
Bachelor of Science in Computer Science
May 2021

Optimization of Heterogeneous Parallel
Computing Systems using Machine

Learning

Devi Abhiseshu Adurti
Mohit Battu

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in
partial fulfilment of the requirements for the degree of Bachelor of Science in Computer Science.
The thesis is equivalent to 10 weeks of full time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Devi Abhiseshu Adurti
E-mail: dead20@student.bth.se

Mohit Battu
E-mail: mobt20@student.bth.se

University advisor:
Senior Lecturer, Suejb Memeti
Department of Computer Science and Engineering

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Background: Heterogeneous parallel computing systems utilize the combination
of different resources CPUs and GPUs to achieve high performance and, reduced
latency and energy consumption. Programming applications that target various pro-
cessing units requires employing different tools and programming models/languages.
Furthermore, selecting the most optimal implementation, which may either target
different processing units (i.e. CPU or GPU) or implement the various algorithms,
is not trivial for a given context. In this thesis, we investigate the use of machine
learning to address the selection problem of various implementation variants for an
application running on a heterogeneous system.

Objectives: This study is focused on providing an approach for optimization of
heterogeneous parallel computing systems at runtime by building the most efficient
machine learning model to predict the optimal implementation variant of an appli-
cation.

Methods: The six machine learning models KNN, XGBoost, DTC, Random Forest
Classifier, LightGBM, and SVM are trained and tested using stratified k-fold on the
dataset generated from the matrix multiplication application for square matrix input
dimension ranging from 16x16 to 10992x10992.

Results: The results of each machine learning algorithm’s finding are presented
through accuracy, confusion matrix, classification report for parameters precision,
recall, and F-1 score, and a comparison between the machine learning models in
terms of accuracy, run-time training, and run-time prediction are provided to deter-
mine the best model.

Conclusions: The XGBoost, DTC, SVM algorithms achieved 100% accuracy. In
comparison to the other machine learning models, the DTC is found to be the most
suitable due to its low time required for training and prediction in predicting the
optimal implementation variant of the heterogeneous system application. Hence the
DTC is the best suitable algorithm for the optimization of heterogeneous parallel
computing.

Keywords: Application, Heterogeneous systems, Parallel computing, Machine
learning, Optimization

i

Acknowledgments

We would like to express our sincere thanks of gratitude to our supervisor at BTH,
Suejb Memeti for his guidance and encouragement throughout the project. He helped
us grow professionally and pushed us to sharpen our thinking. We would also like
to thank our parents and friends for their moral support and encouragement in the
completion of the thesis.

Authors:
Devi Abhiseshu Adurti
Mohit Battu

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Aims and objectives . 2
1.2 Research questions . 2
1.3 Background . 3

1.3.1 CUDA: Platform for Heterogeneous computing 3
1.3.2 Machine Learning . 3
1.3.3 Supervised learning . 4
1.3.4 Machine Learning algorithms 4
1.3.5 Independent and dependent variables in ML 5
1.3.6 Stratified K-fold cross validation 5
1.3.7 Matrix Multiplication . 5

1.4 Scope of the thesis . 6
1.5 Overview . 7

2 Related Work 8

3 Method 10
3.1 Literature Review . 10
3.2 Experiment . 11

3.2.1 Working Environment . 11
3.2.2 Data-set Generation . 12
3.2.3 Data-set Visualization . 13
3.2.4 Label Count . 14
3.2.5 Correlation Matrix . 14
3.2.6 Outlier Detection . 15
3.2.7 Data-set Split . 16
3.2.8 Model Implementation . 17
3.2.9 Performance Metrics . 18

3.3 Construction of Results . 20

4 Results and Analysis 21
4.1 Literature Review Results . 21
4.2 Experiment Results . 22

4.2.1 KNN . 22

iii

4.2.2 Decision Tree Classifier . 24
4.2.3 XGBoost . 25
4.2.4 Random Forest Classifier . 27
4.2.5 LightGBM . 28
4.2.6 Support Vector Machine . 30

4.3 Evaluation Results . 32
4.4 Summary of Analysis . 33

5 Discussion 34
5.1 Answering Research Questions . 34

6 Conclusions and Future Work 37

A Supplemental Information 42

iv

List of Figures

3.1 Importing Python Libraries . 13
3.2 Multilabel Count for Winning Column 14
3.3 Correlation Matrix for Data-set Columns 15
3.4 Outlier Detection for Data-set Columns 16
3.5 Flow Chart of the Machine Learning Modelling Process 18

4.1 KNN Accuracy Scores . 23
4.2 KNN Confusion Matrix . 23
4.3 DTC Accuracy Score . 24
4.4 DTC Confusion Matrix . 25
4.5 XGBoost Accuracy Score . 26
4.6 XGBoost Confusion Matrix . 26
4.7 Random Forest Classifier Accuracy Score 27
4.8 Random Forest Confusion Matrix . 28
4.9 LightGBM Accuracy Score . 29
4.10 LightGBM Confusion Matrix . 29
4.11 SVM Accuracy Score . 30
4.12 SVM Confusion Matrix . 31
4.13 DTC Outcome . 32

A.1 Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from 16 to 160 . 42

A.2 Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from the 1008 to 1328 . 43

A.3 Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from the 4464 to 8560 . 44

v

List of Tables

3.1 Snippet of the data set . 13
3.2 Format of the data set . 13
3.3 confusion matrix . 20

4.1 Literature Review findings . 22
4.2 KNN Classification Report . 24
4.3 DTC Classification Report . 25
4.4 XGBoost Classification Report . 27
4.5 Random Forest Classification Report 28
4.6 LightGBM Classification Report . 30
4.7 SVM Classification Report . 31
4.8 Models Evaluation Report . 32

5.1 Comparison of Models . 35

vi

Chapter 1
Introduction

The interest in parallel computing has grown steadily over the last several decades.
Parallel computation is the parallel usage of multiple computing units (cores or com-
puters) to perform concurrent calculations. The primary intention of parallel comput-
ing is to increase computation speed. Parallel computing systems have traditionally
been used for technical and scientific computing [1]. In the early days, computing
systems only had central processing units(CPUs) that were intended to perform gen-
eral programming tasks. Over the last decade, modern parallel computing systems
have evolved rapidly because of the advent of GPU-CPU heterogeneous architectures,
which contributed to a significant paradigm change in parallel computing [2].

A heterogeneous system is a combination of CPUs and GPUs that reduces com-
munication latency, energy consumption, and increased performance by running mul-
tiple devices in parallel mode. It utilizes and combines the different types of resources
available in our computer system. The transition from homogeneous to heterogeneous
systems is a pivotal event in the evolution of high-performance computing. Homoge-
neous computation executes an application or program on one or more processors of
the same architecture. Heterogeneous computation, on the other hand, executes an
application using a variety of processor architectures, assigning tasks to architectures
that are best suited for them, resulting in improved performance [1].

Programming applications running on heterogeneous parallel computing plat-
forms target various processing units and require employing different tools and pro-
gramming models/languages. These applications can have various implementations
in performing their task. For example, there are several benchmark applications,
such as sorting, back-propagation, matrix multiplication, depth-first search, and so
on, all of which are designed to operate on heterogeneous parallel computing systems
[3][4]. Most of the time, several implementations of the same application exist, like
in the sorting application, where we have quick sort, merge sort, bubble sort, and
selection sort, among others. In general, irrespective of the heterogeneous system,
the efficiency of these implementations varies in terms of execution time according
to the length of the input. Also, a particular implementation of the same application
can perform differently on two heterogeneous systems as parallel computation dif-
fers from system to system based on the processors it is running on. It is uncertain
which application implementation will perform optimally at the run-time based on
heterogeneous system resources and also the provided input size. To achieve the
high-performance efficiency of heterogeneous parallel computing systems, we must
know the optimal implementation variant at run-time.

1

Chapter 1. Introduction 2

To get the most out of these resources while being efficient in their usage, a sig-
nificant understanding of applications running on heterogeneous parallel computing
systems is needed [5]. Knowing which implementation variant for an application is
optimal at run-time for a heterogeneous parallel computing system would demand
having system-specific architectural knowledge, as well as programming skills for
many programming models targeting different systems [6] [7]. Machine Learning
models can be implemented by training on the available information on performance
parameters such as run-time, resource usage, energy consumption etc for selecting an
implementation variant of an application that is to be executed on the heterogeneous
parallel computing system.

