Hindawi

International Journal of Computer Games Technology
Volume 2021, Article ID 6676644, 16 pages
https://doi.org/10.1155/2021/6676644

Research Article

Hindawi

Synchronous Remote Rendering for VR

Viktor Kelkkanen ©,' Markus Fiedler ©,> and David Lindero®

"Department of Computer Science, Blekinge Institute of Technology, Karlskrona 37179, Sweden
*Department of Technology and Aesthetics, Blekinge Institute of Technology, Karlshamn 37435, Sweden

3Ericsson Research, Ericsson AB, Luled 97753, Sweden

Correspondence should be addressed to Viktor Kelkkanen; viktor.kelkkanen@bth.se

Received 5 November 2020; Revised 12 March 2021; Accepted 8 July 2021; Published 20 July 2021

Academic Editor: Michael J. Katchabaw

Copyright © 2021 Viktor Kelkkanen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Remote rendering for VR is a technology that enables high-quality VR on low-powered devices. This is realized by oftloading heavy
computation and rendering to high-powered servers that stream VR as video to the clients. This article focuses on one specific issue
in remote rendering when imperfect frame timing between client and server may cause recurring frame drops. We propose a system
design that executes synchronously and eliminates the aforementioned problem. The design is presented, and an implementation is
tested using various networks and hardware. The design cannot drop frames due to synchronization issues but may on the other
hand stall if temporal disturbances occur, e.g., due to network delay spikes or loss. However, experiments confirm that such
events can remain rare given an appropriate environment. For example, remote rendering on an intranet at 90 fps with a server
located approximately 50 km away yielded just 0.002% stalled frames while rendering with extra latency corresponding to the
duration of exactly one frame (11.1ms at 90fps). In a LAN without extra latency setting, i.e., with latency equal to locally
rendered VR, 0.009% stalls were observed while using a wired Ethernet connection and 0.058% stalls when using 5 GHz wireless

IEEE 802.11 ac.

1. Introduction

With increasing interest in virtual reality (VR) comes an
opportunity to deploy VR functionality in phones or other
thin devices that, due to cost or mobility, lack the computa-
tional power required to render high-quality VR on their
own hardware [1]. By offloading game-logic and rendering
to strong servers in the local network or at the edge, and
streaming the live-rendered content as video, these thin
devices would merely need strong hardware decoders and
network connections to enable high quality VR. In the end,
this can reduce the cost and increase the mobility of VR
clients.

There are several categories of remote rendering for VR
already available in the present market. On the inexpensive
low end, there are apps designed to stream VR from home
PCs to phones or other thin devices [2-4]. When a phone
is used as client, it is placed in a VR gadget that can be used
as Head-Mounted Display (HMD) by having the phone act

as display [5-7]. This enables an inexpensive alternative of
VR for users who already have high-powered PCs at home
but no high-end headsets. On the high end of concurrent
remote VR, there are for example the wireless VR adapters
available to HTC Vive and Oculus Rift [8, 9] and USB-
tethered remote rendering for Oculus Quest [10]. In this
work, we present an architecture that can be used to mini-
mize both latency and the amount of frame drops in remote
rendering systems for VR.

In remote rendering, the latency from input to perceived
effect on-screen must generally be low in order to provide a
decent user experience. A popular application of remote ren-
dering is cloud gaming. The latency requirements of cloud
gaming depend on the type of game, but typically range
between 60 and 120 ms [11]. With VR, however, this budget
is defined as the Motion-To-Photon (MTP) budget and
expected to range between 7ms [12-14] and 20 ms [11, 15—
18]. The 7ms deadline was recently (2019) reached with
Valve’s VR headset Index, which has a 144 Hz mode

https://orcid.org/0000-0002-0536-7165
https://orcid.org/0000-0001-8929-4911
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6676644

(6.94 ms budget). However, note that there may be additional
delays other than the refresh interval (e.g., from input
devices), while the latter is the lowest possible latency on
the display in question. For example, framerates of up to
1800 Hz are expected to be required for a life-like experience,
but a latency of 7 ms would still be unnoticeable on such dis-
plays according to previous research [19].

1.1. VR Remote Rendering. A multitude of steps are required
for each frame to enable the remote rendering of VR:

(1) Client: get input data from input devices

(2) Client: send the input data to the server

(3) Server: run the game logic

(4) Server: render the virtual world individually per eye
(5) Server: encode the resulting images

(6) Server: send the encoded images to the client

(7) Client: decode the images

(8) Client: display the images in the HMD

Considering the number of steps and the tight MTP bud-
get of VR in the order of 7 to 20 ms, remote rendering for this
medium is a tall order.

Two of the most common VR headsets are the HTC
Vive and Oculus Rift, both still in the top five of most com-
mon VR headsets on Steam as of September 2020 [20].
Both these HMDs use a 90 Hz refresh rate, which results
in a frame time budget of 11.1 ms. However, even though
the MTP-budget may be 20ms, this does not mean that
we obtain an additional 8.9ms headroom that can be
allocated to network latency. The MTP depends on the
VR system in question, partly the devices and drivers that
continuously provide the rotation and translation data of
the headset. For example, in the HTC Vive, the rotation
of the HMD is updated at 1000 Hz [21, 22], thus adding
at least 1 ms to the MTP delay in the worst case. On the
other hand, the Oculus Rift also samples tracking data at
1000 Hz, but sends two updates with each packet on the
USB cable, resulting in a 500Hz update rate or 2ms
worst-case delay [23]. Worse yet, supposedly, the update
rate for translations may for example be as low as 250 Hz
on the HTC Vive [21]. Additionally, there is the added
latency caused by drivers, display, and scan-out. Scanning
out the image from GPU to display requires a significant
amount of time, typically one full frame time [24]. Thus,
even on locally rendered VR, there is a significant amount
of latency. However, by predicting future motions [25, 26]
and utilizing other latency-mitigating technologies such as
2D- [26-29] and 3D-image warping [30-32], both these
systems can achieve near-zero latency from the user per-
spective ([33], Chapter~12). Although the mentioned miti-
gation strategies can severely reduce the rotation and
translation latency, it is always better to avoid a problem
than to mitigate it [27]. Furthermore, interaction latency
remains difficult to mitigate without moving the interactive

International Journal of Computer Games Technology

component to the client [34], which complicates develop-
ment and may defeat the purpose of using remote
rendering.

1.1.1. Local Latency Mode. Ideally, the remote rendering solu-
tion completes all previously mentioned steps (1-8) and is
able to present a new frame before the Vertical Synchroniza-
tion (VSync) deadline for the display is hit (VSync is a tech-
nique that ensures that a new scan-out does not begin until
the previous has finished. VSync avoids an issue where the
new frame may overwrite parts of the old frame, commonly
referred to as tearing [24]). If the solution achieves this, the
VR experience has the potential to be no different in terms
of latency to locally rendered VR, which we refer to as local
latency mode. Naturally, this is difficult to achieve because
the game logic and rendering itself may already consume
most of the available frame time. Adding encoding, transmis-
sion and decoding may break the deadline in demanding
games when using common codecs such as H.264, thus intro-
ducing delays or lowering the framerate.

1.1.2. Server-Client Synchronization Challenges. A naive
remote rendering solution without special hardware typically
consists of a server and client that execute in parallel without
any synchronization. The server runs a game independently
and is continuously fed input data which is used to render
the following frame. The rendered frame is sent to the cli-
ent that runs its own independent game loop and continu-
ously presents its most recently received frame. Such a
design causes issues with frame timing between the two
programs. Ideally, new frames are decoded and ready to
be displayed on the client a few milliseconds before the
VSync deadline. This is difficult to achieve without some
synchronization that for example decides when the server
should start rendering [22].

1.1.3. Synchronous Design Motivation. We propose a remote
VR solution that is synchronous and, in an ideal scenario,
bufferless. In the latter case, it does not add latency and keeps
the same MTP as if the HMD was used locally. However, due
to the synchronization, it may reduce the framerate if the
deadline of 11.1 ms (at 90 fps) cannot be met in the present
environment (see Figure 1). In order to maintain the deadline
though, the system may reduce the resolution of the images
to reduce time consumption of the codec and other compo-
nents. The prototype may also inject one frame delay to
maintain 90 fps when local latency operation is not possible.
When this is done, the system introduces latency that would
not be present in local rendering and is thus no longer run-
ning in local latency mode.

In the proposed design, the remote rendering functional-
ity is integrated into the game engine and acts as a part of the
framerate budget. This restricts portability of the solution
since it cannot run as a separate process, but must be written
into the game. However, it enables a shorter MTP path
because the rendering on the server waits for a new HMD
pose before starting each frame. Likewise, the client waits
for the resulting rendered images to be transmitted back from
the server. The waiting ensures that the two stay in sync and

International Journal of Computer Games Technology

VSync VSync VSync
o 11.1ms ; 11.1ms :
Y >« < -
| | I
. Sync ! Sync ! Sync !
a Display ! Display : Display !
4}; i Decode ! | Decode ! 'Decode |
< Client L \' t
§ Server X\] f X/ /?
= Render Render // Render
Encode Encode El
22.2ms
\'Sy‘nc Vsync \'gync
: 11.1ms MISS 11.1ms
. -—-- > > <
I
5 m : ', Sync
QE’ Display ! Display
s i Decode | ' Decode]| 1
= Client : -
=
: 4 i
3 Server
E |Render / e]
—
~ Encode | Encoder too slow]
VSync VSync VSync
L 11.1ms s 11.1ms |
> < ‘=|‘ — e -
| | |
Sync Sync Sync
: el [l , \ =
= Display ! Display 1| Display 1 |Displ
5 |
2 . | Decode Decode Deco |7Dec\\e
g Client L ¢
=/ \ Vi Va _
8 / [Render [Render| // / [Render Y/ X’
| Delay injection| Encode | Encode | Encode
Input Video Steps
Legend | transmission transmission
& ! > 5> !:{>| Render || Encode |t:>| Decode || Display” Sync |

F1GURE 1: The three states of the synchronous system. (1) Local latency: all steps are complete within the refresh interval; latency is the same as
local rendering. (2) Reduced framerate: the system cannot finish within the deadline, and fps will thus be reduced to half. (3) Delay injection:
one frame delay is injected into the system. It is initialized by sending an extra input packet after decoding which will trigger parallel
processing of two frames from then on, both delayed by one frame. The white Sync-bar is implementation-dependent and in this case
refers mainly to the time consumption of the function WaitGetPoses() in the OpenVR API [75], which will return “running start”

milliseconds before the next VSync deadline, typically 2 ms [76].

that operation continues as soon as possible upon arrival of
the required data.

