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Internet of Things (IoT) is emerging, and 5G enables much more data transport from mobile and wireless sources. The data to be
transmitted is too much compared to link capacity. Labelling data and transmit only useful part of the collected data or their
features is a promising solution for this challenge. Abnormal data are valuable due to the need to train models and to detect
anomalies when being compared to already overflowing normal data. Labelling can be done in data sources or edges to balance
the load and computing between sources, edges, and centres. However, unsupervised labelling method is still a challenge
preventing to implement the above solutions. Two main problems in unsupervised labelling are long-term dynamic
multiseasonality and heteroscedasticity. This paper proposes a data-driven method to handle modelling and heteroscedasticity
problems. The method contains the following main steps. First, raw data are preprocessed and grouped. Second, main models
are built for each group. Third, models are adapted back to the original measured data to get raw residuals. Fourth, raw
residuals go through deheteroscedasticity and become normalized residuals. Finally, normalized residuals are used to conduct
anomaly detection. The experimental results with real-world data show that our method successfully increases receiver-
operating characteristic (AUC) by about 30%.

1. Introduction

Together with rapid development of 5G, the connection
requirement of wireless devices is also developing due to
the eased connectivity and much shorter (in milliseconds)
delay. A result is that Internet of Things (IoT) technologies
are now used by more than a quarter of mainstream business
compared to 13% six years ago. A great number of industry
companies started to put attention on their IoT time series
data, including but not limited to health care [1] and trans-
portation [2]. While lots of mobile vehicles are connected
to the IoT network as data sources [3], much more data is
produced. On one aspect, it is an opportunity for machine
learning-based data processing methods. On the other
aspect, data transmission is now more challenging.

Moving and remote data source create a challenge that it
is hard to send data, especially using wireless ways, as it is still
expensive to use limited wireless resource to transfer data
even for 5G service providers. In some situations, if real-
time moving vehicle information is needed while radio signal
is limited, then wireless and wired connection may be both
needed to provide support together [4, 5]. This situation is
shown in Figure 1.

For this situation, one way to solve it is to label data near
to sources. It not only reduces the amount of data to transfer
but also balances the computing load between edges and cen-
tres [6]. One more benefit is that labelling different types of
data is good for later prediction [7]. However, most solutions
require labelled data to train labelling models or human
expert rich experience to configurate parameters.
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In this work, we try to solve this problem by enhancing
data preprocessing. Our previous initial feasibility experi-
ments show promising results [8] and we complete the
design here. The main contributions of this work include
detailed steps of the data-driven method to handle heterosce-
dasticity of Internet of Things (IoT) data and comparison of
possible unsupervised labelling methods as well as analysis of
the reasons.

The remaining content is organized as follows. First, the
section introduces the problem and related definitions,
together with previous research that tried to tackle this prob-
lem. Second, the proposed method is thoroughly docu-
mented in the section including steps of data preprocessing,
model building, model adaptation, residual matrix construc-
tion, and anomaly detection. Third, the section describes a
series of experiments using real-world data that are carried
out in order to evaluate and compare the performance of
the proposed method in terms of different metrics. Finally,
experimental results are shown and analysed in the section,
and conclusions are made in the section.

2. Background and Related Work

Here, we consider a system with a centre node. IoT data pro-
cessing happens across the entire system [9]. It starts as early
as the source application data part as shown in the updated
TCP/IP architecture in Figure 2. Example source application
data include camera images, video streaming, temperature,
and other environmental sensed values [10]. The sensed data
are then sent via possible networking routing which could be
fully used for distributed processing [11], especially together
with the application layer [12–14]. Physical layer choice mat-
ters as the emergency level and importance level differ among
transported data which should be optimized carefully [15,
16]. When the data finally arrive at the centre, data mining
algorithms could be applied [17] to analyse and conduct pre-
diction in most cases.

