
Information and Software Technology 141 (2022) 106717

A
0

S
M
a

b

A

K
R
N
N
R
S
B
B
S
T

1

c
r
s
l
a
u
t
v
w
d
s
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

upporting refactoring of BDD specifications—An empirical study
ohsin Irshad a,b,∗, Jürgen Börstler a, Kai Petersen a

Blekinge Institute of Technology, Karlskrona, Sweden
Ericsson AB, Karlskrona, Sweden

R T I C L E I N F O

eywords:
efactoring
ormalized Compression Distance (NCD)
ormalized Compression Similarity (NCS)
euse
imilarity ratio (SR)
DD
ehavior-driven development
pecifications
esting

A B S T R A C T

Context: Behavior-driven development (BDD) is a variant of test-driven development where specifications are
described in a structured domain-specific natural language. Although refactoring is a crucial activity of BDD,
little research is available on the topic.
Objective: To support practitioners in refactoring BDD specifications by (1) proposing semi-automated
approaches to identify refactoring candidates; (2) defining refactoring techniques for BDD specifications; and
(3) evaluating the proposed identification approaches in an industry context.
Method: Using Action Research, we have developed an approach for identifying refactoring candidates in BDD
specifications based on two measures of similarity and applied the approach in two projects of a large software
organization. The accuracy of the measures for identifying refactoring candidates was then evaluated against
an approach based on machine learning and a manual approach based on practitioner perception.
Results: We proposed two measures of similarity to support the identification of refactoring candidates in a
BDD specification base; (1) normalized compression similarity (NCS) and (2) similarity ratio (SR). A semi-
automated approach based on NCS and SR was developed and applied to two industrial cases to identify
refactoring candidates. Our results show that our approach can identify candidates for refactoring 6o times
faster than a manual approach. Our results furthermore showed that our measures accurately identified
refactoring candidates compared with a manual identification by software practitioners and outperformed an
ML-based text classification approach. We also described four types of refactoring techniques applicable to BDD
specifications; merging candidates, restructuring candidates, deleting duplicates, and renaming specification
titles.
Conclusion: Our results show that NCS and SR can help practitioners in accurately identifying BDD specifi-
cations that are suitable candidates for refactoring, which also decreases the time for identifying refactoring
candidates.
. Introduction

Behavior-driven development (BDD) was initially proposed to fa-
ilitate the understanding of software requirements and link those
equirements to test cases [1,2]. Nowadays, it is emerging as a separate
oftware development process [3]. BDD overcomes the information
oss between user stories and test cases by writing requirements in

structured natural language format that can be instrumented and
sed in automated testing. Furthermore, the information loss between
he requirements and testing stages is reduced by providing a shared
ocabulary for business analysts, developers, testers, and managers
hile discussing requirements. In BDD, the required functionality is
efined in the form of scenarios [4]. A BDD scenario consists of (i) a
pecification (requirements) written using structured natural language
nd (ii) hooks to the test code for validating the specification [4].

∗ Corresponding author at: Blekinge Institute of Technology, Karlskrona, Sweden.
E-mail address: mohsin.irshad@bth.se (M. Irshad).

Refactoring is a technique to improve software artifacts using small
behavior preserving transformations [5]. Besides improved maintain-
ability, software practitioners mention improved readability as the
most critical refactoring benefit [6]. Researchers have demonstrated
that refactoring can be performed manually by the practitioners, semi-
automatically or automatically, with tool support [7,8]. Refactoring is
introduced as a separate phase in BDD to improve the maintainability
of the artifacts [9].

BDD specifications are executable, human-readable specifications
that are frequently modified in agile development, resulting in lowering
the maintainability of specifications [9]. Maintaining these specifica-
tions necessitates uncomplicated and automated (or semi-automated)
methods to increase the system’s reliability. Existing studies have iden-
tified that duplication exists in BDD specifications and it leads to low
vailable online 20 August 2021
950-5849/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2021.106717
eceived 22 December 2020; Received in revised form 10 August 2021; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 August 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:mohsin.irshad@bth.se
https://doi.org/10.1016/j.infsof.2021.106717
https://doi.org/10.1016/j.infsof.2021.106717
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106717&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 141 (2022) 106717M. Irshad et al.

v
d
d
a
a

2

B

2

s
T
t
i
a
a
W
w

c
G
i

maintainability of the resulting specification [10]. Duplication can be
interpreted as missed opportunities for refactoring or reuse.

Researchers have suggested that refactoring is a fundamental part of
BDD, and limited work is present on BDD specifications refactoring [11,
12]. Most of the existing refactoring approaches utilize IDE-based
tools to analyze the code fragments (‘‘hooks’’) that are associated with
BDD specifications. Code duplication in the hooks are identified as
maintainability issues. A limited number of approaches (such as [13])
take into account the BDD specifications’ contents for detecting du-
plication. Furthermore, the existing literature neither provides specific
techniques for refactoring BDD specifications nor identifying candidates
for refactoring.

In this study, we propose measures to identify similar BDD specifi-
cations and a semi-automated approach to perform refactoring on these
similar BDD specifications for improving the maintainability of specifi-
cations. This study is not aimed at other BDD aspects like development
processes, test tools, or test management. This study is conducted in an
industrial context based on BDD specifications from two products and
software practitioners’ feedback. The objectives of this study are:

• to provide a semi-automated approach to support refactoring of
BDD specifications, thus improving maintainability;

• to evaluate the accuracy of the automated parts of the pro-
posed approach in the industrial context (using practitioners and
Machine learning based text classification).

The remainder of the paper is organized as follows. Section 2 pro-
ides backgrounds and related works on BDD and refactoring. Section 3
escribes the research approach, research questions, and approaches for
ata collection and analysis. Section 4 answers the research questions
nd important findings are discussed in Section 5. Threats to validity
nd conclusions are highlighted in Sections 6 and 7, respectively.

. Background and related work

This section briefly describes some background and related work on
DD and refactoring of BDD specifications.

.1. Behavior-driven development

BDD starts with the identification of business requirements and de-
cribing them in a common textual language for the target domain [3].
hese requirements reflect the expected behavior of the system and are
hen used as test cases to validate these requirements [14]. BDD helps
n reducing problems with software requirements, like information loss
nd lack of common understanding [15] and thereby focusing on the
ctual goals, i.e. building the ‘‘right’’ software. According to Solís and
ang [3], the following six characteristics are commonly associated
ith BDD:

• BDD uses a ubiquitous language using terminology from the
business domain.

• BDD supports an iterative decomposition process for transforming
business goals into user stories and scenarios.

• BDD supports understandable feature descriptions in plain text by
means of templates for user stories and scenarios.

• BDD supports automated acceptance testing with mapping rules
to map scenarios to test code (hooks).

• BDD supports readable behavior-oriented specification code by
means of executable human readable specifications.

• BDD is behavior-driven at different phases of software develop-
ment (planning, analysis/test and implementation).

North proposed to describe requirements in the form of scenarios
omprising three parts or steps [1]: (1) Pre-conditions are stated in
iven, (2) When describes the role(s)/requirement(s) of the actor acting
2

n the scenario, and (3) Then describes the action and/or outcome that
is expected after completion. This format facilitates using the scenarios
as test specifications for validating the requirements. The format of a
BDD specification is described below:

Given the initial setting
When some event occurs
Then provide some outcomes

All three steps can have sub-steps joined together by ‘‘AND’’. Each
of these steps and sub-steps is linked to a method, called hook, that
can be written in any programming language and can therefore be
implemented, refactored, or reused using approaches for code-based
test cases [4,16]. Each time a BDD step or sub-step is invoked, it invokes
the corresponding hook that performs the work associated with the
BDD step or sub-step. An example BDD specification with sub-steps (a
customer buying a mobile phone) is shown below:

Given the customer contacts agent at the shop
And he has a valid ID card
When he selects a mobile phone from stock
And customer pays the money
Then the customer gets the mobile phone

Fig. 1 describes a BDD process according to Borg and Kropp [9].
The process starts when a customer requests a feature from a product
manager. In the next step, the product manager develops BDD sce-
narios (test specifications) in collaboration with relevant stakeholders
(product managers, architects, development resources, etc.). In step 3,
hooks are implemented for all steps and sub-steps of the scenarios. The
hooks perform actions such as sending requests, receiving responses
and asserting results. Initially all of these tests fail. In the fourth step,
product code is developed to make all BDD specifications pass.

The BDD specifications are automated to run each time the code
base is changed. The success or failure of this step determines how
many features are working and therefore the progress of the develop-
ment cycle. In step 5, refactoring is applied to the specification base and
the product code to improve the product’s maintainability and quality.
In the last step, if all specifications are ‘‘green’’, the feature is released.

2.2. Related work: Refactoring of BDD specifications

Refactoring is an integral part of BDD [9,11]. Santos et al. [17]
suggested that BDD should have the following phases ‘‘red, green, and
refactor’’. Initially, all scenarios should fail. Once the product code is
developed successfully, specifications would become ‘‘green’’. The last
part is refactoring, where the specifications and corresponding hooks
are improved in structure and complexity. Lai and Chu [18] claim that
the refactoring phase of BDD facilitates a better and more understand-
able description of the behaviors that need to be tested. They suggested
an approach to reduce the coupling of security requirements with the
help of refactoring using a BDD-based process, successfully increasing
a system’s security. Bruschi et al. [11] incorporated refactoring of
BDD scenarios as an integral part of their BDD process and claim that
their BDD process increased collaboration and communication among
quality engineers and business analysts. The study did not mention
the details of refactoring techniques or refactoring processes of BDD
specifications.