The design allows for local latency operation, will not suf-
fer frame drops due to synchronization issues, and achieves
minimal latency because each step in the chain begins as soon
as possible. Furthermore, because server and client are in
sync, every frame rendered at the server will be displayed
on the client. This is because the server will not start render-
ing until it receives new input, and the client will not send
input until it has presented the previous frame. Network-
induced frame drops due to packet loss cannot occur in this
system. Frame stalls, on the other hand, will occur when the
refresh interval deadline cannot be kept, for example, due
to losses which may cause retransmissions. The display may
in such cases show the same frame multiple times which
may be experienced as a playback stall by the user. Note that
the effect of a missed deadline is implementation-dependent
though and not necessarily a frozen image if the VR client
utilizes image warping techniques which may warp the last
image for a new orientation [29].

Due to the guarantee of arrival of all frames (guaranteed
by the application layer protocol, e.g., by reliable UDP or
TCP), the system begins streaming with one I-frame and
runs entirely on P-frames thereafter. This is not possible in
an asynchronous system which must recover from losses by
sending a new I-frame that does not reference any lost data.
Data delivery is guaranteed in this work with an in-house
implementation of reliable UDP [35] imposing strict control
of the retransmission timeout. Finally, the delay that may be
injected into the system is constant and always the length of
one full frame, e.g., 11.1 ms at 90 fps. This may make it easier
for future motion prediction algorithms to make accurate
predictions when compared to variable or unknown laten-
cies. In an asynchronous system, the delay may vary between
zero and nearly a full frame time, which may reduce predic-
tion accuracy.

1.2. Contribution and Structure. The synchronous remote VR
system design is presented, of which a prototype was imple-
mented and studied in various networks using various system

parameters and hardware. The research is meant not only to
pave way for future work in the field of synchronous remote
rendering for VR but also to produce knowledge that may be
of use for related work in any remote rendering scenario. Our
main contribution is the design and evaluation of the synchro-
nous remote VR system. The remainder of this article is struc-
tured as follows: In Section 2, we discuss the state of the art of
remote rendering for VR. Section 3 presents the design of the
system and details of its implementation. Section 4 shows
how the system performed in a number of tests with various
networks and hardware. Finally, Section 5 summarizes the
most important conclusions of the work, its limitations,
and potential future work.

2. Related Work

Remote rendering consists of many subcategories and has
been both available and studied extensively for decades.
Some notable samples from history are presented in the fol-
lowing list with release dates in parenthesis. The list pro-
vides an introduction to the field but is however by no
means complete. For a more comprehensive literature
review, we refer to the following publications: a literature
review regarding interactive remote rendering systems [1],
a review on existing (in 2016) web-based visualization
applications [36], a survey on mobile cloud computing
[37], and a survey on platforms for interactive cluster-
based multiscreen rendering [38].

(1) (1984) X Window [39] is one of the earliest exam-
ples of a remote renderer. It is a windowing system
that by design consists of a server and client and
therefore easily can be used remotely. X Window
has been used extensively in research, for example,

n [40], the authors found that applications that
generate small datagrams when using X Window
create severe overhead and may only utilize 25%
of the maximum bandwidth. The authors suggest
that updates should not be flushed unless neces-
sary as this will generate smaller datagrams;
updates should instead be buffered and sent in
bulk when possible. The caveat of this is of course
that it increases latency

(ii) (1995) Virtual Network Computing (VNC) [41]
is a protocol for remote access to graphical user
interfaces that is independent of operating and
windowing system. It has been described as an
improvement over X Window [41]. The authors
of [42] quantified the user experience while
using VNC and found that a low latency net-

work is the most important factor, more so than
bandwidth

(iii) (2000) OpenGL Vizserver [43] is a remote render-
ing system developed by Silicon Graphics Inc. that
utilizes hardware acceleration with OpenGL. In
[44], the authors used both VNC and OpenGL
Vizserver to show how distributed teams can
simultaneously view and steer simulations

International Journal of Computer Games Technology

(iv) (2002) Paraview [45] is an open-source applica-

tion that enables interactive remote visualization
of datasets. It has been widely used in the scientific
community and is targeted towards viewing
extremely large datasets that can be rendered by
supercomputers or server clusters. For example,
one study used ParaView to provide insights into
the evolution of the early universe [46]. The data-
set used in that study consisted of several hundred
time steps of point simulation data, with each
time-step containing approximately two million
point particles [46].

(v) (2007) StreamMyGame [47] is a cloud gaming

service that enables streaming through LAN or
the Internet to Windows or Linux PC and Playsta-
tion 3

(vi) (2009) RealityServer [48] is a GPU-based cloud

computing environment that enables photorealis-
tic rendering through the web

(vii) (2010) OnLive [49] was a provider of cloud virtua-

lization technologies with a cloud gaming service.
OnLive was discontinued and sold to Sony in 2015
[49]. A study was conducted in 2011 that mea-
sured the latency of OnLive in comparison to
StreamMyGame and found processing delays
ranging between 110 and 221ms in tests with
OnlLive and between 356 and 471 ms in tests with
StreamMyGame [50]. The processing delay was
described as the difference between player input
and presentation of a corresponding frame [50],
ie., MTP

(viil) (2014) GamingAnywhere [51] is an open source

cloud gaming system published in 2014. The pub-
lication of GamingAnywhere included perfor-
mance comparisons with the OnLive system and
showed significant improvement [51]. Another
study that involved both OnLive and GamingA-
nywhere found that the player performance
decreases by 25% with each 100 milliseconds of
latency when using these services [52]

(ix) (2014) Playstation Now [53] is a cloud gaming

service provided by Sony Interactive Entertain-
ment that was launched for the first time in 2014

(x) (2015) Trinus VR [2] enables remote rendering

for VR by streaming a PC game session to a phone
or similar thin client. Additionally, it supports the
streaming of non-VR games to be viewed in VR
on thin clients

(xi) (2015) VRidge [4] provides the same functionality

as previously described for Trinus VR

(xii) (2017) ALVR [3] is an open source remote VR

display that streams VR from PC to Gear VR or
Oculus stand-alone HMDs

International Journal of Computer Games Technology

(xiii) (2017) TPCAST [8] enables wireless VR for HTC
Vive and Oculus Rift through remote rendering by
streaming with WirelessHD in the 60 GHz band

(xiv) (2018) Vive Wireless Adapter [9] enables wireless
VR for Vive headsets through remote rendering
by streaming with IEEE 802.11ad in the 60 GHz
band

(xv) (2019) Stadia [54] is a cloud gaming service pro-
vided by Google. Authors of [55] conducted a
study where Stadia and Geforce NOW were stud-
ied in terms of their effects on global CO, emis-
sions. The authors’ analyses show that game
streaming will cause significant increases in the
energy and carbon footprint of games [55].

(xvi) (2020) Geforce NOW [56] is a cloud gaming
service provided by Nvidia. A beta version of the
service was made available in 2015 and a full
release to the general public was made in 2020
[57]. A publication from 2016 studied the Quality
of Experience (QoE) of Geforce NOW under dif-
ferent network conditions, such as bitrate, latency,
and packet loss. The range of subjects and tested
parameters were limited, but results indicate that
there were hardly any statistically significant dif-
ferences in QoE depending on the parameters,
with one exception. QoE was significantly reduced
when latency was introduced after the session
started. A possible explanation for this may be
that the service perhaps only initially estimated
the latency for use with prediction. Thus, if the
latency changed after the estimation, the predicted
view for the rendering would be incorrect
throughout the remainder of the session

(xvii) (2020) Xbox Cloud Gaming [58] is a cloud gam-
ing service provided by Microsoft

(xviii) (2020) Luna [59] is a cloud gaming service pro-
vided by Amazon

(xix) (2020) Oculus Link [10] is a VR remote rendering
system that operates through USB cable for use
with Oculus Quest or Quest 2

(xx) (2020) CloudXR [60] is a solution by Nvidia for
streaming VR, Augmented Reality (AR), and
Mixed Reality (MR) content from any OpenVR
XR application in the cloud, data center, or edge
to tethered or untethered clients running Win-
dows or Android platforms. Examples of sup-
ported devices include Vive or Valve Index
headsets connected to Windows 10 PCs, Micro-
soft HoloLens 2, Oculus Quest, and Oculus Quest
2 [60]. CloudXR is in a closed beta at the time of
writing (spring 2021).

In the following subsections, we will go into more details
surrounding remote rendering for VR and review relevant
publications in the field.

2.1. 360" Panorama VR. Remote rendering for VR has been
studied for some time. Most solutions involve rendering to
a panorama that covers every angle; this technique is used
in 360° videos and has been widely used in the research com-
munity, commonly in conjunction with the game engine
unity [61-64]. In [64], authors studied remote rendering of
360° VR by using two laptops and reported an end-to-end
latency of 30ms with a bitrate of 30 Mbps for a stereo
1080p resolution at 30 fps. The rendered panorama was split
into slices, and only the ones deemed necessary depending on
the current view-direction were transmitted; this reduced the
bitrate by around 50%. A similar study was conducted where
focus lied on bandwidth savings by only streaming the field
of view (FoV) of the panorama image [63]. The authors of
that study were able to stream 8 K 360-VR through a 4G net-
work from a PC to a Gear VR phone and saved more than
80% bandwidth compared to sending the entire panorama.
The term motion-to-update [63] was introduced and
reported to range between 67.4 and 559.6 ms depending on
resolution, network, and codec. Our understanding is that
the motion-to-update is used here to more accurately
describe the MTP of 360-VR due to considering server
updates. In [61], authors studied bandwidth reduction fur-
ther and found that by storing rendered images on the server
and reusing them for clients with similar positions and view
directions, a 90% reduction in server computation burden
and 95% reduction in bitrate could be achieved. Finally,
foveated streaming of 360° videos was studied in [62]. Band-
width was not addressed in that work though; the aim was
instead to reduce cognitive load and visual discomfort.