Regarding labelling and detection of anomalies in time
series, much work has been done. Previous work can be

categorized in different ways from different aspects [18]. A
typical categorization includes the following categories.
Probability-based methods calculate a density distribution
and use some kind of thresholds to the distribution centre to
label anomalies [19]. Distance-based methods set thresholds
regarding how far an instance deviates from its neighbours.
The measurement can be defined distances, such as in k
-nearest neighbours [20], or some kind of cost of separation
such as decision tree-based methods [21]. Reconstruction-
based methods catch patterns and calculate the expected
values of instances to get the difference, i.e., residuals, and then
use residuals to conduct labelling [22, 23]. Boundary-based
methods, such as support vector machine [24], provide a
boundary or hyperplane to separate abnormal instances from
normal ones. In addition, ensemble methods can be used to
improve the accuracy and robustness of above methods [25].
For the above-mentioned methods, reconstruction-based
methods give not only residuals but also comprehensive pat-
terns and models. Thus, this work focuses on providing a pre-
processing procedure to calculate and standardize residuals as
the first step of reconstruction-based methods.

For reconstructed residuals, as the original saved data is
huge and long-term, one common problem is the variance
of residuals are time-dependent, i.e., heteroscedasticity [26].
Using traffic flow as an example, the variance is high during
noon time when the flow itself is high as shown in Figure 3.
Vice versa, the flow and its variance are both low after mid-
night. This causes problems for labelling algorithms as many
of them cannot distinguish high variances with anomalies.

During literature review, we found two methods that try
to solve the above two problems at the same time. One
method is SARIMA-GARCH (Seasonal Auto-Regressive
Integrated Moving Average-Generalized Auto-Regressive
Conditional Heteroscedasticity) [27]. Another one is TBATS
(Trigonometric Box-cox transform, ARMA errors, Trend
and Seasonal component) [26]. Thus, those two methods
are also tested in this work. For the final detection part,
SHESD (Seasonal Hybrid Extreme Studentized Deviate test)
[28] shows promising results in experiments [29–31] and is
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Figure 1: Data transmission across multiple 5G wireless and wired networks among sources, edges, and centres.
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used here. It is worth mentioning that there are plenty of alter-
native methods while this work focuses on preprocessing.

3. Methodology

The proposed method includes three main steps which are
preprocessing, building day-of-week (DOW) models, and
solving flow-level-heteroscedasticity problem. This part
describes the method in detail. The entire procedure is sum-
marized in Figure 4.

3.1. Preprocess Data. In this part, data are loaded and then
divided into seven groups according to day of week.

For consecutive zeros (continuous three or more zeros)
which means controlled access or device malfunction, set
flags and replace the instances with null:

vflagi =
1, if ri is in consecutive zeros,
0, otherwise:

(
ð1Þ

where ri is the ith measured flow rate value.
Instead of using original natural daily periods, we use a

new starting point. The purpose is to find a base where the
starting flow rates of seasons are low and similar so that the
robust fitting could work better in latter steps. It is worth
mentioning that (daily) seasons may start from other time

than midnight. Actually, the starting point is calculated to
be around 3 am in the experiments.

Nseasons = Norigin

Nperiods

� �
, ð2Þ

where Nseasons is the number of complete seasons, Norigin is
the original number of instances (about 288 × 406 days),
and Nperiods is the number of periods (i.e., instances) per
day (e.g., 288 per day for 5-minute interval data).

All complete seasons are put together to construct a
matrix:

R = s1 s2 ⋯ sis ⋯ sNseasons
� �

, ð3Þ

=

r1,1 r1,2 ⋯ r1,is ⋯ r1,Nseasons

r2,1 r2,2 ⋯ r2,is ⋯ r2,Nseasons

⋮ ⋮ ⋱ ⋮

rip ,1 rip ,2 rip ,is rip ,Nseasons

⋮ ⋮ ⋱ ⋮

rNperiods,1 rNperiods,2 ⋯ rNperiods,is ⋯ rNperiods,Nseasons

2
666666666664

3
777777777775
,

ð4Þ
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Figure 2: Data flow and process architecture.
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Figure 3: Overview of typical time series with heteroscedasticity.
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with each season constructing a column, e.g., s1 =
½r1, r2,⋯, rNperiods �T .

Then, separate the seasons/columns into groups; here, we
use the day of week of the season starting point as the criteria;
thus, there are 7 groups (G1,⋯G7) with similar number of
instances for each group.