In a systematic literature review on BDD, Egbreghts [12] identified
that refactoring is needed as a separate phase for BDD and suggested
that better tools might improve the use of BDD in the industry. Borg
and Kropp [9] claim that changes are introduced frequently in agile
development, and therefore the specification base is changed very
often. Modifying a specification base that has low maintainability is

therefore challenging. To increase its maintainability, they introduced



Information and Software Technology 141 (2022) 106717M. Irshad et al.
Fig. 1. A BDD process [9].
FIT tables1 to support the refactoring of BDD specifications and imple-
mented an Eclipse plugin to support it. They conceptually evaluated
their automated refactoring approach using a hypothetical example.
However, the approach has not been assessed in an industrial context.
Bures et al. [20] proposed a method to identify repeated behaviors in
BDD specifications and suggested that such specifications be refactored
to reduce repetition. They introduced a tool, TestOptimizer, to identify
reusable code fragments in BDD hooks, i.e., the approach was applied
to the ‘‘glue code’’ joining the BDD specifications with the execution
tool. They tested their approach using open-source projects and reduced
a large specification base to a smaller one without reducing its test
coverage. However, the approach was not directly applied to the BDD
specifications but utilizes the similarity of test methods (hooks) to
perform the refactoring.

In their study on micro-service architectures, Rahman and Gao [21]
suggested that the high maintenance cost of BDD specifications is the
primary reason of development teams for not using automated accep-
tance tests. They proposed a reuse-based method that allows the sharing
of specifications among many micro-services to reduce refactoring time.
However, their approach was based on the hooks (i.e. test code) and not
applied to the BDD specifications. Sathawornwichit and Hosono [22]
suggested that meta-data can be used to align changes required during
refactoring in the BDD context, e.g., when the product code is changed,
corresponding BDD specifications may need to be changed. The study
does not describe a way to identify the candidates for refactoring, and
the approach was not evaluated in the industry.

To sum up, refactoring is a crucial aspect of the BDD specification
life cycle, but few studies discuss the refactoring of BDD specifications.
The majority of the existing refactoring approaches are based on the
refactoring or reuse of the hooks (test code), using meta-data of the
system to trigger refactoring of specifications when the code is changed,
or using an IDE-plugin for FIT tables. Few approaches are evaluated in
an industrial context and only simple examples are used for a proof of
concept evaluation.

In this paper, we propose a new approach for refactoring in BDD
that works directly on BDD specifications and evaluate (the measures
for identification of refactoring candidates) in two industrial cases from
the telecommunications domain.

3. Research method

This section describes the context of our research, the research
approach (Action Research) and the threats to validity.

3.1. Research context

The research was conducted inside a large scale software organiza-
tion that is developing business support systems for telecommunication
organizations. The organization uses hybrid agile development method-
ologies consisting of Scrum and XP practices to develop, deliver, and
maintain software solutions. We studied two products of different
functionality developed for different customers. In one product (case
1), the robot framework2 is used as the BDD framework while the
other product (case 2) uses Cucumber3 as a specification framework.

1 FIT = Framework for Integrated Testing, see for example [19].
2 https://robotframework.org.
3 https://cucumber.io/.
3

Fig. 2. Action research cycle.

It is important to note that the specifications in these systems describe
end-to-end functionalities of large-scale systems. Each specification
contained, on average, seven lines (7.1 in Case 1 and 6.8 in Case 2).
The largest specifications in both cases contained thirteen lines. The
smallest specifications in case 1 and case 2 contained three and four
lines, respectively. The details of the cases are summarized in Table 1.

3.2. Research design and execution

The study was carried out according to Action Research. Runeson
and Höst [23] characterized Action Research as a way to improve
an existing phenomenon with flexible research designs where critical
parameters of the study can be changed based on the needs of the study.
Petersen et al. [24] suggested Action Research as a suitable method
for transferring research results to industry. The existing literature
uses Action Research to address problems such as improving software
security, software process improvements, developing better UX design,
etc. [25–27].

In this study, we have used Action Research to help a software orga-
nization improve the maintainability of BDD specifications. One of the
authors is part of the software organization and actively participated
in the implementation and evaluation of the proposed approaches.
Susman and Evered [28] suggested five stages of Action Research
(see Fig. 2), which were followed during this study. The stages and
execution details are described in the following subsections.

3.3. Diagnosing

During this stage, the researcher(s) and the organization diagnose
the underlying problems and agree upon a specific problem to solve.
In this study, the problem was to improve the maintainability of BDD
specifications.

During his work in the organization, the first author noted that prac-
titioners struggle to maintain BDD specifications because of their tex-
tual nature and a lack of supporting tools and approaches comparable
to those for maintaining test code.

https://robotframework.org
https://cucumber.io/


Information and Software Technology 141 (2022) 106717M. Irshad et al.

3

p
i
f
m

d
h

t
o
d
r
m
o
3
t
U
s
u
s

B

Table 1
Characteristics of the cases studied.

Number of specifications Average size of specifications Test framework SUTa type No of teams

Case 1 72 Specsb 7.1 steps Robot Web GUI + Backend 3 teams of 24 members
Case 2 15 Specsb 6.8 steps Cucumber Backend 1 team of 6 members

aSUT = System Under Test.
bSpecs = System Level Specifications (end-to-end functionality).
I
𝑍
r
r
v
a

It was noted that several BDD specifications were similar to each
other and that it would be desirable to reduce this similarity to mini-
mize redundancy and decrease the specification base’s size and thereby
improve its maintainability. Refactoring was suggested since it might
improve maintainability without impacting test coverage. The follow-
ing research questions were formulated:

• RQ 1: How can the refactoring of BDD specifications be sup-
ported?
RQ1 consists of two sub-questions related to (a) identifying can-
didates for refactoring (RQ 1.1) and (b) their actual refactoring
(RQ 1.2):

– RQ 1.1: How can similarity based measures help in finding
refactoring candidates?

– RQ 1.2: What types of refactoring techniques can be applied
to BDD specifications?

RQ1.1 describes the application (amidst essential steps) of the
measures in identifying the refactoring candidates in the BDD test
suite. RQ1.2 describes different refactoring techniques applicable
to BDD specifications. Answering RQ1 helps us in developing
a semi-automatic approach supporting the refactoring of BDD
specifications.

• RQ 2: How accurately do the proposed approaches perform in
identifying refactoring candidates?
RQ2 illustrates how good similarity-based measures are in iden-
tifying refactoring candidates. To answer RQ2, we compare our
proposed approaches with manual identification of refactoring
candidates by industry practitioners and a natural language
processing-based approach. This will help us in determining the
accuracy and the performance of our proposed approaches.

.4. Action planning

During this stage, actions are determined to address the identified
roblem. Previous studies have shown the effectiveness of refactor-
ng for enhancing the maintainability of software development arti-
acts [9,21]. It was also agreed that refactoring should be applied with
inimum human interaction.

The main goal of the actions was to refactor BDD specifications to
ecrease the specification base’s size but without impacting its code
ooks to yield better maintainability.

The maintainability of BDD specifications is cited as a problem in
he existing literature (see Section 2). BDD specifications are based
n natural language-based text and, therefore, are different from tra-
itional code-based test cases. The code-based techniques to identify
efactoring candidates utilize IDEs and code characteristics such as
ethod names, method calls, input parameters, return types of meth-

ds, package names, and fields to identify refactoring candidates [29,
0]. The refactoring techniques utilizing these characteristics are of-
en limited to a programming language such as C or Java [29,31].
nlike code artifacts, BDD specifications do not have characteristics

uch as return types, primitive types, and IDE support. The techniques
sed for code-based test cases are, therefore, not applicable to BDD
pecifications.

We supposed that maintainability could be improved by refactoring
DD specifications that are similar to each other, since duplication
4

s

leads to low maintainability of BDD specifications [10]. Therefore,
we looked into approaches for identifying similar BDD specifications.
We proposed two new measures, Normalized Compression Similarity
(NCS) and Similarity Ratio (SR), suitable for identifying similarity in
BDD specifications. We applied these two measures using a system-
atic approach to our industrial cases and evaluated their accuracy in
identifying refactoring candidates to improve maintainability.

NCS is defined in terms of an existing similarity measure presented
in the literature called Normalized Compression Distance (NCD) [32].
SR is proposed by the authors.

3.5. Action taking

During this stage, the planned actions are executed. We selected two
similarity measures (NCS and SR) and applied them using a systematic
approach to all BDD specification pairs. We then selected the pairs with
values under/over a specific threshold value for further evaluation and
potential refactoring. The details are described in this section.

3.5.1. Normalized Compression Similarity (NCS)
Normalized Compression Similarity (NCS) is based on Normalized

Compression Distance (NCD) to identify similar BDD specifications.
NCD is used in a variety of ways to identify similar objects. Telles
et al. [33] used NCD to detect similar text documents and demonstrated
that NCD is better than manual methods to measure the similarity of
text documents. Furthermore, it does not require any processing steps
before its application. Rogstad et al. [34] used NCD for regression
test selection of a database application. They used NCD to identify
similar test cases and, based on the NCD value, decided which test cases
should be selected for regression testing. Feldt et al. [35] used NCD to
measure the diversity of test cases and proposed an NCD-based metric
(TSDm) that can measure the diversity of a test suite. They conducted
experiments on open source projects and suggested that TSDm can
help selecting a specification set with higher structural code coverage
and higher fault coverage. Since all studies above reported a positive
experience of using NCD for text-based artifacts, we investigated the
usage of NCD for determining similar BDD specifications.

