelines introduce cognitive load on the 
tester that needs to be managed. 

3) Guidelines focused on modular design must trade-off 
modularity versus readability of VGT scripts due to their 
logical and chronological components. 

From these conclusions, we outline a need for further research 
into specifc guidelines adapted to VGT. This need is war-
ranted by the observed lack of ROI concerning the translation 
of manual tests into VGT scripts, practitioners’ statements, 
and the value of guidelines reported in related work. As such, 
future work in this area is perceived to not only provide 
contributions to VGT, but also to other GUI-based testing 
techniques. 

VII. ACKNOWLEDGMENTS 

This work was supported by the KKS foundation through 
the S.E.R.T. Research Profle project and the M.E.T.A. project 
at Blekinge Institute of Technology. 

http://mimicservice.com/resources/Replication


REFERENCES 

[1] B. Luijten, J. Visser, and A. Zaidman, “Faster defect resolution with 
higher technical quality of software,” in 4th international workshop on 
software quality and maintainability (SQM 2010), 2010. 

[2] J. Visser, S. Rigal, G. Wijnholds, P. van Eck, and R. van der Leek, 
Building Maintainable Software, C# Edition: Ten Guidelines for Future-
Proof Code. ” O’Reilly Media, Inc.”, 2016. 

[3] E. Alégroth and J. Gonzalez-Huerta, “Towards a mapping of software 
technical debt onto testware,” in 2017 43rd Euromicro Conference on 
Software Engineering and Advanced Applications (SEAA). IEEE, 2017, 
pp. 404–411. 

[4] A. Schneider, “Junit best practices,” Java World, vol. 12, p. 181, 2000. 
[5] E. Alégroth, R. Feldt, and L. Ryrholm, “Visual gui testing in practice: 

challenges, problemsand limitations,” Empirical Software Engineering, 
vol. 20, no. 3, pp. 694–744, 2015. 

[6] E. Al´ om, “Maintenance of automated testegroth, R. Feldt, and P. Kolstr¨ 
suites in industry: An empirical study on visual gui testing,” Information 
and Software Technology, vol. 73, pp. 66–80, 2016. 

[7] E. Alégroth and R. Feldt, “On the long-term use of visual gui testing 
in industrial practice: a case study,” Empirical Software Engineering, 
vol. 22, no. 6, pp. 2937–2971, 2017. 

[8] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons 
learned from automated testing,” in Proceedings of the 27th international 
conference on Software engineering, 2005, pp. 571–579. 

[9] V. Garousi and M. Felderer, “Developing, verifying, and maintaining 
high-quality automated test scripts,” IEEE Software, vol. 33, no. 3, pp. 
68–75, 2016. 

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor 
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012. 

[11] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using gui screenshots 
for search and automation,” in Proceedings of the 22nd annual ACM 
symposium on User interface software and technology, 2009, pp. 183– 
192. 

[12] E. Alégroth, A. Karlsson, and A. Radway, “Continuous integration and 
visual gui testing: Benefts and drawbacks in industrial practice,” in 2018 
IEEE 11th International Conference on Software Testing, Verifcation 
and Validation (ICST). IEEE, 2018, pp. 172–181. 

[13] E. Alegroth, M. Nass, and H. H. Olsson, “Jautomate: A tool for system-
and acceptance-test automation,” in 2013 IEEE Sixth International 
Conference on Software Testing, Verifcation and Validation. IEEE, 
2013, pp. 439–446. 

[14] V. Garousi, W. Afzal, A. Çağlar, İ. B. Işık, B. Baydan, S. Çaylak, A. Z. 
Boyraz, B. Yolaçan, and K. Herkiloğlu, “Visual gui testing in practice: 
An extended industrial case study,” arXiv preprint arXiv:2005.09303, 
2020. 

[15] F. Dobslaw, R. Feldt, D. Michaëlsson, P. Haar, F. G. de Oliveira Neto, 
and R. Torkar, “Estimating return on investment for gui test automation 
frameworks,” in 2019 IEEE 30th International Symposium on Software 
Reliability Engineering (ISSRE). IEEE, 2019, pp. 271–282. 

[16] E. Borjesson and R. Feldt, “Automated system testing using visual 
gui testing tools: A comparative study in industry,” in 2012 IEEE 
Fifth International Conference on Software Testing, Verifcation and 
Validation. IEEE, 2012, pp. 350–359. 

[17] E. Alégroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization and 
evaluation of component-based testing unifed with visual gui testing: an 
empirical study,” in 2015 IEEE 8th International Conference on Software 
Testing, Verifcation and Validation (ICST). IEEE, 2015, pp. 1–10. 

[18] R. Molari and M. Conway, “Guidelines for testing and release proce-
dures,” NASA technical report service, 1984. 

[19] T. Hellmann, E. Moazzen, A. Sharma, M. Akbar, J. Sillito, F. Maurer 
et al., “An exploratory study of automated gui testing: Goals, issues, 
and best practices,” University of Calgary, Tech. Rep., 2014. 

[20] E. Alégroth, M. Steiner, and A. Martini, “Exploring the presence of 
technical debt in industrial gui-based testware: A case study,” in 2016 
IEEE Ninth International Conference on Software Testing, Verifcation 
and Validation Workshops (ICSTW). IEEE, 2016, pp. 257–262. 

[21] J. Visser, “Sig/tüvit evaluation criteria trusted product maintainability: 
Guidance for producers,” Software Improvement Group, Tech. Rep., p. 7, 
2015. 

[22] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “Scotch: 
Test-to-code traceability using slicing and conceptual coupling,” in 2011 
27th IEEE International Conference on Software Maintenance (ICSM). 
IEEE, 2011, pp. 63–72. 

[23] E. Alégroth, R. Feldt, and H. H. Olsson, “Transitioning manual system 
test suites to automated testing: An industrial case study,” in 2013 IEEE 
Sixth International Conference on Software Testing, Verifcation and 
Validation. IEEE, 2013, pp. 56–65. 

[24] P. S. Kochhar, T. F. Bissyande,´ D. Lo, and L. Jiang, “An empirical 
study of adoption of software testing in open source projects,” in 2013 
13th International Conference on Quality Software. IEEE, 2013, pp. 
103–112. 

[25] S. Owen, P. Brereton, and D. Budgen, “Protocol analysis: a neglected 
practice,” Communications of the ACM, vol. 49, no. 2, pp. 117–122, 
2006. 

[26] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software 
quality positively?” in 2008 12th European Conference on Software 
Maintenance and Reengineering. IEEE, 2008, pp. 274–278. 

[27] P. Runeson and M. Höst, “Guidelines for conducting and reporting case 
study research in software engineering,” Empirical software engineering, 
vol. 14, no. 2, p. 131, 2009. 