In this thesis, we investigate the use of machine learning models to select the
most optimal implementation of a particular application that yields the highest per-
formance based on execution times of the implementations in a given context, that is
hardware architecture and input size. For experimentation, we will focus on using the
matrix multiplication application. There exist various implementations of different
algorithms for matrix multiplication, including Naive, Strassen, and Tiled matrix
multiplication algorithms [8][9][10]. Furthermore, there exist various implementa-
tion variants that target different target architectures, including CPU and GPU.
The execution times of matrix multiplication application implementations for a het-
erogeneous parallel computing system vary with input size is shown in the figures
A.1, A.2, A.3. The machine learning model will be trained off-line (that is before the
run-time) on execution times of implementations, and when the program is executed
the machine learning model will be used to predict which implementation variant
would result in the highest performance based on the available computing processing
units (CPU or GPU) and the input size.

1.1 Aims and objectives
The aim of the thesis to build machine learning models that can be used in predicting
the optimal implementation variant based on run-time performance of the considered
matrix multiplication application in the given context, that is the processing units
and the input size.

The objectives can be defined as follows:

1. To investigate which machine learning algorithms are suitable to predict the
optimal implementation variant for heterogeneous parallel computing.

2. Evaluate the selected machine learning algorithms concerning accuracy.

3. Apply the machine learning model to select the optimal implementation variant
of the considered matrix multiplication application.

1.2 Research questions
This project would focus on the following research questions to achieve the goal:

Chapter 1. Introduction 3

1. Which machine learning algorithms are suitable to predict the optimal imple-
mentation variant for heterogeneous parallel computing systems?

2. How selected machine learning algorithms can improve the performance of het-
erogeneous parallel computing?

1.3 Background
In this section, we describe the theme and underlying concepts that were used as part
of the research for this thesis. Firstly, information on a heterogeneous computing
platform is discussed. Following that, a short overview of machine learning as a
concept, its approach of supervised learning, and the machine learning algorithms
used in this study to select the suitable implementation variant. Finally, the use of
the considered matrix multiplication application is discussed, as well as its various
implementations.

1.3.1 CUDA: Platform for Heterogeneous computing

CUDA is a parallel computing framework and programming interface model designed
for general computing that makes use of NVIDIA GPUs parallel compute engine to
solve certain complicated computational problems more effectively. Using CUDA,
traditionally done computation on CPU can be done with GPU computation. The
CUDA platform acts as a layer of software that offers direct access to the parallel
computing components and GPU’s virtual instructions set, for the compute kernel
execution. The CUDA platform is intended to be used with standard programming
languages like C, C++, Python, and Fortran. A CUDA application program consists
of a two parts host code that runs on CPU and device code for GPU. The CUDA uses
a compiler named NVCC, which stands for Nvidia Cuda Compiler. When running a
program in CUDA, the NVCC compiler splits the device and host code parts of the
program during the compilation time and sends the host code to the CPU and the
device code to the GPU for execution[1].

1.3.2 Machine Learning

Machine learning(ML) is a branch of artificial intelligence that enables computing
systems to learn how to solve a problem from their experiences by the use of data
or information [11]. Machine learning is defined as "a computer program learns
from experience E about some types of Tasks T and measure of performance P, if
its performance in T tasks, as calculated by P, is improved with E" [12]. Machine
learning techniques construct a model from a data sample, referred to as "training
data," in making predictions or decisions without being directly instructed to do
so. There are widely three machine learning approaches classified into supervised
learning, unsupervised learning, and reinforcement learning. This study would make
use of supervised learning as the machine learning approach.

Chapter 1. Introduction 4

1.3.3 Supervised learning

The most common approach to machine learning is supervised learning. Supervised
learning algorithms construct a mathematical model from the data set that has both
inputs and expected outputs[8]. The data set involves labelled training data that
contains examples of the training set. During the training process, algorithms gain
knowledge or identify patterns in the data set. The algorithm is provided with new
data after completion of the training process and provides the result based on the
learned patterns during the training. The primary focus of supervised learning is to
correctly predict the classification by analyzing the data it contains, using its training
experience[13].

1.3.4 Machine Learning algorithms

The following machine learning algorithms are used in this research.

Decision Tree Classifier (DTC)

Decision tree classifier is a supervised learning method, used when solving problems
with classification [13]. The classifier is tree-structured, which classify by sorting
instances as per the feature values. In Decision Tree branches represent decision
rules, internal nodes represent the data set features as an instance that to be classified
and the outcome is represented by each leaf node.

XGBoost

XGBoost stands for Extreme Gradient Boosting model. XGBoost is a fast and
efficient implementation of gradient boosted decision trees. It is particularly for
structured or tabular data sets. XGBoost is open-source and free to use. Its impact
is recognized in various data mining and machine learning challenges [14]. XGBoost
system uses scalability to its advantage, running faster on a single machine than the
existing implementations and scaling to many examples in the memory limited or
distributed settings.

Random Forest Classifier

Random forest classifier is a technique of supervised learning method. The forest
is created by the collection of decision trees, trained by a method called bagging.
The basic concept of bagging is combining learning models improves the final result.
Multiple decision trees are merged in providing more reliable and accurate prediction
[15].

K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a simple supervised learning technique used for both classifi-
cation and regression problems. The KNN algorithm assumes the similarities of the
new data and the existing data, then places the new data into a class that is more
similar to the existing classes. The KNN algorithm collects the available data and a
new data point is classified based on the similarities [16].

Chapter 1. Introduction 5

Light GBM

Light GBM is a Light Gradient Boosting Machine that is an open-source and free
to use gradient boosting framework based on decision tree algorithms used for clas-
sification, ranking, and other tasks of machine learning [17]. For this study, the
Gradient Boosting Decision Tree(GBDT) is used along with Light GBM. GBDT is
widely used for multi-class classification, which builds a prediction model from the
collection of weak decision tree models.

Support Vector Machine (SVM)

Support Vector Machine is a supervised algorithm of machine learning, mostly used
for classification problems. In the SVM, each data object is plotted as a point in n-
dimensional space with n being the number of features and each feature value being
a particular coordinate value [18]. Then, the classification is performed by locating
the hyper-plane that best distinguishes the two classes.

1.3.5 Independent and dependent variables in ML

In machine learning, independent and dependent variables are crucial terms. The
independent and dependent variables both have an influence on one another, which
means that if one variable changes, the other will also change. The dependent variable
determines the independent variable. The variable can control its selection and
manipulation in an independent variable which influences the dependent variable
[19]. The dependent variable is the variable that is measured and affected in the
experiment. It is referred to as the dependent variable since it is dependent on the
independent variable. A dependent variable in an experiment cannot exist in the
absence of an independent variable [11].

1.3.6 Stratified K-fold cross validation

Cross-validation (CV) is a statistical analysis procedure used for evaluation of the
efficacy of the machine learning method and for re-sampling used for validating an
algorithm where data is insufficient. The stratification process is the rearrangement
of the data such that each fold is a good representation of the whole [20]. Data
divided into folds can be managed by criteria such as ensuring that each fold has the
same results ratio with a specific categorical value as the class result value. This is
known as stratified k-fold cross-validation.

1.3.7 Matrix Multiplication

Matrix multiplication is a binary operation in mathematics that outputs a matrix C
which is the result of the multiplication of two input matrices A and B. For matrix
multiplication to be possible the columns in the first matrix must be equal to the rows
in the second matrix. The resulting matrix product contains the number of rows and
columns from the first and second matrices. In the square matrix, the number of rows
equals the number of columns. As an operation, matrix multiplication has several

Chapter 1. Introduction 6

algorithm implementations such as Tiled, Naive, and Strassen that can operate on
heterogeneous systems are considered for this study [8].

A =

a11 a12 .. a1j
a21 a22 .. a2j
..

ai1 ai2 .. aij

 B =

b11 b12 .. b1k
b21 b22 .. b2k
..

bj1 bj2 .. bjk

C = AB =

a11b11 + ...+ a1jbj1, a11b12 + ...+ a1jbj2, ... , a11b1k + ...+ a1jbjk
a21b11 + ...+ a2jbj1, a21b12 + ...+ a2jbj2, ... , a21b1k + ...+ a2jbjk

...

ai1b11 + ...+ aijbj1, ai1b12 + ...+ aijbj2, ... , ai1b1k + ...+ aijbjk

Naive Matrix multiplication

Naive multiplication is the ordinary matrix multiplication algorithm. Uses the matrix
multiplication function in which the formula for the calculation of element of the ma-
trix product is applied [21]. Following the normal approach of matrix multiplication
contains two parts of code as host and device for the CPU and GPU.