By using a panorama, new viewports caused by rotations
of the headset can instantly be rendered by selecting a differ-
ent part of the already acquired panorama image. This makes
panoramas ideal for video in which just three degrees of free-
dom are used (3-DOF), i.e., rotations around the X-, Y-, and
Z-axis. However, panoramas require more memory and
more time to render, which makes them difficult to use with
high framerates in real-time. To create a 360° view live, one
may render a cube-map, which requires six cameras and
therefore six rendering passes [64-66]. While some culling
can be done in this process [65], cube map rendering can
never be as efficient as rendering just the viewport. They
are furthermore not efficient for 6-DOF (with additional
translations along X, Y, and Z) and/or interactive scenes.
When the content of the scene changes due to user interac-
tion or by other events that occur in the scene, a new image
showing the change must be downloaded unless it can be
rendered on the client. Due to these issues, we render just
the default viewport for where the user is currently looking,
which is a common approach in low-latency implementa-
tions and no different from local VR in terms of rendered
pixels.

2.2. Split Rendering. There are also split- or collaborative-
rendering solutions [34, 65, 67]. By rendering the most
time-sensitive or low-fidelity objects on the client and more
demanding ones at the server, one may maintain both
responsiveness and visual quality. This technique has been
applied to remote rendering for VR, for instance, with the

background consisting of panorama images prerendered at
the server at every position in the game along a spaced grid
[34]. Another approach renders a cube map live as back-
ground at the server while interactive objects are rendered
on the client [65].

While split-rendering solutions can achieve low latency
for interactive components even in poor network conditions,
we question if they may be too complex and difficult to scale
for industry development. The inherent issue of split-
rendering is that developers must be concerned with devel-
oping an end-user application that consists of both a server
and client part, which implies additional costs. Though less
critical, there is also the added hassle for the customer that
must download and keep updated the unique client execut-
able for each game. Additionally, the point of remote render-
ing is to achieve high quality visuals on low-powered devices;
therefore, it is not ideal to render any object on the client as
the visual quality of any such object will be limited to what
the low-powered device can output. However, judging by
current talks in the industry, we note that there seems to be
a push towards split rendering and a belief that this will solve
the current generation of remote VR [68]. Still, some are
sceptical [69], and only time will tell which technologies will
be accepted by the market. We expect that split rendering
may be a compromise to make remote VR work on
present-day hardware, but it is hardly the ultimate solution
for future generations.

With the design proposed in this article, the client can be
seen as a video player that may run any game that the server
provides. The server process is unique per game though as
remote rendering functionality must be added to the game
engine and does not run as a separate process.

2.3. Nonpanoramic VR. Not using a panorama saves time and
bandwidth, but it also puts immense requirements of low
latency and stability on the VR system. A new image must
be downloaded at a rate equal to the refresh-rate of the
HMD. And if this cannot be achieved on time, the VR expe-
rience may be ruined. Building such a system can be
approached easiest by having an external process copy the
rendered images of the VR game, encode them, and send
them across the network for decoding on the client. The pros
of this approach are that it is simple and that the remote
functionality can be added to any existing game without
modification, because it is essentially a screen recorder. It
may be difficult to optimize such a general process though,
especially ensuring an optimal frame synchronization.

2.3.1. Screen-Recorder Approach. The authors of [70] built a
short-range (LAN) remote rendering VR system with com-
modity hardware. Their system is able to capture images
from Steam VR games, encode them with JPEG using a
GTX Titan X GPU, and transmit them across a WiGig net-
work. To measure the latency as perceived by the user, they
record two HMDs side-by-side with a 240 fps camera, one
of which contains the local VR rendering, and the other the
remote. By comparing the difference of the HMD images,
they conclude that the added latency is in the range of 12 +
2ms. The presented solution is a typical example of a

International Journal of Computer Games Technology

screen-recorder approach where remote rendering function-
ality can be added to any existing game since it is an external
process. This approach is economical and easy to bring to the
market but also difficult to optimize since there is no low-
level control of the game, as is revealed in the latency.

2.3.2. Game Integration and VSync Estimation. In [22],
authors report on another short-range remote rendering
VR system that also utilizes a WiGig connection but is inte-
grated into the game. Encoding is done by using the Nvidia
Video Codec SDK [71], H.264, and a GTX Titan X. They uti-
lize four parallel encoder threads as well as four parallel
decoders. They save time by starting the encoding of the first
eye immediately after its rendering is complete. This means
that the encoding of the first eye is done in parallel with the
rendering of the second. Furthermore, the authors of the
work propose a technique that involves estimating when
the server should optimally start rendering in order to mini-
mize the risk of missing the VSync deadline on the client.
Unless some form of synchronization is applied, the waiting
time on the client to the next VSync signal will drift every
frame until a frame is missed in a repetitive pattern [22].
According to their experiments, the VSync estimation results
in missing between 0.1 and 0.2% of all deadlines, which is on
average one frame drop every 5-11 seconds at 90 fps. Thisis a
significant improvement over a naive implementation
though, between 5.3 and 14.3% of frames were dropped with-
out the synchronization estimation. Finally, an end-to-end
latency of 16 ms in software is reported; our understanding
is that this is the average of the most demanding scene. In
our work, we use a similar approach but utilize the proposed
synchronous design which solves the synchronization prob-
lem completely.

2.3.3. Example from Industry. The synchronization issue and
time drift can also be observed in a developer blog from the
creators of VRidge [72]. They show how their previous
implementation caused time drift and how an update miti-
gates the issue. Although less recurrent after the update, the
problem seems not entirely solved as frames are still occa-
sionally dropped also in the improved version. There are no
exact numbers reported, but judging from the graph in
[72], it seems around 0.3% of frames are still dropped in
the updated version.

2.3.4. Measurements. Measuring the performance of a remote
rendering system is difficult if it operates asynchronously.
For example, if image quality should be measured, one may
save every rendered frame on the server and client and com-
pare them by using an objective image quality estimator after
the streaming session has ended. Saving every frame to disk,
for example, may reduce performance though and may
therefore increase the number of missed frames on the client,
causing invalid measurement results. A method for address-
ing this issue is known as slow-motion benchmarking and
was applied and studied with a number of thin clients includ-
ing VNC [73]. Slow-motion benchmarking is an inherent
feature of the proposed synchronous architecture which will
slow down and utilize retransmissions if needed to deliver to

International Journal of Computer Games Technology

the client all frames rendered by the server. There are there-
fore no lost frames, which makes image quality estimation
simple. The delta-time of the server can also be controlled
by setting it fixed to the framerate of the headset during test-
ing. This will make sure that any game content behaves as
expected even if the system is running in slow motion due
to saving every frame as PNG to disk for example. While
the system will not drop frames, misses of deadlines set by
the framerate can of course still occur. This is an important
measure and is recorded herein by querying the VR driver
for the number of physical frame presentations every time a
frame is completed on the client (see Section 4.3.1 for details).
In summary, we propose that measurements such as image
quality estimation will be easier to conduct with the synchro-
nous design, as slow-motion benchmarking is an attribute of
the architecture, and the client is guaranteed to receive every
rendered frame; an example of this functionality can be
observed in [74].

3. Materials and Methods

Two Windows applications were developed in C++. One of
them runs on the client and is connected to Steam VR; this
application has no game logic nor geometric rendering func-
tionality. The client polls the HMD pose matrix from the
Steam VR driver and sends this matrix to the server, which
handles the game logic and renders the scene for two eyes
according to the received pose matrix (see Figure 1 for an
overview). The server encodes the resulting images of both
eyes and sends them back to the client, which in turn decodes
the images and finally sends them to the VR driver as
OpenGL textures to be displayed in the headset. Note that
audio transmission is outside the scope of this work and
was not implemented in the prototype.

To ensure that the design is a viable option, we test the
prototype system in a range of network environments using
various hardware. The system is finally soak-tested in select
environments by rendering 100000 frames per session. The
soak-tests determine the ratio of stalls, which are compared
to those reported in related work. The latter will allow to
judge the performance of the synchronous design as com-
pared to state-of-the-art approaches.

3.1. Synchronization. The system contains one main synchro-
nization point between client and display which occurs when
polling the HMD pose matrix from the VR driver and
decides the framerate of the system. This method is called
WaitGetPoses(), is part of the Steam OpenVR API [75],
and blocks until a few milliseconds before the start of the next
frame, which is referred to as “running start” [76]. Without
this sync-point, the system would render without VSync as
fast as possible, which would cause tearing.

Synchronization also happens between client and server;
the server will block execution until a new input matrix
arrives and immediately start rendering upon its arrival.
The client will block rendering until two new images, one
per eye, have been decoded by the two decoder threads. On
completion, the rendering thread will submit the images to
the VR driver after resizing (since lower than native resolu-

tions are supported). After submitting to the VR driver, the
client calls WaitGetPoses() to get a new pose matrix, and
the loop is thus complete. If the loop can be completed in less
than 11.1ms, it will operate with zero added latency com-
pared to local VR in the HTC Vive at 90 fps. If the deadline
is exceeded, WaitGetPoses() will block for longer and make
the system run at 45fps with a 22.2ms deadline. In such
cases, one might instead run with a delay injection of one
frame or lower the resolution to speed up codec processing
to try and hit the deadline.

3.2. Codec. The server prototype is designed for use with Nvi-
dia GPUs that have two hardware encoders, e.g., GTX Titan
X and GTX 1080 (please refer to [77] for a full list). With
two encoder chips, two encoding processes can be utilized
fully in parallel, each encoding their corresponding eye
simultaneously.

Encoding and decoding are done in C++ with NVENC
and NVDEC from the Nvidia Video Codec SDK [71] and
CUDA Toolkit. Images are encoded using H.264 with
NV12 as video surface format and YUV420 chroma subsam-
pling. An infinite group-of-pictures is used where the frame
interval is set to start with one I-frame and thereafter use only
P-frames throughout the entire session. This saves band-
width since the more demanding I-frames can be avoided,
but it also makes the solution sensitive to loss, which is why
a reliable application layer protocol must be used, for exam-
ple, reliable UDP or TCP.