Gi = s7n+i ∣ n = 0, 1, 2,⋯and 7n + i ≤Nseasonsf g: ð5Þ

3.2. Build the Main Models. Now, seven day-of-week (DOW)
models are built with the key concept of median. The build-
ing algorithm is designed in the way that it can set up several
workers in parallel to improve building performance.

To get a specific modelMi, a matrix R̆im
is constructed by

using all seasons (all columns) of Gi:

R̆im
=

r̆1,1 r̆1,2 ⋯ r̆1,ir ⋯ r̆1,NMi

r̆2,1 r̆2,2 ⋯ r̆2,ir ⋯ r̆2,NMi

⋮ ⋮ ⋱ ⋮ ⋮

r̆ip ,1 r̆ip ,2 r̆ip ,ir r̆ip ,NMi

⋮ ⋮ ⋮ ⋱ ⋮

r̆Nperiods,1 r̆Nperiods,2 ⋯ r̆Nperiods,ir ⋯ r̆Nperiods,NMi

2
666666666664

3
777777777775
:

ð6Þ

NMi is the number of complete seasons for a specific
model mi.

Seven DOW models Mdow
i (i = 1,⋯,Nmodels where

Nmodels is 7 in this paper) are built by applying median filters
to R̆im

.

We can present all models as columns of a matrix:

M = m1 m2 ⋯ mim
⋯ mNmodels

� �
, ð7Þ

=

~r1,1 ~r1,2 ⋯ ~r1,im ⋯ ~r1,Nmodels

~r2,1 ~r2,2 ⋯ ~r2,im ⋯ ~r2,Nmodels

⋮ ⋮ ⋱ ⋮ ⋮

~rip ,1 ~rip ,2 ~rip ,im ~rip ,Nmodels

⋮ ⋮ ⋮ ⋱ ⋮

~rNperiods,1 ~rNperiods,2 ⋯ ~rNperiods,im ⋯ ~rNperiods,Nmodels

2
666666666664

3
777777777775
,

ð8Þ
where the im = 1, 2,⋯,Nmodels indicates model index and the
ip = 1, 2,⋯,Nperiods indicates time point (period) index of
day. Thus,

~rip ,im =med rowip
R̆im

� �
, ð9Þ

where R̆ip ,im = fr̆i ∈ Rg, i.e., R̆ip ,im ⊂ R and contains all r’s with

the time point index of day ip which belongs to model Mim
.

3.3. Adapt like Regressors. This part calculates fitted models
using M-estimation considering the above model matrix
and each individual season.

An M-estimator is then computed iteratively with
reweighted least squares (IRLS):

β t+1ð Þ = arg min
β

〠
Nperiods

ip=1
wip

β tð Þ
� �

εip βð Þ
��� ���2, ð10Þ
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Figure 4: Summary of the proposed procedure.
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where the scaling and addition parameters β = ½k, b�, and
residuals from the previous fit (using season is belongs to
model im as an example):

ε βð Þ = sis − f a mim
, βis ,im

� �
= colisR − kis ,im colimM + bis ,im

	 

:

ð11Þ

Thus, the residual matrix:

E =

ε1,1 ε1,2 ⋯ ε1,is ⋯ ε1,Nseasons

ε2,1 ε2,2 ⋯ ε2,is ⋯ ε2,Nseasons

⋮ ⋮ ⋱ ⋮

εip ,1 εip ,2 εip ,is εip ,Nseasons

⋮ ⋮ ⋱ ⋮

εNperiods,1 εNperiods,2 ⋯ εNperiods,is ⋯ εNperiods,Nseasons

2
666666666664

3
777777777775
:

ð12Þ

During the estimation, the weights are calculated as:

w = w1,⋯,wip
,⋯,wNperiods

h i
=
ψγ ε/cð Þ

ε
, ð13Þ

where c is a scaling factor:

c = med abs εð Þð Þ
η

, ð14Þ

and ψ is in Huber family:

ψγ xð Þ =
x, if xj j ≤ γ,
γ sign xð Þ, if xj j > γ,

(
ð15Þ

while η is a constant 0.675 and γ is 1.345 which correspond to
regression estimator 95% efficiency. If M-estimation fails
(rarely), then constrained M-estimation (CM) [32] is used
(which is always working for our data). CM is proposed by
Mendes and Tyler for regression and is more robust while
keeping the same breakdown point (i.e., 1/2) though slower.

