
Information and Software Technology 139 (2021) 106620

A
0

A
H
B

A

K
S
T
T
T
Q

1

d
c
a
f
t
c
o
d
i
t

e
c
T
a
i

t

n

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ssessing test artifact quality—A tertiary study
uynh Khanh Vi Tran ∗, Michael Unterkalmsteiner, Jürgen Börstler, Nauman bin Ali

lekinge Institute of Technology, Department of Software Engineering, SE-37179, Karlskrona, Sweden

R T I C L E I N F O

eywords:
oftware testing
est case quality
est suite quality
est artifact quality
uality assurance

A B S T R A C T

Context: Modern software development increasingly relies on software testing for an ever more frequent
delivery of high quality software. This puts high demands on the quality of the central artifacts in software
testing, test suites and test cases.
Objective: We aim to develop a comprehensive model for capturing the dimensions of test case/suite quality,
which are relevant for a variety of perspectives.
Methods: We have carried out a systematic literature review to identify and analyze existing secondary studies
on quality aspects of software testing artifacts.
Results: We identified 49 relevant secondary studies. Of these 49 studies, less than half did some form of
quality appraisal of the included primary studies and only 3 took into account the quality of the primary
study when synthesizing the results. We present an aggregation of the context dimensions and factors that can
be used to characterize the environment in which the test case/suite quality is investigated. We also provide
a comprehensive model of test case/suite quality with definitions for the quality attributes and measurements
based on findings in the literature and ISO/IEC 25010:2011.
Conclusion: The test artifact quality model presented in the paper can be used to support test artifact quality
assessment and improvement initiatives in practice. Furthermore, the model can also be used as a framework
for documenting context characteristics to make research results more accessible for research and practice.
. Introduction

Software development continues to use testing to ensure that we
eliver high-quality software. The role of testing has become even more
ritical in the context of continuous software engineering [1], as we
re increasingly relying on testing to release reliable software more
requently. In continuous software engineering organizations shorten
he lead time from ideation to delivery by making features available to
ustomers as soon as development is done. This ambition of continu-
us delivery/deployment entails that organizations might deliver and
eploy new version of a software which makes manual testing challeng-
ng. Continuous software engineering, therefore, requires automated
esting for quality assurance [2].

Software developers spend around one quarter of their effort on
ngineering tests [3]. It is therefore beneficial to quality assure test
ode and retaining the invested effort, i.e. assure that tests are effective.
est effectiveness (a test case/suite’s ability to identify defects/faults in
system under test) has received a lot of attention in research, but it

s only one of the multiple dimensions of test quality [4].
Other dimensions include reliability of tests, such that when a

est case fails it reveals a fault in the production system. Test code

∗ Corresponding author.
E-mail addresses: huynh.khanh.vi.tran@bth.se (H.K.V. Tran), michael.unterkalmsteiner@bth.se (M. Unterkalmsteiner), jurgen.borstler@bth.se (J. Börstler),

auman.ali@bth.se (N.b. Ali).

should thus be fault free to provide reliable verdicts on the production
code [5]. Unfortunately, it is hard to develop bug-free test code [6]. A
further complication here is the flakiness of test cases [7] which have
non-deterministic output. Such unreliable tests take considerably more
effort to troubleshoot and resolve.

In order to remain valuable, test cases must also co-evolve with
production code [8] and the current expected behavior of a SUT. The
need for co-evolution requires that test cases are not only effective and
fault free, but are also maintainable in the future.

Proposals for defining test case quality [4,9,10], adapting existing
quality models for testing [11] and proposals to organize software
testing research [12–14] exist. However, there are no commonly agreed
upon quality models, frameworks or taxonomies for the quality of test
cases or test suites.

In the scope of this study, we are only focusing on test cases and test
suites as the confidence in the findings of testing mainly depends on the
quality of the test cases and test suites [4,9]. Therefore, it is essential
to have the means to assess, monitor and maintain their quality. In this
study, by test artifact, we refer to test cases, test suites, test scripts, test
code, test specifications and natural language tests.
vailable online 23 May 2021
950-5849/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2021.106620
eceived 1 November 2020; Received in revised form 6 April 2021; Accepted 8 Ma
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

y 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:huynh.khanh.vi.tran@bth.se
mailto:michael.unterkalmsteiner@bth.se
mailto:jurgen.borstler@bth.se
mailto:nauman.ali@bth.se
https://doi.org/10.1016/j.infsof.2021.106620
https://doi.org/10.1016/j.infsof.2021.106620
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106620&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
The contribution of this paper is a test artifact quality model.
To develop this model, we have systematically investigated existing
secondary studies of literature on software testing. We identified the
quality attributes of a test case or test suite, and the context in which
these attributes have been used, and how they can be measured. These
attributes and associated measures were defined and compiled in the
proposed test artifact quality model.

For both researchers and practitioners, this comprehensive review
presents an overview of the current state-of-research on test artifact
quality. Furthermore, the quality model can be used to design and exe-
cute improvement initiatives targeting the quality of the test artifacts.

The remainder of the paper is structured as follows: Section 2
presents the related work and positions our contribution. Section 3
details the design and procedures of the systematic literature review.
Section 4 presents the results and analysis for each of the research
questions posed in the study. In Section 5, we discuss the selected
findings related to quality attributes, measurements and the contexts in
which they have been studied. Lastly, Section 6 concludes the paper.

2. Related work

We discuss related work from three angles. First, we look at past
research on test artifact quality. Then, we provide an overview of
research that aims at classifying concepts in software testing. Finally,
we look at the contributions made by other tertiary literature studies on
software testing. We conclude this section by identifying the knowledge
gaps that this study aims to fill.

2.1. Test case and test suite quality

The question of test adequacy has been studied since the mid 1970s
when Goodenough and Gerhard [15] steered the research community’s
attention towards identifying criteria for evaluating test cases. Zhu
et al. [16] reviewed the literature of two decades (late 70s–late 90s)
on test adequacy criteria, categorizing them into structural criteria
(coverage of the test suite on the SUT), fault-based criteria (defect de-
tection ability of the test suite) and error-based criteria (to what extent
error-prone parts of the SUT are tested). Structural adequacy criteria
include control flow, data flow and dependence coverage criteria, and
are mostly based on the flow-graph model of a program. Structural
adequacy criteria inform to what extent a test suite covers the control
and data flows in a program. The higher the coverage, the better the
quality but also the higher the cost to develop and maintain the test
suite. Fault-based adequacy criteria measure the ability of a test suite
to detect faults. Techniques to generate faults that could possibly be
contained in software and should be found by adequate tests include
error seeding, mutation testing, perturbation testing and the RELAY
model. Error-based adequacy criteria use domain analysis to create
equivalence partitions of the input/output space for the program. The
domain analysis focuses thereby on particularly error-prone points in
the program logic. The quality of a test suite is determined by the
coverage of a programs partitions.

Zhu et al.’s excellent review inspired other researchers to investi-
gate structural test quality for specific application domains and pro-
gramming paradigms, exemplified by the following studies. Kapfham-
mer and Soffa [17] define test suite adequacy criteria for database-
driven applications. The goal of these criteria is to ensure that all
database interaction associations involving relations, attributes, val-
ues, and records are exercised by the test suite. Lemos et al. [18]
propose structural testing criteria for aspect-oriented programs. They
derive a control and data-flow model and create an aspect-oriented
variable definition-use graph that leads to particular testing criteria that
would have been missed by an approach for traditional programming
paradigms. Finally, Pei et al. [19] propose a set of new testing criteria
for deep neural networks (DNNs). Traditional criteria, such as state-
ment and data-flow coverage, are not effective when testing DNNs since
2

the system’s logic is not constructed by a human programmer but rather
learned from test data. Test quality is therefore assessed by neuron and
layer-level coverage.

Other researchers have adapted software quality models to de-
fine test artifact quality. Neukirchen et al. [11] introduced a quality
model for TTCN-3 test specifications. They adapted ISO/IEC 9126 to
include testing specific characteristics that have no correspondence in
the ISO/IEC 9126, such as fault revealing capability, test repeatabil-
ity, and reusability. Other characteristics were re-interpreted for the
context of test code or completely removed from their adaptation of
ISO/IEC 9126. The model was limited to unit testing, and focused on
metrics for maintainability only. The reuse of software quality mod-
els adds new dimensions of test quality that have not been covered
by Zhu et al.’s three categories of test adequacy: usability (under-
standability, learnability, operability, test evaluability), maintainability
(analyzability, changeability, stability), and reusability (coupling, flex-
ibility, comprehensibility). A similar approach, Athanasiou et al. [20]
introduced a test-code quality model which contained three quality
attributes, test completeness, effectiveness and maintainability, and as-
sociated metrics. The quality attribute maintainability was indirectly
based on ISO/IEC 9126. Their analysis of open source code repositories
indicates a positive correlation between test code quality and issue
handling performance.

Recent research has investigated how engineers’ perception of test
code can generate useful quality models. Bowes et al. [4] conducted
a workshop with industry practitioners and elicited 15 unit testing
principles and best practices that are expected to result in high quality
tests. Tran et al. [10] interviewed six practitioners and identified 11
quality characteristics for natural language tests, of which test under-
standability, simplicity and test step cohesion were mentioned most
frequently. Finally, Grano et al. [9] interviewed five testing experts
and developed a unit test quality taxonomy that includes behavioral,
structural and executional facets. They also validated and extended
the taxonomy by conducting a survey and study the correlation of
existing test quality metrics with the perceived quality collected in the
survey [9].

The quality of tests and test suites has also been addressed in
research on test smells. There are different definitions of test smells
in the literature. The concept of test smells was first introduced by Van
Deursen et al. [21] in the context of unit testing for extreme program-
ming (XP). According to the authors, test smells were derived from code
smells and indicate trouble in test code. They also described 11 types of
test smells such as Mystery Guest, Resource Optimism, Test Run War,
etc. The related test code quality attributes are maintainability, un-
derstandability, readability. Meszaros [22] described test smells in the
context of using the unit testing framework xUnit. The author discussed
18 frequent test smells and provided guidelines for analyzing causes
and eliminating them. Van Rompaey et al. [23] discussed test smells
with respect to the ideal test execution structure, which includes setup-
stimulate-verify-teardown (S-S-V-T cycle). They defined test smells as
‘‘violations of a clean S-S-V-T cycle’’ and focused on two test smells,
General Fixture and Eager Test. Also, according to Van Rompaey et al.
these test smells might reduce specific test quality attributes, including
automation, traceability, performance, maintainability, isolation, con-
ciseness, transparency, and explicitness. The latest secondary study on
test smells was conducted by Garousi et al. [24]. The study provided a
catalog of 139 test smells, a summary of approaches and tools to deal
with test smells. According to the authors, a test smell is ‘‘any symptom
in test code that indicates a deeper problem’’. If they are fixed on time,
test smells could lead to several issues, including a decrease in test code
quality such as maintainability, readability, fault detection power.

2.2. Organizing test engineering knowledge

With the increasing information generated by research comes the
need for organizing it to create knowledge. Taxonomies allow to struc-
ture knowledge in a way that supports both direct (e.g., stakeholders in

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

t
(
S
t
h
c
r
o
t
c
f
s
s
s
i

i
b
A
c
t
b
s
r

s
2

a research project) and indirect (e.g., readers of scientific publications)
communication [14]. Taxonomies provide descriptions of objects and
their relationships in a knowledge area [12,25]. Hence, they offer
practitioners and researchers a common understanding of objects and
their relationships in the diverse Software Engineering (SE) knowledge
field, which eases knowledge sharing and applying findings [12,25].
Their support in building the knowledge foundation makes it easier
to incorporate new knowledge and identify knowledge gaps in SE,
especially when the SE knowledge field has been evolving continu-
ously [12]. Since there is a wide range of subareas in SE, there is
still a need to classify the knowledge in many of those subareas [26].
Therefore, taxonomies have been playing an essential role in maturing
the SE knowledge field.

The field of software engineering has seen a surge of taxonomic
studies since the 2000’s, with 27 focused on software testing alone
(1988–2015) [26]. Early studies looked at software testing techniques
in general [27,28], followed by taxonomies on specific testing aspects,
such as fault types [29–31], mutation testing [32–34], model-based
testing [35,36], runtime monitoring [37,38], security testing [39,40],
unit testing [12] and regression testing [13]. The purpose of this paper
is to complement this body of knowledge with a test artifact quality
model.

2.3. Tertiary studies

Secondary studies (systematic literature review and systematic map-
ping studies) synthesize the knowledge in a particular area by means
of a systematic and objective literature collection and analysis pro-
cess [41]. With the widespread adoption of secondary studies in soft-
ware engineering, tertiary studies [42] aim at collecting and synthesiz-
ing secondary studies.1

To the best of our knowledge, Garousi et al. [43] conducted the
first tertiary study with the goal of mapping the existing research on
software testing. Their review identifies the most frequently studied
testing topics (such as model-based testing, regression testing, etc.), the
type of stated research questions (a lack of causality and relationship
ype), and trends in types, quality and number of primary studies
slow increase in quality and more citations for regular surveys than
LRs and SMs). They also report several research areas in software
esting which require more secondary studies such as test management,
uman factors in software testing, exploratory testing and test stopping
riteria. However, their tertiary study did not discuss findings with
espect to test-artifact quality, the focus of our tertiary study. Hence,
ur contribution is also different as we present the quality model for
est artifacts (as discussed in Section 2.4) and report relevant context
haracteristics. While Garousi et al. used similar and generic keywords
or the search process, there was no complete overlap between their
elected peer-reviewed secondary studies and ours. Our first search and
econd search found 20 and 45 out of 58 peer-reviewed secondary
tudies selected by Garousi et al. (details on our searches can be found
n Section 3.1).

By snowball sampling starting from Garousi et al.’s review, we
dentified only one more tertiary study focusing on software testing
eyond the one by Garousi et al.2 This tertiary study by Villalobos-
rias et al. [44], reports a systematic mapping study on areas, tools and
hallenges in model-based testing (MBT). Their main findings are: (a)
he two most popular subareas in MBT are UML models and Transition-
ased notations, and (b) there is a lack of empirical evidence for
electing MBT tools and approaches. They do not report any findings
egarding test-artifact quality.

1 Quaternary studies have not been observed, yet.
2 Garousi et al. cited nine tertiary studies and were cited by thirteen tertiary

tudies, which in turn were cited by four more tertiary studies, as of October
020. Only one of those covered software testing [44].
3

To the best of our knowledge, there is no tertiary study on the
quality of test artifacts. Since this topic has been discussed to some
extent in secondary studies (e.g., [45–49]) a synthesis of the state of
the art in this area would be helpful for researchers as well as for
practitioners.

2.4. Contribution

Test artifact quality has been researched since the dawn of the
software engineering discipline. The early review by Zhu et al. [16]
focused on unit testing and did not associate test adequacy criteria with
a quality model. Such an association would have helped to discover
new quality criteria relevant for test artifacts.

We then identified three later works [9,11,20] which introduced
test-code quality models and taxonomies for test artifacts (as explained
in Section 2.1). While the quality models by Neukirchen et al. [11]
and Athanasiou et al. [20] were partly based on the ISO/IEC 9126,
the quality taxonomy introduced by Grano et al. [9] was based on
interviews with practitioners. In comparison with the two models from
Neukirchen et al. and Athanasiou et al. our quality model covers a
wider range of quality attributes and quality measurements based on
the findings in the literature, and the latest software quality models
given by ISO/IEC 25010:2011.

Meanwhile, some quality attributes of our quality model share
similar descriptions with some test-quality features of the taxonomy
given by Grano et al. even though their names are not related. For
example, the quality feature ‘‘(self-)validation’’ in their taxonomy (‘‘A
test should behave as expected, i.e., it must not be defective’’) is
closely related to the quality attributes ‘‘reliability’’ and ‘‘consistency’’
in our model. In contrast, their description for ‘‘reliability’’ (‘‘Unit tests
should always produce the same results’’) is not similar with the quality
attribute ‘‘reliability’’ in our model. There are also quality features
mentioned by the practitioners (scope, test design, execution infrastruc-
ture) which did not connect to any of our identified quality attributes.
It means that there are still differences between how practitioners
describe test-artifact quality and how such quality has been reported
in the literature. Hence, our model does not only provide a more
comprehensive picture of how the test-artifact quality was described in
the literature, but serves also as a guideline for practitioners to search
for knowledge in test-artifact quality in the literature. In other words,
our quality model supports the knowledge transfer between academia
and industry.