Tiled Matrix multiplication

Tiled matrix multiplication is an algorithm that uses the parallel nature of matrix
multiplication to perform on GPUs. The tiling method is used to reduce global mem-
ory accesses by taking advantage of the shared memory on the GPU, thereby boosting
the execution of kernel efficiency [10]. Tiled matrix multiplication is only meant for
the GPU, often the CPU code part is placed with naive matrix multiplication.

Strassen Matrix Multiplication

Strassen algorithm is faster matrix multiplication than the standard naive matrix
multiplication, mostly useful for larger matrix sizes. For the Strassen algorithm to
work, the matrices must be square matrices of dimensions n and n should be the
power of 2. In case not, matrices should be padded 0 to match conditions. Strassen
multiplication is a recursive technique for matrix multiplication where the matrix is
divided into 4 sub-matrices of dimensions n/2 in each recursive step [22]. Strassen
algorithm program can be implemented for both host and device i.e for CPU and
GPU.

1.4 Scope of the thesis
The focus of this thesis is on using machine learning algorithms to predict the op-

timal implementation variant for an application on a heterogeneous parallel comput-
ing system based on resource utilization and input size. For experimentation, matrix
multiplication application is taken and machine learning algorithms are trained on
run-time performance data collected from a single heterogeneous parallel computing

Chapter 1. Introduction 7

system. The thesis is not concerned with telling the performance of the application
and its implementation because it would differ against different heterogeneous paral-
lel computing systems, and the machine learning models would only predict for the
heterogeneous system from which data is collected and for systems with similar pro-
cessing units. The thesis contributes by presenting a machine learning approach for
application optimization that be implemented on heterogeneous parallel computing
systems.

1.5 Overview
The background is structured containing explanations of the fundamental concepts
in the above section. The other part of the paper is structured as follows. First,
the related works contain the previous works relating to optimization of heteroge-
neous systems and used machine learning approaches for that. The methods section
describes the steps involved in collecting data, creating machine learning models,
and analyzing the models. The results section then presents the models’ outcomes
and the analysis of the model using performance metrics. After that, answers to the
research-related questions in the discussion segment. Finally, conclusions were drawn
based on the findings, and recommendations for future work were made to enhance
the project.

Chapter 2
Related Work

Vi Nfoc-Nha Tran et al [23]. have done experiments that propose REOH, a holis-
tic tuning method that uses a probabilistic network to determine the most energy-
efficient configuration of a heterogeneous system for running a given application.
The study showed that the REOH solution outperforms the brute-force approach in
terms of optimal energy consumption on heterogeneous systems.

Zheqi Yu et al [24]. have worked on an optimization approach in heterogeneous
computer systems to optimize energy power usage and performance. The paper pro-
poses a power measurement utility for a reinforcement learning (PMU-RL) technique
that can dynamically change the resource utilization of heterogeneous systems to re-
duce energy consumption. The study shows that the PMU-RL approach significantly
reduced power consumption without impacting the application’s efficiency.

Suejb Memeti et al [2]. has done a systematic literature review on using meta-
heuristics and machine learning for the optimization of parallel computing systems.
The research follows determining the optimal parameters set in the given context by
using the heuristic search or machine learning for software optimization at compile-
time and run-time. The research contributes to a deeper understanding of cutting-
edge approaches that use machine learning and meta-heuristics to cope with the
complexities of software optimization for parallel computing systems.

Joseph L. Greathouse and Gabriel H. Loh [25]. have researched the use of machine
learning for the power and performance modelling of heterogeneous systems. The
study, in particular, was focused on the measure of the power and performance of
large test applications running on different hardware configurations, and machine
learning models are trained against these measurements. The study contributes to
the use of machine learning algorithms in the prediction of the application’s power
and performance.

Ben Taylor et al [26]. has done a study on optimization on embedded hetero-
geneous systems for OpenCL programs. The study makes use of machine learn-
ing models to predict suitable processors for the OpenCL program to run on, and
also processor frequency for operating. The paper contributes to present an auto-
matic procedure for mapping OpenCL programs on embedded heterogeneous sys-
tems, which provided significantly better performance.

From the above-related works, we found that only a few research papers discussed

8

Chapter 2. Related Work 9

the use of machine learning for the performance of heterogeneous systems, but none
of the research focuses on optimizing the heterogeneous parallel computing systems
by choosing the optimal implementation variant of the program or application using
machine learning. In this thesis, we focus on the optimization of heterogeneous
parallel computing systems by the use of machine learning to predict the optimal
implementation variant of an application.

Chapter 3
Method

With the mentioned two research questions in mind, we aim to investigate liter-
ature and experimentation methods for the optimization of heterogeneous parallel
computing systems using machine learning. For research question 1, the following
section will describe the systematic literature review in which we carefully examined
the literature through which we identified suitable machine learning algorithms for
prediction. Based on the results of research question 1, we performed an experiment
with research question 2 in which the best performing machine learning model is
chosen for optimization of the heterogeneous parallel computing system by evaluat-
ing each machine learning classifier model on performance metrics such as accuracy,
recall, f-measure, support, and confusion matrix.

3.1 Literature Review
To analyze and answer research question 1, a systematic literature review was con-
ducted using the guidelines of Yang Liu [27], P.C. Chaitra [28], and Chase E. Golden
[29]. This section mainly focuses on the understanding of various machine learn-
ing algorithms as well as identifying appropriate machine learning algorithms for
prediction. Several steps were taken in our research, which is as follows:

1. Identifying the key words: We have found the following keywords are Su-
pervised, Classification, Heterogeneous systems, Parallel computing, Machine
learning, and Optimization.

2. Formulating the search strings: To form the search string primary key-
words were chosen from the above-mentioned keywords.

3. Locating the literature: We had searched on various digital database plat-
forms, including Google Scholar, IEEE, and Science Direct by using a search
string.

4. Following the inclusion and Exclusion criteria for selection: Based on
the collected literature such as articles and conference papers, the inclusion
and exclusion criteria were formed. These criteria are used to narrow the scope
of our research.
Inclusion Criteria

• Research papers relevant to the supervised machine learning algorithms
for classification.

10

Chapter 3. Method 11

• Every article must be written in English.

Exclusion Criteria

• Articles that have not been completed.

• Articles that are not written in English weren’t considered.

5. Evaluating and selecting the literature: Resulting from the application
of the inclusion and exclusion criteria, further modification is achieved through
careful assessment and selection of the gathered literature.

6. Summarizing the literature: All the observations from the collected litera-
ture are compiled and expressed for analysis.

3.2 Experiment
An experiment process is carried out using the results of the Systematic Literature
Review of research question 1, in which we identify the suitable machine learning
models for optimization of a heterogeneous parallel computing system. The exper-
iment is then continued to build a prediction model with the chosen algorithm to
determine the research question 2, where the optimal performing machine learning
model is chosen for optimization of the heterogeneous system.

3.2.1 Working Environment

Every component used in this experiment is the most recent version and is labeled
with the version number and description. The experimentation method and the
preceding phases are carried out on a laptop with the following specifications.

• Microsoft Windows 10 64-bit Operating System.

• Intel Core i7-8750H with 6 Core(s), 12 Logical Processor(s) runs at 2.20GHz
-2208 Mhz.

• 16.00 GB RAM that runs at 2667 MHz.

• NVIDIA GeForce GTX 1050 Ti graphic card with a dedicated GPU memory
of 4GB and Driver Version of 470.14.

• Nvidia CUDA compiler V 11.2.152 - Using the NVIDIA Compiler SDK, de-
velopers can create or extend programming languages with GPU acceleration
using an open-source compiler infrastructure.

• Python V 3.9.4 - Open source programming language.

• Jupyter Notebook Virtual Environment V 6.3.0 - Open source software.

• pandas V 1.2.4 - A powerful data analysis and manipulation library for python.

• seaborn V 0.11.1 - A data visualization library based on matplotlib.

Chapter 3. Method 12

• matplotlib V 3.4.1 - A comprehensive library for creating static, animated, and
interactive visualizations in python.

• numpy V 1.19.5 - A python library used to perform mathematical computations
in fields of matrices, linear algebra, and Fourier transform.

• scikit-learn V 0.24.2 - A library that provides many unsupervised and super-
vised learning algorithms.