3.4. Construct the Residual Matrix.While having the adapted
models, the raw residuals can be calculated directly. How-
ever, the raw residuals contain different variations on differ-
ent flow levels. Thus, this part also removes flow-level-
related heteroscedasticity.

For adapted models, i.e., f aðm, βÞ, let us take values of
adapted models and round them to integers then we get flow
levels as integers l of each time point.

L = f a m, βð Þeb , ð16Þ

= ŝ1 ŝ2 ⋯ ŝis ⋯ ŝNseasons
� �

, ð17Þ

=

l1,1 l1,2 ⋯ l1,is ⋯ l1,Nseasons

l2,1 l2,2 ⋯ l2,is ⋯ l2,Nseasons

⋮ ⋮ ⋱ ⋮

lip ,1 lip ,2 lip ,is lip ,Nseasons

⋮ ⋮ ⋱ ⋮

lNperiods,1 lNperiods,2 ⋯ lNperiods,is ⋯ lNperiods,Nseasons

2
666666666664

3
777777777775
:

ð18Þ
Be aware that the flow levels are rounded from adapted

model values instead of measured. For example, suppose 9
am traffic is 85 in the DOW model, 90.3 in the adapted
model, but only 10 in the measured traffic (due to an incident
or so); then, the traffic flow level is 90, i.e., flow level is a
adapted and generalized description which represents what
the traffic should be during a similar day.

Suppose the minimum and maximum integers (levels) in
L are:

lmin = min lip ,is

� �
, lmax = max lip ,is

� �
, lip ,is ∈ L, ð19Þ

then we can generate a level vector

L̆ = lmin lmin + 1 ⋯ lil ⋯ lmax
� �

, ð20Þ

= l̆1 l̆2 ⋯ l̆il ⋯ l̆N levels

h i
, ð21Þ

which contains all integers from lmin to lmax and N levels =
lmax − lmin + 1 denotes the number of total flow levels.

For all level items/values in adapted models L, adapted
models do element-wise XNOR logic and we get a mask
matrix A with ones indicating the time points/instances with
flow levels of lil .

Ail
= �lil ⊕ L = aia ,ja ∣ ia = 1, 2,⋯,Nperiods ; ja = 1, 2,⋯,Nseasons

n o
,

ð22Þ

aia ,ja =
1, if lip ,is = lil ,

null, otherwise:

(
ð23Þ

Let us apply this mask Ail
to E and take all the matched

values then calculate the variance (standard deviation) for
an arbirtary level null items and related calculation are
ignored during this process.

Ĕil
= A · E = εip ,is ∣ aip ,is = 1

n o
, ð24Þ

vil = std Ĕil

	 

: ð25Þ

The variances for different levels vary, thus heteroscedasti-
city. When putting all variances for all levels to get a variance/-
heteroscedasticity vector, note that residuals from neighbour
levels are used when the amount of residuals is insufficient.
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V = v1 v2 ⋯ vil ⋯ vN levels
� �

: ð26Þ

Later, all residuals E are divided by the time point’s level’s
variance to get “normalized residuals.” First, for levels of each
time point, i.e., lip ,is , find its corresponding variance:

îl ip, is
	 


= arg where
il

lip ,is = l̆il , ð27Þ

v̂ip ,is = vîl ip ,isð Þ: ð28Þ

Generate a matrix of all residual’s corresponding variance:

V̂ =

v̂1,1 v̂1,2 ⋯ v̂1,is ⋯ v̂1,Nseasons

v̂2,1 v̂2,2 ⋯ v̂2,is ⋯ v̂2,Nseasons

⋮ ⋮ ⋱ ⋮

v̂ip ,1 v̂ip ,2 v̂ip ,is v̂ip ,Nseasons

⋮ ⋮ ⋱ ⋮

v̂Nperiods,1 v̂Nperiods,2 ⋯ v̂Nperiods,is ⋯ v̂Nperiods,Nseasons

2
666666666664

3
777777777775
:

ð29Þ

Normalized residuals are:

R′ = rip ,is′ ∣ ip = 1, 2,⋯,Nperiods ; is = 1, 2,⋯,Nseasons
n o

,

ð30Þ

where

r′ip ,is =
rip ,is
v̂ip ,is

: ð31Þ

3.5. Detect Using Normalized Residuals. Finally, normalized
residuals are sent to detection algorithms. The entire proce-
dure is also presented in pseudocode (Algorithm 1).