Various aspects of test engineering knowledge have already been
captured with taxonomies. However, the quality of test artifacts has not
yet been part of such an effort. Our contribution is to fill this knowledge
gap, by means of a tertiary study. This provides insights for researchers
on the state-of-art of test artifact quality and supports practitioners
in gaining an overview of what aspects of test artifact quality can be
applied in which context. In particular, the test artifact quality model
presented in this study can support:

• describing new guidelines and templates for designing new test
cases.

• developing assessment tools for evaluating existing test cases and
suites.

Furthermore, the model can also be used as a framework for document-
ing context characteristics to make research results more accessible for
research and practice.

3. Research method

The goal of this study is to investigate how the quality of test
artifacts has been characterized in the context of software engineering
in secondary studies. By test artifact, we refer to documents used for
testing, like test cases, test suites, test scripts, test code, test specifica-
tions and natural language tests. For this review, we exclude artifacts

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Table 1
Keywords for search strings.

Sub-string Keywords in the first
search

Keywords in the second
search

Test
artifacts

‘‘test case’’ OR ‘‘test suite’’
OR ‘‘test script’’ OR ‘‘test
code’’ OR ‘‘test
specification’’ OR ‘‘natural
language test’’

‘‘test case’’ OR ‘‘test suite’’
OR ‘‘test script’’ OR ‘‘test
code’’ OR ‘‘test
specification’’ OR ‘‘natural
language test’’ OR ‘‘test’’
OR ‘‘testing’’

Secondary
studies

‘‘systematic review’’ OR
‘‘systematic literature
review’’ OR ‘‘systematic
mapping’’ OR ‘‘systematic
scoping’’

‘‘systematic review’’ OR
‘‘systematic literature
review’’ OR ‘‘systematic
mapping’’ OR ‘‘systematic
map’’ OR ‘‘systematic
scoping’’ OR ‘‘systematic
literature survey’’

produced during the execution of tests, such as executions logs, traces
or bug reports. To achieve this goal, our study aims to answer the
following research questions:

• RQ1: What are the differences and similarities among the sec-
ondary studies in terms of their characteristics?

• RQ2: In which testing-specific contexts have the quality attributes
and quality measurements been studied?

– RQ2.1: In which testing-specific contexts has the quality of
test artifacts been studied?

– RQ2.2: Which quality attributes have been reported for test
artifacts?

– RQ2.3: Which measurements have been reported to quantify
the identified quality attributes?

• RQ3: How frequently have quality attributes in particular testing-
specific contexts been studied?

• RQ4: To which extent is there consensus about the definition of
quality attributes and quality measurements?

In RQ1, we analyze the characteristics of secondary studies in-
cluding their quality, review method (systematic literature review,
systematic mapping study), and topic. Comparing the studies’ char-
acteristics provides an overview of the field. For RQ2, we derive
the testing-specific contexts from the reviewed secondary studies and
which quality aspects have been studied in those contexts. In particular,
we consider two aspects of test artifact quality; quality attributes
(RQ2.2) and how they are measured (RQ2.3). For RQ3, we analyze the
data gathered for RQ2 to identify general trends in the study of test
artifact quality. In RQ4, we aim to identify agreements and disagree-
ments regarding definitions of quality attributes and measurements for
test artifacts. This investigation is prompted by the lack of commonly
accepted definitions of these aspects of test artifact quality.

3.1. Search process

We conducted two rounds of searches to identify secondary studies
which discussed the quality of test artifacts.

There are three potential sub-strings for our search strings, namely
(1) test artifacts, (2) secondary studies, and (3) quality. The first
sub-string is to find publications related to test artifacts. The second
sub-string is to restrict the searches to the types of secondary studies
we are interested in. We did not add the keyword ‘‘quality’’ (the third
potential sub-string) to our search string as it would decrease the
likelihood of finding relevant publications that did not explicitly use
the keyword ‘‘quality’’ in their titles and abstracts. Since ‘‘quality’’ is
a widely used keyword in many research areas, including it would
also lead to an excessive number of irrelevant hits outside the area of
software development. The two selected sub-strings are connected by a
4

Boolean operator AND as shown in Table 1.
Table 2
Search results for first and second search.

Search Database/ Search Engine # of papers Search Level

1st

Scopus 100 Title, abstract, keywords
Google Scholar 27 Title
IEEE 16 Title, abstract, keywords
Science Direct 23 Title, abstract, keywords
ACM 15 Title, abstract

Total 181
Excl. duplicates 121

2nd Scopus 572 Title, abstract, keywords
Excl. duplicates 569

Table 3
Recall and precision of 1st and 2nd searches based on QGS of 13 papers.

1st search 2nd search

Recall 61.54 92.31
Precision 6.61 2.11

The first search, conducted in April 2019, returned 181 publications
(121 excluding duplicates) in the following databases and search en-
gines: IEEE Xplore,3 ACM Digital Library,4 ScienceDirect,5 Scopus,6 and
Google Scholar.7 as shown in Table 2.

Since the tertiary study by Garousi et al. [43] is the one closest
to our work, we compared our first search’s results with their search
results to identify potential issues with our search string (considering,
however, that we exclude non peer-reviewed, i.e. gray literature). There
was little overlap between the set of publications returned by our first
search and Garousi et al.’s initial set of papers. One issue in our first
search was that its keywords for test artifacts did not find potentially
relevant publications that used only the general terms ‘‘test’’ and/or
‘‘testing’’ in their titles, abstracts or keywords. In our second search,
we included the extra keywords ‘‘test’’ and ‘‘testing’’ for test artifacts.
Inspired by Garousi et al.’s search string, we also included further
keywords for systematic studies as shown in Table 1.

The second search was conducted in October 2019 in Scopus only.
We chose this search engine as it covers most of the major publishers
such as IEEE, Elsevier, Springer and ACM. Also, its high recall (more
details in Section 3.2) showed that the search was reasonably sufficient
for our tertiary study. The second search was restricted to one subject
area, ‘‘Computer Science’’, to reduce the search noise, and returned
572 publications (569 excluding duplicates) as shown in Table 2. We
did not restrict our searches to any specific venues to get as good as
possible coverage of peer-reviewed publication venues. More informa-
tion regarding the publication venues of the selected secondary studies
could be found in Appendix B.

3.2. Search validation

To validate our searches, we used a quasi-gold standard (QGS)
approach, as suggested by Kitchenham and Charters [50]. The con-
cept of using QGS to evaluate search performance in a SLR was first
introduced by Zhang et al. [51]. According to Zhang et al. the QGS
contains an initial set of papers that are known to be relevant. Since
Garousi et al.’s tertiary study [43] is the closest related work to our
review, we constructed our QGS based on their study’s initial set of 121
papers. Using the same inclusion/exclusion criteria as planned for our
study (see Section 3.3), we identified 13 relevant papers from Garousi
et al.’s initial set of 121 papers. Although having more papers in QGS

3 http://ieeexplore.ieee.org.
4 http://portal.acm.org.
5 https://www.sciencedirect.com/.
6 https://www.scopus.com.
7
 https://scholar.google.com/.

http://ieeexplore.ieee.org
http://portal.acm.org
https://www.sciencedirect.com/
https://www.scopus.com
https://scholar.google.com/

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

s
s

might have been better, there is, to the best of our knowledge, no
predefined threshold for the size of QGS suggested by Zhang et al. or
other researchers. Using a subset of selected papers from another study
to assess the automated search’s completeness is also a well-known
practice supported by other researchers [52].

We evaluated the performance of the searches by computing recall
and precision for each search string. The recall of a search string is
the proportion of known relevant papers found by the search. The
precision is the proportion of the papers found by the search which are
relevant to the review. Table 3 shows the recall and precision of our two
searches. An ideal search would have a high recall and a high precision.
However, in practice, there is always a trade-off between them in search
strategies [51]. In our tertiary study, we aimed for collecting as many
relevant secondary studies as possible (a high recall) while accepting
more noise in our searches’ results (a low precision). Our approach was
aligned with other SLRs in the literature [51]. Hence, despite the low
precision of the two searches, their recall is high enough to demonstrate
their sufficient performance for using in our tertiary study.

3.3. Study selection

To ensure that we have covered as many relevant papers as possible,
we based the study selection process on the union of three sets of
papers; the results of our first and second searches (see Section 3.1)
and Garousi et al.’s [43] initial set of papers. It is worth to mention
that in total, there were 13 papers from Garousi et al.’s study which
passed the paper selection criteria. Those were used as our QGS (see
Section 3.2). This section describes the whole paper selection process.
However, for the search validation purposes, the selection process was
first applied on the 121 papers from Garousi et al.’s study before we
selected papers from our own searches.

The study selection process comprised three phases as illustrated in
Fig. 1 and described below:

1. Phase 1: applied on authors, title and abstract

• Exclude papers that:

(E1) are duplicate papers;
(E2) are not systematic studies8;
(E3) are not peer reviewed;
(E4) are outside computer science or software engineer-

ing.

2. Phase 2: applied on title and abstract

• Exclude papers that:

(E5) are not about software testing.

• Include papers that fulfill all of the following:

(I1) are systematic literature reviews (SLR), quasi-SLRs,
Multi-vocal literature reviews, or systematic map-
pings;

(I2) discussed or potentially discussed quality of test
artifacts

3. Phase 3: applied on full text

• Exclude studies that:

(E6) Are duplicate studies (two different studies using
the same data)

• Include studies which discussed any of the following:

8 Garousi et al.’s [43] initial set of 121 papers contained 63 informal
urveys without research questions. Since we only were targeting systematic
tudies, these were excluded.
5

(I3) definition of the quality of test artifacts;
(I4) quality characteristics of test artifacts;
(I5) quality attributes of test artifacts;
(I6) quality metrics of test artifacts;
(I7) tools, methods, approaches, frameworks to assess

test artifacts’ quality;
(I8) guidelines, checklists to write test artifacts.

3.3.1. Phase 1: Preliminary screening
Before applying topic specific selection criteria, the first author

removed papers that were duplicates or irrelevant to software engineer-
ing or computer science by screening the title, author(s) and abstract.
A duplicate study (E1) in this phase is one with the same author(s),
title and abstract as another found study. Duplicates occurred typically
when the same study was in the result set from two or more search
engines/databases. Regarding E4, if a paper’s title and abstract was
clearly about other fields such as medicine, physics, etc. then the paper
was be excluded; otherwise, we included the paper for later assessment
by reading the full paper. After this step, the total number of remaining
papers was 370.

3.3.2. Phase 2: Title and abstract screening
Before screening the 370 papers, we conducted a pilot study on the

criteria to establish a common understanding of the inclusion/exclusion
criteria. Disagreements were discussed and resolved at a face-to-face
meeting among the authors. After that, each of the 370 papers were as-
sessed by two reviewers each. For each paper, a reviewer first screened
its title and abstract against the exclusion criteria to exclude papers
which are outside the scope of this review. After that, the reviewers
referred to the inclusion criteria to decide whether that paper should
be included for the third phase. In case a decision was unclear, that
paper should be included for the third phase. This policy helped us to
reduce the risk of excluding potentially relevant papers prematurely,
i.e. before considering the full text.

3.3.3. Phase 3: Full text screening
The selection strategy in the third phase was the same as in the

second phase. Each paper was assessed by two reviewers each. If a
paper was not excluded based on the exclusion criteria, the inclusion
criteria were used to evaluate the paper’s relevance. However, instead
of reading the titles and abstracts like in the second phase, the re-
viewers read its full text to make the selection decision. As a result
of the study selection process, we were left with 49 studies for the data
extraction process.

3.3.4. Post-hoc validation
We calculated the Kappa coefficient to evaluate the extent of review-

ers’ agreement in study selection. The Kappa coefficient for each pair of
reviewers varied from 0.18 to 0.62, which can be interpreted as a slight
agreement to substantial agreement [53]. Due to this high variation in
disagreement, we reviewed the decisions in face-to-face meetings. The
meetings showed that most disagreements related to one author being
slightly more inclusive than the others. All disagreements were resolved
in those meetings.

3.4. Data extraction

We extracted the following data items from the 49 selected sec-
ondary studies:

1. Meta-data (Data item 1): publication title, abstract, authors,
publication venue, publication year.

2. Background (Data item 2): information about the study’s back-
ground, which includes the followings aspects.

• Review method: the adopted literature review method such

as systematic literature review, systematic mapping;

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Fig. 1. Overview of the study selection process.

• Topic of the review: the main focus of the secondary study
such as quality of test artifacts, test smells, specific testing
techniques or activities.

3. Quality of test artifacts (Data item 3): information about how
the quality of test artifacts was reported.

• Quality attributes: such as re-usability, understandability,
etc.;

• Quality measurements: such as lines of test code, etc.;
• Software testing-specific context: such as testing level, type

of software system under test, testing automation level, etc.

To extract the data related to software testing-specific contexts
(under data item 3) systematically, we first collected a list of context
dimensions that might be considered in a discussion of the quality of
test artifacts. To do so, we performed snowball sampling on the SLR
by Tebes et al. [54], one of the latest reviews on software testing
ontologies and identified 18 sources from the literature and from indus-
try providing taxonomies or ontologies on software engineering [12–
14,26,55–68]. From these sources, we selected 14 potential context
dimensions such as Test artifact, Test level, Testing objective based on our
knowledge/experience and seven relevant sources [12,13,26,57,61,62,
65]. Some of these context dimensions contain sub-dimension(s), which
we call context factor(s) in our review. For example, the context dimen-
sion System under test includes five context factors, namely Software
type, Software license, Application domain, Type of development process
and Programming language. These context dimensions are summarized
in Table 7.

During the data extraction process, we followed the steps described
below to extract the context values.

1. Step 1: If the authors of the secondary studies explicitly stated
that a context value is under a particular context dimension
(by mentioning, for example, system testing is testing level), then
we included that context value (system testing) to the associated
context dimension (testing level).

2. Step 2: In case we identify a context value in a secondary study
but the authors of the secondary study did not explicitly state
what context dimension the context value belongs to, then we
refer to our context dimensions’ definitions to make a suitable
association. For instance, we often identified different context
values in the secondary studies such as test case generation,
test case design, test case prioritization, etc. Those context values
were not explicitly connected to any context dimensions by
the authors of the secondary studies. Based on our definitions
of context dimensions, we linked those context values to the
context dimension testing activity.
6

The extraction of the context values was done in iterations. To do
so, the first author extracted the values from the secondary studies
then discussed them with the other authors to validate the association
between the values and their dimensions.

3.4.1. Data extraction validation
We followed the following steps to make sure that the data extrac-

tion was conducted adequately:

• We developed and improved the data extraction form in iterations
based on discussion among all authors. Hence, the form and the
data items were validated.

• Data items 1 and 2 (meta-data and background information) were
extracted by all authors. The extracted information was compared
and validated in meetings among all authors.

• Regarding data item 3 (test-artifact quality information), data
extraction was already considered in the paper selection phase.
For each relevant paper that contained information regarding
definition/assessment of test-artifact quality, the authors added
a note about where in the paper this information was found.
These notes were reviewed in the validation of the paper inclu-
sion/exclusion step to ensure that they were complete and agreed
upon by all authors. During the data extraction process, the notes
information was used for extracting data regarding the quality of
test artifacts.

• We performed a post-hoc validation for data item 3 on four papers
(S33, S34, S46, S47) which were selected randomly from the
49 secondary papers. Two of those papers were assigned to the
second author while the other two papers were assigned to the
fourth author. The two authors extracted data independently.
After that, each of them had a face-to-face meeting with the first
author to compare the outcomes and solve disagreements. Since
there was a high degree of agreement in the extracted data among
the authors, we decided not to pursue further validation of the
extraction. Hence, we decided to use the data extracted by the
first author for the data analysis.

3.5. Quality assessment

We adopted the quality assessment criteria provided by the York
University, Centre for Reviews and Dissemination (CDR) guide for
reviews [69] to evaluate the 49 selected secondary studies. These
criteria are often used to assess the quality of systematic literature
reviews in software engineering [70]. The quality assessment criteria
are summarized in Table 4.