• lightgbm V 3.2.1 - Open source gradient boosting library is used to train models
on tabular data.

• xgboost V 1.4.1 - Open source software library is used for training the data.

3.2.2 Data-set Generation

To generate a data-set for a matrix multiplication benchmark application concerning
CPU and GPU, we used the Nvidia Compiler SDK environment to run our various
matrix multiplication implementation variants. Different matrix multiplication im-
plementation variants were chosen namely Naive for CPU and GPU, Strassen for
CPU and GPU, and Tiled for GPU. The above-mentioned matrix implementation
variants were written in the form of CUDA code, which runs five times on the same
input matrix dimensions, and the mean is calculated using the corresponding execu-
tion time of five results obtained from the same input matrix dimensions.

The calculated mean score is printed as the final execution time of that particular
matrix input size. The matrix input dimensions range from 16 x 16 to 10,992 x
10,992 and are fed into the five different matrix multiplication implementations that
generate the execution times. For each of the aforementioned implementations, we
would create five data sets with the parameters Algorithm Name, Matrix Input Size,
and Execution Time(milliseconds).

Each of the five data sets provided 798 items, with 266 rows and 3 columns in
each, which were then merged into one, allowing us to store the execution time of
each algorithm and created a new column indicating the winning label. In this case,
we’d be mentioning another column with a header called winning label in a combined
data set. The Winning column values are obtained by analyzing the performance
of the algorithms on the same input size, with the winner being the algorithm that
takes the least amount of time to execute.

A unique number is given for a winning algorithm which denotes that the algo-
rithm is taking the least amount of time with that specified matrix input dimensions.
These unique numbers frequently repeat in the winning column, transforming this
data-set into a multi-classification data-set where each unique number represents
the name of the corresponding algorithm thus making it suitable for applying the
machine learning techniques to it [30].

The figure 3.1 shows how the data set looks, The data set has a shape of 1330 rows
and 4 columns, with a total of 5,320 values are stored in the comma-separated value

Chapter 3. Method 13

Algorithm Name Input Dimensions Execution Time(ms) Winning

Naive GPU 16 0.691494 2
Naive Matrix CPU 16 0.065000 2
Strassen Matrix Multiplica-
tion CPU 16 0.114688 2

Strassen Matrix Multiplica-
tion GPU 16 0.469597 2

Tiled Matrix Multiplication
GPU 16 0.536563 2

Table 3.1: Snippet of the data set

file(CSV). The Winning column is the target variable and the remaining columns
like Algorithm Name, Matrix Input Size and Execution Time are the independent
variables for the machine learning model. The format of the obtained data-set is
represented below in the form of a table 3.2.

Column Name Type
Algorithm_Name object
Input_Dimensions Int64

Execution_Time(ms) float64
Winning int64

Table 3.2: Format of the data set

3.2.3 Data-set Visualization

Before we begin visualizing the data-set, there are a few preliminary steps that
must be completed. First, we must import all of the necessary Python libraries into
the Jupyter notebook as shown in figure 3.1.

Figure 3.1: Importing Python Libraries

Chapter 3. Method 14

The data-set is then loaded with the panda’s library in the Jupyter notebook.
The data-set consists of four columns, the independent variables being "Algorithm
Name", "Input Dimensions", and "Execution Time". Finally, the “Winning” column
represents a target variable. The target variable is filled with unique numbers, each
representing the name of the corresponding algorithm [31].

3.2.4 Label Count

In the figure 3.2, the total label count of each matrix multiplication implementation
variant used in the target variable is depicted as a bar graph. The label count, in
this case, indicates how many times a specific matrix multiplication implementation
variant is considered a winner in the target variable, i.e. winning column. The label
count is a critical observation in determining which cross-validation strategy to use
for a model to be trained and tested.

Figure 3.2: Multilabel Count for Winning Column

We can deduce from the above bar graph that the winning column is labeled
with four different types of matrix multiplication implementation variants namely
Naive Matrix Multiplication GPU, Naive Matrix Multiplication CPU, Tiled Matrix
Multiplication GPU, and Strassen Matrix Multiplication GPU. In the figure 3.2,
label 1 is named as Naive GPU and has a label count of 445, label 2 is named as
Naive CPU and has a label count of 10, Label 3 is named as Tiled GPU and has a
label count of 785, and Label 4 is named as Strassen GPU and has a label count of
90.

From the above figure 3.2, we can observe that the above-mentioned label names
in a Winning column are not uniformly distributed as few of them have the label
count of 445, 10, 785, and 90 respectively.

3.2.5 Correlation Matrix

A correlation matrix is a table that displays the coefficients of correlation between
variables [12]. The correlation coefficients between the two variables are shown in

Chapter 3. Method 15

each cell of the table shown in the figure 3.3.

Figure 3.3: Correlation Matrix for Data-set Columns

From the above figure, we can observe that the variables like Input_Dimensions
concerning Execution_Time indicate a positive correlation, where the values of both
variables tend to increase together. For the other variable Input_Dimensions, Ex-
ecution_Time concerning Winning variable shows a negative correlation where the
values of one variable tend to increase when the values of the other variable decrease.
The higher is the positive correlation between the two variables, the stronger is the
relationship.

The main goal of the correlation matrix is to identify the patterns in a data set. In
the above Figure 3.3, the observable pattern is that variables like Input_Dimensions
and Execution_Time(ms) are highly correlated with each other.

3.2.6 Outlier Detection

A box plot can be used to check whether the data contains any outliers [32].
Boxplot provides the five-number summary of a particular set of data which contains
the minimum value, lower quartile, median, upper quartile, and maximum value. A
box plot is created by drawing a box from the lower quartile to the upper quartile.
When there is an even number of data points, the median is calculated by taking the
average of the two middle numbers. Median split the data-set into two equal parts
namely the lower quartile which is the median of the lower half of the boxplot and
the upper quartile which is the median of the upper half of the boxplot.

Chapter 3. Method 16

The lower whisker of the boxplot represents the minimum value in the data, while
the upper-end whisker represents the maximum value in the data. These lower and
upper whiskers are also known as minimum and maximum whiskers of a boxplot.
Outliers are observations that are numerically dissimilar to the rest of the data.
During the review of a boxplot, an outlier is defined as a data point that is located
outside the minimum and maximum whiskers of the boxplot.

In the figure 3.4, each column in a data-set that is Input_Dimensions, Execu-
tion_Time(ms), and Winning are depicted individually in the form of a boxplot.
We can observe from the figure 3.4 that there are no outliers or data points present
outside the maximum and minimum whiskers of the boxplot in any of the columns
in a data-set.

Figure 3.4: Outlier Detection for Data-set Columns

3.2.7 Data-set Split

From the above correlation matrix of Figure 3.3, we can observe that the inde-
pendent variables such as Input_Dimensions, Execution_Time(ms) are not highly
correlated concerning the target variable called Winning that adds noise in the data
set which leads to a decrease in performance of machine learning model. As a result
of the observation, we used the input dimensions and winning columns as an inde-
pendent variable and as a dependent variable to feed the data into the model, and
the remaining independent variables were eliminated from the data-set because they
are irrelevant for a model to train. Separate python coding variables are introduced
to store the data related to the input dimensions and winning columns so that both
the independent and dependent variables are passed to the model during training,
and only the independent variables are assigned to the model during the testing
phase. Before we further divide the data-set into training and testing data-sets, a
proper cross-validation strategy is needed so that the resulting estimate of model
performance is not too optimistic or pessimistic.

Chapter 3. Method 17

We can see from the above visualizations of the data-set under the heading of
label count that the winning label has four different class labels that are not evenly
distributed among the classes. This observation indicates that the data-set has un-
equal class distributions. The Stratified K-fold strategy with classification tasks is
the best cross-validation strategy for imbalanced class distributions. This strategy
extends the regular K-fold strategy by ensuring that each fold of the data-set has
the same proportion of observations with a given label. Whereas K-fold strategy
is usually not preferred to measure the performance of a model for the imbalanced
class labels [20][33]. The higher are the number of folds in the Stratified K-fold split
the more duplicate data are generated which could lead to overfitting of the model
and conversely if the number of folds is less then there is more chance of a machine
learning model to get under fitted.

