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The response spectra are widely used in the damage assessment of non-Gaussian random vibration environments and the
derivation of damage equivalent accelerated test spectrum. The effectiveness of the latter is strongly affected by modal
parameter uncertainties, multiple field data processing, and the nonsmooth shape of the derived power spectral density (PSD).
Optimization of accelerated test spectrum derivation based on dynamic parameter selection and iterative update of spectrum
envelope is presented in this paper. The extreme response spectrum (ERS) envelope of the field data is firstly taken as the
limiting spectrum, and the corresponding relationship between damping coefficient, fatigue exponent, and damage equivalent
PSD under different test times is constructed to achieve the dynamic selection of uncertain parameters in the response
spectrum model. Then, an iterative update model based on the weighted sum of fatigue damage spectrum (FDS) error is
presented to reduce the error introduced by the nonsmooth shape of the derived PSD. The case study shows that undertest can
be effectively avoided by the dynamic selection of model parameters. The weighted error is reduced from 80.1% to 7.5% after 7

iterations. Particularly, the error is close to 0 within the peak and valley frequency band.

1. Introduction

Random vibration tests are widely used to identify defects in
product design and to evaluate the reliability and fatigue life
of products. To simulate the mechanical environment experi-
enced by products during their life cycle in the lab, the test
spectrum is usually derived from the field measured data,
which is collected using different sensors (e.g., ultrasonic
transducer and accelerometer) [1]. With multiple and com-
plicated field data, the accuracy of signal processing algo-
rithms and data analysis methods are key factors when
understanding the mechanical environment and facilitating
the test spectrum derivation.

Power spectral density (PSD) is used by typical digital
shaker controllers to describe the random vibration environ-
ment experienced by products, with an implicit assumption
that the vibration data follows a Gaussian distribution. How-

ever, field recorded time histories, e.g., wind-induced vibra-
tion data [2] and road roughness-induced vehicle vibration
data [3], usually present non-Gaussian characteristics. Since
non-Gaussian (especially super-Gaussian) random vibration
tends to shorten the fatigue life of products [4, 5], different
vibration control methods were studied to simulate the
non-Gaussian vibration environment in the lab. Steinwolf
presented a phase manipulation method to simulate the
non-Gaussian data [6]. In particular, the selected phase is
transformed from random to deterministic in order to
obtain a prescribed kurtosis. PSD and probability density
function (PDF) are controlled independently. An analytical
relation between kurtosis, amplitude, and phase at specific
frequencies was presented later to make this method appli-
cable in a closed-loop control [7]. From the perspective of
time-varying PSD and PDF, a non-stationary non-
Gaussian stochastic process simulation method based on
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the zero-memory nonlinear translation relationship between
non-Gaussian and Gaussian stochastic processes is proposed
by Cui et al. [8]. Fei et al. [9] presented a method to synthe-
size non-Gaussian random vibration that is characterized by
running RMS (root mean square). The essential idea is to
model the non-Gaussian signal by a Gaussian signal multi-
plied by an amplitude modulation function (AMF). A two-
parameter Weibull distribution is used to model the PDF
of the running RMS and to create the AMF. Zheng et al.
[10] presented a control method for multi-input multioutput
stationary non-Gaussian random vibration test using time-
domain randomization. The frequency-domain inverse sys-
tem method is utilized to obtain the desired drive signals
for dynamic inputs, and the skewness, kurtosis, and PSD of
response  signals are controlled efficiently and
simultaneously.