The quality assessment was performed in parallel with the data
extraction process. The first author performed the assessment on all 49
selected studies. As a post-hoc validation, the second author performed
an independent assessment on ten randomly selected studies. After that,
the two authors had a face-to-face meeting to compare and discuss the
assessment outcomes. We found only some minor differences between
the two assessments’ outcomes. Once the differences were resolved,
the first author adjusted her quality assessment. Since there was a
high degree of agreement in the quality assessment among the authors,
we decided not to pursue further validation of the quality assessment.
Consequently, we agreed to use the quality assessment on the rest of the
selected studies by the first author. We did not exclude studies based
on their quality score, preserving all available information regarding
the quality of test artifacts.

It is also worth to emphasize that the number of papers chosen
for the post-hoc validation of the data extraction and of the quality
assessment (four papers and ten papers respectively) are different based
on our estimation of the time and effort required to perform the post-
hoc validation. In our tertiary study, extracting data needed more time
and effort than assessing the papers’ quality. Therefore, we initially
picked more papers for validating the data extraction than the quality

assessment.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Table 4
Quality assessment criteria.

ID Criterion Scorea Interpretation

C1 ‘‘Were inclusion/exclusion criteria reported?’’ Yes The criteria for paper selection are clearly defined.
Partly The criteria for paper selection are implicit.
No The criteria for paper selection are not defined and cannot be readily inferred.

C2 ‘‘Was the search adequate?’’ Yes The authors have either (searched for at least four digital libraries AND included
additional search strategies) OR (identified and referenced all journals addressing the
topic of interest).

Partly The authors have searched three or four digital libraries with no extra search
strategies OR they searched a defined but restricted set of journals and conference
proceedings.

No The authors searched up to two digital libraries or an extremely restricted set of
journals.

C3 ‘‘Were the included studies synthesized?’’
C3a ‘‘Was the evidence actually synthesized and

aggregated, or merely summarized?’’
Yes The synthesis pools the studies in a meaningful and appropriate way. Differences

between studies are addressed.
No There is no real synthesis. The evidences from the individual studies are basically

repeated/summarized.
C3b ‘‘Was the quality of individual studies taken into

account in the synthesis?’’
Yes Yes, to some extent.

No No.
C4 ‘‘Was the quality of the included studies assessed?’’ Yes The authors have explicitly defined quality criteria and extracted them from each

primary study.
Partly The research question involved quality issues that are addressed by the study.
No There is no explicit quality assessment of individual papers OR the quality

assessment has not been described sufficiently.
C5 ‘‘Are sufficient details about the individual

included studies presented?’’
Yes Information is presented about each paper, so that the data summaries can clearly

be traced to relevant papers.
Partly Only summary information is presented about individual papers.
No The results for individual studies are not specified.

aYes = 1; Partly = 0.5; No = 0.
3.6. Validity threats

In the following, we discuss potential threats to the validity of this
study.

Missing relevant secondary studies. One possible threat to the validity of
this study is that relevant secondary studies have not been found. We
mitigated this risk by careful development and evaluation of our search
strings. We conducted a second search after comparing our initial set
of papers with the papers identified in the related tertiary study on
testing by Garousi et al. [43] to ensure that all relevant papers have
been found. We also used Garousi et al.’s search results as basis for
defining a quasi-gold standard [50] for validating our search results.
The obtained high recall indicates that our search has been sufficiently
comprehensive.

Exclusion of gray literature. A related validity threat is caused by our
decision to exclude gray literature from this study. However, since
we review secondary and not primary studies, the risk of excluding
relevant but not peer reviewed material is low.

Relevant information from primary studies. Since we conduct a tertiary
study, our data extraction is based on the information aggregated in
the secondary studies. It is therefore possible that relevant informa-
tion about test artifact quality that was present in primary studies
is no longer available in the secondary study. This could be either
because that information has been omitted from the secondary studies
or because there is no secondary study available yet covering the
missed primary studies. This threat is inherent to any tertiary study
and we accept it here to base our analysis on more widely accepted
information.

Bias in paper selection. A common threat to the validity of secondary
and tertiary studies is a possible bias when the papers to be included
in the study are selected. We mitigate this risk by ensuring that every
paper is reviewed by two reviewers. In this way, the selection does not
rely only on the subjective opinion of one reviewer, but on a consensus
between the two reviewers instead. We assessed this consensus with
help of the Kappa coefficient between the pairs of reviewers and found
7

Fig. 2. Study type distribution over years.

slight to substantial agreement. Furthermore, we conducted face-to-face
meetings to resolve any disagreements.

Bias in data extraction. Similar to paper selection bias, bias in data
extraction is a potential threat to the validity of this study. We mitigate
the risk of data extraction bias by comparing the data extracted by the
first author with the data extracted by two of the co-authors for four
papers. In this way, the data extraction approach taken by the first
author is validated. Based on face-to-face discussions, we have found a
high degree of consistency between the data extracted by the different
reviewers.

Publication bias. Publication bias is another common threat to the
validity of secondary and tertiary studies. It refers to the tendency that
the studies with negative results are less likely to be published. We
consider that publication bias poses a low risk to the validity of this
study, since the failed characterization of test artifact quality does not
impact the results of this tertiary study.

4. Results and analysis

We organize the presentation of results and analysis according to
our four research questions.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Table 5
List of selected secondary studies.

ID Title Authors Study type General topic

S1 A Comprehensive Investigation of Modern Test Suite Optimization
Trends, Tools and Techniques

Kiran et al. SLR Testing activities in regression testing

S2 A systematic literature review of techniques and metrics to reduce
the cost of mutation testing

Pizzoleto et al. SLR Testing techniques

S3 A systematic literature review of test breakage prevention and
repair techniques

Imtiaz et al. SLR Testing activities in regression testing

S4 A Systematic Literature Review of Test Case Prioritization Using
Genetic Algorithms

Bajaj and Sangwan SLR Testing activities in regression testing

S5 A systematic literature review of the test case prioritization
technique for sequence of events

Ahmad and
Baharom

SLR Testing activities in regression testing

S6 A systematic literature review on modified condition and decision
coverage

Paul and Lau SLR Test data criteria

S7 A systematic mapping addressing Hyper-Heuristics within
Search-based Software Testing

Balera and
de Santiago Júnior

SMS Testing techniques

S8 A systematic mapping study of software product lines testing Da Mota
Silveira Neto et al.

SMS Testing process in specific domain

S9 A systematic mapping study on higher order mutation testing Prado Lima and
Vergilio

SMS Testing techniques

S10 A Systematic Mapping Study on Test Generation from Input/Output
Transition Systems

Paiva and Simao SMS Testing techniques

S11 A systematic review of concolic testing with aplication of test
criteria

Paiva and Simao SLR Testing techniques

S12 A systematic review of search-based testing for non-functional
system properties

Afzal et al. SLR Testing techniques

S13 A systematic review of state-based test tools Shafique and
Labiche

SLR Testing techniques

S14 A systematic review of the application and empirical investigation
of search-based test case generation

Ali et al. SLR Testing techniques

S15 A systematic review on search based mutation testing Silva et al. SLR Testing techniques
S16 A Systematic Review on Test Suite Reduction: Approaches,

Experiment’s Quality Evaluation, and Guidelines
Rehman Khan et al. SLR Testing activities in regression testing

S17 Analyzing an automotive testing process with evidence-based
software engineering

Kasoju et al. SLR Testing process in specific domain

S18 Combinatorial interaction testing of software product lines: A
mapping study

Sahid et al. SMS Testing techniques

S19 Continuous Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and Practices

Shahin et al. SLR Software testing in different types of development
process models

S20 Continuous testing and solutions for testing problems in continuous
delivery: A systematic literature review

Mascheroni and
Irrazábal

SLR Software testing in different types of development
process models

S21 Effective regression test case selection: A systematic literature
review

Kazmi et al. SLR Testing activities in regression testing

S22 Empirical evaluations of regression test selection techniques: A
systematic review

Engström et al. SLR Testing activities in regression testing

S23 Factor determination in prioritizing test cases for event sequences:
A systematic literature review

Ahmad and
Baharom

SLR Testing activities in regression testing

S24 Literature Review of Empirical Research Studies within the Domain
of Acceptance Testing

Weiss et al. SLR Software testing in different types of development
process models

S25 Machine learning applied to software testing: A systematic mapping
study

Durelli et al. SMS Testing automation

S26 Model-based testing for software safety: a systematic mapping study Gurbuz and
Tekinerdogan

SMS Testing techniques

S27 Model-based testing using UML activity diagrams: A systematic
mapping study

Ahmad et al. SMS Testing techniques

S28 Model-driven architecture based testing: A systematic literature
review

Uzun and
Tekinerdogan

SLR Testing techniques

S29 On rapid releases and software testing: a case study and a
semi-systematic literature review

Mäntylä et al. semi-SLR Software testing in different types of development
process models

S30 Problems, causes and solutions when adopting continuous
delivery—A systematic literature review

Laukkanen et al. SLR Software testing in different types of development
process models

S31 Quality Factors of Test Cases: A Systematic Literature Review Barraood et al. SLR Test case quality
S32 Regression testing of web service: A systematic mapping study Qiu et al. SMS Testing activities in regression testing

Continued in Table 6
L

t
2
c
t

4.1. RQ1 – differences and similarities between secondary studies

As described in Section 3.3, we selected 49 secondary studies. The
complete list of the selected studies is summarized in Tables 5 and 6.
The majority of the studies are Systematic Literature Reviews (SLRs)
(31 studies), and Systematic Literature Mappings (SMSs) (14 studies).
There are only two studies described as semi-SLR (S29) and quasi-SLR
(S38) as the authors stated that they included studies which were not
found by the search strings, and they did not have a meta-analysis
8

respectively. There are two other studies (S33, S49) which involved t
non-published and not peer-reviewed sources of information, which
is often called gray literature, and therefore described as Multi-vocal
iterature Review (MLR) and Multi-vocal Literature Mapping (MLM).

The distribution of the studies over years is shown in Fig. 2. Overall,
he number of secondary studies increased gradually from 2008 to
019. No study published before 2008 fulfilled our study selection
riteria. As our search was concluded in October 2019, it is reasonable
hat the number of selected studies published in 2019 is slightly lower

han in 2018. The increasing trend of secondary studies could be highly

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

r
K

T
i
m
c
t
t
t
c
p
(
S
t
S

s
a
s
(

o
f
i
d

Table 6
List of selected secondary studies (continued)

ID Title Authors Study type General topic

S33 Smells in software test code: A survey of knowledge in industry and
academia

Garousi and Küçük MLM Test code and relevant smells

S34 Software test-code engineering: A systematic mapping Garousi Yusifoğlu
et al.

SMS Test code and relevant smells

S35 Software testing with an operational profile: OP definition Smidts et al. SMS Testing techniques
S36 Specifications for Web Services Testing: A Systematic Review Nabil SLR Testing activities in specific domain
S37 Systematic literature review on regression test prioritization

techniques
Singh et al. SLR Testing activities in regression testing

S38 Test case design for context-aware applications: Are we there yet? Santos et al. Quasi-SLR Testing activities in specific domain
S39 Test case prioritization approaches in regression testing: A

systematic literature review
Khatibsyarbini et al. SLR Testing activities in regression testing

S40 Test case prioritization: A systematic mapping study Catal and Mishra SMS Testing activities in regression testing
S41 Test case prioritization: A systematic review and mapping of the

literature
De Campos Junior
et al.

SLR Testing activities in regression testing

S42 Test case selection: A systematic literature review Narciso et al. SLR Testing activities in regression testing
S43 Testing techniques selection: A systematic mapping study Santos et al. SMS Testing techniques
S44 The approaches to quantify web application security scanners

quality: A review
Seng et al. SLR Penetration testing

S45 The experimental applications of search-based techniques for
model-based testing: Taxonomy and systematic literature review

Saeed et al. SLR Testing techniques

S46 Unit testing approaches for BPEL: A systematic review Zakaria et al. SLR Testing techniques
S47 Vertical Test Reuse for Embedded Systems: A Systematic Mapping

Study
Flemstrom et al. SMS Testing activities in regression testing

S48 Web application testing: A systematic literature review Doǧan et al. SLR Testing process in specific domain
S49 When and what to automate in software testing? A multi-vocal

literature review
Garousi and
Mäntylä

MLR Testing automation
Fig. 3. Quality score overview.
elated to the introduction of evidence-based software engineering by
itchenham et al. [41].

We have identified different topics covered in the selected studies.
he most dominant one is about different testing techniques (17 stud-

es) which include model-based testing (S10, S26, S27, S28, S35, S45),
utation testing (S2, S9, S15), search-based testing (S7, S12, S14),

oncolic testing (S11), combinatorial interaction testing (S18), different
esting techniques in unit testing (S46), and approaches for selection of
esting techniques and testing tools (S13, S43). The second common
opic is about testing activities in regression testing (15 studies). The
overed activities are test case selection (S21, S22, S32, S42), test case
rioritization (S4, S5, S23, S32, S37, S39, S40, S41), test case reuse
S47), test case repair (S3), and test suite reduction (S1, S16, S32).
tudies in the third common topic are about software testing in various
ypes of development processes which are continuous practices (S19,
20, S30), rapid releases (S29) and test-driven development (S24).

The less frequent topics are about the general testing process in
pecific domains (software product lines, automotive systems, web
pplications) (S8, S17, S48), testing activities in specific domains (web
ervices, context-aware applications) (S36, S38), testing automation
S25, S49), and test code and smells (S33, S34).

Among the least frequent topics, it is worth to note that we found
nly one SLR conducted by Barraood et al. (S31) which had its main
ocus on quality of test cases and test suites. Barraood et al. (S31)
dentified 30 quality metrics for test cases, three of which did not have
escriptions. However, among the other 27 metrics, if we refer to their
9

provided descriptions, there are six quality attributes and 21 quality
metrics for both test cases and test suites. Our test-artifact quality model
(see details in Section 4.2.2) covers all of their quality attributes that
have descriptions. Barraood et al. also concluded that the quality of
test-case metrics influences test-case effectiveness.

Our main concern with this secondary study is its low quality
in terms of review method and synthesis. As demonstrated by our
quality assessment (see Table 12 in Appendix A), this secondary study
only summarized findings reported in their selected primary studies
(C3, C3a, C3b). Also, there are some inconsistencies in their research
method. While they indicated that their secondary study was about the
quality of test cases, they limited their search terms to effectiveness of
test cases, and included papers presenting ‘‘metrics of testing quality’’
and ‘‘good test cases’’ as mentioned in their inclusion criteria. They also
did not assess the quality (C4) or provide sufficient details (C5) of the
selected primary studies. Therefore, even though the study’s focus is
very close to our tertiary study’s aim, we could not rely completely on
its findings and conclusions. Hence, we still see a knowledge gap that
we address in our comprehensive review.

Another vital factor which could demonstrate differences and sim-
ilarities among the selected secondary studies is their quality scores,
as illustrated in Fig. 3. Based on our quality assessment criteria (see
Table 4), a secondary study could obtain 0 to 6 points. Even though
there is no study which fulfilled all the assessment criteria, the sec-
ondary studies had to some extent adequate search procedures (C2)
and provided sufficient details about their selected primary studies

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Table 7
Context dimensions.

Context dimension Context factor Context value reported in the selected studies

Test artifact Type test case, test suite (of test cases, test scripts, test-code scripts)

Test level integration testing, system testing, unit testing

Testing objective acceptance testing, compatibility testing, execution time testing, penetration testing,
quality of service testing, regression testing, robustness testing, safety testing,
security testing, UI testing, usability testing

Testing activity test case design, test case execution, test case generation, test case prioritization, test
case selection, test coding, test data generation, test script generation, test script
repair, test suite reduction

Testing technique combinatorial interaction testing, concolic testing, model-based testing (MBT),
mutation testing, search-based software testing, state-based testing

Testing approach black-box testing, white-box testing

Testing frequency continuous

System under test
Software type academic experimental/simple code examples, context-aware software system,

desktop application, distributed business application, embedded system, GUI-based
application, mobile application, reactive system, safety-critical application, software
product line, web-service-based system

Software license commercial, open source
Application domain civil avionics
Type of development
process

acceptance test driven development, continuous practices
(integration/delivery/deployment), rapid releases

Programming language Business Process Execution Language (BPEL), C, C++, JavaScript

Testing tool and
framework

Add-on for Rational Rose (TDE/UML), AGTCG, Architectural model for branch
coverage Enhancement (ABCE), ATOM, ATUSA, AUSTIN, Cadnece SMV model
checker, CATG, CESE, COLT, COMEDY, Concolic execution tool, CrashFinderHB,
CRAX, CREST, CREST-BV, CUTE, DART, Evacon, GERT, Green Analysis of Branch
Coverage Enhancement, GUIAnalyzer, iConSMutate, jCUTE, jDart, jFuzz, JSART,
Junit, KLEE, LCT, LLSPLAT, PathCrawler, Plugin for Eclipse Modeling Framework,
SAGE, SCORE, SITAR (QTP), SMT Solver, SPLAT, Star (Software Testing by
Abstraction Refinement), SynConSMutate, TESTEVOL, Trex, TSGAD, TTCN,
Ttworkbench, UMLTGF, UTG, Yices

Automation level Automation activity test case execution, test case generation, test data generation, test script execution,
test script generation, test script repair

Automation degree not discussed in selected studies (e.g: semi automation, full automation)

Orientation Technology orientation Yes/No (example cases for ‘‘Yes’’: MBT tools, test case design techniques, test suite
optimization techniques, testing techniques selection approaches, etc.)