The framerate is set to the native rate of the HTC Vive,
90 fps. The VBV buffer size is set to the size of one average
frame, as is recommended for low latency operation in the
NVENC documentation [71]. Rate control mode is set to
NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ. The size
of the encoded image can be changed during execution (see
Section 3.4 for details on image sizes). The average bitrate is
set to 8 Mbps per encoder for a total of 16 Mbps. This bitrate
was selected as it provided suflicient quality at maximum res-
olution according to SSIM measurements. It should be noted
though that between 10 and 16 Mbps per eye should be used
depending on expected levels of motion and available
resources [74]. Thus, the bitrate used in this work is slightly
below recommended levels. This has shown to have a negligi-
ble impact on time-consumption though, which is the main
focus in this work. For a study relating bitrate requirements
to image quality, the reader is referred to [74].

Other than the mentioned modifications, the encoder
and decoder have the same configurations as the low latency
encoder and decoder samples from the Nvidia Video Codec
SDK [71].

3.3. Network. UDP is used to transmit video and input data;
two encoder threads transmit video data in parallel from
server to client. Input data is transmitted in one packet per
frame sent from client to server. In order to guarantee deliv-
ery of all UDP packets, we implement our own version of
reliable UDP (RUDP) [35]. The RUDP implementation is
inspired by Valve’s GameNetworkingSockets [78] and the
ACK-vector of DCCP [79]. We chose to make our own
implementation to make sure we have full control and are

able to optimize it as much as needed. The implementation is
designed to quickly respond to loss by being highly sensitive
to variations in delay. If a packet is expected and a higher
delay than usual is detected, the system will estimate that
the packet is lost and triggers a retransmission. In networks
with little variation in delay, redundant retransmissions
remain rare, and response time on loss remains low. How-
ever, redundant retransmissions may occur more often in
networks with a large variation in delay.

A detailed presentation of the protocol is outside the
scope of this work since the synchronous design does not rely
on it per se. TCP with disabled Nagle’s algorithm (Nagle’s
algorithm is a method for TCP to reduce the number of small
packets and thus increase bandwidth efficiency. It does so by
buffering data that may be intended to be sent immediately in
separate packets, this introduces delays in TCP [80]) for
example can be used as well or any other RUDP implemen-
tation. The effect of such a choice on delay distributions in
remotely rendered VR is yet to be studied.

3.4. Dynamic Resolution. The server allocates five frame
buffers of different sizes for testing the impact of resolution
switches. The resolution levels and sizes are presented in
Table 1. The resolutions were arbitrarily determined by sub-
tracting the native resolution by 20% in width and height per
level and additionally rounding up to the closest multiple of
16 to avoid cropping in the decoder.

3.5. Test Setups. Experiments were conducted using Win-
dows PC on both server and client. Note that this is naturally
not the main target device of future real-world scenarios, and
most of the tested client devices could even run desktop VR
on their own GPUs. However, they were used in order to gain
more control of the testing environment and are sufficient for
a proof-of-concept of the proposed method. Future work
involves developing a client that can run on, e.g., a phone
or stand-alone HMD equipped with hardware decoding
capability.

The experiments were conducted in four different envi-
ronments (see Table 2). The first is referred to as the apart-
ment LAN, where both client and server were on the same
LAN/WLAN. The purpose of the apartment experiments
was to see how the remote VR solution can operate in a
best-case scenario on strong hardware in short-range net-
work conditions, i.e., fog rendering. In this use case, the con-
sumer already has local access to a strong computer for
example at home or at an Internet cafe and streams VR to a
thin client for example to increase mobility or reduce cost.
As previously mentioned, some examples of this from the
current market are the low-end remote VR options that
stream from PC to phone [2-4]. Another similar case is the
Oculus Link [10].

The second testing environment was the campus intranet
at the Blekinge Institute of Technology (BTH), where client
and server were separated by approximately 50 km of optical
fiber between two campuses with 1 Gbps bandwidth. These
experiments give insight into how the solution may perform
in larger networks with longer range but with good routing,
i.e., edge rendering. The consumer would in such a scenario

International Journal of Computer Games Technology

TaBLE 1: Resolution settings.

Level 0 1 2 3 4
Percent 100% 80% 60% 40% 20%
Pixels 1088 x 1200 880 x 960 656 x 720 448 x 480 224 x 240

not have immediate access to the server, but be closely con-
nected to it through a private intranet for example from
home or at an Internet cafe while using a thin client. The
intranet would then provide the remote VR service from a
remote but optimally routed server with more stability and
speed than through the public Internet. In this use-case, for
example, a set-top-box could be connected with optimal
routing to the remote server, and a VR headset could be
plugged into the box or be connected wirelessly. Trials of
such a case were conducted by HTC in 2017 [81].

Two experiments were conducted across the public Inter-
net on fiber and 4G. In these tests, the client PC was located
in the apartment and the server at the campus approximately
50km away. These tests were included to reveal to which
degree typical contemporary public networks may be able
to support this type of remote rendering for VR. A
100/100 Mbps subscription was used for the fiber connection,
and an Asus Zenfone 3 Zoom phone was tethered to the cli-
ent by USB in the 4G testing. In the fiber connection, devices
were separated by 18 network hops. This case tests public
cloud rendering, which is not only the most flexible option
but also most likely to fail due to the high Round Trip Time
(RTT) of the public Internet.

Additionally, two experiments using 5G were conducted
indoors at the Luled University of Technology (LTU). The
tests show the applicability of this type of remote rendering
in an early test bed for the upcoming 5G technology. This
use case refers to mobile edge rendering where the rendering
server is closely connected to the mobile access point. The 5G
experiments were run with an edge-server inside the LTU 5G
network [82] connected to a local breakout core (see Figure 2
for details). Four hops were registered between the client and
server. An early-release 5G USB modem provided the client
laptop with connectivity to the cellular network.

No mobility was tested in any of the wireless networks.
The client was only connected to one base station/WiFi-
router and did not move to another, in any of the wireless
conditions. Also, with the exception of 4G which was outside
our control, the client device was also the only device con-
nected to the serving base station/WiFi router during testing.

All experiments were conducted with an HTC Vive VR
headset that lied perfectly still on a flat surface while con-
nected to the client computer. To emulate user headset
movements in a reproducible way, the HMD pose matrix
was rotated in software with an angle that ranged between
-180° and +180° at a speed of 90° per second.

4. Results and Discussion

The results are split up in three test cases. Two relatively
short tests were conducted, in which the resolution was
altered in run-time in local latency mode and while using

International Journal of Computer Games Technology 9
TaBLE 2: Environment descriptions.
Network Server device Client device Distance (bee-line) Use case
Apartment LAN Laptop GTX 1080 PC RTX 2070 2m Fog rendering
Campus intranet PC GTX Titan X Laptop GTX 1080 50 km Edge rendering
Public Internet PC GTX Titan X PC RTX 2070 50 km Cloud rendering
Indoor 5G PC GTX 1080 Laptop Quadro M1200 100 m Mobile edge rendering
Apartment LAN Campus Intranet 5G Environment
Server Nighthawk Server Local
GTX 1080 X10 GT)S(e%f:n X Switch 4' 50km Fiber GTX 1080 < Breakout core| | 5G Dot

|
| 2.4GHz, 5GHz, CAT6 | | CATSe | 2.4GHz, 5GHz, CAT6 | Mids-gand
b H e o e H

Client
GTX 1080

Client
RTX 2070

Nighthawk|
x10 [[CATS

Client

M1200 5G Modem|

Router

e

FIGURE 2: Layout of apartment, intranet, and 5G experiments.

delay injection, respectively. These tests reveal to which
degree the codec time consumption affects the rendering
loop, and additionally, what the impacts of live resolution
switches are on the immediate time-consumption of the fol-
lowing frame. The two tests furthermore provide valuable
insight into how the synchronous rendering loop performs
in the various networks. This determines whether the net-
works in question are appropriate for this type of remote ren-
dering. Finally, soak tests were conducted using appropriate
settings and environments to reveal the resulting delay distri-
butions and the ratio of stalls over time.

4.1. Resolution Tests in Local Latency Mode. The resolution
tests were conducted in all environments and ran for a total
of 2500 frames per physical medium. The resolution was
reduced one level (20%) after each 500-frame interval.

Results show that the decoder time consumption is
increased in the moment of a resolution switch, ranging from
1.3 ms to 10.3 ms extra depending on GPU. The encoder suf-
fers no penalty from resolution switches though, but the
bitrate is severely increased when such switches take place.
Thus, the price to pay for a resolution switch is not only a
temporary increase in decoder time consumption but poten-
tially also in video network time consumption, depending on
available bandwidth. In our experiments though, we see only
negligible increases in video network time consumption at
the moment of switches because the available bandwidth
can handle the increase. Ordinary video frames generally
required around 22 kB in these experiments; frames carrying
resolution switches required around 50-60 kB.

Time plots of all resolution experiments are shown in
Figure 3. This figure shows the time consumption of each
component during execution. The total time consumed from
input to display for each frame is shown with the white
(Total) line in graphs and takes into account any missing part
such as display synchronization and delays. A similar line
(blue) shows the time spent between frame presentations
on the client (delta time). This time controls the framerate
and is the speed at which the game logic is updated. The

shown delta time measurement is the average of three con-
nected frames to reduce noise. Ultimately, it is the total time
that accurately shows frame stalls, e.g., at spikes. In Figure 3,
the total time and delta time are generally the same because
no delay injection was used except for in the 5G case, which
was included in that figure to save space. The difference
between total time and delta time becomes clear in the fol-
lowing Figure 4 where the two are always separate due to
delay injection.

4.1.1. LAN. Three experiments with resolution reductions
were conducted in the apartment LAN environment, where
the connection between server and router consisted of either
2.4 or 5GHz WiFi or an Ethernet CAT6 cable. Results from
2.4 GHz show a stable 45 fps followed by a struggle to settle
at a constant framerate (see the left-hand side of Figure 3).
The 5 GHz experiment shows a relatively stable run starting
at 45 fps at 100% resolution followed by 90 fps at lower reso-
lutions. At 100% resolution though, there is an issue that we
refer to as a transition zone, where the framerate should ide-
ally stay at a stable 45 but keeps reaching 90 in recurring
bursts. CAT6 provided a stable local latency experience at
90 fps and 100% resolution. The test with CAT6 contained
a single frame stall that occurred in the moment of resolution
switch from 100% to 80% due to the temporarily increased
time consumption of the decoder.