4. Experiments

This section describes data, practical procedure, and the way
we conduct experiments.

4.1. Data Specification. The one-year long real-world data are
collected from a highway. Ground truth anomaly (incidents)
labels are generated by using the extended system mentioned
in [33]. The data are imputed using the method from [34]
before any processing. One device sends a monitored flow

1: procedure DOW-FLH (Original Time Series)
2: set flags for consecutive zeros ▹Handel Dirty Data
3: for each day do
4: find the time point index (TPI) of the lowest flow
5: end for
6: find TPIs’ median number as starts of daily seasons, e.g., 3 am
7: for model mim

in all DOW models do▹Build DOW Models
8: take all seasons related to mim

to a group
9: remove flagged consecutive zeros
10: calculate median of grouped seasons as the model mim
11: end for
12: for model mim

in all DOW models do ▹Fit/Adapt to Get Scalings k and Additions b
13: for each realted season do
14: remove flagged consecutive zeros
15: estimate k, b by robustly fitting mim

to the season
16: rounding all values of the fitted model to integers as the season’s flow levels
17: get residuals as the difference between the fitted and the season
18: end for
19: end for
20: for each flow level Standardize Residuals (FLH) do▹Standardize Residuals (FLH)
21: take all residuals for this flow level (or with neighbours if not enough)
22: calculate standard deviations (STD)
23: end for
24: consider all STDs with all flow levels as the flow level heteroscedasticity (FLH)
25: divide each residual with timely corresponding STD to standardize
26: for each detection algorithm do ▹Detection
27: feed the entire standardized residual time series to the algorithm
28: get algorithm-specific anomalies or anomaly scores
29: end for
30: return the list of anomalies or anomaly scores
31: end procedure

Algorithm 1: DOW-FLH Modelling for Data Preprocessing
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record at five-minute intervals. Each record contains some
traffic statistics such as flow rate and average speed. This road
carries undersaturated flow except in holidays’ noons, where
is 15min average?

4.2. Experimental Setup. The experiments are done in a desk-
top computer with AMD Ryzen 5-3600 (6 Cores, 3600MHz)
and 16GB DDR4 memory. To be fair, we only implement
our method; other algorithms are taken from public domain
such as GitHub.

Our implementation is done in the R programming envi-
ronment version 3.4.3 with RStudio 1.3.1056, AnomalyDe-
tection 1.0, forecast 8.2, feather 0.3.3 as well as the Python
programming environment version 3.6.7/3.6.9 with library

arch 4.8.1, statsmodels 0.9.0, feather-format 0.4.0/0.4.1,
numpy 1.16.0/1.19.4, pandas 0.23.4/1.1.4, scikit-learn
0.19.2/0.23.2, scipy 1.2.2/1.5.4, ipykernel 5.3.4, and ipython
7.16.1.

SHESD was originally implemented to give only binary
results so we modified it by adding testresult − criticalvalue
to get anomaly/outlier scores. Also, as the max allowed
anomaly (outliers) ratio is 50%, we mark all nontested ones
the same score as the lowest score.

4.3. Evaluation Measurement and Metrics. Receiver-operat-
ing characteristic (ROC) is used as the main evaluation met-
ric as it provides an accurate and visualized way to present
detecting results. One important value from ROC is area
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under curve (AUC) which is also known as A′ (“a-prime”),
or concordance-statistic (c-statistic). It is a measure of good-
ness of fit that is often used for binary classification model-
ling results evaluation; therefore, we use it here.