In this strategy, the number of splits was set to 5, the shuffle was set to true, and
a random state was assigned to 42. The Stratified K-Fold cross-validation strategy
involves randomly dividing the set of observations into K-folds, of approximately
equal size. The first fold serves as a validation set for the model on which the model
performance is assessed by training on the remaining K-1 folds. In this project, we
calculated the training time, prediction time, training score, and prediction score of
the machine learning model for each number of splits, and then used these variables
to store in a unique list to produce an averaged score for the Stratified 5-fold splits.
However, the traditional approach of selecting 80/20 Train-Test split ratio can also
be considered here but Stratified K-fold gives more precision in assessing the skills
of a machine learning model to predict on the unseen data set.

3.2.8 Model Implementation

The modelling process is described below in the form of a flow chart as shown in
the figure 3.5.

KNN, DTC, XGBoost, Random forest classifier, Light GBM, and SVM are suit-
able models for the multilabel classification dataset [15][17][27][28][34]. The training
data is used to fit these models. Appropriate hyperparameters are also provided
to fine-tune the model while training the data, resulting in significantly improved
performance.

Because we chose five splits in the Stratified K-fold strategy, the above-mentioned
models are trained five times on the training dataset, and the time taken to train the
machine learning model for each K-fold is recorded by appending the values in a list
which is also called as model run-time training. Similarly, the models are predicted
five times, with the prediction time values saved in a separate list, and the time
taken to predict the values by the machine learning model for each K-fold are saved
in a list which is called run-time prediction. The models are also used to compute
the training and testing scores for each Stratified K-fold split iteration. These scores
are derived from the training and testing datasets, which are then stored in different
sorts of lists.

Chapter 3. Method 18

Figure 3.5: Flow Chart of the Machine Learning Modelling Process

The above-mentioned lists are saved to obtain the average score of the K-fold split.
These calculated means concerning a selected machine learning model are saved in
variables called training time, prediction time, testing accuracy score, and training
accuracy scores.

3.2.9 Performance Metrics

There are a quite few performance metrics that are used for measuring the perfor-
mance of a model. Before selecting the evaluation metric and assessing the model,
it is necessary to understand how each metric measures. This thesis aimed to com-
pare the performance of machine learning techniques by evaluating all performance
metrics such as Accuracy score, F-1 score, Precision, Recall, Support, and Confusion
Matrix [35][36].

Accuracy Score

Accuracy is formulated as a sum of true positives and true negatives divided by
the total number of samples. This is true only if the model is balanced. If there is a
class imbalance, it will produce inaccurate results.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3.1)

Where in the above equation the terms "tp" is true positive, "tn" is true negative,
"fp" is false positive, "tp" is true positive and "fn" is false negative.

Chapter 3. Method 19

Precision

Precision is defined as the ratio of true positive divided by the sum of a false
positive and true positive. A classifier can avoid labeling a negative instance as
positive. It provides the precision of positive predictions.

Precision =
True Positive

True Positive+ False Positive
(3.2)

Recall

The recall is calculated as the ratio of true positives to the sum of false negatives
and true positives. The classifier model can find all positive instances.

Recall =
True Positive

True Positive+ False Negative
(3.3)

F-1 Score

A weighted harmonic mean of precision and recall is used to calculate the F-1
score. The best F-1 score is denoted by 1.0 and the worst possible score is denoted
by 0.0. It is used to compare the classifier models, not global accuracy.

Recall = 2× Recall × Precision

Recall + Precision
(3.4)

Support

The number of actual occurrences of the class in the specified data set is referred to
as support. Imbalanced support in the training data may indicate structural weak-
nesses in the classifier’s reported scores, indicating the need for stratified sampling
or re-balancing.

Confusion Matrix

A confusion matrix is a table that is used to measure the performance of a classi-
fication model on test data. It can be used to assess how well a classifier recognizes
tuples of different classes. The confusion matrix contains data on actual and pre-
dicted classifications performed by a classification system. Table 3.3 represents the
two-class classification problem with the two outcomes being “Positive” and “Nega-
tive”.

Chapter 3. Method 20

Actual Predicted as Positive Predicted as Negative
Positive True Positive False Positive
Negative False Negative True Negative

Table 3.3: confusion matrix

For a provided data point to predict, the classifier model will fall into any one of
these two class labels. If we plot the predicted values against the actual values then
we obtain a matrix with the following representative elements:

• True Positive: The data points whose actual outcomes were positive and the
algorithm correctly identified it as positive.

• True Negative: The data points whose actual outcomes were negative and
the algorithm correctly identified as negative.

• False Positive: The data points whose actual outcomes were negative but the
algorithm has predicted incorrectly as positive.

• False Negative: The data points whose actual outcomes were positive but
the algorithm has predicted incorrectly as negative.

3.3 Construction of Results
Firstly, the results of the literature review are represented in the form of a table.

For experimentation, the results of the model’s training and testing are presented
in the form of a table. Accuracy, recall, precision, and the F-1 score are used to
assess a model’s performance metrics. The confusion matrix is used to assess the
model’s effectiveness. The parameters in the tables are named Model name, Testing
Score (avg), Training (avg), Runtime Training (avg), and Runtime Prediction (avg).
Because we chose five splits for the dataset in the Stratified K-fold strategy, the
numerical values in the table represent the average values for each K-fold split of the
training, testing, prediction time, and runtime. To view the model performance, the
table is in CSV format.

Chapter 4
Results and Analysis

4.1 Literature Review Results
In answering the first research question, a Systematic Literature Review (SLR) is

conducted to knowing the machine learning algorithms that can be used to predict
the optimal implementation variant. The findings from the SLR are listed in the
form of a table.

Title Findings

Supervised machine learning al-
gorithms: classification and com-
parison [13].

The paper illustrates the various clas-
sification techniques for supervised ma-
chine learning, compares different algo-
rithms, and evaluates the most effec-
tive classification algorithm based on
a data set, features, and several in-
stances. The algorithm SVM followed
by Random forest classification is found
to be most effective.

A Perspective of Supervised
Learning Approaches in Data
Classification [37].

The strategies shall be examined ac-
cording to the objectives, methodol-
ogy, benefits, and drawbacks. Finally,
provided a summary of the monitored
ML approaches in the classification of
results which includes SVM, Decision
Tree classification.

Multi-class sentiment classifica-
tion: The experimental compar-
isons of feature selection and ma-
chine learning algorithms [27].

The paper presented a framework for
the multi-class sentiment classification.
The paper makes use of a multi-class
classification dataset and selected al-
gorithms Decision Tree, Naive Bayes,
SVM, KNN, and Radial basis func-
tions, out of which SVM was most effi-
cient.

21

Chapter 4. Results and Analysis 22

A review of multi-class classifica-
tion algorithms [28].

The paper focused on summarizing the
significant classification methods and
strategies for enhancing classification
accuracy, the paper includes algorithms
SVM, Random forest classifier, Deci-
sion tree classifier.

Analysis Accuracy of XGBoost
Model for Multiclass Classifica-
tion [34].

The paper focuses on the analysis of
the XGBoost algorithm for the appli-
cant risk prediction for life insurance.
The study found XGBoost to be better
performing than Decision Tree, Ran-
dom Forest particularly in the case of
missing values in data.

LightGBM: A Highly Efficient
Gradient Boosting Decision Tree
[17].

The paper proposes a modern Gradi-
ent Boosting Decision Tree (GBDT) al-
gorithm called LightGBM for dealing
with large numbers of data instances
and features. The research shows XG-
Boost in terms of computational speed
concerning low memory usage.

Table 4.1: Literature Review findings

The research studies of machine learning algorithms for multi-class classification
and supervised learning, as well as prominent performance algorithms, were listed
in the Systematic Literature Review (SLR). Thus, from the Literature review, the
6 algorithms are chosen are SVM, KNN, Random Forest classifier, DTC, XGBoost,
and Light GBM in predicting the optimal implementation variant for heterogeneous
parallel computing systems.

4.2 Experiment Results
The algorithms KNN, XGBoost, DTC, Random forest classifier, LightGBM, and

SVM are trained with a data set using a Stratified K-fold cross-validation method.
This section then presents the performance results of model outcomes and the anal-
ysis of the model using performance metrics.

4.2.1 KNN

The KNN model was implemented on the data-set, and accuracy scores for the
KNN model were generated, which achieved 99 percent accuracy in training and 98
percent accuracy in testing data-sets as shown in Figure 4.1.

Chapter 4. Results and Analysis 23

Figure 4.1: KNN Accuracy Scores

Using the confusion matrix technique, The KNN model’s performance is evaluated,
and the results are interpreted to determine the misclassification count and accurate
prediction count of the various class labels. The model misclassified and predicted
the Naive GPU label four times with the actual class label name Tiled CPU. The
confusion matrix for KNN is shown in the Figure 4.2 below.