4.1.2. Intranet. Results show that the wireless media in the
intranet supported 45 fps with recurring frame stalls followed
by a transition zone at 40% (5GHz) and 20% resolution
(both). The CAT6 connection supported 45 fps without stalls
at full resolution (level 0), entered a transition zone at 80%,
and ran with recurring frame stalls at the other levels.

The intranet was not able to support a stable local latency
remote rendering at native framerate regardless of resolution
and physical medium. A stable experience without frame
stalls was achieved only at 45 fps with CAT6 and 5 GHz. Note
in the graph for CAT6 at 20% resolution that several millisec-
onds are available before reaching 11.1ms, but this was

10

Apartment LAN (=1m)

International Journal of Computer Games Technology

Campus to campus intranet (=50km)

0.0 + t + + +

0.0 + t t + + d

Apartment to campus internet (=50km)

55.6
44.4
33.3
22.2

0.0 + + + + + !

5G Indoor (=100m)

0.0 + t t t t

77.8
66.7 &
55.6
44.4
33.3
22.2

5G w. delay

0 500 1000 1500 2000 2500
Network (video)

=== Network (input)

=== Game & render

=== Encode

== Decode
— Total
—— Delta time

F1GURE 3: Examples of time consumption of the tasks performed each frame in the resolution experiments. Resolution was reduced one level
at each 500-frame interval, see yellow bars and x-axis markers. “Total” shows the total time consumption in software of each frame from the

client perspective; “delta time” shows time consumed between presenting two frames. The two overlap where there is no delay injection.

evidently not sufficient to compensate for the jitter that
would occur occasionally in this network.

4.1.3. Internet. Two experiments with resolution reductions
from the Internet environment are presented in the lower
parts of Figure 3. Results show that resolution did not matter
in these cases as the majority of time consumption was due to
network latency and jitter. The 4G connection supported an
unsteady average of around 10fps. The fiber connection

allowed for a stable connection with frame stalls only
occurring at resolution switches, but could maintain only
30fps due to the high latency of the public Internet. This
shows the importance of using private infrastructure if
one wants to enable synchronous remote rendering. Geo-
graphically, there is a few hundred meter difference in client
position in the intranet and Internet tests, but the RTT was
around 20 ms in the Internet connection and 2-3 ms on the
intranet.

International Journal of Computer Games Technology

Apartment LAN (=1m)

11

Campus to campus intranet (=50km)

0.0 + + + +

0.0 t t t t 1 t
0 500 1000 1500 2000 2500 Frame
Network (video) === Decode
=== Network (input) —= Total
=== Game & render —— Delta time

=== Encode

F1GURE 4: Examples of time consumption of the tasks performed each frame in the delay experiments. Note how total time and delta time are

now separate due to a delay buffer.

4.1.4. 5G. In similarity with the Internet tests, the resolution
reduction tests over the 5G connection are limited by the
RTT. As seen in Figure 3, the majority of the time consump-
tion comes from the network components, i.e., the 5G USB
modem and the radio interface itself. Typically, the physical
radio layer measures below an average of 14ms RTT in
real-world tests with similar midband Time Division Duplex
(TDD) setups using a 3:1 downlink/uplink ratio. However,
devices such as the USB-modem may add additional delays
of around 5-6 ms per direction. This delay is expected to be
reduced in upcoming, more optimized user devices. To
achieve fiber-like behavior with submillisecond delay on each
radio link Ultra-Reliable Low-Latency Communication
(URLLC) [83] would have to be used, which is not yet avail-
able in this test network.

4.2. Resolution Tests with Delay Injection. The prototype sup-
ports injection of one-frame delay. Tests with this functional-
ity were run in the apartment, intranet, and 5G settings with
the same parameters as the previously described resolution
tests. Except for the test on 5G which is shown in Figure 3
to save space, results from delay tests are shown in
Figure 4. Adding a delay of one frame made the system run
with little to no frame stalls in all media on LAN. 12 out of
2500 frames were stalled in case of 2.4 GHz but none in case
of CAT6 and 5 GHz. Adding a delay in the intranet on CAT6

resulted in zero stalls at a constant 90 fps as well. However,
recurring stalls still occurred in both wireless media on the
intranet, note the white spikes in total time consumption in
Figure 4. These spikes are likely a result of the congested
2.4 and 5GHz bands in the campus area. Similarly, 5G was
not improved significantly by a delay due to the high RTT
and spiky network time consumption.

4.3. Soak Tests. Finally, soak tests were conducted in the
apartment LAN and intranet environments. In these tests,
100000 frames per medium were recorded at the highest res-
olution that enabled 90fps in the resolution tests of the
respective medium. On LAN, these were CAT6 (100%),
5GHz (60%), and 2.4 Ghz (20%). In the intranet, however,
only CAT6 was soak-tested since the wireless media failed
to maintain a stable framerate both with and without delay
in this environment. Two soak tests were conducted with
CATS6 on the intranet, one with 20% resolution and one with
one frame delay at 100% resolution.

4.3.1. Soak Test Results. Figure 5 shows the Complementary
Cumulative Distribution Function (CCDF) of time con-
sumption of network components. The plots in the figure
show the percentage of samples that exceed the time con-
sumption shown on the abscissa, up to 20 ms. The CCDF
reveals the necessary budgets for each component depending

12 International Journal of Computer Games Technology
100% LAN 100% Intranet
10% 10% 4 1 N
1% + 1% ~ :
0.1% - 0% 4 S
0.01% 0.01% ~
0.001% et 0.001% At
0 5 10 15 20 ms 0 5 10 15 20 ms
CAT6 Video CAT®6 Video Delayed
CAT6 Input CAT®6 Input Delayed
—— 5GHz Video —— CAT6 Video
-—— 5GHz Input -—— CAT6 Input
—— 2.4GHz Video
--- 2.4GHz Input
Figure 5: CCDF of network component time consumption in LAN. Each curve is based on 100000 samples.
TABLE 3: Soak test statistics (V: video; I: input).
LAN Intranet Unit
Test A B C D E —
Medium CATe6 5GHz 2.4GHz CAT6 CATe6 —
Delay No No No No Yes —
Resolution 100% 60% 20% 20% 100% —
Bitrate 16.2 16.3 15.0 15.0 16.0 Mbps
Framerate 89.52 89.46 86.61 87.34 89.53 fps
Total 11.188 11.195 11.563 11.497 22.369 ms
Stalls 0.009% 0.058% 3.220% 2.355% 0.002% —
Overrun \% I v I A% I A% I v I
Max 6.8 2.0 13.9 11.3 105.5 118.7 12.5 7.1 7.6 59 ms
0.01% 0.9 0.4 7.3 4.9 38.1 117.7 9.5 4.6 7.3 2.9 ms
0.1% 0.7 0.4 3.5 2.9 14.8 10.6 9.2 3.0 6.1 2.5 ms
1% 0.6 0.3 2.5 2.1 7.3 6.5 7.8 2.1 3.7 1.7 ms
10% 0.5 0.2 2.3 1.8 33 2.0 3.6 1.6 3.1 1.4 ms
Min 0.3 0.0 1.3 0.4 1.5 0.1 0.9 0.7 1.8 0.7 ms

on configuration and acceptable ratio of budget overruns; the
data is summarized in Table 3. The table provides a detailed
overview by showing the budget requirement of both net-
work components at each labeled percentage. For example
on LAN with CAT6 (test A), a budget of 0.9 ms covers the
requirement of the video component in all but 0.01% of
frames. To maintain the same level of overruns in 5GHz at
60% resolution (test B), a budget of 7.3 ms would be required.
In addition to budgets, the table shows how many frame stalls
occurred during the test, e.g., 0.009% of frames in CAT6 on
LAN. To provide maximum accuracy, we used Steam VR to
measure the number of stalls. They were determined by que-
rying the VR compositor through the OpenVR API for the
variable “Compositor_FrameTiming::m_nNumFramePre-
sents” at each frame and adding its value to the total number
of stalls. A number larger than one is regarded as one or more
frame stalls, because the same frame was then presented mul-
tiple times.

The table further shows the average framerate, bitrate,
and total time consumption per frame. Note that the true fra-

merate of the HTC Vive is not exactly 90 fps but 89.53 fps
[84]. Thus, the framerate of test A, 89.52 fps, is close to opti-
mal but suffered nine frame stalls which resulted in a lower
average framerate. Test E shows an optimal framerate of
89.53 fps though when rounded to two decimals.

The bitrate is also affected by the number of stalls,
because when framerate is lowered by half, so is the effective
bitrate. This can for example be seen in test C (2.4 GHz)
where the average bitrate is 15.0 Mbps due to a relatively high
number of frame stalls of 3.220%. The effective bitrate is also
affected by the number of redundant UDP retransmissions,
which is why it can reach above the set 16.0 Mbps.

The average total time consumption per frame is also
shown, which should optimally be 11.169 ms due to the true
framerate of 89.53 fps.

4.3.2. Soak Test Summary. The prototype achieved low
frame-stall ratios on LAN at local latency, 0.009% with
CATS6 at full resolution, and 0.058% with 5GHz at 60% res-
olution. On the intranet, a CAT6 connection with a delay

International Journal of Computer Games Technology

of one frame was able to provide a stream with 0.002% stalls.
These are improvements over previous work [22] which
reported a frame missing rate of 0.1-0.2% as well as the
industry example that showed 0.3% frame drops [72].

5. Conclusions and Outlook

We have shown one way to design a synchronous remote
rendering VR system that solves the synchronization prob-
lem between client and server and thus eliminates a source
of frame stalls. By testing an implementation of this design,
we have quantified the ratio of stalls, identified, and shown
some conditions under which it may be operated and what
requirements it poses on supporting hardware. We conclude
that the architecture can run well with a latency equal to local
VR, ie, in local latency mode. However, a stable network
with low latency must be used in order to stream in that
mode reliably. The campus intranet we used did not suffice,
and neither did the public Internet nor the early 5G test net-
work. Only on LAN could a stable local latency operation be
achieved at the native resolution and framerate of the HTC
Vive. On LAN/WLAN, the network was not the major issue,
but the encoder and decoder time consumption. Indeed,
apart from network delay spikes, the encoder time is gener-
ally the bottleneck of the system, especially at high resolu-
tions. Decoding in our experiments generally took less
than 2ms while encoding could take up to 6 ms. Reducing
the resolution to 20% of native size would in general reduce
encoding to around 1.5ms and decoding to around 1ms,
which was shown to be useful to meet the deadline in some
scenarios, but will of course have a negative impact on video
quality.

