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Abstract—The paper proposes the extensions of the avail-
able linear and cubic interpolation methods for backprojecting 
complex SAR data into an image plane. Due to the fact that 
the phase of complex SAR data is very sensitive to the shift 
in time, the proposed interpolations include the phase control 
of the interpolated complex values. The proposed methods are 
examined with the global backprojection algorithm that is used 
to process SAR data at THz frequencies. In numerical examples, 
a two-dimensional indoor THz SAR imaging for a point target 
is considered, where the developed interpolation methods are 
compared with the nearest neighbor approach. 

Index Terms—Complex-valued data interpolation, THz SAR, 
GBP. 

I. INTRODUCTION 

Synthetic aperture radar (SAR) is the remote sensing tech-
nique that is widely used in various application areas. The 
range of applications is broad, from the spaceborne applica-
tions that allow us to study geology and hydrology at the 
distance of hundreds kilometres from the Earth surface to 
the indoor short-distance sensing measurements with high 
resolution at THz frequencies [1]. THz SAR imaging is a new 
and an active research area, where the objective is to design 
THz SAR imaging systems that can be mounted on different 
platforms, especially fying platform. For the experimental 
SAR systems operating at 300 GHz [2]–[4] and 600 GHz [5], 
mounting them on fying platform leads to several technical 
issues. One of foreseen issue is that at the THz frequencies, 
the SAR imaging system becomes sensitive to vibrations of the 
fying platform [6]. In this case, signal processing algorithms 
that are capable to handle the motion error compensation are 

of nearest neighbor, piecewise linear, four- and six-point cubic 
convolution, and truncated sinc interpolators is presented with 
the application to SAR interferometry. The evaluation recom-
mends four-point cubic convolution interpolator as the optimal, 
and also six-point cubic convolution for high-resolution appli-
cations. In [10], a combination of truncated sinc interpolator 
with the Hanning window has been proposed to improve 
the coherency in SAR interferometry, and the results have 
shown that there is no interpolator for SAR image resampling 
that is optimal for all SAR data type and quality. To the 
knowledge of authors, none of these interpolators, excluding 
the nearest neighbor, has been formulated for processing 
complex numbers, especially for SAR data represented by 
complex numbers, so-called complex SAR data in the rest of 
this paper. 

In this paper, we propose the extended versions of linear and 
cubic interpolations. The developed interpolators are adopted 
for processing complex SAR data, as a part of the global 
backprojection algorithm, and compared with the nearest 
neighbor approach. We also investigate the effects of sampling 
frequency on the accuracy of THz SAR image formation. 

II. PROBLEM SETUP 

Consider an indoor SAR system that performs two-
dimensional imaging with respect to azimuth ξ and range ρ at 
THz frequencies; see Fig. 1. The THz SAR system is mounted 
on the fying platform, such as a quadcopter, and transmits 
frequency-modulated signals of the form 

required. 
The global backprojection algorithm (GBP) [7] is the time- st(τ ) = Ate 

τ2 Tp Tp B 
p , j2πfcτ +jπ 

, (1)T − ≤ τ ≤ 
2 2 

domain SAR imaging algorithm that can be considered as a 
natural solution for THz SAR systems that are mounted on 
fying platform. The advantages of the GBP are the capability 
to handle radar signals with large fractional bandwidth and the 
motion error compensation [8]. The GBP algorithm includes 
an interpolation procedure, in which the complex value for 
a given range time delay is interpolated from the complex 
SAR data. This interpolated value is then backprojected into 
a defned image plane. There exist various interpolation algo-
rithms that are used for SAR applications. In [9], an evaluation 

towards the scanned area, where τ is the range time, Tp 

the pulse duration, B = fmax − fmin the bandwidth of the 
signal that depends on the minimal fmin and maximal fmax 

frequencies, and fc = (fmax + fmin)/2 the center frequency. 
The indoor SAR system is monostatic, follows the straight 
path with respect to the azimuth axis (for ρ = 0), and assume 
that it receives backscattered signals at the same points where 
the signals have been broadcasted. The received signals are of 
the following form � � 

τ − τd (τ −τd )
2This work was supported by ELLIIT research environment under the project 

Multistatic High-resolution Sensing at THz. sr(ξ, τ) = Ar rect 
B 
p

j2πfc(τ −τd)+jπ 
, (2)Te 

Tp 
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⎪⎪⎪⎪
⎪⎪⎪⎪

where Ar is the refectivity of the scattering object that is 
located in the scanned area, rect{·} is the rectangular window 
that terminates the existence of the received signal in the given 
range-time frame, and τd is the range-time delay given by 
τd = 2R/c0. Here, c0 denotes the speed of light in vacuum, 
and R the radar range, i.e., the distance between the SAR 
platform and the scattering object that can be calculated as p

R = (ξ − ξs)2 + ρ2 , (3)s 

where (ξ, 0) and (ξs, ρs) are the coordinates of the platform 
and the scattering object, respectively. 