5. Results and Analysis

As shown in Figure 5, our DOW and DOW-FLH methods
are superior with regard to AUC. DOW with and without
FLH performs similar considering AUC of 0.693 from both
algorithms which are 26.9% better coverage than other algo-
rithms on average (AUC 0.546). What is more, DOW-FLH is
preferred for less false positives on the optimal cut-off point
compared to DOW without FLH due to the data sensitivity
to false positive. May move below to analysis? For unbal-
anced datasets such as traffic flows, this behaviour gives pos-

itive influence. The reason is that some false-negative
instances introduce only minor issues for true-negative ones
as negative instances are majority while the same amount
false-positive instances impact true anomalies (incidents)
much more.

We analysed the detection ratio and AUCs for different
situations and found some interesting results. For device
malfunction incidents, most algorithms cannot notice it as
shown in Figure 6. The possible reason is that other algo-
rithms are tracking no-flow situation without considering
normal situation. Note that good seasonal modelling
(DOW) should work with suitable variance handling
methods, as inappropriate variation handling (i.e., GARCH)
may otherwise reduce the effectiveness.

Figure 7 shows level to residual characteristics diagnos-
tics. The mean of residuals (blue line) is mostly under 2 but
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increases rapidly to be about 5 when the flow level is greater
than 150. This is due to the fact that extreme levels (greater
than 150) occur only during few big holidays, so this scenario
is hard to be caught by models. The standard deviations
(green line) is mainly increasing which represents one key
problem, i.e., heteroscedasticity. The purple line represents
the number of instances per level, and it becomes very small
for extreme scenarios in both directions of x-axis. The num-
ber of span is used to include neighbour levels when one
level’s corresponding instances are too few to calculate rea-
sonable statistics. In summary, it can be seen that the relation
mapping from levels to residual characteristics are nonlinear.
This explains why the proposed data-driven algorithms per-
form better.

DOW successfully modelled patterns and FLH success-
fully suppressed heteroscedasticity for normal data compared
to others as the residuals are shown in Figure 8. Other algo-
rithms, when being compared to DOW-FLH, cannot distin-
guish data with vs. without abnormalities, such as shown in
Figure 9. This could be an advantage for GARCH-based
methods when tracing rapid change in (nonseasonal) time
series with heteroscedasticity, but it becomes an disadvantage
and hides possible abnormal data instances here. The problem
with TBATS and SARIMA is that they could not successfully
model the patterns and produces residuals with much noise
which leads to low signal-noise ratio as shown in Figure 10.

Previous work has shown that ARIMA and GARCH can-
not be adapted to seasonality with many periods such as here
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Figure 9: DOW-GARCH suppresses not only extreme values and heteroscedasticity for data with all normal instances but also for data with
abnormal instances, when being compared to DOW-FLH (Figure 9) (same data range).
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Figure 10: TBATS-based algorithms produce residuals with much noise when being compared to DOW-FLH (Figure 9) (same x-axis time
range). (S)ARIMA-based algorithms give similar results.
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288 periods per season. Instead, they will adapt to local trend
or rapid change add plots; therefore, they are not suitable to
detect anomalies lasting beyond their detection abilities. This
characteristic could be an advantage when quick predicting
traffic for short-term time is needed.

6. Conclusion and Future Work

The experiment results show that the proposed DOW algo-
rithm is good at matching multiseasonality time series
patterns, and FLH can solve heteroscedasticity problem.
DOW-FLH-modelled residuals can be used for labelling
anomalies; then, the chosen data can be sent to either edges
or centres for further process.

As discussed above, the proposed DOW-FLH in this
work is good at modelling and labelling multiseasonal IoT
time series for the edge-centre structure. However, other
compared algorithms, including SARIMA- and TBATS-
based ones, are more mature and may be good at local trend
prediction. Also, edge computing can engage crowdsourcing
and related active learning [35] to make full use of advantages
provided by edge-centre structure.

This point can be further tested in later research.
Labelling can be treated as a classification question, and

many new algorithms can work on this task. Especially, recent
development regarding classification using belief theory is
showing promising results [36], and it is good for multisource
scenarios in edge-centre computing. Thus, this might be a
good enhancement for our current work, and we look forward
to investigate more about it in the future work.

In summary, the proposed DOW-FLH method performs
well during experiments using multiseasonal IoT time series
and should be considered to use when labelling is needed in
edge-centre computing structure.
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