In case the local latency deadline cannot be kept, the
architecture supports injection of full frames of latency, i.e.,
an added latency of 11.1 ms per frame at 90 fps. Delay injec-
tion proved to make streaming more reliable in environ-
ments where this was sufficient to compensate for the jitter
of the network. We expect that the precise addition of latency
may help when adding future motion prediction.

5.1. Limitations. We have not taken into account two parts
that are outside our scope, but are otherwise important parts
to consider in remote rendering for VR. They are the
following:

Simple Game: The game used in our experiments is a sim-
ple 3D scene in which boxes surround the player in a small
room. This scene and game logic are not complex and often
required less than 1ms to compute and render. In a real-
world scenario, the game would likely require at least a few
milliseconds on average, which would have to be taken into
account when calculating budgets.

No Audio: We have ignored audio in the implementation
of this system. In a real scenario, more data containing the
audio would have to be sent from the server to client each
frame.

Furthermore, to account for lens distortion in the HTC
Vive, it is advisable to render at 1.4x the native resolution
(1512 x 1680 instead of 1080 x 1200). However, to avoid
transmitting such large images, at 100% resolution in tests.

13

Rendering was conducted at 1.4x the size on the server
but lens distortion was applied before encoding, thus
reducing the size of the images and the amount of data
processed by the codec and network. To do this though,
one must also disable the lens distortion that is normally
applied in the VR driver on the client. This will also dis-
able any built-in image warping functionality, which exists
to reduce the perceived rotation and/or translation latency.
Thus, it would be better to just transmit non lens-distorted
images at the native size and accept a loss in pixel density
instead of disabling warping. Whether lens distortion is
applied on server or client does not visibly affect the
results presented in this work though. But future work
may address this issue for example by using foveated video
processing [85, 86] which is how it is addressed in the
Oculus Link [10].

5.2. Future Work. Local latency mode, while difficult to sup-
port with a codec, may be perfectly viable if the time for
encoding and decoding can be neglected, which may be the
case if for example a very high bandwidth is available,
requiring little to no compression. This is the case with the
wireless VR adapters that are available on the market today,
which typically utilize the 60 GHz band with for example
802.11ad [87].

Although 802.11ad in theory supports up to 8 Gbps [88],
it does not support compression-less remote rendering for
the resolutions and framerates of current generation HMDs,
e.g., the Valve Index. To solve this issue, one may look for-
ward to the next generation of 60 GHz WiFi known as
802.11ay [88]. 802.11ay is at the time of writing in develop-
ment [89] and aims to support up to 100 Gbps [88]. The arti-
cle that announces 802.11ay puts the VR use-case in focus,
part of its abstract reads:

“While enabling multi-Gb/s wireless local communica-
tions was a significant achievement, throughput and reliabil-
ity requirements of new applications, such as augmented
reality (AR)/virtual reality (VR) and wireless backhauling,
exceed what 802.11ad can offer.” [88].

The prototype was so far tested with 802.11 ac (denoted
as 5GHz for short) and 802.11n (2.4 GHz). How will the
architecture perform in more sophisticated wireless net-
works? Similar measurements could be conducted using for
example 802.11ad, 802.11ay, 802.11ax, or 5G with URLLC
enabled [90].

Applying lens distortion on the server is not optimal due
to the interference with image warping techniques. Encoding
and transmitting supersampled images is on the other hand
time-consuming for the codec due to the data size. Smaller
images may therefore be used in conjunction with superreso-
lution [91] or foveated encoding [36], the latter of which is
already applied in the Oculus Link [55]. How much speed-
up can we get from these technologies and to what level of
detriment to the image quality?

The presented work determined that the ratio of
frame stalls could be reduced with a synchronous design.
What ratio of frame stalls are noticeable to users though?
Subjective QoE-studies may be conducted to answer this
question.

14

Data Availability

Data and code are available at https://github.com/kelkka/
RemoteRenderedVR. If the linked page should be unavail-
able, data and code will be made available on request through
the email listed on the title page (viktor.kelkkanen@bth.se).

Conflicts of Interest

In the tests with a 5G connection, we have used a 5G test-site
using equipment developed by Ericsson. This may be per-
ceived as a conflict of interest since one of the authors is
employed at this company.

Acknowledgments

Thanks to Mattias Schertell and Siamak Khatibi for letting us
borrow their server with the GTX Titan X GPU. Thanks to
Bjorn Mattsson for setting up the intranet network environ-
ment at BTH. Thanks to the anonymous reviewers for your
feedback. Thanks to Jesper Gladh for running around at
LTU and doing the 5G measurements. And finally, thanks
to Hans-Jiirgen Zepernick and our colleagues in the ViaTecH
project for fruitful discussions and feedback. This work was
supported in part by the KK Foundation, Sweden, through
the project “ViaTecH” under contract number (20170056).

References

[1] S. Shi and C.-H. Hsu, “A survey of interactive remote render-
ing systems,” ACM Computing Surveys, vol. 47, no. 4, article
57, pp. 1-29, 2015.

[2] S. L. Odd Sheep, “Trinus virtual reality,” 2015, May 2020,
https://www.trinusvirtualreality.com/.

[3] Polygraphene, “Air light VR,” 2017, May 2020, https://github
.com/polygraphene/ALVR.

[4] Riftcat, “VRidge-play PC VR on your cardboard,” 2015, May
2020, https://riftcat.com/vridge.

[5] Google, “Cardboard,” 2014, May 2020, https://arvr.google
.com/cardboard/.

[6] Samsung, “Gear VR,” 2015, May 2020, https://sv.wikipedia
.org/wiki/Samsung_Gear_VR.

[7] Wikipedia, “Google Daydream,” 2016, May 2020, https://en
.wikipedia.org/wiki/Google_Daydream.

[8] TPCAST, “Wireless adapter for VIVE,” 2017, April 2020,
https://www.tpcast.cn/index.php?s=/Front/Goods/index/
g00d/10228/1/en-us.

[9] Valve, “VIVEWireless adapter,” 2018, June 2020, https://www

.vive.com/us/wireless-adapter/.

Oculus, “How Does Oculus Link Work? The Architecture,

Pipeline and AADT Explained,” 2019, February 2021,

https://developer.oculus.com/blog/how-does-oculus-link-

work-the-architecturepipeline-and-aadt-explained/.

M. Abdallah, C. Griwodz, K.-T. Chen, G. Simon, P.-C. Wang,

and C.-H. Hsu, “Delay-sensitive video computing in the

Cloud,” ACM Transactions on Multimedia Computing, Com-

munications, and Applications, vol. 14, no. 3s, article 54,

pp- 1-29, 2018.

(11]

[12]

(14]

(15]

(16]

(17]

(19]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

International Journal of Computer Games Technology

M. Abrash, “Latency - the Sine Qua Non of AR and VR.
Valve,” 2012, January 2020, http://blogs.valvesoftware.com/
abrash/latency-the-sine-qua-non-of-ar-and-vr/.

A. Seam, A. Poll, R. Wright,]J. Mueller, and F. Hoodbhoy,
Enabling Mobile Augmented and Virtual Reality with 5G Net-
works, AT&T, 2018, January 2020, https://about.att.com/
ecms/dam/snrdocs/Foundry%20ARVR%20Public%
20Whitepaper%20.pdf.

P. Jombik and V. Bahyl, “Short latency disconjugate vestibulo-
ocular responses to transient stimuli in the audio frequency
range,” Journal of Neurology, Neurosurgery & Psychiatry,
vol. 76, no. 10, pp. 1398-1402, 2005.

3GPP, Virtual reality (VR) media services over 3GPP (Release
16), 2018, Technical Report, TR 26.918 V16.0.0.

M. Abrash, What VR Could, Should, and Almost Certainly Will
Be within Two Years, Valve, 2014, March 2020, https://media
.steampowered.com/apps/steamdevdays/slides/vrshouldbe.pdf.

G. S. M. A. Future Networks, “Cloud AR/VR Whitepaper,”
GSM Association, 2019, January 2020, https://www.gsma
.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/.

S. Solotko, The Instantaneous Cloud: Emerging Consumer
Applications of 5G Wireless Networks, TIRIAS, 2018, January
2020, https://www.tiriasresearch.com/downloads/the-
instantaneouscloud-emerging-consumer-applications-of-5g-
wireless-networks/.

E. Cuervo, K. Chintalapudi, and M. Kotaru, “Creating the per-
fect illusion: what will it take to create life-like virtual reality
headsets?,” in Proceedings of the 19th International Workshop
on Mobile Computing Systems & Applications (HotMobile
’18), pp. 7-12, Tempe, Arizona, USA, 2018.

Valve, “Steam hardware & software survey: January 2020,”
2020, February 2020, https://store.steampowered.com/
hwsurvey/.

O. Kreylos, “Lighthouse tracking examined,” 2016, January
2020, http://doc-ok.org/?p=1478.

L. Liu, R. Zhong, W. Zhang et al., “Cutting the cord: designing
a high-quality untethered VR system with low latency remote
rendering,” in Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services,
pp. 68-80, Munich, Germany, 2018.

O. Kreylos, “Oculus Rift DK2’s tracking update rate,” 2016,
January 2020, http://doc-ok.org/?p=1405.

A. Hogge, Controller to Display Latency in Call of Duty, Activi-
sion Central Technology, 2019, August 2020, https://
twvideoOl.ubm-us.net/o1/vault/gdc2019/presentations/
Hogge_Akimitsu_Controller_to_display.pdf.

U. H. List, “Nonlinear Prediction of Head Movements for
Helmet-Mounted Displays,” Technical paper. Air Force
Human Resources Lab Brooks AFB TX, San Fransisco, USA,
1983.