NCD works by comparing the compressed sizes of two documents
(BDD specifications in our case) with the compressed size of their
concatenation. Since compression algorithms exploit repetitions, the
compressed size of the concatenation of two similar BDD specifications
will only be slightly larger than their compressed individual sizes. NCD
can be defined by the following equation [32]:

𝑁𝐶𝐷(𝑠1, 𝑠2) =
𝑍(𝑠1𝑠2) − 𝑚𝑖𝑛{𝑍(𝑠1), 𝑍(𝑠2)}

𝑚𝑎𝑥{𝑍(𝑠1), 𝑍(𝑠2)}
, (1)

Based on NCD, we define Normalized Compression Similarity (NCS) as
follows:

𝑁𝐶𝑆(𝑠1, 𝑠2) = 1 −𝑁𝐶𝐷(𝑠1, 𝑠2), (2)

n Eq. (1), 𝑍 represents the compressor used for the calculation of NCD.
(𝑠1) represents the compressed size of BDD specification 𝑠1, 𝑍(𝑠2)

epresents the compressed size of BDD specification 𝑠2 and 𝑍(𝑠1𝑠2)
epresents the compressed size of the concatenation of 𝑠1 and 𝑠2. NCS
alues lie between 0 and 1, where 1 means that the BDD specifications
re similar while 0 represents that they are entirely different. We

elected zlib as a compressor for our study as it is suitable for short



Information and Software Technology 141 (2022) 106717M. Irshad et al.

n
i
a
s
o

S
d
S

texts [36]. A discussion on the choice of a suitable compressor is
provided in Section 5.

We did not use NCD directly because NCD represents the distance
between objects, while NCS describes the similarity between objects.
In the literature, researchers have also pointed out that these terms are
interrelated but represent different ideas, i.e., distance measures repre-
sent a mathematical concept, and similarity depends on the context and
domain of application [37,38]. Since similarity is high when distance is
low, we defined NCS (as 1–NCD) to get consistent value ranges for both
our similarity measures. Both (NCS and SR) express higher similarity
when their values are closer to one.

Initially, we used NCS to identify similar specifications, but NCS did
not support practitioners in identifying the specific parts of the speci-
fications that could be refactored. We therefore introduced Similarity
Ratio (SR) to support identifying the parts (lines) of a specification
where refactoring can be applied.

3.5.2. Similarity Ratio (SR)
Similarity measures are commonly used in software engineering to

solve problems such as identifying similarity, supporting reuse, and
performing reverse engineering of software artifacts [39,40]. Often,
these measures are customized to address different problems in var-
ious contexts. Girardi and Ibrahim [39] suggested a similarity-based
approach to identify similar components using the natural language
description of software artifacts. The natural language description (not
the requirements) was used to classify the software components into
different categories using lexical and semantic information. Later, the
classifier is used to identify components suitable for reuse. The ap-
proach was evaluated using a simple example showing the working
and parts of this similarity-based approach. Kwon and Su [40] pro-
posed a metric for determining cohesion between modules based on
the similarity of run-time properties (inputs, function calls, etc.). The
approach considers the similarity of function calls and states of the
objects during run-time to identify similar objects without using the
source code of the objects. The approach was considered effective by
using it to successfully perform the similarity analysis of malware.

To the best of our knowledge, similarity-based metrics have not
been used to measure the similarity of BDD specifications.

In the case of BDD, a single line of a specification is the smallest
reusable unit because a single line in the specification maps to a hook
in the test code. The detection of similar lines is, therefore, an essential
part of identifying the parts of a specification that can be refactored to
reduce duplication.

The absolute number of similar lines of two BDD specifications
can reflect their similarity but does not take into account their sizes.
Therefore, we define similarity ratio as the ratio of lines of one speci-
fication that are similar to lines in the other specification. The higher
the similarity ratio, the more similar are the BDD specifications and the
higher the likelihood that they share parts that can be refactored.

Similarity ratio (SR) is defined as follows:

𝑆𝑅(𝑠1, 𝑠2) =
𝑆(𝑠1, 𝑠2)

𝑚𝑖𝑛{𝑁(𝑠1), 𝑁(𝑠2)}
(3)

Here, 𝑠1 and 𝑠2 are two BDD specifications. 𝑁(𝑠1) and 𝑁(𝑠2) is the
umber of lines in BDD specification 𝑠1 and 𝑠2, respectively. 𝑆(𝑠1, 𝑠2)
s the number of lines of 𝑠1 that have the exact same text (i.e., similar)
s 𝑠2. SR values lie between 0 and 1, where 0 means that the BDD
pecifications have no lines in common while 1 means that all lines
f one specification appear in the other.

SR recognizes identical lines between specification pairs. Thereby,
R is sensitive to test data values, e.g., two specification lines that only
iffer with respect to test data are marked as different when calculating
R values.
5

3.5.3. Application of NCS and SR
The data collection phase involved examining the existing BDD

specifications. NCS (using NCD) and SR were calculated for all pairs
of BDD specifications for case 1 and case 2 using scripts, which are
available online at [41]. The resulting values were stored in spread-
sheets that also can be found online [41]. These spreadsheets were then
analyzed to identify potential refactoring candidates.

The data were analyzed systematically using the following pro-
cedure. The calculated similarity values for NCS and SR associated
with each specification pair were sorted in descending order. The data
analysis was conducted using four steps:

1. The data was partitioned into four subsets, where the first subset
consisted of 10% values that were close to one, the next subset
consisted of the next 10% values, the third subset consisted of
next 30% values. The fourth subset consisted of the remaining
50% of the values. For example, if 100 pair-wise values (in the
range from 0 to 1) are produced, these values were sorted in
descending order. Four sets are formed from these 100 values.
The first two sets contain ten values each, remaining two sets
contain 30 and 50 values e.g, Set 1: 10% highest values, Set 2:
next 10% values, Set 3: next 30% values and Set 4: remaining
50% values.

2. Random pairs of BDD specifications from each of these four sub-
sets were selected. The random selection was conducted using
an online tool [42] to avoid bias in the selection of pairs and
might impact the results of this study.

3. The texts and contents of the most similar specification pairs and
the most dissimilar specification pairs were manually analyzed
to see whether these specification pairs are indeed similar and
dissimilar, respectively.

3.6. Evaluating

Our study evaluates the accuracy of the automated identification of
refactoring candidates and does not evaluate the manual parts where
refactoring techniques are applied over a BDD test suite. The evaluation
was conducted in two ways:

• Comparison to manual evaluations of similarity by software prac-
titioners.

• Comparison to automatic text classification based on machine-
learning.

Comparison to manual evaluations of similarity by software practi-
tioners: We involved experienced software practitioners during the
evaluation. The practitioners had worked in the same domain for more
than five years and have a working knowledge of the products related
to the two cases. The comparison helped us understand the accuracy
of measures concerning identifying refactoring candidates among BDD
specifications. The background of the selected software practitioners is
provided in Table 2.

This evaluation was conducted in three steps; first, the practitioners
were briefed about the proposed measures and their working on the
specification base. During this presentation, the practitioners asked
questions to understand the working of the measures. In the second
step, these practitioners were asked to answer a questionnaire for
pair-wise comparison of various specification pairs. The questionnaire
presented several specification pairs, and the practitioners were asked
to answer (i) if the specification pairs are similar and (ii) if these
specification pairs can be refactored. We found that the practitioners
did not always agree. To overcome this issue, in the third step, the
practitioners were asked to discuss and resolve disagreements, so that
each specification pair was marked as either similar or dissimilar. This
data (of assessment by each practitioner and final result) was collected
using a spreadsheet, and an example of a questionnaire (and assessment

data) is available online [41].



Information and Software Technology 141 (2022) 106717M. Irshad et al.

T
b
C
f
c
a

f
s
M
N
l

s
a
i
t
s
c

e
r
T
T

3

t
t

4

r
t
e
S

Table 2
Background of the software practitioners (P1–P5) participating in the evaluation.

Working experience Experience in product Experience in BDD Worked in Role

P1 12 years 3 years 1 year Case 2 Architect
P2 6 years 2 years 1 year Case 1 Developer
P3 15 years 3 years 6 months Case 1 & 2 Test developer
P4 12 years 3 years 1 year Case 1 & 2 Test developer
P5 8 years 3 years 1 year Case 1 & 2 Business analyst
p
a
C

N
d
s
i
s
f
(

m
t
u
v
a
f
r

o
v
X
a

Comparison to automatic text classification based on machine-learning:
o evaluate the two proposed measures’ accuracy, machine learning-
ased text-classification was performed on the specifications from
ase 1 and Case 2 and compared to the similarity values obtained

rom NCS and SR. Previous research studies have also utilized text
lassification to assess the similarity between short text documents such
s user reviews and software requirements [43,44].