Figure 4.2: KNN Confusion Matrix

The classification report is analyzed to know the correctness of the KNN model
thereby, evaluated precision, recall, f1 score, support for the class labels of this Naive
Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen Matrix GPU.
The classification report for the KNN model is shown in Table 4.2 below.

Chapter 4. Results and Analysis 24

precision recall f1-score support
Naive_Matrix_GPU 0.96 1.00 0.98 89
Naive_Matrix_CPU 1.00 1.00 1.00 2
Tiled_Matrix_CPU 0.97 0.97 0.97 157
Strassen_Matrix_GPU 1.00 0.78 0.88 18
accuracy 0.97 266
macro_avg 0.98 0.94 0.96 266
weighted_avg 0.97 0.97 0.97 266

Table 4.2: KNN Classification Report

4.2.2 Decision Tree Classifier

The DTC model was implemented on the data-set, and accuracy scores for the
DTC model were generated, which achieved 100 percent accuracy in training and
100 percent accuracy in testing data-sets as shown in the Figure 4.3.

Figure 4.3: DTC Accuracy Score

Using the confusion matrix technique, the DTC model’s performance is evaluated
and the results are interpreted to determine the misclassification count and accurate
prediction count of the various class labels. The confusion matrix for DTC is shown
in Figure 4.4 below.

Chapter 4. Results and Analysis 25

Figure 4.4: DTC Confusion Matrix

The classification report is analyzed to know the correctness of the DTC model
thereby, evaluated precision, recall, f1 score, support for the class labels of Naive
Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen Matrix GPU.
The classification report for the DTC model is shown in Table 4.3 below.

precision recall f1-score support
Naive_Matrix_GPU 1.00 1.00 1.00 89
Naive_Matrix_CPU 1.00 1.00 1.00 2
Tiled_Matrix_CPU 1.00 1.00 1.00 157
Strassen_Matrix_GPU 1.00 1.00 1.00 18
accuracy 1.00 266
macro_avg 1.00 1.00 1.00 266
weighted_avg 1.00 1.00 1.00 266

Table 4.3: DTC Classification Report

4.2.3 XGBoost

The XGBoost model was implemented on the dataset, and accuracy scores for the
XGBoost model were generated, which has achieved 100 percent accuracy in both
training and testing datasets as shown in Figure 4.5.

Chapter 4. Results and Analysis 26

Figure 4.5: XGBoost Accuracy Score

Using the confusion matrix technique, the performance of the XGBoost model is
evaluated and the results are interpreted to determine the misclassification count and
accurate prediction count of the various class labels. The confusion matrix for the
XGBoost model is shown in Figure 4.6.

Figure 4.6: XGBoost Confusion Matrix

The classification report is analyzed to know the correctness of the XGBoost model
thereby, evaluated precision, recall, f1 score, support for the class labels of Naive
Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen Matrix GPU.
The classification report for the XGBoost model is shown in Table 4.4 below.

Chapter 4. Results and Analysis 27

precision recall f1-score support
Naive_Matrix_GPU 1.00 1.00 1.00 89
Naive_Matrix_CPU 1.00 1.00 1.00 2
Tiled_Matrix_CPU 1.00 1.00 1.00 157
Strassen_Matrix_GPU 1.00 1.00 1.00 18
accuracy 1.00 266
macro_avg 1.00 1.00 1.00 266
weighted_avg 1.00 1.00 1.00 266

Table 4.4: XGBoost Classification Report

4.2.4 Random Forest Classifier

The Random forest classifier model was implemented on the data-set, and accuracy
scores for the Random forest classifier model were generated, which has achieved 100
percent accuracy in both training and testing data-sets as shown in the Figure 4.7.

Figure 4.7: Random Forest Classifier Accuracy Score

Using the confusion matrix technique, the performance of the Random forest clas-
sifier model is evaluated and the results are interpreted to determine the misclassifi-
cation count and accurate prediction count of the various class labels. The confusion
matrix of the Random forest classifier is shown in Figure 4.8.

Chapter 4. Results and Analysis 28

Figure 4.8: Random Forest Confusion Matrix

The classification report is analyzed to know the correctness of the Random forest
classifier model thereby, evaluated precision, recall, f1 score, support for the class
labels of Naive Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen
Matrix GPU. The classification report for the Random forest classifier model is shown
in Table 4.5 below.

precision recall f1-score support
Naive_Matrix_GPU 1.00 1.00 1.00 89
Naive_Matrix_CPU 1.00 1.00 1.00 2
Tiled_Matrix_CPU 1.00 1.00 1.00 157
Strassen_Matrix_GPU 1.00 1.00 1.00 18
accuracy 1.00 266
macro_avg 1.00 1.00 1.00 266
weighted_avg 1.00 1.00 1.00 266

Table 4.5: Random Forest Classification Report

4.2.5 LightGBM

The Light GBM was implemented on the data-set, the average accuracy scores
obtained from five splits for the Stratified K-Fold Cross-validation strategy of the

Chapter 4. Results and Analysis 29

Light GBM, which has achieved 93 percent accuracy in both training and testing
data-sets as shown in the Figure 4.9.

Figure 4.9: LightGBM Accuracy Score

Using the confusion matrix technique, the performance of the Light GBM is eval-
uated and the results are interpreted to determine the misclassification count and
accurate prediction count of the various class labels. The confusion matrix of the
Light GBM is shown in the Figure 4.10.

Figure 4.10: LightGBM Confusion Matrix

The above-mentioned confusion matrix figure shows that the LightGBM model
misclassified the 27 class labels, 18 of which were labeled as Naive Matrix GPU, 7 as
Tiled Matrix CPU, and 2 as Strassen Matrix CPU. The corresponding actual labels
for the 18 misclassified labels are Tiled Matrix CPU,7 are the Naive Matrix GPU,
and 2 are the Tiled Matrix CPU.

Chapter 4. Results and Analysis 30

The classification report is analyzed to know the correctness of the LightGBM
model thereby, evaluated precision, recall, f1 score, support for the class labels of
Naive Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen Matrix
GPU. The classification report for the LightGBM model is shown in Table 4.6 below.

precision recall f1-score support
Naive_Matrix_GPU 0.82 0.92 0.87 89
Naive_Matrix_CPU 1.00 1.00 1.00 2
Tiled_Matrix_CPU 0.93 0.87 0.90 157
Strassen_Matrix_GPU 0.88 0.78 0.82 18
accuracy 0.88 266
macro_avg 0.91 0.89 0.90 266
weighted_avg 0.89 0.88 0.88 266

Table 4.6: LightGBM Classification Report

4.2.6 Support Vector Machine

The SVM model was implemented on the data-set, accuracy scores for the SVM
model were generated, which achieved 74 percent accuracy in training and 73 percent
accuracy in testing data-sets as shown in the Figure 4.11.

Figure 4.11: SVM Accuracy Score

Using the confusion matrix technique, the performance of the SVM model is eval-
uated and the results are interpreted to determine the misclassification count and
accurate prediction count of the various class labels. The confusion matrix of the
SVM model is shown in the Figure 4.12.

Chapter 4. Results and Analysis 31

Figure 4.12: SVM Confusion Matrix

The above-mentioned confusion matrix figure shows that the SVM model misclas-
sified the 70 class labels, 35 of which were labeled as Naive Matrix GPU, 30 as Tiled
Matrix CPU, and 5 as Strassen Matrix CPU. The corresponding actual labels for
the 35 misclassified labels are Tiled Matrix CPU,30 are the Naive Matrix GPU, and
out of 5 class labels 3 are the Tiled Matrix CPU and 2 are the Naive Matrix CPU.

The classification report is analyzed to know the correctness of the SVM model
thereby, evaluated precision, recall, f1 score, support for the class labels of Naive
Matrix GPU, Naive Matrix CPU, Tiled Matrix CPU, and Strassen Matrix GPU.
The classification report for the SVM model is shown in Table 4.7 below.

precision recall f1-score support
Naive_Matrix_GPU 0.63 0.66 0.64 89
Naive_Matrix_CPU 0.00 0.00 0.00 2
Tiled_Matrix_CPU 0.78 0.76 0.77 157
Strassen_Matrix_GPU 0.74 0.78 0.76 18
accuracy 0.72 266
macro_avg 0.54 0.55 0.54 266
weighted_avg 0.72 0.72 0.72 266

Table 4.7: SVM Classification Report

Chapter 4. Results and Analysis 32

4.3 Evaluation Results
Based on the experimental results of each algorithm, the algorithm’s accuracy

scores and other performance metrics like runtime training and runtime prediction
times are tabulated.