People orientation Yes/No (example cases for ‘‘Yes’’: developers, software engineers, testers, etc.)

Solutions/Improvements
Correction not discussed in selected studies
Detection not discussed in selected studies
Prevention not discussed in selected studies

Quality standards not discussed in selected studies (e.g: ISO, ISTQB)

Quality type not discussed in selected studies (e.g: Quality In Use, Product Quality)
(C5). Most of the secondary studies (47 studies) also reported their
inclusion/exclusion criteria for primary studies selection (C1).

According to CRD/DARE, the three quality criteria C1, C2, C3 (in-
cluding two sub-criteria C3a and C3b) are considered more important
than the other two criteria (C4 and C5). Among our selected secondary
studies, there is no study which completely fulfilled all the important
quality criteria (C1, C2, C3a, C3b). In this regard, while the criteria
C1 and C2 were often addressed in most of the secondary studies, we
found that the way findings were synthesized in the secondary studies
was not thorough according to the criteria C3a, C3b. On one hand, the
evidences from primary studies were synthesized in most of the studies
(42 studies). On the other hand, only three of those secondary studies
considered the quality assessment results of their primary studies in the
synthesis (C3b).

It is worth to note that despite the observation above, nearly half of
the secondary studies (20 studies) did define quality assessment criteria
for their selected primary studies or have some research question(s)
involving quality issues (C4). Nevertheless, most (17 out of 20 studies)
used the quality assessment results as a threshold for their primary
study inclusion only.
10
4.2. RQ2 – quality attributes and measurements in testing-specific contexts

We report here the results that cover testing-specific contexts, qual-
ity attributes and quality measurements.

4.2.1. RQ2.1 – testing-specific contexts
With this research question, we focused on reporting and analyzing

the testing-specific contexts in which the quality of test artifacts has
been discussed in the literature. In our review, such a context is built
by different context dimensions and the values under each dimension
as discussed in Section 3.4. As mentioned in the same section, we
proposed 14 potential context dimensions. However, only 11 of the
potential context dimensions were found in the selected secondary
studies while the other four dimensions, including Automation degree,
Solutions/Improvements, Quality standards, and Quality type, were not.
The reported context dimensions and their context values found in the
selected studies are presented in Table 7.

How often such a dimension has been used could reveal its rel-
evance in terms of describing the contexts in which the test artifact
quality has been studied in general. In our review, we presented a
dimension’s frequency by the number of secondary studies in which
that dimension was reported. As shown in Table 8, there is clear gap
between the most common context dimensions and the least common
ones.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

l
o
s
c
w
d
w
t

t
p
n
t
a
o

v
c
f
q
v

4

a
t
v

m
2
o
b
o

e
p
q

Table 8
Context frequency.

Context dimension Frequency
(> Context Value) (# of secondary studies)

Test Artifact 48
> test suite 34
> test case 20

Testing activity 34
> test case generation 9
> test case prioritization 8

Orientation 33
> technology orientation 29

Testing objective 20
> regression testing 15

Automation activity 17
> test case generation 9

Testing technique 15
> MBT 7

SUT_Software type 15
> safety-critical application 3
> software product line 3
> web-service-based system 3

SUT_Type of development process 5
> continuous practices 2

Testing tool and framework 5
> ATOM 2

Test level 4
> system testing 2

Testing approach 3
> black-box testing 3

Testing frequency 3
> continuous 3

SUT_Application domain 2
> each context value (see Table 7) 1

SUT_Programming language 2
> each context value (see Table 7) 1

SUT_Software License 1
> each context value (see Table 7) 1

The most common context dimensions which were reported in at
east 15 studies are Test artifact, Testing activity, Orientation, Testing
bjective, Automation activity, Testing technique, and Software type of
ystem under test (SUT). It is worth to note that with the most common
ontext dimension, Test artifact, there is only one selected study (S12)
hich is not associated with it. In the study, fitness functions were
escribed as test adequacy criteria. However, there is no information
hich could help to connect the fitness functions to any value under

he Test artifact dimension.
In contrast to the most common context dimensions, it appears

hat other dimensions related to SUT, including type of development
rocess, application domain, programming language, software license have
ot been often reported (in five papers at most) in connection with
est artifact quality. Likewise, dimensions such as testing level, testing
pproach, testing frequency, testing tool and framework have not been
ften reported when test artifact quality was discussed.

Table 8 also shows the frequencies of the most dominant context
alues found under each context dimension. Among those dominant
ontext values, test suite, test case, and regression testing are the most
requent of all. Meanwhile, the context values under the least fre-
uent context dimensions were consequently the least common context
alues.

.2.2. RQ2.2 – quality attributes
In this section, we report the quality attributes of test artifacts

ssociated with the identified test-specific contexts discussed in Sec-
ion 4.2.1. We constructed a quality model, shown in Fig. 4, to pro-
11

ide an overview of the 30 identified quality attributes. The quality
odel was inspired by the software quality models in the ISO/IEC
5010:2011. Among the 30 quality attributes identified in the sec-
ndary studies, 19 had descriptions while the rest were only mentioned
y name. The quality attributes without descriptions are marked with
range exclamation symbols in Fig. 4.

We categorized the identified quality attributes based on the hi-
rarchy in the quality-in-use model and the product quality model
rovided in the ISO/IEC 25010:2011. As a result, there are nine main
uality attributes in our model: Coverage, Fault detection, Portability,

Maintainability, Reliability, Usability, Complexity, Diversity, and Efficiency.
Among those nine attributes, Fault detection and Coverage were created
by the authors to group other quality attributes which were discussed
in the secondary studies, but could not be fitted in an existing category
provided by ISO/IEC 25010:2011. In contrast to the other attributes,
Complexity, Diversity, and Efficiency do not have any sub-attributes.

Overall, there are two main differences between our quality model
and the quality models defined by the ISO standard. First, the four
quality attributes Fault detection, Coverage, Complexity, and Diversity do
not have any connection or similarity with the quality characteristics
defined in the ISO standard. This is to be expected, since the ISO
standard is defined for software, while these four attributes focus on
specific aspects of test artifacts, which are not applicable for software
in general. For example, Coverage can be defined for test artifacts to
describe the degree to which the functionality of a system under test
is tested. For software in general, this quality attribute is meaningless.
These additional quality attributes are marked with green symbols in
Fig. 4.

Second, we attached a number (in square brackets) to each quality
attribute to show the number of unique contexts in which a quality
attribute was studied. As Fault detection and Coverage were only created
to group the identified quality attributes, the number of unique contexts
in which those two attributes were discussed is zero. Maintainability
and its sub-attributes are the most frequent quality attributes with 21
unique contexts in total, followed by the sub-attributes under Fault
detection with 11 unique contexts. Usability and its sub-attributes were
also discussed widely in the secondary studies with eight unique con-
texts in total. Meanwhile, Complexity, Diversity, and Efficiency are the
least frequent quality attributes with at most two unique contexts each.

To provide a broader picture of test artifact quality attributes, we
also included in Fig. 4 a set of 15 quality attributes from the ISO/IEC
25010:2011 which could be relevant to test artifact quality but have
not been mentioned in the secondary studies. Hence, those quality
attributes have zero context in which they were discussed. Additionally,
we list their six main quality attributes in Fig. 4 in brackets.

Table 9 contains the descriptions of the 19 quality attributes iden-
tified in the secondary studies sorted according to Fig. 4. These de-
scriptions of the quality attributes are direct quotes from the selected
studies’ authors. Among those 19 quality attributes, Fault detection
capability and Completeness are the most diverse ones with at least
three different descriptions each, followed by Reusability, Stability, Fault
detection effectiveness, and Reliability with two descriptions each. It
is worth to mention that the authors of the secondary studies did
not mention any connection or influence of the ISO standard when
describing the quality attributes.

4.2.3. RQ2.3 – quality measurements
Together with the 30 quality attributes for test artifacts, we also

found 100 unique quality measurements reported in the secondary
studies for test artifact quality assessment. In general, the most common
quality measurements are coverage criteria (mentioned in 67 unique
contexts) while the other measurements appeared in at most seven
contexts each.

In our study, we only reported the quality measurement — quality
attributes associations which were explicitly mentioned in the sec-
ondary studies by the authors. For example, in study S40 [21], the

authors discussed several quality measurements (APFD, ASFD, TPFD,

Information and Software Technology 139 (2021) 106620

12

H.K.V. Tran et al.

Fig. 4. Test artifact quality model
quality attributes (QA) without description; QAs without connection to ISO/IEC 25010:2011; quality measurement(s) associated with the QA; [] next to each QA is

the number of unique contexts in which the QA was studied. Each number on the outer right is the total number of unique contexts for the corresponding group of QAs.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

f

Table 9
Test Artifact Quality Attribute (QA) Description (sorted according to Fig. 4)

Main QA Sub-QA Description (described by the authors of the secondary studies) Ref

Maintain-
ability

Reusability (1) By vertical test reuse, we refer to reuse of test cases between different levels of integration. For
example, test cases designed for component- or unit-level testing can (with or without modifications)
be reused at the subsystem integration or system test levels.

S47

(2) The same test can be reused as a part of another test, e.g., a login test must pass in a web-based
application before other tests can be executed.

S49

Changeability Changeable structure and style of a test case which allows changes to be made easily, completely,
and consistently.

S31

Stability (1) It is about stability of the logic under test. S49
(2) Unstable test case is likely to break or not reflecting the functionality to be tested. S30

Independency The measurement of the degree of dependency among one test case to other test cases. S31
Traceability Requirements traceability refers to the ability to link requirements, often created by a third-party

tool (e.g., IBM DOORS), to parts of the test model (e.g., a transition, a path) and, therefore, to test
cases. Traceability provides several benefits, such as identifying which test cases exercise which
requirements, which requirements are still to be tested and which requirements are linked to a failed
test.

S13

Fault
Detection
(FD)

FD capability (1) Higher code coverage can be a good indicator of fault detection capability. There are a number
of coverage criteria for code coverage, such as function coverage, statement coverage, branch
coverage, and condition coverage.

S23

(2) The test’s likelihood of revealing defects; S49
(3) The capability of the set cases have to detect defects; S43
(4) The ability to identify faults in the source code, code coverage. S7

FD effectiveness (1) In the absence of precise quality indicators for test suites, the coverage of a test suite is usually
used as proxy for its fault-detection effectiveness.

S25

(2) It considers a test case to be effective in the current release if the same test was also able to
detect faults in previous releases.

S31

FD efficiency How quickly an arranged and optimized test suite can discover defects. S39

Usability Understandabil-
ity

How easy to understand a test case in terms of its internal and external descriptions. Internal
information is a test case’s content which is actually used in software testing, and it is most cared to
test engineer (e.g.: test target, tested function, test scenario, test input, test step, test expected result).
External information is interface attributes of test case which may help user understand test case,
ease retrieval procedure and improve test case reuse (e.g.: keyword, precursor test case, test field).

S31

Feasibility In the context of GUIs, test cases take the form of sequences of events that are executed in hopes of
detecting faults in the application. However, test cases might be rendered infeasible if one or more
events in the sequence are disabled or inaccessible. This type of test case terminates prematurely and
end up wasting resources.

S25

Coverage Completeness (1) Incomplete acceptance test cases means that not all functionalities of the requirements are
executed;

S24

(2) The intended mutant coverage that the current test suite need to evolve in order to achieve; S2
(3) How completely a test suite exercises the capabilities of a piece of software. S8

Adequacy An adequate test suite is one that implies that the SUT is free of errors if it runs correctly. S25
Effectiveness in
coverage

Code coverage (CE) is a metric that integrates the size of test suites and the coverage of each test
case. CE values range from zero to one, where a higher value indicates a better effectiveness in
coverage.

S39

Portability Repeatability The number of environments to test a SUT in usually increases test repeatability, e.g., when testing
Android applications, one needs to repeat the same test in different Android phone models.

S49

Universal It is reflected from test scenarios and test fields in which a test case can be executed. S31

Reliability Reliability (1) A test that fails randomly is not reliable; S20
(2) Unreliable tests means frequent test failures. S19

Consistency Inconsistent acceptance test cases means that faults in the test cases are present, which is typically
revealed during implementation.

S24

Complexity Test suite complexity is defined as the number of steps (test commands) required to execute the
whole suite.

S48

Diversity It is about an overlap of test cases being executed between subsequent releases. S29
b
t
S
c
(
e

d
a
s
h

APFDc, NAPFD, RP, CE). They were described by the authors as metrics
to evaluate test case prioritization approaches. There was no explicit
test-artifact quality attribute connected to those quality measurements
mentioned by the authors of S40. Hence, we treated those quality
measurements as stand-alone measurements. Consequently, there are
82 out of the 100 identified quality measurements which had no ex-
plicitly stated connection to any particular quality attribute. While they
were reported as measurements of test artifact quality in general, the
remaining 18 quality measurements were associated in the secondary
studies with 11 specific quality attributes. Those measurements are
marked green in Fig. 4. Also, as illustrated in Fig. 4, the largest set
of quality measurements (seven out of 18 measurements) were for
measuring the Fault detection capability attribute.

Among those 18 quality measurements, coverage criteria is the most
13

requent one. Despite appearing in most contexts in form of various a
types, such as code coverage criteria, model-flow coverage criteria, script-
flow coverage criteria, data coverage criteria, etc., coverage criteria has
een linked to quality attributes only in few contexts. In particular,
here are only seven contexts found in six secondary studies (S2, S8,
21, S23, S25, S32) where the authors mentioned that the coverage
riteria could be used to measure four identified quality attributes
Adequacy, Completeness, Fault detection capability, and Fault detection
ffectiveness).

There are only six out of those 18 quality measurements which had
escriptions, as presented in Table 10. The six measurements are sorted
ccording to Fig. 4 and the descriptions originate from the secondary
tudies. Among those six measurements, coverage criteria is the only one
aving multiple descriptions depending on the contexts and the quality

ttribute they are used to measure.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

O

Table 10
Test Artifact Quality Measurement (QM) Description (sorted according to Fig. 4)

Main QA Sub-QA QM QM Description (as described by the authors of the secondary studies) Ref

Fault
detection

Fault detection
capability

Capacity of SOM
to reveal subtler
faults

Subtler faults are those which are not revealed by its constituent First Order Mutants (FOMs). S7

Coverage criteria Coverage of significant service-related elements (Service Activities (SAs) and Service Transitions
(STs)), which originated from statements and branches in traditional software artifacts, are the most
commonly used criteria

S32

Fault-exposing-
potential (FEP)
based metrics

FEP is the probability of detecting faults for each test case. The metrics include (1) Potency: the
probability of a test case to detect a fault based on the predicted test oracles; (2) Change sensitivity:
measure the importance of test cases based on the assumption that sensitive test cases that potentially
execute more service changes have a higher ability to reach the faults caused by changes; (3) Fault
rate: detected seeded faults w.r.t. the execution time; (4) Fault severity: based on the combination of
fault rate and fault impact (importance of a fault).

S32

Information-
retrieval based
metrics

If the execution history of one test case covers more identifiers (e.g: method signature, data structure
in services) emerged simultaneously in the service change descriptions, the test case has a higher
probability to cover the potential faults caused by this change. Based on this hypothesis, the degree
of matching between service change query and service execution history can be used to measure the
priority of the test cases. The test case with the highest similarity is ranked first.