We have used an ML-based text-classifier to classify the BDD speci-
ications as similar. The most commonly used machine learning-based
ystem types for text classification are Naive Bayes, Support Vector
achines, and Deep Learning-based algorithms [45]. We selected the
aive Bayes algorithm to give better results on small data sets requiring

ittle computational resources [45].
For each specification in Table A.8 and in Table A.9, the remaining

pecifications (in specification suite) were used as the ‘‘training set’’,
nd the specification (of which we want to get a similar specification)
s used as a ‘‘test set’’. Later, the text-classification approach suggested
he closest matching specification in our industrial cases. The following
teps (using our Python script available at [41]) were performed for this
omparison i.e., working of the ML-based text-classification approach:

• Each specification file was read into memory using the script.
The name of each specification was used as a category label
for the specification. This labeling is required for the supervised
learning algorithm so that each specification in the training set
has a category label that helps in the classification of similar
specifications.

• Features were extracted from all the specifications. During this
step, the ‘‘bag-of-words’’ approach is used to convert text-based
data into numerical feature vectors, understood by the machine
learning model. The ‘‘bag-of-words’’ is commonly used to extract
features from the text documents [46].

• A linear model was trained to perform the classification of speci-
fications.

• The classification of each specification is conducted and suggest-
ing the most similar specification.

The result of the above steps produced a pair-wise classification of
ach specification, e.g., specification A is similar to specification B. The
esults from the application of this approach are provided online [41].
he comparison results are presented in Table 3 (for Case 1) and in
able 4 (for Case 2).

.7. Specifying learning

During this stage, it is described what could be learned from action
aking and evaluating. A detailed evaluation of what we learned from
he taken actions can be found in Section 4 and in Section 5.

. Results

The Section 4.1 contains the details of an approach to identify
efactoring candidates in a BDD specification suite and refactoring
echniques applicable to BDD specifications. Later, the results from the
valuation of identification of refactoring candidates are described in
6

ection 4.2.
4.1. Supporting refactoring of BDD specifications (RQ1)

Mens and Tourwé [47] have defined activities related to the refac-
toring in software artifacts. These activities are identifying where to
apply the refactoring, applying the refactoring, validating that the
refactoring preserves the behavior of the artifacts or products, and
assessing the impact of the refactoring on the quality and consistency
of the refactored software. Assessing the impact on the quality and
consistency of the refactored software are specific to the software
product that is refactored and are not applicable to BDD specifications.
Alternatively, manual verification of the quality of the BDD feature
suite can instead be performed by expert practitioners. Only the iden-
tification of refactoring candidates is supported as a semi-automated
approach. The remaining activities of the refactoring process need to
be performed manually by the software practitioners. The remaining
three activities (identifying refactoring candidates, refactoring tech-
niques, and validation of behavior preservation) are discussed in the
subsections below.

4.1.1. Semi-automated approach to identify refactoring candidates (RQ1.1)
We devised the following four-step approach to identify the refac-

toring candidates using similarity of BDD specifications: Pre-processing,
Measuring, Ranking, and Identifying refactoring candidates. These
steps can provide guidelines on the identification of refactoring can-
didates of BDD specifications using similarity measures.

(1) Pre-processing: During this step, the data was prepared for the
analysis. We ensured that each BDD specification was stored in a
separate file with the name of the spec in the first line and one BDD
step or sub-step per line in the following lines. All BDD-keywords
were deleted to facilitate line-by line comparisons (for SR). This step
produced 72 files for Case 1 and 15 files for Case 2.

(2) Measuring: In the next step, NCS and SR were calculated for all
airs of BDD specification files. Automated scripts, implementing NCS
nd SR, produced the pair-wise values. This yielded 2556 values for
ase 1 and 105 for Case 2 (available at [41]).
(3) Ranking: In this step, the output from the previous step (the

CS and SR values) was analyzed and ranked to identify similar and
issimilar specifications. An NCS or SR value closer to 1 means that a
pecification pair is similar, while a value closer to 0 means that a pair
s dissimilar. The similarity values of the pairs in the test suites were
orted in descending order. The similarity (i.e., NCS and SR values) of
ew specification pairs is present in Table 3 (for Case 1) and in Table 4
for Case 2).

After that, threshold values for NCS and SR were selected to deter-
ine which specifications should be considered candidates for refac-

oring and which should not. In refactoring, threshold values are often
sed to identify when to perform a refactoring [30]. This threshold
alue can be associated with (i) code complexity, (ii) code cover-
ge, (iii) artifact similarity (methods, classes, or documents), etc. We
ound only few studies defining threshold values for similarity-based
efactoring [13,37,38,48,49]. Their values range from 0.30–0.73.

Tsantalis et al. [30] suggested a fundamental limitation with thresh-
ld values: that these are not general-purpose values. The threshold
alues for refactoring depend on the characteristics of each project.
ing and Stroulia [48] raised the following concerns when selecting
threshold value for refactoring:
• Higher threshold values lead to finding fewer cases of similarity.



Information and Software Technology 141 (2022) 106717M. Irshad et al.

n
v
p
s
s
o

t
o
t

s
s
r
r
b
k
i
c
a
i
S
p
i

4

b
o
t
c
p
T

4

t
W

Table 3
Case 1: Similarity values and assessment of ‘‘candidate for refactoring’’ for specification pairs based on NCS, SR and practitioners’ views. AC = A candidate for refactoring.

Pair NCS value > 0.50 SR value > 0.50 Practitioners’ view NCS on refactoring SR on refactoring Practitioners on refactoring

49–47 0.809 0.60 Similar AC AC AC
38–35 0.811 0.667 Similar AC AC AC
59–60 0.639 0.8 Similar AC AC AC
8–5 0.615 0.583 Similar AC AC AC
4–10 0.608 0.583 Similar AC AC AC
17–23 0.563 0.583 Similar AC AC AC
11–14 0.667 0.883 Similar AC AC AC
26–7 0.571 0.778 Similar AC AC AC
1–17 0.623 0.7 Similar AC AC AC

Values for all evaluated specification pairs are present in Table A.8.
Table 4
Case 2: Similarity values and assessment of ‘‘candidate for refactoring’’ for specification pairs based on NCS, SR and practitioners’ views. AC = A candidate for refactoring.

Pair NCS value > 0.50 SR value > 0.50 Practitioners’ view NCS on refactoring SR on refactoring Practitioners on refactoring

13–12 0.745 0.833 Similar AC AC AC
1–2 0.698 0.667 Similar AC AC AC
9–8 0.687 0.50 Similar AC AC AC
6–8 0.673 0.6 Similar AC AC AC
5–2 0.643 0.6 Similar AC AC AC
3–2 0.621 0.667 Similar AC AC AC
6–7 0.608 0.6 Similar AC AC AC
10–11 0.632 0.8 Similar AC AC AC

Values for all evaluated specification pairs are present in Table A.9.
• Lower threshold values lead to more false positives.

As refactoring BDD specifications using similarity measures is a
ew area, we did not have any evidence for a suitable threshold
alue for identifying refactoring candidates. After discussion with the
ractitioners, thresholds of 0.50 for NCS and SR were considered as
uitable, since pairs with similarity values ≥ 0.50 were considered
uitable candidates for refactoring. Furthermore, 0.50 is in the middle
f value ranges mentioned in the relevant literature [13,37,48–50].

In the future, when there are more changes in the BDD test-suite,
he threshold values can be evaluated and optimized. However, this
ptimization of the threshold value is not addressed in the scope of
his study.
(4) Identifying refactoring candidates: During this step, highly similar

pecifications are identified based on their similarity values. These
imilar specification pairs are assumed to be potential candidates for
efactoring. A manual review of the potential refactoring candidates is
equired before finalizing the refactoring candidates. This review can
e performed by experienced practitioners with considerable domain
nowledge. Later, the refactoring techniques suitable for BDD spec-
fications (see Section 4.1.2) are manually applied to the identified
andidates. In Tables 3 and 4 the identified candidates for refactoring
re marked with ‘‘AC’’. In our cases, most of the specification pairs
dentified as candidates for refactoring are the same for both NCS and
R; however, in few cases, there are different results, e.g., pair 8–10
air in Case 2 in Table A.9. These differences were later analyzed to
dentify the reason behind this mismatch, see Section 5.

.1.2. Refactoring techniques for BDD specifications (RQ1.2)
Refactoring requires domain knowledge [51] and should therefore

e performed by software practitioners who have a good understanding
f the software product. To support practitioners, we have provided
echniques in Table 5 for BDD specifications (inspired by [47]) that
an be used during the refactoring process. These techniques are exem-
lified using BDD specifications from an open-source system [52], see
able 6.

.1.3. Validating that the refactoring preserved behavior
In this step of the refactoring process, one needs to ensure that

he refactoring did not modify the BDD specification base’s behavior.
7

hen refactoring code, this validation is conducted with the help of
test cases [47]. In the case of BDD specifications, two strategies can be
used to validate that a refactoring preserved the existing behavior of
the specifications:

1. Comparison of pre-refactoring and post-refactoring log traces of
the whole BDD suite. The specifications need to be re-run which
involves calling the hooks. The output from the re-run can then
be used to validate that the previous behavior is preserved after
the refactoring.

2. Comparison of code-coverage information of the product.

4.2. Accuracy in identifying refactoring candidates (RQ2)

This section describes our evaluation of the accuracy of the simi-
larity measures NCS and SR in identifying refactoring candidates. The
assessment consisted of comparing results from the measures with
results from the practitioners and a comparison of measures with a
machine learning-based text classification approach. The subsections
below describe the results of these evaluations in detail.