Model Testing
Score

Training
Score

Runtime
Training

Runtime
Prediction

Decison Tree
Classifier 100% 100% 0.01253 0.000122

XGBoost 100% 100% 0.96 0.006078
Random For-
est Classifier 100% 100% 0.140082 0.011788

KNN 98.7% 99.9% 0.036943 0.005745
LightGBM 93% 93% 0.190915 0.001620
SVM 73.4% 74.2% 0.023791 0.014848

Table 4.8: Models Evaluation Report

The table and the figure show the three of the model’s DTC, XBoost, Random
Forest Classifier has accuracy scores of 100. In terms of performance parameters
Runtime Training and Runtime Prediction, the DTC model has the lowest values,
which makes the DTC is best performing model among those.

The below Figure 4.13 shows the DTC model’s predicted outcome for the input
dimension size 160.

Figure 4.13: DTC Outcome

Chapter 4. Results and Analysis 33

4.4 Summary of Analysis
The primary objective of this research is to find the best-performing machine

learning model for optimization of the heterogeneous parallel computing system by
evaluating the performance of each machine learning classifier model, namely KNN,
SVM, Light GBM, XGBoost, DTC and Random forest classifier. These Models are
measured with the performance metrics of accuracy, recall, f-measure, support, and
confusion matrix by experimenting. In this section, the performance of the models is
mentioned. A comparison of the models is performed based on the obtained results.
The model that is best suited for classifying the data-set is identified and mentioned
in this chapter.

Chapter 5
Discussion

5.1 Answering Research Questions
RQ1) Which machine learning algorithms are suitable to predict the op-
timal implementation variant for heterogeneous parallel computing sys-
tems?

The machine learning algorithms are selected according to the data-set type. Here,
the data-set will be generated for a heterogeneous parallel computing system by con-
sidering a matrix multiplication benchmark application. The data-set would consist
of the execution times for the benchmark application implementations for a range
of input values, with the winning label column telling the optimal implementation
variant in the data-set. Here, the winning label is a target variable, and the values
under it are filled with a unique number consisting of 1 to 5, each representing the
winning implementation variant for the corresponding input value.

These numbers repeat often under this column, which shows that this data-set is
set to be a multi-class classification data-set. In finding which algorithms to be cho-
sen for this followed through investigating the already existing literature works. The
research study “Multi-class sentiment classification” suggested the selection of algo-
rithms Decision Tree, Naive Bayes, Support Vector Classifier, K-Nearest Neighbour,
and Radial basis function network over multi-class classification data-set [27]. From
the above-stated algorithms, we consider three algorithms based on the advantages
mentioned in the research “ review of the multi-class classification algorithms“. For
Decision Tree, handling both numerical and categorical data and computationally
easy to understand and interpret; For K-Nearest Neighbour, ease of implementa-
tion, and flexible classification scheme; For Support Vector Machine, having largest
flexibility over other classification [28].

Since We already decided on the Decision Tree algorithm, other tree based on
algorithms like random forest and light gradient algorithm also be considered, the
random forest can provide an advantage in giving high accuracy over the decision tree
in case of any over-fitting and Light gradient boosting help get faster training speed
and higher efficiency with least memory usage [17]. Also, the XGBoost algorithm is
considered for being a high-performance model in most machine learning [34].

34

Chapter 5. Discussion 35

Thus, noting all the above discussion we have considered a total of 6 algorithms
for this project: Support Vector Classifier, K-Nearest Neighbour, Random Forest,
Decision tree classifier, XGBoost, and Light Gradient Boosting Model in predicting
the optimal implementation variant for heterogeneous parallel computing systems.

RQ2) How selected machine learning algorithms can improve the perfor-
mance of heterogeneous parallel computing?

The results obtained by answering research question 1 are compared to six machine
learning models, namely, Decision Tree Classifier, XGBoost, KNN, LightGBM, SVC,
and Random Forest Classifier. The above-mentioned models are then assessed for
performance using a stratified cross-validation strategy. To overcome model overfit-
ting, a 5-fold stratified cross-validation technique is used to prepare a model for final
testing.

According to the experiment results, the accuracy values for Decision Tree Clas-
sifier, XGBoost, and Random Forest Classifier have achieved 100%. The remaining
algorithms, such as KNN, Light GBM, and SVC, achieved 98%, 93%, and 73% ac-
curacy, respectively.

Decision Tree Classifier, XGBoost, Random Forest Classifier is identified as the effi-
cient model with good accuracy, recall, precision, and f1 score. The above-mentioned
algorithms are compared in Table 5.1: Comparison of Models.

Model
Name

Accuracy Precision F1-
Score Recall Runtime

Training

Runtime
Predic-
tion

DTC 100% 100% 100% 100% 0.01253 0.000122
XGBoost 100% 100% 100% 100% 0.96 0.006078
Random
Forest Clas-
sifier

100% 100% 100% 100% 0.140082 0.011788

KNN 98% 98% 95% 93% 0.036943 0.005745
LightGBM 93% 90% 89% 89% 0.190915 0.001620
SVM 73% 53% 54% 55% 0.023791 0.014848

Table 5.1: Comparison of Models

In comparison with other machine learning models, the Decision Tree Classifier is
not only good in terms of performance metrics but it has achieved the lowest Runtime
Training and Prediction. As a result of the experimental observations, We believe
that the Decision Tree Classifier is the best fit for predicting the best implementation
variant.

Chapter 5. Discussion 36

In the result section, The figure 4.13 depicts how, given an input size dimension
of 160, the most efficient machine learning model was found for the matrix mul-
tiplication application. The decision tree classifier predicts that Strassen matrix
multiplication with GPU resource usage is the best implementation variant. Thus,
knowing this heterogeneous parallel computing application can improve its perfor-
mance by choosing the optimal variant that is Strassen matrix multiplication and its
corresponding resource to be implemented in GPU.

Chapter 6
Conclusions and Future Work

In this research, we used a machine learning approach to optimize the hetero-
geneous parallel computing system for application over execution time based on
resource utilization, such as CPU or GPU, and the input size. For this, six ma-
chine learning algorithms are used: KNN, XGBoost, DTC, Random Forest Classifier,
LightGBM, and SVM. We investigated the performance of these machine learning
algorithms in predicting the optimal implementation variant of the considered matrix
multiplication application, such that it increases run-time performance on heteroge-
neous parallel computing systems.

According to the results, the algorithms DTC, XGBoost, and Random Forest
Classifier outperformed the others in terms of accuracy ranking achieving a 100% ac-
curacy score. Based on the parameters of run-time prediction and run-time training,
the algorithm DTC is shown to be the most efficient in the selection of the optimal
implementation variant for an application on a heterogeneous parallel computing
system.

In future work, the research may be advanced further by taking into account
application implementations written in different languages such as Fortran, Python,
and as well as on heterogeneous parallel computing platforms other than CUDA.

Also, the research can be advanced use comparing the performance outcomes of
these machine learning algorithms to other parallel computing applications such as
sorting, depth for search, and so on, and analyzing these results to determine whether
there is a better machine learning algorithm overall.

37

Bibliography

[1] O’Reilly Media. Professional CUDA C Programming.
[2] Suejb Memeti, Sabri Pllana, Alécio Binotto, Joanna Kołodziej, and Ivona

Brandic. Using meta-heuristics and machine learning for software optimiza-
tion of parallel computing systems: a systematic literature review. Computing,
101(8):893–936, August 2019.

[3] Agnieszka Bier and Zdzisław Sroczyński. Efficiency Comparison of Modern
Computer Languages: Sorting Benchmark. In Radek Silhavy, Petr Silhavy, and
Zdenka Prokopova, editors, Intelligent Systems in Cybernetics and Automation
Control Theory, Advances in Intelligent Systems and Computing, pages 299–310,
Cham, 2019. Springer International Publishing.

[4] Lizy Kurian John and Lieven Eeckhout. Performance Evaluation and Bench-
marking. CRC Press, October 2018. Google-Books-ID: Ge_LBQAAQBAJ.