⇠

⇢

R(⇠, ⇢)

(0, R0)

�⇠0/2

⇠0/2

0

Fig. 1. Problem setup. Here, R0 denotes the minimal range distance between 
the THz SAR system and the scattering object located in scanned area. 

Let GBP be the imaging algorithm to be used for image 
formation in the THz SAR system. A SAR scene h(ξ, ρ) can 
be reconstructed via the GBP based on the superposition of 
the backscattered received signals that are backprojected into 
a defned image plane, the slant-range plane in this problem 
setup. The algorithm can mathematically be expressed as Z ξ0/2 

h(ξ, ρ) = g(ξ, τ ) dξ. (4) 
−ξ0/2 

Here, ξ0 denotes the aperture length and g(ξ, τ) the range-
compressed version of the received signal, which is obtained 

∗via the matched fltering procedure g(ξ, τ) = sr(ξ, τ)∗s (−τ),t 
where (·)∗ denotes the complex conjugation. The range-
compressed received signal can analytically be expressed as � � |τ − τd|
g(ξ, τ ) = 1 − 

Tp� � �� |τ − τd| j2πfc(τ−τd)× sinc πB(τ − τd) 1 − e . (5)
Tp 

III. INTERPOLATION 

In this section, we briefy review several interpolation ap-
proaches for real numbers. Then we extend them to complex 
SAR data. Besides the nearest neighbor approach that might 
be applied to complex data directly, linear- and cubic-spline 
interpolations are also considered in this section. 

A. Real-valued Data 

1) Nearest Neighbor Interpolation: The nearest neighbor 
method is one of the simplest interpolation methods that can 
be described by the following relations on the interval [x0, x1]( 

1 y1, (x1 − x0) < x ≤ x1,2 
sn(x) = (6)

1 (x1 − x0),y0, x0 ≤ x < 2 

where x0 < x1. Here, yi denotes the data value of the sample 
at xi for i = 0, 1. The nearest neighbor interpolator (6) 
estimates the data sn at the desired moment x by assigning 
the data value of the nearest sample as an estimated data at x. 

2) Linear-spline Interpolation: The linear spline sl(x) con-
sists of a linear polynomial function on the interval [x0, x1], 
where x0 < x1 are the knot points. The linear spline is 
uniquely defned by 

sl(x) = a + b(x − x0), x0 ≤ x ≤ x1 (7) 

with the corresponding derivative 
0 sl(x) = b, x0 ≤ x ≤ x1, (8) 

and where the polynomial coeffcients a, b ∈ R. The linear 
spline satisfes the following conditions at the knot points( 

sl(x0) = y0, 
(9) 

sl(x1) = y1, 

which imply continuity at the internal knot points, and where 
yi, i = 0, 1, are the reference data points. 

The unknown polynomial coeffcients a, b can be deter-
mined by solving the system of linear equations 

Ac = y, (10) 

which provides a unique solution and constructed based on 
spline conditions (9). Here,� � 

A =
1 0 

, (11)
1 x1 − x0 

T T 
c = [a b] and y = [y0 y1] are the column vectors that 
contain unknown coeffcients and the reference data values, 
respectively. 

3) Cubic-spline Interpolation: The cubic spline sc(x) con-
sists of piecewise cubic polynomial functions on the interval 
[x0, x2], where xi−1 < xi for i = 1, 2 are the knot points. 
The cubic spline is uniquely defned by 

sc,i(x) = ai + bi(x − xi−1) + ci(x − xi−1)
2 

+ di(x − xi−1)
3 , xi−1 ≤ x ≤ xi, (12) 

on 2 subintervals with corresponding derivatives 

0 sc,i(x) = bi + 2ci(x − xi−1) 

+ 3di(x − xi−1)
2 , xi−1 ≤ x ≤ xi, (13) 

00 sc,i(x) = 2ci + 6di(x − xi−1), xi−1 ≤ x ≤ xi, (14) 

and 
000 s xi−1 ≤ x ≤ xi, (15)c,i(x) = 6di, 

where the polynomial coeffcients ai, bi, ci, di ∈ R. The cubic 
spline satisfes the following conditions at the knot points⎧ 

sc,i(xi−1) = yi−1, ⎪⎨ sc,i(xi) = yi, 
(16)0 0sc,i(xi) = sc,i+1(xi), ⎪⎩ 00 00s (xi) = s (xi)c,i c,i+1 



⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪

for i = 1, 2 and where the last two conditions are not 
applicable to the points x0 and x2. Here, yi corresponds to 
the reference data points. 