4.2.1. Comparison with software practitioners
The effectiveness of the semi-automated approach to identify refac-

toring candidates was evaluated with the help of experienced industry
practitioners who had a good understanding of the rationale for each
system-level specification. They were asked to manually assess the simi-
larity of randomly selected specification pairs as described in Section 3.
The results of the comparison of the practitioners’ assessment and the
two proposed measures (NCS and SR) are summarized in Table A.8 (for
Case 1) and in Table A.9 (for Case 2).

Identification of refactoring candidates: A vital aspect of the proposed
four-step semi-automated approach is that it uses similarity as a mea-
sure to identify refactoring candidates. The similarity is purely based
on the content of the specifications; both approaches do not consider
the context of the specifications. To identify the utility of similarity
as a means to identify refactoring candidates, the practitioners were
asked to classify each specification pair as either a refactoring candidate
or not a refactoring candidate. The results from the practitioners’
assessment show that our proposed semi-automated approach can be
used to identify refactoring candidates among BDD specifications given

suitable thresholds for the values of NCS and SR.



Information and Software Technology 141 (2022) 106717M. Irshad et al.

2
p
t
s
i
a
m
t
c

i
d
d
b
t
q
o
y
w
H
f

Table 5
Refactoring techniques for BDD specifications, inspired by Mens and Tourwé [47] & Suan [13].

Refactoring technique When to use

Merging If two specifications have common lines and few important dissimilarities, they can be merged to form one larger specification.

Re-structuring If two specifications have common statements, the common statements are combined into a new statement. This new statement can be used in
place of the common statements in the two original specifications (example provided in Table 6).

Deleting If two specifications have the same functionality (e.g., different test data values testing same path/function in the code) or are duplicates of
each other, one of them can be deleted.

Renaming If two specifications have the same specification names but different functionality, a practitioner keeps both specifications by renaming one of
the specifications.
Table 6
Exemplification of refactoring techniques from Table 5 on open-source project [52].

Merging

Specification 1 Specification 2 Specification after refactoring

Scenario: Account Creation
Given an account called ‘‘Cash’’
Then the list shows an account called ‘‘Cash’’

Scenario: Account Update
Given an account called ‘‘Credit’’
When I change the account name to ‘‘Debit’’
Then the list shows an account called ‘‘Debit’’

NCS = 0.614, SR = 0
Scenario: Account Creation and Update
Given an account called ‘‘Cash’’
When the list shows an account called ‘‘Cash’’
And I change the account name to ‘‘Debit’’
Then the list shows an account called ‘‘Debit’’

Re-structuring

Scenario: Payment Using Card
Given a transaction is initiated using Amazon Visa
Card
And bill payment is for Gas
And 20 SEK are deducted
When transaction is created
Then money is deducted from Amazon Visa Card

Scenario: Payment of Bills
Given a transaction is initiated using Amazon Visa
Card
AND bill payment is for Gas
And 20 SEK are deducted
When transaction is accepted
Then gas payments are paid

NCS = 0.680, SR = 0.50
Scenario: Payment of Bills
Given transaction of payment
When transaction is accepted
Then gas payments are paid
Scenario: Payment Using Card
Given transaction of payment
When transaction is created
Then money is deducted from Amazon Visa Card
transaction of payment
Given a transaction is initiated using Amazon Visa
Card
AND bill payment is for Gas
AND 20 SEK are deducted

Deleting

Scenario: Account Creation
Given an account called ‘‘Bank of Eng’’
Then the account list shows ‘‘Bank of Eng’’

Scenario: Account Creation
Given an account called ‘‘Bank of Sweden’’
Then the account list shows ‘‘Bank of Sweden’’

NCS = 0.752, SR = 0
If two Scenario have different test-data for
testing exactly the same path/function in the
code, then one scenario is deleted.

Renaming

Scenario: View Debit
Given Money exists in an account
Then Verify debit is positive number

Scenario: View Debit
Given Money does not exists in an account
Then Verify debit is negative number

NCS = 0.780, SR = 0
Both specifications are kept, one of the two is
renamed.
t
t
t
a
p
H
s
o
i
p
p

Cost Savings with automated measures: On average, practitioners took
h for analyzing the similarity between the fifty-six randomly selected

airs of BDD specification in Tables A.8 and A.9. The automated scripts
ook less than 2 min to compute the NCS and SR values for all pairs of
pecifications and categorize each pair as ‘‘Similar’’ or ‘‘Not Similar’’,
.e. were about 60 times faster. On large specification bases, these
utomated measures can be a significant advantage compared with
anual identification. The time saved by using automated identifica-

ion of potential candidates for refactoring can result in considerable
ost savings for an organization.
Lack of domain-knowledge: One of the drawbacks of our measures

s that these measures work on the raw text of specifications and
o not consider the domain-knowledge captured in the specifications
uring the identification of refactoring candidates. All statements may
e the same in two BDD specifications, but the sequence in which
he statements are executed covers the validation of two different re-
uirements. Incorporating domain-knowledge may reduce the number
f false positives. In our evaluation, this lack of domain-knowledge
ielded some false positives, e.g., specification pair ‘8–10’ in Case 2
as marked as a refactoring candidate due to its NCS-value of 0.642.
owever, practitioners assessed it as not similar and not a candidate
8

or refactoring. d
4.2.2. Comparison to automatic text classification based on machine-
learning

Our analysis of the results from the ML-based approach revealed
that many specification pairs that have been marked with high NCS
and SR values are not marked as similar by the ML-based text classifi-
cation approach. The results from the ML-based approach are shown
in column ‘‘ML classifier’’ in Table A.8 and in Table A.9 showing a
comparison between the ML-based approach, the usage of similarity
measures and the practitioner’s views.

Context-awareness: ML-based text classification approaches can cap-
ure the domain-specific vocabulary when the model is trained on
he specifications. During the classification of a new specification,
his knowledge of domain-specific vocabulary is utilized. This domain
wareness should be an advantage over the NCS- and SR-based ap-
roaches that do not consider the specifications’ context and semantics.
owever, our results in Table A.8 and in Table A.9 do not show any

ignificant advantage of ML-based text classification approach over NCS
r SR when used on specifications from our two industrial cases. It is
mportant to note that there are many text-classification approaches
resent in the literature, and other approaches may (or may not)
erform better than our selected approach.
Dependence on large data sets: ML-based approaches require large
ata-sets (i.e., large specification bases) to train a better model and



Information and Software Technology 141 (2022) 106717M. Irshad et al.
Table 7
Precision and recall values for NCS, SR & ML-classifier of the data present in Tables A.8
and A.9.

Precision Recall

Case 1 NCS 100% 100%
SR 90% 90%
ML-classifier 100% 30%

Case 2 NCS 88% 100%
SR 100% 100%
ML-classifier 100% 75%

classification system. Even though we selected a classification approach
with low demands on the training data, the approach did not perform
well enough. In comparison, NCS and SR successfully identified similar
specifications (as confirmed by practitioners) regardless of the number
of specifications.

4.2.3. Precision and recall in evaluated candidates
Precision and recall are two metrics for evaluating the accuracy

of (binary) classifications [30]. In our context, precision reflects the
fraction of actual candidates for refactoring among the potential can-
didates identified by some mechanism. Recall represents the fraction
of actual candidates identified by some mechanism in relation to all
existing actual candidates.

We used the manual classification conducted by software practi-
tioners as the ‘‘truth’’ and evaluated how well NCS and SR performed
against this baseline. For case 1 (see Table 7), NCS has a precision and
recall of 100% while SR has precision and recall of 90%. For case 2 (see
Table 7), NCS has a precision of 88% and recall of 100%, respectively,
while SR has precision and recall of 100%. I.e. both similarity measures
perform well on our small subsets of BDD specifications. Furthermore,
we assessed the precision and recall values of the ML-classifier for our
evaluated data-set. For case 1, ML-classifier has a precision of 100%
and recall of 30%. For case 2, NCS has a precision of 100% and recall
of 75%, respectively.

Please note that the software practitioners manually classified only a
limited number of specification pairs due to time constraints. Our base-
line sets were therefore quite small. For a more thorough evaluation of
the accuracy of the classification by NCS and SR, practitioners would
need to evaluate hundreds of test-case pairs, which was not possible in
the present study.

5. Discussion

This section discusses important aspects of the measures and the
refactoring approach introduced and evaluated in this study.

5.1. Scalability of approach

In large specification bases, it can be challenging to identify refac-
toring candidates manually. The two automated scripts (available
at [41]) can help software organizations analyzing large specification
bases. In our small and medium-size specification bases, the execution
time was less than 2 min to identify refactoring candidates. In an exam-
ination (by the authors) with a specification base of 500 specifications,
refactoring candidates were identified in less than 5 min using NCS
and SR. This indicates that our proposed approach scales well, even for
large specification bases. Further studies are needed to investigate how
well our approach performs in comparison to ML-based approaches
with increasing sizes of specification bases.