M. Russell and L. 1. Taylor, Virtual Reality System Concepts
Hlustrated Using OSVR, A K Peters/CRC Press, New York,
USA, 2019.

J. Carmack, “Latency mitigation strategies,” 2013, September
2020, https://danluu.com/latency-mitigation/.

R. H. Y. So and M. J. Griffin, “Compensating lags in head-
coupled displays using head position prediction and image
deflection,” Journal of Aircraft, vol. 29, no. 6, pp. 1064-1068,
1992.

J. M. P. van Waveren, “The asynchronous time warp for virtual
reality on consumer hardware,” in Proceedings of the 22nd

https://github.com/kelkka/RemoteRenderedVR
https://github.com/kelkka/RemoteRenderedVR
https://www.trinusvirtualreality.com/
https://github.com/polygraphene/ALVR
https://github.com/polygraphene/ALVR
https://riftcat.com/vridge
https://arvr.google.com/cardboard/
https://arvr.google.com/cardboard/
https://sv.wikipedia.org/wiki/Samsung_Gear_VR
https://sv.wikipedia.org/wiki/Samsung_Gear_VR
https://en.wikipedia.org/wiki/Google_Daydream
https://en.wikipedia.org/wiki/Google_Daydream
https://www.tpcast.cn/index.php?s=/Front/Goods/index/good/10228/l/en-us
https://www.tpcast.cn/index.php?s=/Front/Goods/index/good/10228/l/en-us
https://www.vive.com/us/wireless-adapter/
https://www.vive.com/us/wireless-adapter/
https://developer.oculus.com/blog/how-does-oculus-link-work-the-architecturepipeline-and-aadt-explained/
https://developer.oculus.com/blog/how-does-oculus-link-work-the-architecturepipeline-and-aadt-explained/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://about.att.com/ecms/dam/snrdocs/Foundry%20ARVR%20Public%20Whitepaper%20.pdf
https://about.att.com/ecms/dam/snrdocs/Foundry%20ARVR%20Public%20Whitepaper%20.pdf
https://about.att.com/ecms/dam/snrdocs/Foundry%20ARVR%20Public%20Whitepaper%20.pdf
https://media.steampowered.com/apps/steamdevdays/slides/vrshouldbe.pdf
https://media.steampowered.com/apps/steamdevdays/slides/vrshouldbe.pdf
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.tiriasresearch.com/downloads/the-instantaneouscloud-emerging-consumer-applications-of-5g-wireless-networks/
https://www.tiriasresearch.com/downloads/the-instantaneouscloud-emerging-consumer-applications-of-5g-wireless-networks/
https://www.tiriasresearch.com/downloads/the-instantaneouscloud-emerging-consumer-applications-of-5g-wireless-networks/
https://store.steampowered.com/hwsurvey/
https://store.steampowered.com/hwsurvey/
http://doc-ok.org/?p=1478
http://doc-ok.org/?p=1405
https://twvideo01.ubm-us.net/o1/vault/gdc2019/presentations/Hogge_Akimitsu_Controller_to_display.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2019/presentations/Hogge_Akimitsu_Controller_to_display.pdf
https://twvideo01.ubm-us.net/o1/vault/gdc2019/presentations/Hogge_Akimitsu_Controller_to_display.pdf
https://danluu.com/latency-mitigation/

International Journal of Computer Games Technology

(30]

(31]

(32]

(33]

(34]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(44]

(45]

[46]

ACM Conference on Virtual Reality Software and Technology,
pp. 37-46, Munich, Germany, 2016.

W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3D
warping,” in Proceedings of the 1997 Symposium on Interactive
3D Graphics, p. 7, Providence, Rhode Island, USA, 1997.

E. M. Peek, B. C. Wiinsche, and C. Lutteroth, “Image warping
for enhancing consumer applications of head-mounted dis-
plays,” in Proceedings of the Fifteenth Australasian User Inter-
face Conference, pp. 47-55, Auckland, New Zealand, 2014.

F. A. Smit, R. van Liere, and B. Frohlich, “The design and
implementation of a VRArchitecture for smooth motion,” in
Proceedings of the 2007 ACM Symposium on Virtual Reality
Software and Technology, pp. 153-156, Newport Beach, Cali-
fornia, 2007.

S. M. LaValle, Virtual Reality, Cambridge University Press,
University of Oulu, Finland, 2019, http://vr.cs.uiuc.edu/.
7Z.Llai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion:
Engineering High-quality immersive virtual reality on today’s
mobile devices,” IEEE Transactions on Mobile Computing,
vol. 19, no. 7, pp. 1586-1602, 2020.

T. Bova and T. Krivoruchka, Reliable UDP Protocol, IETF,
1999, August 2020, https://tools.ietf.org/html/draft-ietf-
sigtran-reliable-udp-00.

F. Mwalongo, M. Krone, G. Reina, and T. Ertl, “State-of-the-
art report in webbased visualization,” Computer Graphics
Forum, vol. 35, no. 3, pp- 553-575, 2016.

H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of
mobile cloud computing: architecture, applications, and
approaches,” Wireless Communications and Mobile Comput-
ing, vol. 13, no. 18, pp. 1587-1611, 2013.

O. G. Staadt, J. Walker, C. Nuber, and B. Hamann, “A survey
and performance analysis of software platforms for interactive
cluster-based multi-screen rendering,” in Proceedings of the
Workshop on Virtual Environments, pp. 261-270, Zurich,
Switzerland, 2003.

X Org Foundation, “X Window System,” 1984, February 2021,
https://en.wikipedia.org/wiki/X_Window_System.

M. R. van der Werft, M. H. K. de Grijp, S. G. Vrind, and B. R.
Haverkort, “The X Window System over ISDN-a performance
study,” in Tenth UK Teletraffic Symposium, 10th. Performance
Engineering in Telecommunications Network, pp. 1-7, Martle-
sham Heath, UK, 1993.

T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper,
“Virtual network computing,” IEEE Internet Computing,
vol. 2, no. 1, pp. 33-38, 1998.

N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantify-
ing interactive user experience on thin clients,” Computer,
vol. 39, no. 3, pp. 46-52, 2006.

SGI, “OpenGL Vizserver,” 2000, February 2021, https://web
.archive.org/web/20000817094004/http://www.sgi.com/
software/vizserver/overview.html.

J. Brooke, T. Eickermann, and U. Woessner, “Application
steering in a collaborative environment,” in Proceedings of
the 2003 ACM/IEEE conference on Supercomputing - SC '03,
p- 61, Phoenix AZ USA, 2003.

S. N. Laboratories and K. Inc, “ParaView,” 2002, February
2021, https://gitlab.kitware.com/paraview/paraview.

P. Navratil, J. Johnson, and V. Bromm, “Visualization of cos-
mological particle-based datasets,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 13, no. 6, pp. 1712-
1718, 2007.

15

[47] StreamMyGame, “About,” 2007, March 2021, https://web
.archive.org/web/20080927072853/http://www
.streammygame.com/smg/modules.php?name=About.

[48] Nvidia, “Reality server,” 2009, February 2021, https://web
.archive.org/web/20091025074652/http://www.nvidia.com/
object/realityserver.html.

[49] OnLive, “OnLive,” 2010, February 2021, http://onlive.com/.

[50] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-
L. Lei, “Measuring the latency of cloud gaming systems,” in
Proceedings of the 19th ACM International Conference on Mul-
timedia (MM ‘11), pp. 1269-1272, Scottsdale, Arizona, USA,
2011.

[51] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-
H. Hsu, “GamingAnywhere,” ACM Transactions on Multime-
dia Computing, Communications, and Applications, vol. 10,
no. 1s, article 10, pp. 1-25, 2014.

[52] M. Claypool and D. Finkel, “The effects of latency on player
performance in cloud-based games,” in 2014 13th Annual
Workshop on Network and Systems Support for Games,
pp. 1-6, Nagoya, Japan, 2014.

[53] Sony, “PlayStation Now,” 2014, February 2021, https://www
.playstation.com/en-us/ps-now/.

[54] Google, “Stadia,” 2019, February 2021, https://stadia.google
.com/.

[55] M. Marsden, M. Hazas, and M. Broadbent, “From one edge to

the other: exploring gaming’s rising presence on the network,”

in Proceedings of the 7th International Conference on ICT for

Sustainability, pp. 247-254, Bristol, United Kingdom, 2020.

Nvidia, “Geforce NOW,” 2020, February 2021, https://www

.nvidia.com/en-us/geforce-now/.

[57] Wikipedia, “Geforce NOW,” 2015, February 2021, https://en
.wikipedia.org/wiki/GeForce_Now.

[58] Microsoft, “Xbox cloud gaming,” 2019, February 2021, https://
www.xbox.com/en-US/xboxgame-pass/cloud-gaming.

[56

[59] Amazon, “Luna,” 2020, February 2021, https://www.amazon
.com/luna.

[60] Nvidia, “CloudXR,” 2020, March 2021, https://developer
.nvidia.com/nvidia-cloudxr-sdk.

[61] Y.Liand W. Gao, “MUVR: supporting multi-user mobile vir-
tual reality with resource constrained edge cloud,” in Proceed-
ings of the 2018 IEEE/ACM Symposium on Edge Computing

(SEC), pp. 1-16, Seattle, WA, USA, 2018.

[62] M. F. Romero-Rondo6n, L. Sassatelli F. Precioso, and
R. Aparicio-Pardo, “Foveated streaming of virtual reality
videos,” in Proceedings of the 9th ACM Multimedia Systems
Conference, pp. 494-497, Amsterdam, Netherlands, 2018.

[63] S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile VR on edge
cloud: a latency-driven design,” in Proceedings of the 10th
ACM Multimedia Systems Conference, pp. 222-231, Amherst,
Massachusetts, 2019.

[64] M. Viitanen, J. Vanne, T. D. Himildinen, and A. Kulmala,
“Low latency edge rendering scheme for interactive 360 degree
virtual reality gaming,” in 2018 IEEE 38th International Con-
ference on Distributed Computing Systems (ICDCS),
pp. 1557-1560, Vienna, Austria, 2018.