S32

Fault detection
efficiency

Average
Percentage of
Faults Detected
(APFD)

APFD calculates the weighted average of the percentage of faults detected by the test cases of the test
suite. The result of APFD ranges from zero to 100, where a greater value indicates a better fault
revealing rate.

S39

Coverage Completeness Coverage criteria The subcategories include statement coverage, branch coverage, method or function coverage,
condition coverage, requirement coverage, and test case coverage

S21

Coverage criteria Two coverage criteria for framework-based product lines: hook and template coverage, that is,
variation points open for customization in a framework are implemented as hook classes and stable
parts as template classes. They are used to measure the coverage of frameworks or other collections
of classes in an application by counting the structures or hook method references from them instead
of single methods or classes.

S8

Adequacy Coverage criteria Behavioral coverage is essentially concerned with inferring a model from a system by observing its
behavior (i.e., outputs) during the execution of a test suite. If one can show that the model is
accurate, it follows that the test suite can be considered adequate.

S25

Effectiveness in
coverage

Coverage
effectiveness
(CE)

It is a metric that integrates the size of test suites and the coverage of each test case. It is the ratio
between the size of the whole test suite and the coverage of reordered test suite that reveals all faults
or meets all requirements. CE values range from zero to one, where a higher value indicates a better
effectiveness in coverage.

S39
4.3. RQ3 – quality attributes in the most common contexts

As mentioned in Section 4.2.1, we identified 11 context dimensions
describing testing-specific contexts where test artifact quality was dis-
cussed in the secondary studies. Among the 11 context dimensions,
there are seven dimensions which were discussed more frequently than
others, namely Test artifact (48 studies), Testing activity (34 studies),

rientation (33 studies), Testing objective (20 studies), Automation activ-
ity (17 studies), Testing technique (15 studies) and SUT_Software Type
(15 studies) (see Table 8).

In this section, we report the occurrences of the 30 identified quality
attributes under the context values of those seven most frequent context
dimensions. An overview of the occurrences is illustrated in Fig. 5. The
horizontal axis represents the quality attributes sorted according to the
number of their unique contexts, as shown in Fig. 4. The vertical axis
represents the context values of the most frequent context dimensions.
The context values without connected quality attributes were excluded
from Fig. 5. Among those excluded context values, test case generation is
the most common context value under two dimensions, Testing Activity
and Automation activity ; safety-critical application is the most common
one under the SUT_Software type dimension. Still, there is no quality
attributes linked to those two context values.

Each number in Fig. 5 shows how often a quality attribute has been
studied. For example, at the bottom-left corner of the figure, we can see
that Maintainability was studied under three contexts which contain the
context value test case.

Based on Table 8, we first compare context dimensions, which have
been studied equally often to identify differences or similarities with
regard to the thoroughness with which the connected quality attributes
have been studied. As a first case, we look at the two dimensions
Testing activities and Orientation, which were discussed equally often.
14

From Fig. 5, we can see that there are 16 quality attributes connected
to Testing activities and 26 quality attributes connected to Orientation.
By combining this with the data from Tables 9 and 10, we find
that, for the Testing activities dimension, 75% of the connected quality
attributes had descriptions and 56% of the connected quality attributes
had information regarding their measurements. In contrast, for the
Orientation dimension, only 58% of the connected quality attributes
had descriptions, and only 42% of the connected quality attributes had
information regarding their measurements. Hence, we could see that
the quality attributes under the Testing activities dimension were studied
more thoroughly than under the Orientation dimension.

The above observation also applies when comparing the two context
dimensions, Testing technique and SUT_Software type in a similar man-
ner. Even though the dimensions were discussed equally often, the four
quality attributes connected to Testing technique were more well studied
than the nine quality attributes connected to SUT_Software type.

Testing objective and Automation activity are two extreme cases.
There are 14 quality attributes under the Automation activity dimension,
but only 36% of them had descriptions, and 14% of them had mea-
surements information. It is the dimension with the least informative
quality attributes when comparing to the other dimensions. Meanwhile,
under the Testing objective dimension, all nine connected quality at-
tributes had descriptions, and 89% of them had measurements detail.
It makes this dimension the one with the most well-studied quality
attributes.

In a next step, we relate the quality attribute categories, as shown
in Fig. 4 to their coverage in different context dimensions, as can be
derived from Fig. 5. In this way, it is possible to identify context dimen-
sions which disregard entire quality attribute categories. Particularly,
no quality attribute under the four categories, Maintainability, Usabil-
ity, Portability, and Reliability, were connected to the Testing technique
dimension. Likewise, no quality attributes under the two categories,

Fault detection and Coverage, were connected to the Automation activity

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

d
w
t

c
d
i
s
a
C
s
q
a
d

4
m

o

Fig. 5. Quality attributes in the most frequent contexts (The 𝑥-axis represents the quality attributes and the 𝑦-axis the contexts).
m
a
s
d
a

w
s
e
d
t
s
(
d
F
i
a
c

imension. Also, the quality attributes under the category Portability
ere not connected to two other dimensions, Testing activity and Testing

echnique.
Besides, for each quality attribute category, we identified the most

ommonly discussed quality attribute based on the number of context
imensions and context values the attribute was connected to, as shown
n Fig. 5. For example, Reusability has been discussed in six out of
even context dimensions with 14 context values in total. Those quality
ttributes are Reusability, Fault detection capability, Understandability,
ompleteness, Repeatability, and Reliability. Nevertheless, there is no
ignificant observation we could draw regarding the least popular
uality attributes, namely Complexity, Diversity, and Efficiency as they
re the stand-alone attributes without any sub-attributes and were not
iscussed in many secondary studies (as described in Section 4.2.2).

.4. RQ4 – consensus on descriptions of quality attributes and quality
easurements

In this section, we report our observations regarding the consensus
n the descriptions of the identified quality attributes and quality
15

a

easurements of test artifacts. As mentioned in Section 4.2.2, there
re 19 quality attributes which had descriptions in the secondary
tudies. There are six quality attributes, namely Completeness, Fault
etection capability, Fault detection effectiveness, Reliability, Reusability,
nd Stability, each of which had different descriptions (see Table 9).

Our first observation is that we did not find any quality attribute
ith contradicting descriptions within the same context or in the same

econdary study. Specifically, with the above six quality attributes,
ven though each of them had different descriptions coming from
ifferent contexts, the descriptions are aligned. Indeed, we found that
hey either represent different aspects of the quality attribute or are
imilar to some extent. For example, the descriptions (2), (3), and
4) of the quality attribute Fault detection capability in Table 9 all
escribe this attribute to be concerned with identifying defects or faults.
urthermore, both descriptions (1) and (4) identify code coverage as
mportant indicator of this quality attribute. Likewise, with the quality
ttribute Reusability, while one of its description was about reusing test
ases between different testing levels, the other description was about
nother way of reusing test cases, which is reusing only some part of a

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

t
O

a
q
P
d
w
w
h
i
o
K
b

q
g

i
i
t
t
m
t
i
c

test case. Similarly, the quality attribute Reliability has two descriptions
covering two different but not contradictory aspects of a test failure,
namely the frequency and the randomness.

Our second observation is that the two quality attributes, Repeatabil-
ity and Universal, share similarity in their descriptions. Both attributes
were described based on testing environments. While the former at-
tribute relies on the number of testing environment, the latter one is
also based on test scenarios.

Our third observation is that there are five quality attributes with
similarity in their measurements. Those quality attributes are Adequacy,
Completeness, Effectiveness in coverage, Fault detection capability, and
Fault detection effectiveness. Even though their descriptions are not
the same, the coverage criteria were the common way to quantify
those attributes (as mentioned in their descriptions and measurements
details).

5. Discussion

We discuss in this section the three main aspects from our results,
covering the identified test artifact quality attributes, measurements
and contexts.

5.1. Test artifact quality attributes

We use ISO/IEC 25010:2011 to augment the test artifact quality
attributes identified from the reviewed secondary studies with the
standard’s quality characteristic information, since (1) it is the most rel-
evant and official source in the literature for quality models in software
engineering, and (2) this idea has been implemented before [11,20] but
with the now withdrawn standard ISO/IEC 9126.

As reported in Section 4.2.2, we identified 30 quality attributes
from the selected secondary studies. When comparing our findings
with the software quality characteristics in ISO/IEC 25010:2011, we
found that there are 15 quality sub-characteristics, shown at the bottom
of Fig. 4 and belonging to six main quality characteristics shown in
brackets, which could also be used to characterize test artifact quality.
In Table 11 we propose descriptions, based on the definitions of the
same quality characteristics in ISO/IEC 25010:2011, for the five out of
six main quality characteristics (the main quality attribute reliability is
excluded as we found its descriptions in the literature) and 15 quality
sub-characteristics for test artifacts that we did not identify in the
secondary studies.

The reason for not finding those sub-characteristics in the selected
secondary studies could be that they were not relevant to the studies’
scopes, especially when most of the studies did not consider test artifact
quality explicitly. Another reason could be that the studies’ syntheses
and primary study details were not sufficiently detailed, preventing us
to extract information about quality attributes (such as S31, according
to our quality assessment’s results, see Fig. 3).

Overall, as a combination of the 30 quality attributes from the
selected secondary studies and the 20 additional quality attributes from
the ISO standard, our quality model (see Fig. 4) contributes to re-
searchers in two aspects. First, it shows which quality attributes should
be considered from the ISO standard when researchers characterize test
artifact quality. Second, it also shows what additional quality attributes
(Table 11) could be relevant when researchers characterize the test
artifact quality based on the ISO standard. However, there are several
aspects of test artifact quality that are not considered in the current
model or cannot be solved by a static model alone. Test smells [21]
are, similar to code smells [113], indications that point to deeper, not
immediately visible, issues in test code [114]. Spadini et al. [115]
studied over 200 releases of 10 software systems and found that smelly
test cases are more change- and defect prone (i.e. potentially less
maintainable and reliable) and lead to more defect prone production
code. Hence, a model of test smells with associated quality attributes
could complement our test artifact quality model. We did not consider
16
test data in the test artifact context dimension (see Table 7) as we
did not encounter any secondary studies that cover the topic of test
data quality in our review. While the practice of testing deep learning
applications is still at an early stage [116], the quality of test data
for such systems is essential. Hence, extending the test quality model
to include also means to define test data quality would be beneficial.
Finally, the test quality model presented in this paper does not provide
decision support for prioritizing or selecting attributes for particular
test phases. Depending on development progress, product maturity, or
even developer/tester experience, different aspects of test artifacts, and
hence quality attributes, might need to be prioritized.

5.2. Test artifact quality measurements

As reported in Section 4.2.3, we identified 100 unique quality
measurements from the selected secondary studies. Nonetheless, only
18 of those measurements were connected to quality attributes (11
in total). Also, only six of those 18 measurements were thoroughly
described in the secondary studies. This means, in turn, that there were
19 quality attributes without measurement information and 12 quality
measurements without description. A possible explanation for not find-
ing measurements for quality attributes and measurement definitions
is that the information is not relevant to the secondary studies’ scopes,
hence not reported. This lack of a consolidated view for measurements
is a common issue in many different areas of software engineering as
illustrated, for example, by Kitchenham [117] with regard to software
metrics and by Unterkalmsteiner et al. [118] with regard to measure-
ments for software process improvement. Similarly, there is still a need
for a consolidated view of how to measure the quality attributes of test
artifacts.

5.3. Most frequently reported test artifact quality contexts

In Section 4.3, we reported how often the 30 identified quality
attributes have been studied in the seven most frequent contexts (il-
lustrated in Fig. 5). We found that some quality attributes were studied
better, in terms of having descriptions and measurement information,
in a certain context dimension than in another dimension despite that
the dimensions were reported equally often. Particularly, the quality
attributes connected to the Testing activity, Testing objective, and Testing
echnique dimensions were more studied than those connected to the
rientation, Automation activity, and SUT_Software type respectively.

Our second finding was that some context dimensions could not be
ssociated with certain groups of quality attributes. For example, no
uality attribute under the four categories of Maintainability, Usability,
ortability, and Reliability was associated with the Testing technique
imension. One possible explanation is that these context dimensions
ere not relevant to the scope of the related secondary studies and
ere therefore not discussed. Nonetheless, one could argue that for
igh quality test artifacts, the majority of quality attributes are relevant,
ndependent of context. The difficult question is however to find the
ptimal selection of attributes for a positive return on investment.
nowing all potential relevant quality attributes is a first step towards
eing able to make such a prioritization.

In the following, we discuss the potential implications of missing
uality attributes for two frequently discussed contexts, viz., test case
eneration, and regression testing.

The context dimension test case generation is the most extreme case
n terms of missing quality attributes, since none have been discussed
n this context. A possible explanation for this surprising finding is
hat these secondary studies focused on the comparison of different
echniques for test case generation, reporting only quality measure-
ents without associating them with quality attributes. Nevertheless,

his might indicate a need for further study, since quality attributes
n the Fault Detection and the Coverage category likely need to be
onsidered when discussing test artifacts. Furthermore, it is conceivable

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.

C
i
n

t
t
t
a
s
o
t

Table 11
Descriptions of test artifact quality attributes (based on ISO/IEC 25010:2011)

Quality Attribute Description

Satisfaction Degree to which user needs are satisfied when a test artifact is used in a specified context of use
Usefulness Degree to which a user is satisfied with their perceived achievement of pragmatic goals, including the

results of use and the consequences of use
Trust Degree to which a user or other stakeholder has confidence that a test artifact will behave as

intended.
Pleasure Degree to which a user obtains pleasure from fulfilling their personal needs. Personal needs can

include needs to acquire new knowledge and skills.
Functional suitability Degree to which a test suite covers its given testing objectives which could be about fault detection,

SUT performance evaluation, etc.
Functional
completeness

Degree to which a test suite covers all the specified testing objectives.

Functional correctness Degree to which a test artifact provides the correct results with the needed degree of precision.
Functional
appropriateness

Degree to which a test case facilitates the accomplishment of specified tasks and objectives. For
example, a user is only presented with the necessary steps to execute the test case, excluding any
unnecessary steps.

Performance efficiency Performance relative to the amount of resources used under stated conditions. Resources can include
the software and hardware configuration of the system under test.

Time behavior Degree to which the response and processing times of a test artifact when executing.
Resource utilization Degree to which the amounts and types of resources used by a test artifact when executing.
Compatibility Degree to which a test artifact can exchange information with other test artifacts, and/or accomplish

its required testing objective, while sharing the same hardware or software environment.
Co-existence Degree to which a test artifact could accomplish its testing objective efficiently while sharing a

common environment and resources with other test artifacts, without detrimental impact on any other
test artifacts. For example, it could be between different test suites or test cases for running in
parallel while using the same resources.

Usability Degree to which a test artifact can be used by specified users to achieve specified testing objectives
with effectiveness, efficiency and satisfaction in a specified context of use.

Appropriateness
recognizability

Degree to which users can recognize whether a test artifact is appropriate for their needs e.g.: for test
case selection in regression testing.

Operability Degree to which a test script has attributes that make it easy to operate and control.
Maturity Reflect on the number of reliable test cases in a test suite.
Availability Degree to which a test artifact is operational and accessible when required for use.
Fault tolerance Degree to which a test suite could accomplish its testing objective when its test case(s) fail due to

hardware or software faults.
Recoverability Degree to which, in the event of an interruption or a failure, a test suite can recover the data directly

affected and re-establish its desired state. For example, if the tear-down of the failed test case is set
up properly then the test suite could re-establish its desired state then execute subsequent test cases.
t
o
t
w
i

l
s
H
h
s
a
t
o
o
F
h
T
m

5

t
n
i
I
g

that quality attributes, such as Analysability and Traceability, are also
relevant in the context of test case generation. For example, while
generated test cases might not need to be understandable if they are
executed automatically, it still needs to be possible to trace them to
the initial requirements.

In contrast to test case generation, the regression testing context is
associated with the quality attribute categories Fault Detection and

overage, which have been identified as relevant for test artifacts
n general. However, an important quality attribute, Reliability, has
ot been discussed in the context of regression testing. Thus, further

investigation in this direction is needed.
Quality attributes have been discussed in many different contexts.

However, our systematic mapping of contexts and quality attributes
has revealed gaps even in mature contexts, such as regression testing.
Therefore, our mapping can serve as a basis for a more systematic
exploration of quality attributes of test artifacts.