According to Erb’s classification [53], our proposed approach can be
classified as ‘‘semi-automated’’, since human intervention is required
when changing the specifications. A GUI tool could be developed
to facilitate the refactoring process with a side-by-side comparison
that highlights the similar parts between specifications. However, the
development of such a tool was out of the scope of this study.
9

5.2. Difference in size of specification pairs

The industrial evaluation (in Tables 1 and 2) showed that the
measures produced one false negative (i.e., marked with no similarity
but have similarity) and two false positives (i.e., marked as similar but
have no similarity) results. The analysis revealed that all three cases
(pairs 27–12, 30–28 in Table A.8 and pair 8–10 in Table A.9) have
one common trait; a considerable difference in the number of lines in
the specifications (difference of five or more lines). Telles et al. [33]
also noted that NCD is impacted by the differences in the sizes of
the texts compared for similarity. The false positive pairs may waste
practitioners’ time by suggesting a pair of refactoring candidates that
are not similar. The false negative pairs may result in missing out on
refactoring opportunities.

5.3. Specification suite’s diversity

A diverse test suite can increase the likelihood of identifying defects
in a system [54]. A by-product of the two proposed measures is that
practitioners can quickly recognize their specification suite’s diversity,
e.g., a large number of lower NCS or SR value means the BDD specifica-
tion suite is diverse and has fewer redundant specifications. This is an
additional advantage of using these measures to identify the diversity
of the specification suite.

5.4. Choice of compressors

Different compression algorithms produced slightly different NCS
values for the same specification pairs. We have not investigated in
detail the impact of different compression algorithms. However, we
tried three different algorithms (Blosc,4 zlib,5 and gzip6), and there
were no noticeable differences in the results. An implementation of
NCS with the three algorithms above is provided by the authors [41].
Later, we selected zlib as a compressor for our study as it is suitable
for smaller text-based data-sets [36]. The results of this study are
calculated using zlib.

Zlib is a general-purpose compression algorithm that is commonly
used in computer applications. The following factors dictate the choice
of zlib as our preferred compression algorithm:

• Existing literature suggests zlib as suitable for small text-based
data compression [36].

• Existing studies have used zlib with NCD to classify small natural
language data [55].

• A study on identifying similarity/dissimilarity of test-data iden-
tified zlib as a better compressor than Blosc when used for NCD
measurements [35].

To our knowledge, no previous study exists that measures the
effect of different compression algorithms on BDD specifications. Fur-
ther studies are required to evaluate different compression algorithms’
effectiveness for capturing similarity of BDD specifications.

5.5. Contribution to practice and research

From a practical perspective, the study

• provides two measures (NCS and SR) that practitioners can use to
identify refactoring candidates;

• describes a four-step semi-automated approach for the refactoring
of BDD specifications that supports practitioners when refactoring
BDD specifications.

4 https://blosc.org/.
5 https://zlib.net/.
6
 https://www.gzip.org/.

https://blosc.org/
https://zlib.net/
https://www.gzip.org/


Information and Software Technology 141 (2022) 106717M. Irshad et al.

6

c
p

s
h
s
w
t
p
S
t
t
t
t
i
s
t
t
s
a

d
b
l
e
e
h
s
S
E
m
d
t

a
t
r
l
m
t
l
v

o
d
f
n

t
u
b
t
r

y
a
u
t
F
i
b
a
s
o
t

r
d
a
N
s
f
c
t
c
t

7

t
a
a
f
i

o
B
o
b
i
I
o
c

i

p
r

From a research perspective, the study

• is exploratory and extends the existing body of knowledge on the
refactoring of text-based BDD specifications;

• involves data from real industry cases as well as practitioners
from industry throughout the study;

• describes the research context and data in detail so that the
research community can evaluate and compare new techniques
for refactoring in the BDD context.

. Validity threats

In our discussion of validity threats, we follow Petersen and Gen-
el’s suggestions [56] and address validity threats with respect to a
articipatory worldview (Action Research).
Theoretical validity: Theoretical validity takes into account if the

tudy can capture what was intended and whether other factors may
ave impacted the investigation. A primary concern is regarding the
election of specifications to conduct this study. The specifications were
ritten by developers developing and using the BDD based specifica-

ions for the first time. However, some of them had several years of
roduct development experience in the same organization and domain.
ince the two measures (NCS and SR) were applied to test new cases,
here is a possibility that the maturity level of specifications may impact
he identification of candidates for refactoring. A more experienced
eam (with multiple years of experience in BDD) may have designed
he specifications to utilize less text but cover more functionality, thus
nfluencing the similarity and maintainability of the specifications. The
econd concern is whether both measures (NCS and SR) actually cap-
ure similarity. To address this concern, we have used different methods
o evaluate the similarity results of NCS and similarity ratio using BDD
pecifications, such as comparing standard lines in specification pairs
nd comparing the outcome with opinions from industry experts.
Interpretive validity: Interpretive validity deals with the conclusions

rawn from results, whether these conclusions are correct, and not
ased on researchers’ bias. The foremost concern to interpretive va-
idity is based on the usefulness of NCS and SR. Since this study was
xploratory, it was not straightforward to determine if these measures
ffectively identify refactoring candidates. To address this concern, we
ave asked the experts to (i) determine if the specification pairs were
imilar (same pairs that were marked similar/dissimilar by NCS and
R) and (ii) evaluate if specifications are candidates for refactoring.
xpert opinion was used to evaluate the effectiveness of our proposed
easures. This also gave us some indications regarding the impact of
ifferences in the sizes of specifications, scalability of measures, and
he impact of compression algorithms.

In Action Research, researchers are part of the organization and are
ctively involved in performing the study. Staron suggested a validity
hreat for such cases called the ‘‘John Henry effect’’ [57]. This effect
efers to setting a baseline for comparison that makes the new approach
ook effective. In our study, the choice of threshold value for similarity
ay be subjected to this threat. To mitigate this threat, we selected a

hreshold value that was in the middle of the values provided in the
iterature. Furthermore, we discussed the suitability of the threshold
alue with the practitioners.

Hypothesis guessing is a crucial threat to the interpretive validity
f studies using Action Research [57]. To mitigate this threat, we
isclosed the used similarity measures and how they are computed
rom the practitioners involved in the study. Furthermore, they were
ot shown any results until their manual evaluations were completed.

Another threat to validity concerns the researchers’ involvement in
he data collection and evaluation. The data collection was conducted
sing forms in an excel sheet to avoid information loss and external
ias. Each practitioner recorded his/her response independently. Fur-
hermore, the data collection results are shared as part of this study to
10

educe the threats to interpretive validity. w
Generalizability: Generalizability refers to the general applicability of
results over different settings and contexts. The two industrial cases are
from two different products but the same organization. However, the
cases have different contexts (programming language, tools, process,
etc.) and development teams. The results of this study might differ if the
study were carried out in a different organization. However, the study
captures the general advantages and disadvantages associated with the
usage of similarity measures for identifying refactoring candidates from
BDD specifications. Considering this study’s exploratory nature, we
believe that the results are interesting for researchers and practitioners
in other software organizations, even though their generalizability is
limited.

A critical threat to the study’s generalizability deals with the imple-
mentation of the scripts by one of the researchers. There is a chance
that the implementation is biased or aligned to support the results
of this study. The scripts implemented by the researcher are made
available as a part of the study to deal with this threat. Furthermore,
a second independent researcher also reviewed the scripts to evaluate
the implementation of the approaches using the script.

Repeatability: Repeatability is concerned with data collection, anal-
sis, and steps followed during the study and whether these aspects
re described in sufficient detail. The data collection was conducted
sing automated scripts. A link is provided to the scripts implementing
he measures, and the steps for their analysis are documented in detail.
urthermore, the collected data is published for the sake of comparison
f the study is repeated in a comparable context and setting. Selection
iases are a threat to validity in Action Research when researchers
re a part of the researched organization [57]. To mitigate this threat,
election criterion for study participants were defined to ensure that
nly experienced practitioners who have worked on the product and in
he domain were recruited.
Descriptive validity: Descriptive validity deals with the factual accu-

acy of the account by the researchers [58]. To mitigate this threat,
ata collection and data analysis were performed systematically using
utomated scripts and tools. We used automated scripts for calculating
CS and SR values. These generated NCS and SR values were then

tored in spreadsheets. The data analysis was performed using the
our-step process described in Section 3. Similarly, the data collection
oncerning evaluation using software practitioners and text classifica-
ion was conducted using automated tools and scripts. The scripts, the
ollected data, and well-defined steps for the data analysis may mitigate
his threat to the validity of our investigation.

. Conclusion

Software engineering researchers have explored the idea of refac-
oring an artifact to improve its maintainability for several years. New
rtifacts of various types (text, tables, etc.) in software development
re introduced with changing technologies and processes. BDD speci-
ications are one of these new artifacts and are gaining popularity in
ndustry.

Recent research has pointed out that refactoring is a crucial activity
f BDD, however, there are very few studies on the refactoring of
DD specifications. A vast majority of the existing studies do not
perate on the BDD specifications. They perform refactoring in BDD
y utilizing the test-code hooks, identifying parts where new code is
ntroduced, or using IDE-plugins to perform refactoring of FIT tables.
n this study, we have proposed approaches to support the refactoring
f BDD specifications and evaluated the identification of refactoring
andidates.

We have shown that similarity measures (NCS and SR) can support
dentifying refactoring candidates in a BDD specification base.

We have furthermore proposed a four-step approach for pre-
rocessing, measuring (using NCS and SR), ranking, and identifying
efactoring candidates. The approach and the two proposed measures

ere successfully evaluated using two industrial projects.