[65] T.Kédmariinen, M. Siekkinen, J. Eerikdinen, and A. Yli-J4iski,
“CloudVR: cloud accelerated interactive mobile virtual real-
ity,” in Proceedings of the 26th ACM International Conference
on Multimedia (MM ’18), pp. 1181-1189, Seoul, Republic of
Korea, 2018.

http://vr.cs.uiuc.edu/
https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
https://en.wikipedia.org/wiki/X_Window_System
https://web.archive.org/web/20000817094004/http://www.sgi.com/software/vizserver/overview.html
https://web.archive.org/web/20000817094004/http://www.sgi.com/software/vizserver/overview.html
https://web.archive.org/web/20000817094004/http://www.sgi.com/software/vizserver/overview.html
https://gitlab.kitware.com/paraview/paraview
https://web.archive.org/web/20080927072853/http://www.streammygame.com/smg/modules.php?name=About
https://web.archive.org/web/20080927072853/http://www.streammygame.com/smg/modules.php?name=About
https://web.archive.org/web/20080927072853/http://www.streammygame.com/smg/modules.php?name=About
https://web.archive.org/web/20091025074652/http://www.nvidia.com/object/realityserver.html
https://web.archive.org/web/20091025074652/http://www.nvidia.com/object/realityserver.html
https://web.archive.org/web/20091025074652/http://www.nvidia.com/object/realityserver.html
http://onlive.com/
https://www.playstation.com/en-us/ps-now/
https://www.playstation.com/en-us/ps-now/
https://stadia.google.com/
https://stadia.google.com/
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://en.wikipedia.org/wiki/GeForce_Now
https://en.wikipedia.org/wiki/GeForce_Now
https://www.xbox.com/en-US/xboxgame-pass/cloud-gaming
https://www.xbox.com/en-US/xboxgame-pass/cloud-gaming
https://www.amazon.com/luna
https://www.amazon.com/luna
https://developer.nvidia.com/nvidia-cloudxr-sdk
https://developer.nvidia.com/nvidia-cloudxr-sdk

16

(66]

(67]

(70]

(71]

(73]

(74]

(81]

(82]

(83]

(84]

M. Pitkinen, M. Viitanen, A. Mercat, and J. Vanne, “Remote
VR gaming on mobile devices,” in Proceedings of the 27th
ACM International Conference on Multimedia, pp. 2191-
2193, Nice, France, 2019.

E. Cuervo, A. Wolman, L. P. Cox et al., “Kahawai: high-quality
mobile gaming using GPU offload,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ‘15), pp. 121-135, Florence, Italy,
2015.

Nvidia, “GTC silicon valley-2019 ID:S9914,Cloud XR: chal-
lenges and strategies in streaming XR over 5G,” 2019, March
2021, https://developer.nvidia.com/gtc/2019/video/s9914/
video.

J. Carmack, “Day 2 Keynote | Oculus Connect 6,” 2019, May
2020, https://www.youtube.com/watch?v=PMIDaomx0GA.
R. Zhong, M. Wang, Z. Chen et al., “On building a program-
mable wireless high-quality virtual reality system using com-
modity hardware,” in Proceedings of the 8th Asia-Pacific
Workshop on Systems, p. 7, Mumbai, India, 2017.

Nvidia, “Nvidia video codec SDK,” 2013, January 2020, https://
developer.nvidia.com/nvidia-video-codec-sdk.

Riftcat, “Dev update #57-streaming enhanced release,” 2020,
August 2020, https://blog.riftcat.com/2020/04/dev-update-
57-streaming-enhanced-release. html.

J. Nieh, S. J. Yang, and N. Novik, “Measuring thin-client per-
formance using slow-motion benchmarking,” ACM Transac-
tions on Computer Systems, vol. 21, no. 1, pp. 87-115, 2003.
V. Kelkkanen, M. Fiedler, and D. Lindero, “Bitrate require-
ments of non-panoramic VR remote rendering,” in Proceed-
ings of the 28th ACM International Conference on
Multimedia (MM 20), pp. 3624-3631, Seattle, WA, USA,
2020.

Valve, “OpenVR SDK,” 2015, January 2020, https://github
.com/ValveSoftware/openvr.

A. Vlachos, Advanced VR Rendering, Valve, 2015, February
2020, http://alex.vlachos.com/graphics/Alex_Vlachos_
Advanced_VR_Rendering GDC2015.pdf.

Nvidia, “Video encode and decode GPU support matrix,”
2016, January 2020, https://developer.nvidia.com/video-
encode-decode-gpu-support-matrix.

V. Software, “GameNetworkingSockets,” 2018, August 2020,
https://github.com/ValveSoftware/GameNetworkingSockets.
IETF, “Datagram congestion control protocol (DCCP) 11.4.
ack vector options,” IETF, 2006, August 2020, https://tools
Jdetf.org/html/rfc4340#section-11.4.

Microsoft, “IPPROTO_TCP socket options,” 2018, August
2020, https://docs.microsoft.com/en-us/windows/win32/
winsock/ipproto-tcp-socket-options.

Engadget, “HTC Vive ditches the PC thanks to China’s cloud
VR service,” 2017, May 2020, https://www.engadget.com/
2017-09-19-htc-vive-china-cloud-vr-service. html.

K. Andersson, M. Nilsson, and A. Gylling, 5G Innovation Hub
North, Ericsson, Telia and Tieto, 2020, September 2020,
https://www.5ginnovationhubnorth.se/.

T.-K. Le, U. Salim, and F. Kaltenberger, “An overview of phys-
ical layer design for ultra-reliable low-latency communications
in 3GPP release 15 and release 16,” 2020, http://arxiv.org/abs/
2002.03713 [eess.SP].

V. Kelkkanen and M. Fiedler, “A test-bed for studies of tempo-
ral data delivery issues in a TPCAST wireless virtual reality set-
up,” in Proceedings of the 28th International Telecommunica-

(85]

(86]

(87]

(88]

%
2

[90]

[91]

International Journal of Computer Games Technology

tion Networks and Applications Conference (ITNAC), Sydney,
Australia, 2018.

A. Basu, A. Sullivan, and K. Wiebe, “Variable resolution tele-
conferencing,” in Proceedings of IEEE Systems Man and Cyber-
netics Conference-SMC, vol. 4, pp. 170-175, Le Touquet,
France, 1993.

S.Lee and A. C. Bovik, “Fast algorithms for foveated video pro-
cessing,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 2, pp. 149-162, 2003.

C.J. Hansen, “WiGiG: multi-gigabit wireless communications
in the 60 GHz band,” IEEE Wireless Communications, vol. 18,
no. 6, pp. 6-7, 2011.

Y. Ghasempour, R. C. M. Claudio, C. C. da Silva, and E. W.
Knightly, “IEEE 802.11ay: next-generation 60 GHz communi-
cation for 100 Gb/s Wi-Fi,” IEEE Communications Magazine,
vol. 55, no. 12, pp. 186-192, 2017.

IEEE, Status of project IEEE 802.11ay, IEEE, 2020, June 2020,
http://www.ieee802.org/11/Reports/tgay_update.htm.

F. Alriksson, L. Bostrom, S. Joachim, Y.-P. Eric Wang, and
A. Zaidi, Critical IoT Connectivity, Ericsson, 2020, September
2020, https://www.ericsson.com/49ba0b/assets/local/reports-
papers/ericsson-technology-review/docs/2020/critical-iot-
connectivity.pdf.

X. Li, Y. Wu, W. Zhang, R. Wang, and F. Hou, “Deep learning
methods in realtime image super-resolution: a survey,” Journal
of Real-Time Image Processing, vol. 17, no. 6, pp. 1885-1909,
2020.

https://developer.nvidia.com/gtc/2019/video/s9914/video
https://developer.nvidia.com/gtc/2019/video/s9914/video
https://www.youtube.com/watch?v=PMIDaomx0GA
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://blog.riftcat.com/2020/04/dev-update-57-streaming-enhanced-release.html
https://blog.riftcat.com/2020/04/dev-update-57-streaming-enhanced-release.html
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr
http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://github.com/ValveSoftware/GameNetworkingSockets
https://tools.ietf.org/html/rfc4340#section-11.4
https://tools.ietf.org/html/rfc4340#section-11.4
https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-tcp-socket-options
https://docs.microsoft.com/en-us/windows/win32/winsock/ipproto-tcp-socket-options
https://www.engadget.com/2017-09-19-htc-vive-china-cloud-vr-service.html
https://www.engadget.com/2017-09-19-htc-vive-china-cloud-vr-service.html
https://www.5ginnovationhubnorth.se/
http://arxiv.org/abs/2002.03713
http://arxiv.org/abs/2002.03713
http://www.ieee802.org/11/Reports/tgay_update.htm
https://www.ericsson.com/49ba0b/assets/local/reports-papers/ericsson-technology-review/docs/2020/critical-iot-connectivity.pdf
https://www.ericsson.com/49ba0b/assets/local/reports-papers/ericsson-technology-review/docs/2020/critical-iot-connectivity.pdf
https://www.ericsson.com/49ba0b/assets/local/reports-papers/ericsson-technology-review/docs/2020/critical-iot-connectivity.pdf

	Synchronous Remote Rendering for VR
	1. Introduction
	1.1. VR Remote Rendering
	1.1.1. Local Latency Mode
	1.1.2. Server-Client Synchronization Challenges
	1.1.3. Synchronous Design Motivation

	1.2. Contribution and Structure

	2. Related Work
	2.1. 360° Panorama VR
	2.2. Split Rendering
	2.3. Nonpanoramic VR
	2.3.1. Screen-Recorder Approach
	2.3.2. Game Integration and VSync Estimation
	2.3.3. Example from Industry
	2.3.4. Measurements

	3. Materials and Methods
	3.1. Synchronization
	3.2. Codec
	3.3. Network
	3.4. Dynamic Resolution
	3.5. Test Setups

	4. Results and Discussion
	4.1. Resolution Tests in Local Latency Mode
	4.1.1. LAN
	4.1.2. Intranet
	4.1.3. Internet
	4.1.4. 5G

	4.2. Resolution Tests with Delay Injection
	4.3. Soak Tests
	4.3.1. Soak Test Results
	4.3.2. Soak Test Summary

	5. Conclusions and Outlook
	5.1. Limitations
	5.2. Future Work

	Data Availability
	Conflicts of Interest
	Acknowledgments