5.4. Least frequently reported test artifact quality contexts

As reported in Section 4.2.1, we identified context dimensions
which are potentially relevant for describing artifact quality in testing-
specific contexts, but were not identified in the selected secondary stud-
ies. The context dimensions are Automation level in terms of Automation
degree, Quality type, Quality standards, and Solution/Improvement in
erms of correction, detection and prevention (as shown in Table 7). While
he Automation level dimension is based on our knowledge in software
esting, the other dimensions were inspired by ISO/IEC 25010:2011
nd the general concept of having a solution or improvement for test
mells [43]. We argue that those dimensions are as important as the
ther dimensions for describing the context of test artifact quality for
wo reasons. First, testing automation is a rising factor in software
17

p

esting [112] and the automation degree can provide a basis for pri-
ritizing quality attributes. Second, it is insufficient to describe only
he characteristics of good-quality test artifacts without considering
ays to detect, prevent, and correct bad quality in test artifacts. This

s important to ensure the creation of good-quality test artifacts.
Nonetheless, those context dimensions were not found in any se-

ected secondary studies. One explanation is that most of the selected
econdary studies (except S31) did not focus on test artifact quality.
ence, reporting context dimensions of test artifact quality might not
ave been deemed as necessary. On top of that, none of the selected
econdary studies mentioned the ISO/IEC standard for software quality
s a reference for the information regarding test artifact quality in
heir reviews. Regarding the secondary study S31, we found that the
nly mentioned context information was Test artifact type (test cases
r test suite). Also according to our quality assessment’s results (see
ig. 3), the study did not fulfill the synthesis criterion (C3) and did not
ave sufficient details regarding their selected primary studies (C5) (see
able 4). Hence, it is possible that the three relevant dimensions were
issed in S31.

.5. Research roadmap

While this tertiary review uses a large base of existing literature
o propose a test artifact quality model, gaps in this same literature
eed to be filled in order to complete the model. Furthermore, specific
nstructions on how to instantiate the model in practice are missing.
n this section, we briefly draw a path on how to fill these research
aps that would lead to a usable and evaluated test artifact model in
ractice.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
5.5.1. To complete the test-artifact quality model
Context dimensions. Context dimensions are important to describe test-
artifact quality in the software-testing specific context. However, there
are still context dimensions which we could not collect information
about in the literature (as mentioned in Section 5.4). Hence, we find it
necessary to investigate the extent to which other context dimensions
(such as Automation level in terms of Automation degree, Quality type,
Quality standards, and Solution/Improvement in terms of correction,
detection and prevention) could be used to describe test-artifact quality.

ISO-based quality attributes. We argued that there are several quality
attributes from the ISO/IEC 25010:2011 (as mentioned in Section 5.1)
which could be used to characterize the test-artifact quality. How-
ever, we could not find relevant information regarding those quality
attributes in the literature. Hence, there is also a need to investigate
the extent to which those extra quality attributes inspired by the ISO
standard (as shown in Fig. 4 and Table 11) could be used to measure
test-artifact quality and how to quantify those extra quality attributes.

Test-artifact quality in mature contexts. We also found that there are
mature and common contexts in which quality attributes and mea-
surements have not been discussed thoroughly as such ‘‘regression
testing’’ and ‘‘test case generation’’ (as mentioned in Section 5.3).
Hence, we also find it necessary to have a more systematic view of
quality attributes and how to measure them in those contexts.

Test smells and test data. As test smells are closely connected to test-
artifact quality and test-data quality is also essential (as mentioned in
Section 5.1), we believe that there is a need to investigate on how to
integrate test smells and test data into the current quality model.

5.5.2. To instantiate the test-artifact quality model
Once the quality model is complete, it is necessary to provide

instruction on how to instantiate the model in specific contexts. One
important aspect would be quality attributes prioritization. Our hy-
pothesis is that depending on different factors such as testing phases,
development progress, product maturity, developer/tester experience,
some quality attributes of test artifacts need to be prioritized and/or
selected. However, our current quality model does not capture this
aspect of customization.

5.5.3. To evaluate the test-artifact quality model
There is also a need to assess the quality of the complete model itself

such as its performance, effectiveness at providing reliable measure-
ments to detect bad-quality test cases, or its usefulness at supporting
practitioners without researchers’ active involvement.

6. Conclusions and future work

Software testing continues to play an essential role in software
development. We rely on testing to gain confidence in the quality
of new features and lack of presence of any regressions in existing
functionality.

The central artifacts in testing are the individual test cases and
their collections. Therefore, defining and measuring the quality of these
testing-artifacts is important for both research and practice.

However, no comprehensive model for the quality of these artifacts
was available. We address this gap in this tertiary study. We capitalized
on the large number of available secondary studies on related topics
and utilized ISO/IEC 25010:2011 to develop a quality model.

The quality model presented in this study can support:

• describing new guidelines and templates for designing new test
cases.

• developing assessment tools for evaluating existing test cases and
suites.

To validate the model, we will systematically collect feedback from
practitioners and academics. We also intend to use it to assess test
18

artifacts together with our industrial collaborators.
Table 12
Quality assessment.

ID QA_C1 QA_C2 QA_C3a QA_C3b QA_C4 QA_C5 Quality score

S1 1 0.5 1 0 0 1 3.5
S2 1 1 1 0 0 1 4
S3 1 1 1 0 0 1 4
S4 1 1 1 0 1 1 5
S5 1 0.5 0 0 1 0.5 3
S6 0.5 1 1 0 1 0.5 4
S7 0.5 1 1 0 0 1 3.5
S8 1 1 1 0 1 0.5 4.5
S9 1 1 1 0 0 0.5 3.5
S10 0 0.5 0 0 0 0.5 1
S11 1 0.5 0 0 0 1 2.5
S12 1 1 1 0 1 1 5
S13 1 1 1 0 0 1 4
S14 1 1 1 0 0.5 1 4.5
S15 1 1 1 0 0 0.5 3.5
S16 1 0.5 1 1 0.5 1 5
S17 1 0.5 1 0 0 0.5 3
S18 1 1 1 0 0 0.5 3.5
S19 1 1 1 0 0 1 4
S20 1 0.5 1 0 1 0.5 4
S21 1 0.5 1 0 0 1 3.5
S22 1 0.5 1 0 0 0.5 3
S23 1 0.5 0 0 1 0.5 3
S24 1 0.5 1 0 0 0.5 3
S25 1 1 1 0 0 1 4
S26 1 0.5 1 0 1 1 4.5
S27 1 1 1 0 1 0.5 4.5
S28 1 0.5 1 0 1 1 4.5
S29 1 1 1 0 0 0.5 3.5
S30 1 0.5 1 1 0.5 1 5
S31 1 0.5 0 0 0 0.5 2
S32 1 0.5 1 0 1 1 4.5
S33 1 0.5 1 0 0.5 1 4
S34 1 1 1 0 0 1 4
S35 1 0.5 1 0 0 1 3.5
S36 1 1 1 0 0 0.5 3.5
S37 1 0.5 1 0 0 0.5 3
S38 1 0.5 1 1 1 1 5.5
S39 1 0.5 1 0 1 0.5 4
S40 1 0.5 1 0 0 0.5 3
S41 1 0.5 1 0 1 0.5 4
S42 1 0.5 1 0 1 0.5 4
S43 1 0.5 1 0 1 0.5 4
S44 0 0.5 0 0 0 0.5 1
S45 1 0.5 1 0 0 0.5 3
S46 1 0.5 0 0 0 0.5 2
S47 1 1 1 0 0 1 4
S48 1 0.5 1 0 0 1 3.5
S49 1 1 1 0 0 1 4

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been supported by ELLIIT, a Strategic Area within
IT and Mobile Communications, funded by the Swedish Government.
The work has also been supported by research grant for the VITS
project (reference number 20180127) from the Knowledge Foundation
in Sweden.

Appendix A. Quality assessment result

See Table 12.

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
Table 13
Publication venues.

ID Journal/Conference Publisher

S1 IEEE Access IEEE
S2 Journal of Systems and Software Elsevier Inc.
S3 Information and Software Technology Elsevier B.V.
S4 IEEE Access IEEE
S5 International Journal of Applied Engineering Research Research India Publications
S6 Proceedings of the ACM Symposium on Applied Computing Association for Computing Machinery
S7 Information and Software Technology Elsevier B.V.
S8 Information and Software Technology Elsevier B.V.
S9 Journal of Systems and Software Elsevier Inc.
S10 Proceedings - 41st Euromicro Conference on Software Engineering

and Advanced Applications, SEAA 2015
IEEE

S11 ICEIS 2018 - Proceedings of the 20th International Conference on
Enterprise Information Systems

SciTePress

S12 Information and Software Technology Elsevier B.V.
S13 International Journal on Software Tools for Technology Transfer Springer Verlag
S14 IEEE Transactions on Software Engineering IEEE
S15 Information and Software Technology Elsevier B.V.
S16 IEEE Access IEEE
S17 Information and Software Technology Elsevier B.V.
S18 Journal of Computer Science Science Publications
S19 IEEE Access IEEE
S20 Computacion y Sistemas Instituto Politecnico Nacional
S21 ACM Computing Surveys Association for Computing Machinery
S22 ESEM’08: Proceedings of the 2008 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement
IEEE

S23 Journal of Telecommunication, Electronic and Computer
Engineering

Universiti Teknikal Malaysia Melaka

S24 Proceedings - 42nd Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2016

IEEE

S25 IEEE Transactions on Reliability IEEE
S26 Software Quality Journal Springer New York LLC
S27 Computer Science Review Elsevier Ireland Ltd
S28 Information and Software Technology Elsevier B.V.
S29 Empirical Software Engineering Kluwer Academic Publishers
S30 Information and Software Technology Elsevier B.V.
S31 Proceedings - 9th Knowledge Management International Conference

(KMICe)
UNIV UTARA MALAYSIA PRESS

S32 ACM Computing Surveys Association for Computing Machinery
S33 Journal of Systems and Software Elsevier Inc.
S34 Information and Software Technology Elsevier B.V.
S35 ACM Computing Surveys Association for Computing Machinery
S36 Proceedings - 2015 IEEE World Congress on Services, SERVICES

2015
IEEE

S37 Informatica (Slovenia) Slovenian Society INFORMATIKA
S38 Information and Software Technology Elsevier B.V.
S39 Information and Software Technology Elsevier B.V.
S40 Software Quality Journal Springer New York LLC
S41 ACM International Conference Proceeding Series Association for Computing Machinery
S42 International Journal of Software Engineering and Knowledge

Engineering
World Scientific Publishing Co. Pte Ltd

S43 ACM International Conference Proceeding Series Association for Computing Machinery
S44 International Journal of Advanced Computer Research Accent Social and Welfare Society
S45 Applied Soft Computing Journal Elsevier Ltd
S46 Proceedings - Asia-Pacific Software Engineering Conference, APSEC IEEE
S47 Proceedings - 41st Euromicro Conference on Software Engineering

and Advanced Applications, SEAA 2015
IEEE

S48 Journal of Systems and Software Elsevier Inc.
S49 Information and Software Technology Elsevier B.V.
Appendix B. Publication venues of the 49 selected secondary stud-
ies

See Table 13.

References

[1] B. Fitzgerald, K.J. Stol, Continuous software engineering: A roadmap and
agenda, J. Syst. Softw. 123 (2017) 176–189.

[2] M. Shahin, M. Ali Babar, L. Zhu, Continuous integration, delivery and deploy-
ment: A systematic review on approaches, tools, challenges and practices, IEEE
Access 5 (2017) 3909–3943, http://dx.doi.org/10.1109/ACCESS.2017.2685629.

[3] M. Beller, G. Gousios, A. Panichella, A. Zaidman, When, how, and why
developers (do not) test in their IDEs, in: Proceedings of the 10th Joint Meeting
19

on Foundations of Software Engineering, 2015, pp. 179–190.
[4] D. Bowes, T. Hall, J. Petric, T. Shippey, B. Turhan, How good are my tests? in:
Proceedings of IEEE/ACM 8th Workshop on Emerging Trends in Software
Metrics, WETSoM, 2017, pp. 9–14, http://dx.doi.org/10.1109/WETSoM.2017.2.

[5] M. Eck, F. Palomba, M. Castelluccio, A. Bacchelli, Understanding flaky tests:
the developer’s perspective, in: Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering - ESEC/FSE 2019, ACM Press, Tallinn, Estonia,
2019, pp. 830–840, http://dx.doi.org/10.1145/3338906.3338945, URL: http:
//dl.acm.org/citation.cfm?doid=3338906.3338945.

[6] A. Vahabzadeh, A.M. Fard, A. Mesbah, An empirical study of bugs in test code,
in: Proceedings of IEEE International Conference on Software Maintenance and
Evolution, ICSME, 2015, pp. 101–110.

[7] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, A. Bertolino,
What is the vocabulary of flaky tests? in: Proceedings of the 17th International
Conference on Mining Software Repositories, ACM, Seoul Republic of Korea,
2020, pp. 492–502, http://dx.doi.org/10.1145/3379597.3387482, URL: https:
//dl.acm.org/doi/10.1145/3379597.3387482.

http://refhub.elsevier.com/S0950-5849(21)00093-8/sb1
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb1
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb1
http://dx.doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1109/WETSoM.2017.2
http://dx.doi.org/10.1145/3338906.3338945
http://dl.acm.org/citation.cfm?doid=3338906.3338945
http://dl.acm.org/citation.cfm?doid=3338906.3338945
http://dl.acm.org/citation.cfm?doid=3338906.3338945
http://dx.doi.org/10.1145/3379597.3387482
https://dl.acm.org/doi/10.1145/3379597.3387482
https://dl.acm.org/doi/10.1145/3379597.3387482
https://dl.acm.org/doi/10.1145/3379597.3387482

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
[8] A. Zaidman, B. Van Rompaey, A. van Deursen, S. Demeyer, Studying the co-
evolution of production and test code in open source and industrial developer
test processes through repository mining, Empir. Softw. Eng. 16 (3) (2011)
325–364.

[9] G. Grano, C. De Iaco, F. Palomba, H.C. Gall, Pizza versus pinsa: On the
perception and measurability of unit test code quality, in: Proceedings of the
36th IEEE International Conference on Software Maintenance and Evolution,
IEEE, 2020, pp. 336–347.

[10] V.T.H. Khanh, N. Ali, J. Börstler, M. Unterkalmsteiner, Test-case quality –
understanding practitioners’ perspectives, in: Proceedings of the 20th Interna-
tional Conference on Product-Focused Software Process Improvement (PROFES),
Springer, Barcelona, Spain, 2019, pp. 37–52.

[11] H. Neukirchen, B. Zeiss, J. Grabowski, An approach to quality engineering
of TTCN-3 test specifications, Int. J. Softw. Tools Technol. Transf. 10 (4)
(2008) 309, http://dx.doi.org/10.1007/s10009-008-0075-0, URL: https://link-
springer-com.miman.bib.bth.se/article/10.1007/s10009-008-0075-0.

[12] S. Vegas, N. Juristo, V. Basili, Maturing software engineering knowledge
through classifications: A case study on unit testing techniques, IEEE Trans.
Softw. Eng. 35 (4) (2009) 551–565, http://dx.doi.org/10.1109/TSE.2009.13.

[13] N. Ali, E. Engström, M. Taromirad, M. Mousavi, N. Minhas, D. Helgesson, S.
Kunze, M. Varshosaz, On the search for industry-relevant regression testing
research, Empir. Softw. Eng. 24 (4) (2019) 2020–2055, http://dx.doi.org/10.
1007/s10664-018-9670-1.

[14] E. Engström, K. Petersen, N. Ali, E. Bjarnason, SERP-test: a taxonomy for
supporting industry–academia communication, Softw. Qual. J. 25 (4) (2017)
1269–1305, http://dx.doi.org/10.1007/s11219-016-9322-x.

[15] J.B. Goodenough, S.L. Gerhart, Toward a theory of test data selection, IEEE
Trans. Softw. Eng. (2) (1975) 156–173.

[16] H. Zhu, P.A. Hall, J.H. May, Software unit test coverage and adequacy, ACM
Comput. Surv. 29 (4) (1997) 366–427.

[17] G.M. Kapfhammer, M.L. Soffa, A family of test adequacy criteria for
database-driven applications, ACM SIGSOFT Softw. Eng. Notes 28 (5) (2003)
98–107.

[18] O.A.L. Lemos, A.M.R. Vincenzi, J.C. Maldonado, P.C. Masiero, Control and data
flow structural testing criteria for aspect-oriented programs, J. Syst. Softw. 80
(6) (2007) 862–882.