By employing the spline conditions (16), let δi−1 = xi − 
00xi−1 and sc,i(xi−1) = pi−1 for i = 1, 2 such that pi−1 = 2ci, 

from which the unknown polynomial coeffcients ai, bi, ci, 
and di of the cubic spline can be determined as ⎧ 

ai = yi−1, 

yi − yi−1 pi + 2pi−1
bi = − δi−1,⎪⎨ 6δi−1 

(17)pi−1 
ci = ,

2 
pi − pi−1⎪⎩ di = . 
6δi−1 

The unknown parameters p0, p1, p2 can be determined by 
solving a system of 3 linear equations 

Ac = y. (18) 

However, to get a unique solution, two boundary conditions 
have to be applied. In this paper, we employ the natural 

00boundary conditions at the edge knot points, i.e., sc,1(x0) = 
00sc,2(x2) = 0. Thus, the components of (18) can be defned as ⎡ ⎤ 

1 0 0 
A = ⎣ δ0 2(δ0 + δ1) δ1 ⎦ , (19) 

0 0 1 ⎡ ⎤ 
0� �⎢ y0 1 1 y2 ⎥ 

y = 6 ⎣ − y1 + + ⎦ , (20)δ0 δ0 δ1 δ1 

0 

Tand c = [p0 p1 p2] . The solution to (18) can then be 
substituted to (17) to determine the unknown polynomial 
coeffcients of the cubic spline. 

B. Complex-valued SAR Data 

Monostatic SAR systems commonly broadcast frequency-
modulated signals to the scanned area and also receive 
echoes of a similar waveform that have been backscattered 
from the targets in that area. The backscattered echoes are 
post-processed (fltered) by SARs and the resulting range-
compressed signal is of the form 

(τ −τd)g(ξ, τ) ≈ sinc [πB(τ − τd)] e
j2πfc , (21) 

which has a complex-valued representation in the time domain 
and where it is assumed that the pulse duration Tp � τ − τd. 
None of the interpolators described in Section III-A, with 
the exception of the nearest neighbor approach, provides an 
opportunity to interpolate complex numbers. In this section, 
we introduce the extensions of linear- and cubic-spline inter-
polators that are adopted for processing complex SAR data. 

1) Linear-spline Interpolation: The linear spline for pro-
cessing the complex SAR data slc(τ) is a piecewise linear 
polynomial function on the interval [τ0, τ1], τ ∈ R, where 
τ0 < τ1 are the knot points. The linear spline slc is uniquely 
defned by 

slc(τ) = a + b(τ − τ0), τ0 ≤ τ ≤ τ1 (22) 

with the corresponding derivative 
0 slc(τ) = b, τ0 ≤ τ ≤ τ1, (23) 

and where the polynomial coeffcients a, b ∈ C. 
The unknown polynomial coeffcients a and b can be 

determined by solving the system of linear equations, which 
can be constructed based on spline conditions. However, in 
comparison with the real-valued data case, additional proce-
dures are required. Let τp denote the range time needed for 
a frequency-modulated signal to be transmitted from the SAR 
system to the given pixel of the scanned area and backwards, 
which can be determined as q2 

τp = (ξ − ξp)2 + ρ2 , (24)pc0 

where (ξ, 0) and (ξp, ρp) are the coordinates of the SAR plat-
form and a pixel of the defned image plane, respectively. The 
phase of the range-compressed signal (21) is the component 
that contains information about the range time delay τd, which 
consequently corresponds to the range distance between the 
SAR platform and the target. Similarly, the information about 
the range distance between the SAR platform and the given 
pixel of the defned image plane can be contained in the range 
time parameter τp. Assume that τ0 < τp < τ1. To estimate the 
data value of sample τp accurately, a priori knowledge about 
the distance has to be integrated to the phase of the unknown 
parameter s(τp). This can be achieved by extending the spline 
conditions to the form 

j2πfc(τp −τi)slc(τi) = yie (25) 

for i = 0, 1. The resulting flter function for estimation 
of complex-valued data value at sample τp based on linear 
interpolation is given by 

slc(τp) = a + b(τp − τ0), (26) 

where the polynomial coeffcients a = ỹ0, and b = (ỹ1 − 
j2πfc(τpỹ0)/(τ1 − τ0), where ỹi = yie −τi) for i = 0, 1. 