[5] Chao Jin, Bronis R. de Supinski, David Abramson, Heidi Poxon, Luiz DeRose,
Minh Ngoc Dinh, Mark Endrei, and Elizabeth R. Jessup. A survey on software
methods to improve the energy efficiency of parallel computing. The Inter-
national Journal of High Performance Computing Applications, 31(6):517–549,
2017. Publisher: Sage Publications Sage UK: London, England.

[6] Sabri Pllana, Siegfried Benkner, Eduard Mehofer, Lasse Natvig, and Fatos
Xhafa. Towards an Intelligent Environment for Programming Multi-core Com-
puting Systems. In Eduardo César, Michael Alexander, Achim Streit, Jes-
per Larsson Träff, Christophe Cérin, Andreas Knüpfer, Dieter Kranzlmüller,
and Shantenu Jha, editors, Euro-Par 2008 Workshops - Parallel Processing,
Lecture Notes in Computer Science, pages 141–151, Berlin, Heidelberg, 2009.
Springer.

[7] Lu Li. Programming Abstractions and Optimization Techniques for GPU-based
Heterogeneous Systems. Ph.D., Linköping University, Linköping, Sweden, April
2018. ISBN: 9789176853702.

[8] Homin Kang, Hyuck Chan Kwon, and Duksu Kim. HPMaX: heterogeneous
parallel matrix multiplication using CPUs and GPUs. Computing, 102(12):2607–
2631, December 2020.

[9] Wangdong Yang, Kenli Li, and Keqin Li. A hybrid computing method of SpMV
on CPU–GPU heterogeneous computing systems. Journal of Parallel and Dis-
tributed Computing, 104:49–60, June 2017.

[10] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and
P. Sadayappan. Adaptive sparse tiling for sparse matrix multiplication. In

38

BIBLIOGRAPHY 39

Proceedings of the 24th Symposium on Principles and Practice of Parallel Pro-
gramming, pages 300–314, 2019.

[11] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, March 2020.
Google-Books-ID: tZnSDwAAQBAJ.

[12] Xian-Da Zhang. Machine Learning. In Xian-Da Zhang, editor, A Matrix Algebra
Approach to Artificial Intelligence, pages 223–440. Springer, Singapore, 2020.

[13] Babcock University, Osisanwo F.Y, Akinsola J.E.T, Awodele O, Hinmikaiye
J. O, Olakanmi O, and Akinjobi J. Supervised Machine Learning Algorithms:
Classification and Comparison. IJCTT, 48(3):128–138, June 2017.

[14] Candice Bentéjac, Anna Csörg\Ho, and Gonzalo Martínez-Muñoz. A compar-
ative analysis of gradient boosting algorithms. Artificial Intelligence Review,
54(3):1937–1967, 2021. Publisher: Springer.

[15] Archana Chaudhary, Savita Kolhe, and Raj Kamal. An improved random forest
classifier for multi-class classification. Information Processing in Agriculture,
3(4):215–222, December 2016.

[16] Ömer Faruk Ertuğrul and Mehmet Emin Tağluk. A novel version of k nearest
neighbor: Dependent nearest neighbor. Applied Soft Computing, 55:480–490,
2017. Publisher: Elsevier.

[17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. page 9.

[18] Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online in-
cremental and decremental learning algorithm based on variable support vector
machine. Cluster Computing, 22(3):7435–7445, 2019. Publisher: Springer.

[19] Sriramakrishnan Chandrasekaran. A Machine Learning Implementation of Pre-
dicting the Real Time Scenarios in a better way. page 12.

[20] Mohammad Uzair. Cross Validation Improvements in TMVA. Technical report,
2018.

[21] University of Ljubljana, Faculty of computer and information science, Slovenia.,
Tomaž Dobravec, and Patricio Bulić. Comparing CPU and GPU Implementa-
tions of a Simple Matrix Multiplication Algorithm. IJCEE, 9(2):430–438, 2017.

[22] Mehdi G. Duaimi, Abbas FJ AL-Gburi, Ehsan A. Al-Zubaidi, and Ibraheem
Al-Jadir. Implementing Multithreaded Programs using CUDA for GPGPU to
Solve Matrix Multiplication. Journal of Xi’an University of Architecture &
Technology, 12:3083–3089.

[23] Vi Ngoc-Nha Tran, Tommy Oines, Alexander Horsch, and Phuong Hoai Ha.
REOH: Using Probabilistic Network for Runtime Energy Optimization of Het-
erogeneous Systems. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS), pages 381–388, December 2018. ISSN: 1521-
9097.

[24] Zheqi Yu, Pedro Machado, Adnan Zahid, Amir M. Abdulghani, Kia Dashtipour,
Hadi Heidari, Muhammad A. Imran, and Qammer H. Abbasi. Energy and Per-
formance Trade-Off Optimization in Heterogeneous Computing via Reinforce-

BIBLIOGRAPHY 40

ment Learning. Electronics, 9(11):1812, November 2020. Number: 11 Publisher:
Multidisciplinary Digital Publishing Institute.

[25] Machine learning for performance and power modeling of heterogeneous systems.
[26] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. Adaptive optimization for

OpenCL programs on embedded heterogeneous systems. In Proceedings of the
18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, LCTES 2017, pages 11–20, New York, NY, USA, June
2017. Association for Computing Machinery.

[27] Yang Liu, Jian-Wu Bi, and Zhi-Ping Fan. Multi-class sentiment classification:
The experimental comparisons of feature selection and machine learning algo-
rithms. Expert Systems with Applications, 80:323–339, September 2017.

[28] P. C. Chaitra and R. Saravana Kumar. A review of multi-class classification
algorithms. International Journal of Pure and Applied Mathematics, 118(14):17–
26, 2018.

[29] Chase E. Golden, Michael J. Rothrock Jr, and Abhinav Mishra. Comparison
between random forest and gradient boosting machine methods for predicting
Listeria spp. prevalence in the environment of pastured poultry farms. Food
research international, 122:47–55, 2019. Publisher: Elsevier.

[30] Gaurush Hiranandani, Shant Boodaghians, Ruta Mehta, and Oluwasanmi
Koyejo. Multiclass Performance Metric Elicitation. page 10.

[31] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning: Machine
Learning and Deep Learning with Python. Scikit-Learn, and TensorFlow. Sec-
ond edition ed, 2017.

[32] M. L. Walker, Y. H. Dovoedo, S. Chakraborti, and C. W. Hilton.
An Improved Boxplot for Univariate Data. The American Statistician,
72(4):348–353, October 2018. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00031305.2018.1448891.

[33] Anita Rácz, Dávid Bajusz, and Károly Héberger. Effect of Dataset Size and
Train/Test Split Ratios in QSAR/QSPR Multiclass Classification. Molecules,
26(4), February 2021.

[34] Widya Fajar Mustika, Hendri Murfi, and Yekti Widyaningsih. Analysis Accu-
racy of XGBoost Model for Multiclass Classification - A Case Study of Applicant
Level Risk Prediction for Life Insurance. In 2019 5th International Conference
on Science in Information Technology (ICSITech), pages 71–77, October 2019.

[35] Amalia Luque, Alejandro Carrasco, Alejandro Martín, and Ana de las Heras.
The impact of class imbalance in classification performance metrics based on
the binary confusion matrix. Pattern Recognition, 91:216–231, July 2019.

[36] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin
Gottschlich. Precision and Recall for Time Series. arXiv:1803.03639 [cs], Jan-
uary 2019. arXiv: 1803.03639.

[37] R. Saravanan and Pothula Sujatha. A State of Art Techniques on Machine
Learning Algorithms: A Perspective of Supervised Learning Approaches in Data
Classification. In 2018 Second International Conference on Intelligent Comput-

BIBLIOGRAPHY 41

ing and Control Systems (ICICCS), pages 945–949, June 2018.

Appendix A
Supplemental Information

The graph below represents the comparative analysis of the matrix input size
dimensions varying from 16 to 160 plotted against the Execution time in milliseconds.

Figure A.1: Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from 16 to 160

42

Appendix A. Supplemental Information 43

The graph below represents the comparative analysis of the matrix input size
dimensions varying from 1008 to 1328 plotted against the Execution time in millisec-
onds.

Figure A.2: Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from the 1008 to 1328

The graph below represents the comparative analysis of the matrix input size
dimensions varying from 4464 to 8560 plotted against the Execution time in millisec-
onds.

Appendix A. Supplemental Information 44

Figure A.3: Input Size v/s Execution Time(ms) graph for the input dimensions
ranging from the 4464 to 8560

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