[19] K. Pei, Y. Cao, J. Yang, S. Jana, DeepXplore: Automated whitebox testing
of deep learning systems, in: Proceedings of the 26th ACM Symposium on
Operating Systems Principles - SOSP, 2017, pp. 1–18.

[20] D. Athanasiou, A. Nugroho, J. Visser, A. Zaidman, Test code quality and its
relation to issue handling performance, IEEE Trans. Softw. Eng. 40 (11) (2014)
1100–1125.

[21] A. Van Deursen, L. Moonen, A. Van Den Bergh, G. Kok, Refactoring test code,
in: Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering, XP, 2001, pp. 92–95.

[22] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, first ed.,
Addison-Wesley Professional, 2007.

[23] B. Van Rompaey, B. Du Bois, S. Demeyer, M. Rieger, On the detection of
test smells: A metrics-based approach for general fixture and eager test, IEEE
Trans. Softw. Eng. 33 (12) (2007) 800–817, http://dx.doi.org/10.1109/TSE.
2007.70745.

[24] V. Garousi, B. Küçük, Smells in software test code: A survey of knowledge in
industry and academia, J. Syst. Softw. 138 (2018) 52–81, http://dx.doi.org/10.
1016/j.jss.2017.12.013.

[25] I. Vessey, V. Ramesh, R.L. Glass, A unified classification system for research in
the computing disciplines, Inf. Softw. Technol. 47 (4) (2005) 245–255.

[26] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software engineer-
ing: A Systematic mapping study and a revised taxonomy development method,
Inf. Softw. Technol. 85 (2017) 43–59, http://dx.doi.org/10.1016/j.infsof.2017.
01.006.

[27] P.D. Coward, A review of software testing, Inf. Softw. Technol. 30 (3) (1988)
189–198.

[28] M. Young, R.N. Taylor, Rethinking the taxonomy of fault detection techniques,
in: Proceedings of the 11th International Conference on Software Engineering,
1989, pp. 53–62.

[29] L. Mariani, A fault taxonomy for component-based software, Electron. Notes
Theor. Comput. Sci. 82 (6) (2003) 55–65.

[30] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, S. Dustdar, Deriving a
unified fault taxonomy for event-based systems, in: Proceedings of the 6th
ACM International Conference on Distributed Event-Based Systems, 2012, pp.
167–178.

[31] S.A. Asadollah, H. Hansson, D. Sundmark, S. Eldh, Towards classification of
concurrency bugs based on observable properties, in: Proceedings of IEEE/ACM
1st International Workshop on Complex Faults and Failures in Large Software
Systems, COUFLESS, 2015, pp. 41–47.

[32] H. Yoon, B. Choi, J. Jeon, Mutation-based inter-class testing, in: Proceedings
of the 5th Asia-Pacific Software Engineering Conference, APSEC, 1998, pp.
174–181, http://dx.doi.org/10.1109/APSEC.1998.733717.

[33] M. Becker, C. Kuznik, M.M. Joy, T. Xie, W. Mueller, Binary mutation test-
ing through dynamic translation, in: Proceedings of IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2012, 2012, pp. 1–12.
20
[34] M. Stephan, M.H. Alalfi, J.R. Cordy, Towards a taxonomy for simulink model
mutations, in: Proceedings of the 7th IEEE International Conference on Software
Testing, Verification and Validation Workshops, 2014, pp. 206–215.

[35] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (5) (2012) 297–312.

[36] M. Felderer, P. Zech, R. Breu, M. Büchler, A. Pretschner, Model-based security
testing: a taxonomy and systematic classification, Softw. Test. Verif. Reliab. 26
(2) (2016) 119–148.

[37] N. Delgado, A.Q. Gates, S. Roach, A taxonomy and catalog of runtime
software-fault monitoring tools, IEEE Trans. Softw. Eng. 30 (12) (2004)
859–872.

[38] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, W. Maalej, Monitoring user
interactions for supporting failure reproduction, in: Proceedings of the 21st
International Conference on Program Comprehension, ICPC, 2013, pp. 73–82.

[39] K. Jiwnani, M. Zelkowitz, Maintaining software with a security perspective, in:
Proceedings of the International Conference on Software Maintenance, 2002,
pp. 194–203.

[40] G. Tian-yang, S. Yin-Sheng, F. You-yuan, Research on software security testing,
World Acad. Sci. Eng. Technol. 70 (2010) 647–651.

[41] B.A. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engineering,
in: Proceedings of the 26th International Conference on Software Engineering,
2004, pp. 273–281.

[42] B. Kitchenham, R. Pretorius, D. Budgen, O. Brereton, M. Turner, M. Niazi, S.
Linkman, Systematic literature reviews in software engineering-A tertiary study,
Inf. Softw. Technol. 52 (8) (2010) 792–805, http://dx.doi.org/10.1016/j.infsof.
2010.03.006.

[43] V. Garousi, M. Mäntylä, A systematic literature review of literature reviews in
software testing, Inf. Softw. Technol. 80 (2016) 195–216, http://dx.doi.org/10.
1016/j.infsof.2016.09.002.

[44] L. Villalobos-Arias, C. Quesada-López, A. Martinez, M. Jenkins, A tertiary study
on model-based testing areas, tools and challenges: Preliminary results, in:
Proceedings of the 21st Ibero-American Conference on Software Engineering,
2018, pp. 15–28.

[45] T. Paul, M. Lau, A systematic literature review on modified condition and
decision coverage, in: Proceedings of the Symposium on Applied Computing,
SAC, 2014, pp. 1301–1308, http://dx.doi.org/10.1145/2554850.2555004.

[46] L. Araki, L. Peres, A systematic review of concolic testing with aplication of
test criteria, in: Proceedings of the 20th International Conference on Enterprise
Information Systems, Vol. 2, ICEIS 2018, Funchal, Madeira, Portugal, March
21–24, 2018, 2018, pp. 121–132.

[47] M. Shafique, Y. Labiche, A systematic review of state-based test tools, Int. J.
Softw. Tools Technol. Transf. 17 (1) (2013) 59–76, http://dx.doi.org/10.1007/
s10009-013-0291-0.

[48] E. Engström, M. Skoglund, P. Runeson, Empirical evaluations of regression
test selection techniques: A systematic review, in: Proceedings of the 2nd
International Symposium on Empirical Software Engineering and Measurement,
ESEM, 2008, pp. 22–31, http://dx.doi.org/10.1145/1414004.1414011.

[49] I. Santos, R. Andrade, L. Rocha, S. Matalonga, K. de Oliveira, G. Travassos,
Test case design for context-aware applications: Are we there yet? Inf. Softw.
Technol. 88 (2017) 1–16, http://dx.doi.org/10.1016/j.infsof.2017.03.008.

[50] B.A. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering
and Systematic Reviews, Vol. 4, CRC Press, 2015.

[51] H. Zhang, M. Babar, P. Tell, Identifying relevant studies in software engineering,
Inf. Softw. Technol. 53 (6) (2011) 625–637, http://dx.doi.org/10.1016/j.infsof.
2010.12.010.

[52] B. Kitchenham, P. Brereton, A systematic review of systematic review pro-
cess research in software engineering, Inf. Softw. Technol. 55 (12) (2013)
2049–2075.

[53] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics 33 (1) (1977) 159–174, URL: http://www.jstor.org/stable/
2529310.

[54] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari, L. Olsina, A systematic
review on software testing ontologies, Commun. Comput. Inf. Sci. 1010 (2019)
144–160, http://dx.doi.org/10.1007/978-3-030-29238-6_11.

[55] P. Sapna, H. Mohanty, An ontology based approach for test scenario manage-
ment, Commun. Comput. Inf. Sci. 141 CCIS (2011) 91–100, http://dx.doi.org/
10.1007/978-3-642-19423-8_10.

[56] A. Freitas, R. Vieira, An ontology for guiding performance testing, in: Proceed-
ings of IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), Vol. II, 2014, pp. 400–407,
http://dx.doi.org/10.1109/WI-IAT.2014.62.

[57] S. Vasanthapriyan, J. Tian, J. Xiang, An ontology-based knowledge framework
for software testing, Commun. Comput. Inf. Sci. 780 (2017) 212–226, http:
//dx.doi.org/10.1007/978-981-10-6989-5_18.

[58] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, J. Xiang, An ontology-based
knowledge sharing portal for software testing, in: Proceedings of IEEE Inter-
national Conference on Software Quality, Reliability and Security Companion,
QRS-C, 2017, pp. 472–479, http://dx.doi.org/10.1109/QRS-C.2017.82.

http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb8
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb9
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb10
http://dx.doi.org/10.1007/s10009-008-0075-0
https://link-springer-com.miman.bib.bth.se/article/10.1007/s10009-008-0075-0
https://link-springer-com.miman.bib.bth.se/article/10.1007/s10009-008-0075-0
https://link-springer-com.miman.bib.bth.se/article/10.1007/s10009-008-0075-0
http://dx.doi.org/10.1109/TSE.2009.13
http://dx.doi.org/10.1007/s10664-018-9670-1
http://dx.doi.org/10.1007/s10664-018-9670-1
http://dx.doi.org/10.1007/s10664-018-9670-1
http://dx.doi.org/10.1007/s11219-016-9322-x
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb15
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb15
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb15
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb16
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb16
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb16
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb17
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb17
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb17
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb17
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb17
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb18
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb18
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb18
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb18
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb18
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb20
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb20
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb20
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb20
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb20
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb22
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb22
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb22
http://dx.doi.org/10.1109/TSE.2007.70745
http://dx.doi.org/10.1109/TSE.2007.70745
http://dx.doi.org/10.1109/TSE.2007.70745
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb25
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb25
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb25
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb27
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb27
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb27
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb29
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb29
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb29
http://dx.doi.org/10.1109/APSEC.1998.733717
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb35
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb35
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb35
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb36
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb36
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb36
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb36
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb36
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb37
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb37
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb37
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb37
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb37
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb40
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb40
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb40
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.1016/j.infsof.2016.09.002
http://dx.doi.org/10.1016/j.infsof.2016.09.002
http://dx.doi.org/10.1016/j.infsof.2016.09.002
http://dx.doi.org/10.1145/2554850.2555004
http://dx.doi.org/10.1007/s10009-013-0291-0
http://dx.doi.org/10.1007/s10009-013-0291-0
http://dx.doi.org/10.1007/s10009-013-0291-0
http://dx.doi.org/10.1145/1414004.1414011
http://dx.doi.org/10.1016/j.infsof.2017.03.008
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb50
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb50
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb50
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb52
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb52
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb52
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb52
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb52
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://dx.doi.org/10.1007/978-3-030-29238-6_11
http://dx.doi.org/10.1007/978-3-642-19423-8_10
http://dx.doi.org/10.1007/978-3-642-19423-8_10
http://dx.doi.org/10.1007/978-3-642-19423-8_10
http://dx.doi.org/10.1109/WI-IAT.2014.62
http://dx.doi.org/10.1007/978-981-10-6989-5_18
http://dx.doi.org/10.1007/978-981-10-6989-5_18
http://dx.doi.org/10.1007/978-981-10-6989-5_18
http://dx.doi.org/10.1109/QRS-C.2017.82

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
[59] H. Zhu, Q. Huo, Developing a software testing ontology in UML for a software
growth environment of web-based applications, in: H. Yang (Ed.), Software
Evolution with UML and XML, IGI Global, 2005, pp. 263–295, http://dx.doi.
org/10.4018/978-1-59140-462-0.ch009.

[60] G. Rothermel, M.J. Harrold, Framework for evaluating regression test selection
techniques, in: Proceedings of the 16th International Conference on Software
Engineering, 1994, pp. 201–210.

[61] P. Bourque, R.E. Fairley, I.C. Society, Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0, third ed., IEEE Computer Society Press,
Washington, DC, USA, 2014.

[62] ISO/IEC JTC 1/SC 7 Software and systems engineering, ISO/IEC 25010:2011
Systems and software engineering – Systems and software Quality Requirements
and Evaluation (SQuaRE) – System and software quality models, 2011, URL:
https://www.iso.org/standard/35733.html.

[63] E. Barbosa, E. Nakagawa, A. Riekstin, J. Maldonado, Ontology-based develop-
ment of testing related tools, in: Proceedings of the Twentieth International
Conference on Software Engineering & Knowledge Engineering, SEKE, 2008,
pp. 697–702.

[64] H. De Campos Jr., C. De Paiva, R. Braga, M. Araujo, J. David, F. Campos,
Regression tests provenance data in the continuous software engineering
context, in: Proceedings of the 2nd Brazilian Symposium on Systematic and
Automated Software Testing, Vol. Part F130656, SAST, 2017, pp. 10:1–10:6,
http://dx.doi.org/10.1145/3128473.3128483.

[65] É.F.d. Souza, R.d.A. Falbo, N.L. Vijaykumar, ROoST: Reference ontology on
software testing, Appl. Ontol. 12 (1) (2017) 59–90, http://dx.doi.org/10.3233/
AO-170177.

[66] G. Arnicans, D. Romans, U. Straujums, Semi-automatic generation of a software
testing lightweight ontology from a glossary based on the ONTO6 methodology,
Front. Artif. Intell. Appl. 249 (2013) 263–276, http://dx.doi.org/10.3233/978-
1-61499-161-8-263.

[67] L. Cai, W. Tong, Z. Liu, J. Zhang, Test case reuse based on ontology,
in: Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing, PRDC, 2009, pp. 103–108, http://dx.doi.org/10.1109/
PRDC.2009.25.

[68] I.G.W. Group, et al., Standard Glossary of Terms Used in Software Testing,
Technical Report, International Software Testing Qualifications Board, 2015.

[69] C. Dissemination, Systematic Reviews: CRD’s Guidance for Undertaking Reviews
in Healthcare, University of York NHS Centre for Reviews & Dissemination,
York, 2009.

[70] N.B. Ali, M. Usman, A critical appraisal tool for systematic literature reviews
in software engineering, Inf. Softw. Technol. 112 (2019) 48–50.

[71] A. Kiran, W. Butt, M. Anwar, F. Azam, B. Maqbool, A comprehensive investiga-
tion of modern test suite optimization trends, tools and techniques, IEEE Access
7 (2019) 89093–89117, http://dx.doi.org/10.1109/ACCESS.2019.2926384.

[72] A. Pizzoleto, F. Ferrari, J. Offutt, L. Fernandes, M. Ribeiro, A systematic
literature review of techniques and metrics to reduce the cost of mutation
testing, J. Syst. Softw. 157 (2019) http://dx.doi.org/10.1016/j.jss.2019.07.100.

[73] J. Imtiaz, S. Sherin, M. Khan, M. Iqbal, A systematic literature review of test
breakage prevention and repair techniques, Inf. Softw. Technol. 113 (2019)
1–19, http://dx.doi.org/10.1016/j.infsof.2019.05.001.

[74] A. Bajaj, O. Sangwan, A systematic literature review of test case prioritization
using genetic algorithms, IEEE Access 7 (2019) 126355–126375, http://dx.doi.
org/10.1109/ACCESS.2019.2938260.

[75] J. Ahmad, S. Baharom, A systematic literature review of the test case prioriti-
zation technique for sequence of events, Int. J. Appl. Eng. Res. 12 (7) (2017)
1389–1395.

[76] J. Balera, V. de Santiago Júnior, A systematic mapping addressing Hyper-
Heuristics within Search-based Software Testing, Inf. Softw. Technol. 114
(2019) 176–189, http://dx.doi.org/10.1016/j.infsof.2019.06.012.

[77] P. Da Mota Silveira Neto, I. Carmo MacHado, J. McGregor, E. De Almeida, S.
De Lemos Meira, A systematic mapping study of software product lines testing,
Inf. Softw. Technol. 53 (5) (2011) 407–423, http://dx.doi.org/10.1016/j.infsof.
2010.12.003.

[78] J. Prado Lima, S. Vergilio, A systematic mapping study on higher order
mutation testing, J. Syst. Softw. 154 (2019) 92–109, http://dx.doi.org/10.1016/
j.jss.2019.04.031.

[79] S. Paiva, A. Simao, A systematic mapping study on test generation from in-
put/output transition systems, in: Proceedings of the 41st Euromicro Conference
on Software Engineering and Advanced Applications, EUROMICRO-SEAA, 2015,
pp. 333–340, http://dx.doi.org/10.1109/SEAA.2015.66.