Information and Software Technology 141 (2022) 106717M. Irshad et al.

c

c

r
t
o
w
B
e

Table A.8
Case 1: Similarity values and assessment of ‘‘candidate for refactoring’’ for specification pairs based on NCS, SR, Machine learning classifier and practitioners’ views. AC = A
andidate for refactoring, NAC = Not a candidate for refactoring.
Pair NCS value SR value Practitioners’ view ML classifier NCS on refactoring SR on refactoring Practitioners on refactoring

49–47 0.809 0.60 Similar Similar AC AC AC
38–35 0.811 0.667 Similar Similar AC AC AC
59–60 0.639 0.8 Similar Not Similar AC AC AC
8–5 0.615 0.583 Similar Not Similar AC AC AC
4–10 0.608 0.583 Similar Not Similar AC AC AC
27–12 0.537 0.3 Similar Not Similar AC NAC AC
17–23 0.563 0.583 Similar Similar AC AC AC
11–14 0.667 0.883 Similar Not Similar AC AC AC
26–7 0.571 0.778 Similar Not Similar AC AC AC
1–17 0.623 0.7 Similar Not Similar AC AC AC
70–63 0.485 0.334 Not Similar Not Similar NAC NAC NAC
1–14 0.490 0.30 Not Similar Not Similar NAC NAC NAC
72–63 0.490 0.40 Not Similar Not Similar NAC NAC NAC
17–19 0.472 0.417 Not Similar Not Similar NAC NAC NAC
26–18 0.470 0.25 Not Similar Not Similar NAC NAC NAC
21–13 0.459 0.1667 Not Similar Not Similar NAC NAC NAC
30–28 0.40 0.50 Not Similar Not Similar NAC AC NAC
11–3 0.479 0.384 Not Similar Not Similar NAC NAC NAC
49–7 0.349 0.2 Not Similar Not Similar NAC NAC NAC
66–37 0.381 0 Not Similar Not Similar NAC NAC NAC
13–48 0.406 0.2 Not Similar Not Similar NAC NAC NAC
34–35 0.392 0 Not Similar Not Similar NAC NAC NAC
3–18 0.384 0.125 Not Similar Not Similar NAC NAC NAC
27–53 0.362 0.1667 Not Similar Not Similar NAC NAC NAC
41–37 0.386 0 Not Similar Not Similar NAC NAC NAC
50–60 0.440 0.1667 Not Similar Not Similar NAC NAC NAC
16–40 0.349 0 Not Similar Not Similar NAC NAC NAC
39–3 0.129 0 Not Similar Not Similar NAC NAC NAC
1–44 0.187 0 Not Similar Not Similar NAC NAC NAC
70–21 0.20 0 Not Similar Not Similar NAC NAC NAC
29–14 0.297 0 Not Similar Not Similar NAC NAC NAC
4–34 0.261 0 Not Similar Not Similar NAC NAC NAC
Table A.9
Case 2: Similarity values and assessment of ‘‘candidate for refactoring’’ for specification pairs based on NCS, SR, Machine learning classifier and practitioners’ views. AC = A
andidate for refactoring, NAC = Not a candidate for refactoring.
Pair NCS value SR value Practitioners’ view ML classifier NCS on refactoring SR on refactoring Practitioners on refactoring

13-12 0.745 0.833 Similar Similar AC AC AC
1-2 0.698 0.667 Similar Similar AC AC AC
9-8 0.687 0.50 Similar Similar AC AC AC
6-8 0.673 0.6 Similar Not Similar AC AC AC
5-2 0.643 0.6 Similar Not Similar AC AC AC
3-2 0.621 0.667 Similar Similar AC AC AC
6-7 0.608 0.6 Similar Similar AC AC AC
10-11 0.632 0.8 Similar Similar AC AC AC
8–10 0.642 0.2 Not Similar Not Similar AC NAC NAC
7–11 0.330 0.125 Not Similar Not Similar NAC NAC NAC
6–10 0.330 0.4 Not Similar Not Similar NAC NAC NAC
9–10 0.30 0.33 Not Similar Not Similar NAC NAC NAC
15–7 0.296 0 Not Similar Not Similar NAC NAC NAC
4–7 0.296 0 Not Similar Not Similar NAC NAC NAC
3–12 0.294 0 Not Similar Not Similar NAC NAC NAC
9–13 0.290 0 Not Similar Not Similar NAC NAC NAC
9–12 0.288 0 Not Similar Not Similar NAC NAC NAC
1–14 0.286 0 Not Similar Not Similar NAC NAC NAC
14–13 0.280 0 Not Similar Not Similar NAC NAC NAC
14–12 0.275 0 Not Similar Not Similar NAC NAC NAC
15–12 0.251 0 Not Similar Not Similar NAC NAC NAC
15–13 0.246 0 Not Similar Not Similar NAC NAC NAC
4–13 0.232 0 Not Similar Not Similar NAC NAC NAC
4–12 0.222 0 Not Similar Not Similar NAC NAC NAC
We found that the proposed semi-automatic approach identified
efactoring candidates accurately and far quicker than software practi-
ioners. For small to medium-size specification bases, the identification
f refactoring candidates took less than 2 min. The approach also scales
ell. Identifying refactoring candidates in a specification base with 500
DD specifications took less than 5 min. Overall, our evaluation showed
11

ncouraging results and the practitioners’ feedback was positive.
NCD and SR can also help assessing a BDD specification base’s
diversity; the higher the overall similarity, the lower the diversity.
Higher diversity in BDD specifications results in higher coverage of
product features during the validation activities.

As BDD is a relatively new field, in the future, we plan to extend
our approach by automating the refactoring techniques in Table 6.
Furthermore, we plan to improve our measurement and develop a



Information and Software Technology 141 (2022) 106717M. Irshad et al.
graphical interface to facilitate the refactoring process by supporting
software practitioners.

CRediT authorship contribution statement

Mohsin Irshad: Conceptualization, Methodology, Investigation, For-
mal analysis, Writing - original draft, Writing - review & editing.
Jürgen Börstler: Conceptualization, Methodology, Writing - review
& editing, Supervision. Kai Petersen: Writing - review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Tables

See Tables A.8 and A.9.

References

[1] D. North, Behavior modification: The evolution of behavior-driven development,
Better Softw. 8 (3) (2006) 8–12.

[2] M.M. Moe, Comparative study of test-driven development (TDD), behavior-driven
development (BDD) and acceptance test–driven development (ATDD), Int. J.
Trend Sci. Res. Dev. (2019) 231–234.

[3] C. Solis, X. Wang, A study of the characteristics of behaviour driven development,
in: Proceedings of the 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, IEEE, 2011, pp. 383–387.

[4] A.Z. Yang, D.A. da Costa, Y. Zou, Predicting co-changes between functionality
specifications and source code in behavior driven development, in: Proceedings
of the 16th IEEE/ACM International Conference on Mining Software Repositories,
2019, pp. 534–544.

[5] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.

[6] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring challenges
and benefits, in: Proceedings of the 20th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, 2012, pp. 1–11.

[7] E. Mealy, P. Strooper, Evaluating software refactoring tool support, in: Proceed-
ings of the Australian Software Engineering Conference (ASWEC’06), 2006, pp.
10–19.

[8] C. Abid, V. Alizadeh, M. Kessentini, T.d.N. Ferreira, D. Dig, 30 years of software
refactoring research: A systematic literature review, 2020, arXiv preprint arXiv:
2007.02194.

[9] R. Borg, M. Kropp, Automated acceptance test refactoring, in: Proceedings of the
4th Workshop on Refactoring Tools, 2011, pp. 15–21.

[10] L.P. Binamungu, S.M. Embury, N. Konstantinou, Maintaining behaviour driven
development specifications: Challenges and opportunities, in: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2018, pp. 175–184.

[11] S. Bruschi, M.K. Le Xiao, G. Jimenez-Maggiora, Behavior driven development
(BDD) a case study in healthtech, in: Proceedings of the Pacific Northwest
Software Quality Conference, 2020, pp. 1–12.

[12] A. Egbreghts, A literature review of behavior driven development using grounded
theory, in: 27th Twente Student Conference on IT, 2017, Available at: https:
//pdfs.semanticscholar.org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656.pdf.

[13] S. Suan, An Automated Assistant for Reducing Duplication in Living Documen-
tation (Master’s thesis), School of Computer Science, University of Manchester,
2015.

[14] D. North, Whats in a story? 2020, http://dannorth.net/whats-in-a-story/,
accessed: 2020-01-02.

[15] A.I. Anton, Successful software projects need requirements planning, IEEE Softw.
20 (3) (2003) 44.

[16] N.M.A. Pulido, Applying Behavior Driven Development Practices and Tools to
Low-Code Technology (Ph.D. thesis), 2019.

[17] E.C.S. Santos, D.M. Beder, R.A.D. Penteado, A Study of test techniques for
integration with domain driven design, in: Proceedings of the 12th International
Conference on Information Technology-New Generations, 2015, pp. 373–378.

[18] S.-T. Lai, F.-Y. Leu, W.C.-C. Chu, Combining IID with BDD to enhance the
critical quality of security functional requirements, in: Proceedings of the Ninth
International Conference on Broadband and Wireless Computing, Communication
and Applications, 2014, pp. 292–299.

[19] R. Mugridge, W. Cunningham, Fit for Developing Software: Framework for
Integrated Tests, Pearson Education, 2005.
12
[20] M. Bures, M. Filipsky, I. Jelinek, Identification of potential reusable subroutines
in recorded automated test scripts, Int. J. Softw. Eng. Knowl. Eng. 28 (01) (2018)
3–36.