2) Cubic-spline Interpolation: The cubic spline for pro-
cessing the complex SAR data scc(τ ) consists of piecewise 
cubic polynomial functions on the interval [τ0, τ2], τ ∈ R, 
where τi−1 < τi for i = 1, 2 are the knot points. The cubic 
spline scc,i is uniquely defned by 

scc,i(τ) = ai + bi(τ − τi−1) + ci(τ − τi−1)
2 

+ di(τ − τi−1)
3 , τi−1 ≤ τ ≤ τi, (27) 

on given 2 subintervals with corresponding derivatives 

0 scc,i(τ) = bi + 2ci(τ − τi−1) 

+ 3di(τ − τi−1)
2 , τi−1 ≤ τ ≤ τi, (28) 



00 scc,i(τ) = 2ci + 6di(τ − τi−1), τi−1 ≤ τ ≤ τi, (29) 

and 
000 s (30)cc,i(τ) = 6di, τi−1 ≤ τ ≤ τi, 

where the polynomial coeffcients ai, bi, ci, di ∈ C. 
Let the range time τp needed for a frequency-modulated 

signal to be transmitted from the SAR platform to the given 
pixel of the defned image plane and backwards be defned by 
(24), such that τ0 < τp < τ1. To estimate the data value of 
sample τp based on the cubic-spline interpolation accurately, 
a prior information about the phase of the unknown parameter 
has to be predefned and integrated to the spline conditions, 
resulting as 

j2πfc(τp−τi )scc,i(τi) = yie (31) 

for i = 0, 1, 2 and 
0 0 00 00 s s (32)cc,i(τi) = scc,i+1(τi), cc,i(τi) = scc,i+1(τi) 

for i = 0, 1. Furthermore, let δi−1 = τi − τi−1. By employing 
00the spline conditions (31) and (32), let scc,i(τi−1) = pi−1 for 

i = 2 such that pi−1 = 2ci. The unknown parameters p0, p1, 
and p2 can be uniquely determined by solving the following 
system of linear equations⎡ ⎤⎡ ⎤ ⎡ ⎤ 
1 0 0 p0 0 

ỹ0 δ0+δ1 ỹ2⎣ δ0 2(δ0 + δ1) δ1 ⎦⎣ p1 ⎦ = 6 ⎣ − ỹ1 + ⎦ ,δ0 δ0δ1 δ1 

0 0 1 p2 0 
(33) 

which includes the natural boundary conditions at the knot 
00 00 j2πfc(τp−τi)points s = s = 0. Here, ˜ = cc,1(τ0) cc,2(τ2) yi yie 

for i = 0, 1, 2. The resulting flter function based on cubic-
spline interpolation is given by 

scc,1(τp) = a1+b1(τp−τ0)+c1(τp−τ0)2+d1(τp −τ0)3 , (34) 

where the complex-valued polynomial coeffcients are a1 = 
ỹ0, b1 = (ỹ1 − ỹ0)/δ0 − (p1 + 2p0)/6, c1 = p0/2, and d1 = 
(p1 − p0)/6h0. 

IV. NUMERICAL EXAMPLES 

In this section, we present some simulations, where the 
interpolation techniques introduced in Section III-B are incor-
porated with the GBP. The proposed methods are compared 
with the nearest neighbor approach. As a case study, we 
consider a two-dimensional indoor THz SAR imaging for a 
point target. Assume that a point target is in the center of 
SAR scene and that the minimal range distance between the 
imaging system and the target is R0 = 0.12 m. Furthermore, 
assume that the THz SAR system has characteristics similar to 
the system described in [4]. The system transmits frequency-
modulated signals (1) of duration Tp = 0.1 µs with the 
baseband bandwidth [0.22, 0.33] THz and the corresponding 
center frequency fc = 0.275 THz. The total number of 
measurements is Nξ = 23, which are equidistantly performed 
along the azimuth ξ-axis with the step Δξ = 0.955 mm, such 
that the integration angle φ0 = 10◦ . 