[80] W. Afzal, R. Torkar, R. Feldt, A systematic review of search-based testing for
non-functional system properties, Inf. Softw. Technol. 51 (6) (2009) 957–976,
http://dx.doi.org/10.1016/j.infsof.2008.12.005.

[81] S. Ali, L. Briand, H. Hemmati, R. Panesar-Walawege, A systematic review of
the application and empirical investigation of search-based test case generation,
IEEE Trans. Softw. Eng. 36 (6) (2010) 742–762, http://dx.doi.org/10.1109/TSE.
2009.52.

[82] R. Silva, S. Senger de Souza, P. Lopes de Souza, A systematic review on
search based mutation testing, Inf. Softw. Technol. 81 (2017) 19–35, http:
//dx.doi.org/10.1016/j.infsof.2016.01.017.
21
[83] S. Rehman Khan, S. Lee, N. Javaid, W. Abdul, A systematic review on test
suite reduction: Approaches, experiment’s quality evaluation, and guidelines,
IEEE Access 6 (2018) 11816–11841, http://dx.doi.org/10.1109/ACCESS.2018.
2809600.

[84] A. Kasoju, K. Petersen, M. Mäntylä, Analyzing an automotive testing process
with evidence-based software engineering, Inf. Softw. Technol. 55 (7) (2013)
1237–1259, http://dx.doi.org/10.1016/j.infsof.2013.01.005.

[85] M. Sahid, A. Sultan, A. Ghani, S. Baharom, Combinatorial interaction testing
of software product lines: A mapping study, J. Comput. Sci. 12 (8) (2016)
379–398, http://dx.doi.org/10.3844/jcssp.2016.379.398.

[86] M. Mascheroni, E. Irrazábal, Continuous testing and solutions for testing prob-
lems in continuous delivery: A systematic literature review, Comput. Sistemas
22 (3) (2018) 1009–1038, http://dx.doi.org/10.13053/CyS-22-3-2794.

[87] R. Kazmi, D. Jawawi, R. Mohamad, I. Ghani, Effective regression test case
selection: A systematic literature review, ACM Comput. Surv. 50 (2) (2017)
http://dx.doi.org/10.1145/3057269.

[88] J. Ahmad, S. Baharom, Factor determination in prioritizing test cases for event
sequences: A systematic literature review, J. Telecommun. Electron. Comput.
Eng. 10 (1–4) (2018) 119–124.

[89] J. Weiss, A. Schill, I. Richter, P. Mandl, Literature review of empirical research
studies within the domain of acceptance testing, in: Proceedings of the 42nd
Euromicro Conference on Software Engineering and Advanced Applications,
SEAA, 2016, pp. 181–188, http://dx.doi.org/10.1109/SEAA.2016.33.

[90] V. Durelli, R. Durelli, S. Borges, A. Endo, M. Eler, D. Dias, M. Guimarães,
Machine learning applied to software testing: A systematic mapping study, IEEE
Trans. Reliab. 68 (3) (2019) 1189–1212, http://dx.doi.org/10.1109/TR.2019.
2892517.

[91] H. Gurbuz, B. Tekinerdogan, Model-based testing for software safety: a system-
atic mapping study, Softw. Qual. J. 26 (4) (2018) 1327–1372, http://dx.doi.
org/10.1007/s11219-017-9386-2.

[92] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, I. Porres, Model-based testing using
UML activity diagrams: A systematic mapping study, Comp. Sci. Rev. 33 (2019)
98–112, http://dx.doi.org/10.1016/j.cosrev.2019.07.001.

[93] B. Uzun, B. Tekinerdogan, Model-driven architecture based testing: A systematic
literature review, Inf. Softw. Technol. 102 (2018) 30–48, http://dx.doi.org/10.
1016/j.infsof.2018.05.004.

[94] M. Mäntylä, B. Adams, F. Khomh, E. Engström, K. Petersen, On rapid releases
and software testing: a case study and a semi-systematic literature review, Em-
pir. Softw. Eng. 20 (5) (2015) 1384–1425, http://dx.doi.org/10.1007/s10664-
014-9338-4.

[95] E. Laukkanen, J. Itkonen, C. Lassenius, Problems, causes and solutions when
adopting continuous delivery—A systematic literature review, Inf. Softw.
Technol. 82 (2017) 55–79, http://dx.doi.org/10.1016/j.infsof.2016.10.001.

[96] S.O. Barraood, H. Mohd, F. Baharom, M. Omar, Quality factors of test cases:
A systematic literature review, in: Proceedings of the Knowledge Management
International Conference, KMICE, Univ Utara Malaysia Press, Sintok, 2018, pp.
355–362.

[97] D. Qiu, B. Li, S. Ji, H. Leung, Regression testing of web service: A systematic
mapping study, ACM Comput. Surv. 47 (2) (2014) http://dx.doi.org/10.1145/
2631685.

[98] V. Garousi Yusifoğlu, Y. Amannejad, A. Betin Can, Software test-code en-
gineering: A systematic mapping, Inf. Softw. Technol. 58 (2015) 123–147,
http://dx.doi.org/10.1016/j.infsof.2014.06.009.

[99] C. Smidts, C. Mutha, M. Rodríguez, M. Gerber, Software testing with an
operational profile: OP definition, ACM Comput. Surv. 46 (3) (2014) http:
//dx.doi.org/10.1145/2518106.

[100] E. Nabil, Specifications for web services testing: A systematic review, in:
Proceedings of IEEE World Congress on Services, SERVICES, 2015, pp. 152–159,
http://dx.doi.org/10.1109/SERVICES.2015.31.

[101] Y. Singh, A. Kaur, B. Suri, S. Singhal, Systematic literature review on regression
test prioritization techniques, Informatica (Slovenia) 36 (4) (2012) 379–408.

[102] M. Khatibsyarbini, M. Isa, D. Jawawi, R. Tumeng, Test case prioritization
approaches in regression testing: A systematic literature review, Inf. Softw.
Technol. 93 (2018) 74–93, http://dx.doi.org/10.1016/j.infsof.2017.08.014.

[103] C. Catal, D. Mishra, Test case prioritization: A systematic mapping study, Softw.
Qual. J. 21 (3) (2013) 445–478, http://dx.doi.org/10.1007/s11219-012-9181-z.

[104] H. De Campos Junior, M. Arajo, J. David, R. Braga, F. Campos, V. Ströele,
Test case prioritization: A systematic review and mapping of the literature, in:
Proceedings of the 31st Brazilian Symposium on Software Engineering, SBES,
2017, pp. 34–43, http://dx.doi.org/10.1145/3131151.3131170.

[105] E. Narciso, M. Delamaro, F. De Lourdes Dos Santos Nunes, Test case selection:
A systematic literature review, Int. J. Softw. Eng. Knowl. Eng. 24 (4) (2014)
653–676, http://dx.doi.org/10.1142/S0218194014500259.

[106] I. Santos, P. Lopes De Souza, S. Melo, S. Souza, Testing techniques selection: A
systematic mapping study, in: Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, SBES, 2019, pp. 347–356, http://dx.doi.org/10.1145/
3350768.3352571.

[107] L. Seng, N. Ithnin, S. Mohd Said, The approaches to quantify web application
security scanners quality: A review, Int. J. Adv. Comput. Res. 8 (38) (2018)
285–312, http://dx.doi.org/10.19101/IJACR.2018.838012.

http://dx.doi.org/10.4018/978-1-59140-462-0.ch009
http://dx.doi.org/10.4018/978-1-59140-462-0.ch009
http://dx.doi.org/10.4018/978-1-59140-462-0.ch009
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb61
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb61
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb61
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb61
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb61
https://www.iso.org/standard/35733.html
http://dx.doi.org/10.1145/3128473.3128483
http://dx.doi.org/10.3233/AO-170177
http://dx.doi.org/10.3233/AO-170177
http://dx.doi.org/10.3233/AO-170177
http://dx.doi.org/10.3233/978-1-61499-161-8-263
http://dx.doi.org/10.3233/978-1-61499-161-8-263
http://dx.doi.org/10.3233/978-1-61499-161-8-263
http://dx.doi.org/10.1109/PRDC.2009.25
http://dx.doi.org/10.1109/PRDC.2009.25
http://dx.doi.org/10.1109/PRDC.2009.25
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb68
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb68
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb68
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb69
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb69
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb69
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb69
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb69
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb70
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb70
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb70
http://dx.doi.org/10.1109/ACCESS.2019.2926384
http://dx.doi.org/10.1016/j.jss.2019.07.100
http://dx.doi.org/10.1016/j.infsof.2019.05.001
http://dx.doi.org/10.1109/ACCESS.2019.2938260
http://dx.doi.org/10.1109/ACCESS.2019.2938260
http://dx.doi.org/10.1109/ACCESS.2019.2938260
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb75
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb75
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb75
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb75
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb75
http://dx.doi.org/10.1016/j.infsof.2019.06.012
http://dx.doi.org/10.1016/j.infsof.2010.12.003
http://dx.doi.org/10.1016/j.infsof.2010.12.003
http://dx.doi.org/10.1016/j.infsof.2010.12.003
http://dx.doi.org/10.1016/j.jss.2019.04.031
http://dx.doi.org/10.1016/j.jss.2019.04.031
http://dx.doi.org/10.1016/j.jss.2019.04.031
http://dx.doi.org/10.1109/SEAA.2015.66
http://dx.doi.org/10.1016/j.infsof.2008.12.005
http://dx.doi.org/10.1109/TSE.2009.52
http://dx.doi.org/10.1109/TSE.2009.52
http://dx.doi.org/10.1109/TSE.2009.52
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.1109/ACCESS.2018.2809600
http://dx.doi.org/10.1109/ACCESS.2018.2809600
http://dx.doi.org/10.1109/ACCESS.2018.2809600
http://dx.doi.org/10.1016/j.infsof.2013.01.005
http://dx.doi.org/10.3844/jcssp.2016.379.398
http://dx.doi.org/10.13053/CyS-22-3-2794
http://dx.doi.org/10.1145/3057269
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb88
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb88
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb88
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb88
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb88
http://dx.doi.org/10.1109/SEAA.2016.33
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1109/TR.2019.2892517
http://dx.doi.org/10.1007/s11219-017-9386-2
http://dx.doi.org/10.1007/s11219-017-9386-2
http://dx.doi.org/10.1007/s11219-017-9386-2
http://dx.doi.org/10.1016/j.cosrev.2019.07.001
http://dx.doi.org/10.1016/j.infsof.2018.05.004
http://dx.doi.org/10.1016/j.infsof.2018.05.004
http://dx.doi.org/10.1016/j.infsof.2018.05.004
http://dx.doi.org/10.1007/s10664-014-9338-4
http://dx.doi.org/10.1007/s10664-014-9338-4
http://dx.doi.org/10.1007/s10664-014-9338-4
http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb96
http://dx.doi.org/10.1145/2631685
http://dx.doi.org/10.1145/2631685
http://dx.doi.org/10.1145/2631685
http://dx.doi.org/10.1016/j.infsof.2014.06.009
http://dx.doi.org/10.1145/2518106
http://dx.doi.org/10.1145/2518106
http://dx.doi.org/10.1145/2518106
http://dx.doi.org/10.1109/SERVICES.2015.31
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb101
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb101
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb101
http://dx.doi.org/10.1016/j.infsof.2017.08.014
http://dx.doi.org/10.1007/s11219-012-9181-z
http://dx.doi.org/10.1145/3131151.3131170
http://dx.doi.org/10.1142/S0218194014500259
http://dx.doi.org/10.1145/3350768.3352571
http://dx.doi.org/10.1145/3350768.3352571
http://dx.doi.org/10.1145/3350768.3352571
http://dx.doi.org/10.19101/IJACR.2018.838012

Information and Software Technology 139 (2021) 106620H.K.V. Tran et al.
[108] A. Saeed, S. Ab Hamid, M. Mustafa, The experimental applications of search-
based techniques for model-based testing: Taxonomy and systematic literature
review, Appl. Soft Comput. 49 (2016) 1094–1117, http://dx.doi.org/10.1016/
j.asoc.2016.08.030.

[109] Z. Zakaria, R.B. Atan, A.A.A. Ghani, N.F.M. Sani, Unit testing approaches for
BPEL: a systematic review, in: S. Sulaiman, N.M.M. Noor (Eds.), Proceedings
of the 16th Asia-Pacific Software Engineering Conference, APSEC, 2009, pp.
316–322, http://dx.doi.org/10.1109/APSEC.2009.72.

[110] D. Flemstrom, D. Sundmark, W. Afzal, Vertical test reuse for embedded systems:
A systematic mapping study, in: Proceedings of the 41st Euromicro Conference
on Software Engineering and Advanced Applications, EUROMICRO-SEAA, 2015,
pp. 317–324, http://dx.doi.org/10.1109/SEAA.2015.46.

[111] S. Doǧan, A. Betin-Can, V. Garousi, Web application testing: A systematic
literature review, J. Syst. Softw. 91 (1) (2014) 174–201, http://dx.doi.org/10.
1016/j.jss.2014.01.010.

[112] V. Garousi, M. Mäntylä, When and what to automate in software testing?
A multi-vocal literature review, Inf. Softw. Technol. 76 (2016) 92–117, http:
//dx.doi.org/10.1016/j.infsof.2016.04.015.
22
[113] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Professional, 2018.

[114] V. Garousi, B. Küçük, Smells in software test code: A survey of knowledge in
industry and academia, J. Syst. Softw. 138 (2018) 52–81.

[115] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, A. Bacchelli, On the relation
of test smells to software code quality, in: Proceedings of IEEE International
Conference on Software Maintenance and Evolution, ICSME, 2018, pp. 1–12.

[116] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu,
J. Zhao, Y. Wang, Deepgauge: Multi-granularity testing criteria for deep learning
systems, in: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 120–131.

[117] B. Kitchenham, What’s up with software metrics?–A preliminary mapping study,
J. Syst. Softw. 83 (1) (2010) 37–51.

[118] M. Unterkalmsteiner, T. Gorschek, A.M. Islam, C.K. Cheng, R.B. Permadi,
R. Feldt, Evaluation and measurement of software process improvement—a
systematic literature review, IEEE Trans. Softw. Eng. 38 (2) (2011) 398–424.

http://dx.doi.org/10.1016/j.asoc.2016.08.030
http://dx.doi.org/10.1016/j.asoc.2016.08.030
http://dx.doi.org/10.1016/j.asoc.2016.08.030
http://dx.doi.org/10.1109/APSEC.2009.72
http://dx.doi.org/10.1109/SEAA.2015.46
http://dx.doi.org/10.1016/j.jss.2014.01.010
http://dx.doi.org/10.1016/j.jss.2014.01.010
http://dx.doi.org/10.1016/j.jss.2014.01.010
http://dx.doi.org/10.1016/j.infsof.2016.04.015
http://dx.doi.org/10.1016/j.infsof.2016.04.015
http://dx.doi.org/10.1016/j.infsof.2016.04.015
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb113
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb113
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb113
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb114
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb114
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb114
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb117
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb117
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb117
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb118
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb118
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb118
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb118
http://refhub.elsevier.com/S0950-5849(21)00093-8/sb118

	Assessing test artifact quality—A tertiary study
	Introduction
	Related work
	Test case and test suite quality
	Organizing test engineering knowledge
	Tertiary studies
	Contribution

	Research method
	Search process
	Search validation
	Study selection
	Phase 1: Preliminary screening
	Phase 2: Title and abstract screening
	Phase 3: Full text screening
	Post-hoc validation

	Data extraction
	Data extraction validation

	Quality assessment
	Validity threats

	Results and analysis
	RQ1 – differences and similarities between secondary studies
	RQ2 – quality attributes and measurements in testing-specific contexts
	RQ2.1 – testing-specific contexts
	RQ2.2 – quality attributes
	RQ2.3 – quality measurements

	RQ3 – quality attributes in the most common contexts
	RQ4 – consensus on descriptions of quality attributes and quality measurements

	Discussion
	Test artifact quality attributes
	Test artifact quality measurements
	Most frequently reported test artifact quality contexts
	Least frequently reported test artifact quality contexts
	Research roadmap
	To complete the test-artifact quality model
	To instantiate the test-artifact quality model
	To evaluate the test-artifact quality model

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix A. Quality Assessment Result
	Appendix B. Publication venues of the 49 selected secondary studies
	References