[21] M. Rahman, J. Gao, A reusable automated acceptance testing architecture for
microservices in behavior-driven development, in: Proceedings of the 2015 IEEE
Symposium on Service-Oriented System Engineering, 2015, pp. 321–325.

[22] C. Sathawornwichit, S. Hosono, Consistency reflection for automatic update of
testing environment, in: Proceedings of the 2012 IEEE Asia-Pacific Services
Computing Conference, 2012, pp. 335–340.

[23] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131.

[24] K. Petersen, C. Gencel, N. Asghari, D. Baca, S. Betz, Action research as a
model for industry-academia collaboration in the software engineering context,
in: Proceedings of the 2014 International Workshop on Long-Term Industrial
Collaboration on Software Engineering, 2014, pp. 55–62.

[25] D.S. Cruzes, M.G. Jaatun, T.D. Oyetoyan, Challenges and approaches of per-
forming canonical action research in software security, in: Proceedings of the
5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security,
2018, pp. 1–11.

[26] P.A. Nielsen, G. Tjørnehøj, Social networks in software process improvement, J.
Softw. Maint. Evol.: Res. Pract. 22 (1) (2010) 33–51.

[27] K. Bang, M.A. Kanstrup, A. Kjems, J. Stage, Adoption of UX evaluation in
practice: An action research study in a software organization, in: Proceedings
of the IFIP Conference on Human-Computer Interaction, 2017, pp. 169–188.

[28] G.I. Susman, R.D. Evered, An assessment of the scientific merits of action
research, Adm. Sci. Q. (1978) 582–603.

[29] A.A.B. Baqais, M. Alshayeb, Automatic software refactoring: a systematic
literature review, Softw. Qual. J. 28 (2) (2020) 459–502.

[30] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, D. Dig, Accurate
and efficient refactoring detection in commit history, in: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), IEEE, 2018, pp.
483–494.

[31] M. Abebe, C.-J. Yoo, Trends, opportunities and challenges of software refactoring:
A systematic literature review, Int. J. Softw. Eng. Appl. 8 (6) (2014) 299–318.

[32] P.M. Vitányi, F.J. Balbach, R.L. Cilibrasi, M. Li, Normalized information distance,
in: Information Theory and Statistical Learning, Springer, 2009, pp. 45–82.

[33] G.P. Telles, R. Minghim, F.V. Paulovich, Normalized compression distance for
visual analysis of document collections, Comput. Graph. 31 (3) (2007) 327–337.

[34] E. Rogstad, L. Briand, R. Torkar, Test case selection for black-box regression
testing of database applications, Inf. Softw. Technol. 55 (10) (2013) 1781–1795.

[35] R. Feldt, S. Poulding, D. Clark, S. Yoo, Test set diameter: Quantifying the
diversity of sets of test cases, in: Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation, 2016, pp. 223–233.

[36] I. Ivanov, C. Hantova, M. Nisheva, P.L. Stanchev, P. Ein-Dor, Software library for
authorship identification, Digit. Present. Preserv. Cult. Sci. Herit. (2015) 91–97.

[37] J.-C. Corrales, Behavioral Matchmaking for Service Retrieval (Ph.D. thesis),
Université de Versailles-Saint Quentin en Yvelines, 2008.

[38] S.-S. Choi, S.-H. Cha, C.C. Tappert, A survey of binary similarity and distance
measures, J. Syst. Cybern. Inform. 8 (1) (2010) 43–48.

[39] M. Girardi, B. Ibrahim, A similarity measure for retrieving software artifacts, in:
SEKE, 1994, pp. 478–485.

[40] T. Kwon, Z. Su, Modeling high-level behavior patterns for precise similarity
analysis of software, in: Proceedings of the 11th IEEE 11th International
Conference on Data Mining, 2011, pp. 1134–1139.

[41] M. Irshad, Data of paper, 2020, URL https://drive.google.com/file/d/
1to8bDQhF3Dv8rdUUJh-UNSZmPjejiCrR/view?usp=sharing.

[42] Online random picker, 2019, https://miniwebtool.com/random-picker/, ac-
cessed: 2019-05-13.

[43] W. Maalej, Z. Kurtanović, H. Nabil, C. Stanik, On the automatic classification of
app reviews, Requir. Eng. 21 (3) (2016) 311–331.

[44] O. Ormandjieva, I. Hussain, L. Kosseim, Toward a text classification system for
the quality assessment of software requirements written in natural language, in:
Fourth International Workshop on Software Quality Assurance: In Conjunction
with the 6th ESEC/FSE Joint Meeting, 2007, pp. 39–45.

[45] B.Y. Pratama, R. Sarno, Personality classification based on Twitter text using
Naive Bayes, KNN and SVM, in: Proceedings of the International Conference on
Data and Software Engineering, 2015, pp. 170–174.

[46] K. Soumya George, S. Joseph, Text classification by augmenting bag of words
(BOW) representation with co-occurrence feature, IOSR J. Comput. Eng. 16 (1)
(2014) 34–38.

[47] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng.
30 (2) (2004) 126–139.

[48] Z. Xing, E. Stroulia, UMLDiff: an algorithm for object-oriented design differ-
encing, in: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, 2005, pp. 54–65.

[49] D.J. Weller-Fahy, B.J. Borghetti, A.A. Sodemann, A survey of distance and
similarity measures used within network intrusion anomaly detection, IEEE
Commun. Surv. Tutor. 17 (1) (2014) 70–91.

[50] S. Sorlin, C. Solnon, J.-M. Jolion, A generic graph distance measure based on
multivalent matchings, in: Applied Graph Theory in Computer Vision and Pattern
Recognition, Springer, 2007, pp. 151–181.

http://refhub.elsevier.com/S0950-5849(21)00169-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb5
http://arxiv.org/abs/2007.02194
http://arxiv.org/abs/2007.02194
http://arxiv.org/abs/2007.02194
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb10
https://pdfs.semanticscholar.org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
https://pdfs.semanticscholar.org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656.pdf
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb13
http://dannorth.net/whats-in-a-story/
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb19
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb19
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb19
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb20
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb34
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb39
https://drive.google.com/file/d/1to8bDQhF3Dv8rdUUJh-UNSZmPjejiCrR/view?usp=sharing
https://drive.google.com/file/d/1to8bDQhF3Dv8rdUUJh-UNSZmPjejiCrR/view?usp=sharing
https://drive.google.com/file/d/1to8bDQhF3Dv8rdUUJh-UNSZmPjejiCrR/view?usp=sharing
https://miniwebtool.com/random-picker/
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb49
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb50


Information and Software Technology 141 (2022) 106717M. Irshad et al.
[51] R.E. Caballero, S.A. Demurjian, Towards the formalization of a reusability
framework for refactoring, in: International Conference on Software Reuse,
Springer, 2002, pp. 293–308.

[52] Acceptance testing best practices, 2020, https://github.com/archfirst/acceptance-
testing-best-practices, accessed: 2020-08-10.

[53] S. Erb, A Survey of Software Refactoring Tools (Master thesis), Baden-
Württemberg Cooperative State University, Karlsruhe, Germany, 2010.

[54] H. Hemmati, A. Arcuri, L. Briand, Reducing the cost of model-based testing
through test case diversity, in: Proceedings of the IFIP International Conference
on Testing Software and Systems, 2010, pp. 63–78.

[55] J.K. Van Dam, V. Zaytsev, Software language identification with natural language
classifiers, in: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1, IEEE, 2016, pp. 624–628.
13
[56] K. Petersen, C. Gencel, Worldviews, research methods, and their relationship to
validity in empirical software engineering research, in: Proceedings of the Joint
Conference of the 23rd International Workshop on Software Measurement and
the 8th International Conference on Software Process and Product Measurement,
2013, pp. 81–89.

[57] M. Staron, Action Research in Software Engineering, Springer, 2020.
[58] J. Maxwell, Understanding and validity in qualitative research, Harv. Educ. Rev.

62 (3) (1992) 279–301.

http://refhub.elsevier.com/S0950-5849(21)00169-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb51
https://github.com/archfirst/acceptance-testing-best-practices
https://github.com/archfirst/acceptance-testing-best-practices
https://github.com/archfirst/acceptance-testing-best-practices
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb53
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb53
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb53
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb57
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb58
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb58
http://refhub.elsevier.com/S0950-5849(21)00169-5/sb58

	Supporting refactoring of BDD specifications—An empirical study
	Introduction
	Background and related work
	Behavior-driven development
	Related work: Refactoring of BDD specifications

	Research method
	Research context
	Research design and execution
	Diagnosing
	Action planning
	Action taking
	Normalized Compression Similarity (NCS)
	Similarity Ratio (SR)
	Application of NCS and SR

	Evaluating
	Specifying learning

	Results
	Supporting refactoring of BDD specifications (RQ1)
	Semi-automated approach to identify refactoring candidates (RQ1.1)
	Refactoring techniques for BDD specifications (RQ1.2)
	Validating that the refactoring preserved behavior

	Accuracy in identifying refactoring candidates (RQ2)
	Comparison with software practitioners
	Comparison to automatic text classification based on machine-learning
	Precision and recall in evaluated candidates


	Discussion
	Scalability of approach
	Difference in size of specification pairs
	Specification suite's diversity
	Choice of compressors
	Contribution to practice and research

	Validity threats
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix. Tables
	References