Fig. 2 depicts reconstructed SAR scenes h of resolution 
251×251 pixels that have been obtained with nearest neighbor 

(6), linear (26), and cubic interpolation (34) techniques, re-
spectively. In Figs. 2a–c, the sampling rate is the Nyquist rate, 
i.e., fs = 2fmax = 0.66 THz, and in Figs. 2d–f, the upsampled 
case with the rate fs = 4fmax = 1.32 THz is considered. 
Here, the intensity of SAR scenes is normalized with respect 
to the peak intensity for the corresponding case. Note that the 
SAR scenes are plotted as functions of normalized azimuth 
ξn and range ρn, which have been normalized with sin(φ0/2) 
and a half of the fractional bandwidth, respectively. It has 
been observed that for the sampling rate fs = 2fmax, the 
SAR scene obtained with the nearest neighbor interpolation 
contains rough representation of the point target in comparison 
with the scenes, in reconstruction of which linear- and cubic-
spline flters have been used. The reason of the observed 
phenomenon is that the nearest neighbor method assigns the 
nearest complex-valued data to the sample of interest and 
correspondingly, the phase of the estimated parameter is not 
in agreement with the range time τp and the range distance 
between the SAR system and the pixel of the defned image 
plane. However, when the sampling rate is increased twice, i.e., 
fs = 4fmax, nearest neighbor interpolation provides accurate 
visualization of the point target; see Figs. 2d and 2a for 
comparison. 

Fig. 3 depicts the comparison of three reconstructed SAR-
scene functions h(0, ρn) normalized with the energy contained 
in the −3 dB main-lobe width that have been obtained with 
nearest neighbor, linear, and cubic interpolation methods, 
respectively. The SAR scenes are plotted as functions of 
normalized range ρn. In the case when the sampling rate fs = 
2fmax that is shown in Fig. 3a, the scene function h(0, ρn) 
obtained with nearest neighbor interpolation is rough and has 
higher intensity, which is caused by disagreement between the 
phase of estimated complex-valued parameter and the distance 
between the imaging system and the pixel of the defned image 
plane. The result also demonstrates that the main-lobe width 
of h(0, ρn) obtained with the nearest neighbor approach is 
smaller than the main-lobe widths of functions obtained via 
linear- and cubic-spline flters (0.005 for nearest neighbor 
and 0.0055 for other presented methods). Hence, it can be 
concluded that linear- and cubic-spline interpolation methods 
provide more accurate results of processing complex SAR data 
for the Nyquist sampling rate fs = 2fmax = 0.66 THz. 

In Fig. 3b is shown the comparison of SAR-scene function 
h(0, ρn) obtained with the nearest neighbor approach for 
upsampled signals at the rate fs = 4fmax = 1.32 THz with 
the results obtained via linear and cubic interpolations for the 
Nyquist rate fs = 2fmax = 0.66 THz. The upsampling proce-
dure of the range-compressed signals g(ξ, τ) was performed 
by zero padding of their spectra in the frequency domain 
by the factor of 2 and further inverse transformation to the 
time domain. The result demonstrates that the SAR scene 
obtained via the nearest neighbor approach for fs = 4fmax 

becomes smooth, which improves visualization of the point 
target as depicted in Fig. 2d, and its main lobe agrees with 
the main lobes of other considered functions with respect 
to width (0.0055) and normalized intensity. However, the 
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Fig. 2. Reconstructed SAR scenes h of resolution 251 × 251 pixels with nearest neighbor, linear, and cubic interpolations. Here, the sampling rate: a–c) 
fs = 2fmax = 0.66 THz; d–f) fs = 4fmax = 1.32 THz. 
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Fig. 3. Reconstructed SAR scene h(0, ρn) at normalized azimuth ξn = 
0 with nearest neighbor, linear, and cubic interpolations, respectively. Here, 
the sampling frequency: a) fs = 2fmax = 0.66 THz; b) fs = 4fmax = 
1.32 THz for result obtained via the nearest neighbor approach and fs = 
2fmax = 0.66 THz for results obtained with linear and cubic interpolations. 

intensity of sidelobes of h(0, ρn) for the upsampled case based 
on nearest neighbor interpolation is higher than intensity of 
the corresponding sidelobes of the scene obtained with cubic-
spline flter for the Nyquist sampling rate. Hence, it can be 
concluded that cubic-spline interpolation is appropriate for 
THz SAR imaging process among the considered methods and 
provides accurate results without the upsampling procedure. 

V. CONCLUSIONS 

In this paper, the available linear- and cubic-spline interpo-
lations for real numbers have been extended for complex SAR 

data. The developed interpolators have been incorporated with 
the global backprojection algorithm to process complex SAR 
data at THz frequencies. Through the numerical examples, 
it has been investigated that cubic-spline flter provides an 
accurate reconstruction of the SAR scene for the case when 
the sampling rate is the Nyquist rate, i.e., fs = 2fmax, and 
thus, there is no need to perform the upsampling procedure. 
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