The major drawback of these non-Gaussian vibration
control methods, when used for fatigue life evaluation of
high reliability and long-life products, is the long test time
and high cost. To address this problem, the response spec-
trum method was utilized to evaluate the potential damage
introduced by the vibration environment. An accelerated
test spectrum was then synthesized from the response
spectra based on the damage -equivalence criterion
[11-13]. To perform life cycle potential damage assess-
ment and test tailoring, Lalanne [14] derived an equivalent
PSD from multiple task profiles based on the frequency
domain fatigue damage spectrum (FDS). Wijker [15] and
Decker et al. [16] derived the accelerated test spectrum
based on the extreme response spectrum (ERS). The effect
of parameter uncertainties (damping coefficient and fatigue
exponent) on the root mean square (RMS) value of the
derived PSD was studied. Steinwolf and Wolfsteiner [17]
indicated that to avoid changes in the failure mechanism
and dynamic properties of products, the ERS of field data
should be used to limit the accelerated PSD level. Xu et al.
[18] showed that the FDS of non-Gaussian field data
increases as the kurtosis increases. A significant error
would be introduced if FDS and ERS were calculated in
the frequency domain directly using PSD. Ahlin [19] cal-
culated FDS and ERS in time domain using the ramp
invariant digital filter method. Due to the low computa-
tional efficiency of FDS in the time domain, Wolfsteiner
[20] decomposed the non-Gaussian load into a combina-
tion of Gaussian loads, so that the frequency domain
method can be used to improve the computational effi-
ciency. Assuming that the synthesized equivalent PSD is
flat within the half-power bandwidth, Cianetti et al. [21]
presented the equivalent PSD synthesis method for non-
Gaussian data using FDS and Mile’s Equation. These exist-
ing methods have demonstrated how to derive the equiva-
lent accelerated test spectrum from a single set of non-
Gaussian data and analyzed the influence of parameter
uncertainties on the RMS value of test spectrum. However,
how to select the correct model parameters using multiple
non-Gaussian vibration data, so as to derive the equivalent
accelerated test spectrum which can effectively avoid
undertest, has not been studied. In addition, how to con-
struct the objective function, so as to rapidly reduce the

Journal of Sensors

error introduced by nonsmooth shape of the synthesized
PSD, has not been demonstrated. To address these prob-
lems, an optimization design procedure of test spectrum
derivation based on dynamic parameter selection and iter-
ative spectrum envelope update technique is presented in
this paper.

The remainder of the paper is organized as follows.
Section 2 introduces the definition of Gaussian random
vibration, non-Gaussian random vibration, FDS, and
ERS. The optimized accelerated test spectrum derivation
procedure is also presented. In Section 3, validation with
field measured non-Gaussian vibration data is presented.
Finally, the discussion and conclusions are summarized
in Section 4.

2. Materials and Methods

2.1. Gaussian and Non-Gaussian Random Vibration. For the
field measured discrete random vibration signal x(t), the
higher-order moments can be used to determine if it follows
the Gaussian distribution:

m, = ro x"p(x)dx = %Zx?, (1)

—-00 j=1

where m,, is the nth order moments, p(x) is the probability
density function (PDF), and N is the number of signals.
When the mean value is zero,

N 3
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where S is the skewness, K is the kurtosis, and o, is the root
mean square (RMS) of x(#).

For a Gaussian distributed signal, the skewness is 0 and
the kurtosis is 3. Deviation from these values indicates that
the signal follows a non-Gaussian distribution. From the
perspective of response spectrum calculation of a non-
Gaussian signal, kurtosis is more important than skewness,
since it represents the probability of peak values in time his-

tory [22].

2.2. Fatigue Damage Spectrum (FDS) and Extreme Response
Spectrum (ERS). The FDS and ERS are widely used response
spectra for evaluating potential damage under random
vibration environment. The FDS is essentially a plot that
shows the response of a series of single-degree-of-freedom
(SDOF) systems to the base input acceleration time history.
Many SDOF systems tuned to a range of natural frequencies
are assessed using the same input. The FDS shows the
fatigue damage encountered for a particular SDOF system
anywhere within the analyzed time. It has been shown that
the stress is roughly proportional to pseudovelocity [23].
For a SDOF system with a natural frequency f, and a damp-
ing ratio &, the output pseudovelocity x,, to an input
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acceleration x, can be calculated using a ramp invariant dig-
ital filter method [19]:

xpv = Fﬁlter(b’ a, xa)’

a=[1,-2C,F*],
-1 [C-1 1-E? 1 C
bzm{T+qS+w,—2Cw+ Q —2qS,E2<w+6>—6+qS},
_ 2nf,
fo
1
Q i’
/ 1
k, = 1—4—Q2,
T
k = =7
P,
27
k3=f—sk1,
3 (1/2/Q/Q-1)
_4](1 ,
A=kf,,
B=ksf,,
E=exp (-A),
C=E cos (B),
S=Esin (B),

3)

where f_ is the sampling frequency and Fy,, indicates filter-
ing the input signal with a ramp invariant digital filter.

With the output x,,,, the cumulative damage can be cal-
culated in both time domain and frequency domain. In time
domain, the rain flow cycle counting method is usually used
for stress cycle counting. With cyclic numbers of different
stress levels, the S-N curve and Miner’s rule are combined
to calculate the fatigue damage as follows [24]:

N;= cS;b,

, p p (4)
A STV U, S
i=1 i=1

pVii
i=1

where N; is the fatigue life at stress S; (i=1,2, -+, p), p is the
number of stress levels considered, #; is the number of cycle
exposure at S;, ¢ is a constant, b is the fatigue exponent, k is
the proportional coefficient of stress to pseudovelocity, D, is
the total damage index calculated in time domain, and x,,, ;
is the output pseudovelocity at ith cycle.

In the frequency domain, Rayleigh distribution of
response stress maxima is assumed and used to calculate

FIGURE 1: Test item.

the stress cycles:

p(S) = S ese, (5)

2
O

where S is the stress value of peaks and o is the RMS of the
stress time history.
The total damage can be calculated as

D; = f . J ;Oop(S)ShdS, (6)

where T is the total time of exposure to the stress
environment.
Substituting Equation (5) into Equation (6) leads to

fnT b b/2 b
Dy=11"k (20@) r(1+3), (7)

c

where I' is the gamma function and o, is the RMS of

pseudovelocity.
The RMS of pseudovelocity can be calculated using

f=fui
O =4| 2, (H(OP * Gelf)) * df; (8)
J=fiow

where H(f) is the transmissibility of a SDOF system (pseu-
dovelocity/acceleration), G, (f) is the input PSD, f, s the
lower limit, and f,; is the higher limit.

If the input PSD is relatively flat in the half-power band-
width of each SDOF system, then Mile’s Equation can be
used to calculate 0, in a closed form approximately as fol-
lows:

_ [Gu(f1)Q
Opy = “enf, 9)

With Equations (7) and (9), the PSD at each natural fre-
quency can be derived from the FDS at the corresponding
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FIGURE 3: Comparison of time history between the measured non-Gaussian signal and the synthesized Gaussian signal.

natural frequency: (7) and (9). In such case, an iterative update procedure is
needed to take the shape of PSD into account (see Section 4).

The ERS shows the damage caused by vibration from an

(10)  overstress viewpoint. Like the FDS, the ERS is essentially a
Q plot that shows the responses of a number of SDOF systems

to a base input acceleration time history. The only difference

i D(fn) 2/b 47Tfn
Gxx(fn)_ (['(l'l-b/z)fnT) .

Note that if the flat PSD assumption does not hold
around some natural frequencies, the FDS calculated with
Equations (7) and (8) using the derived PSD in Equation
(10) will deviate from the FDS calculated with Equations

is that the ERS is generated by calculating the maximum
response of a SDOF system to the input. The final plot, the
ERS, shows the largest response encountered for a particular
SDOF system anywhere within the analyzed time. For a
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SDOF system with a natural frequency f, and a damping
ratio &, the ERS can also be calculated in both time domain
and frequency domain as follows [14]:

ERSt = max (Fﬁlter(b’ a, xa))’ (11)

0.577
ERS, = [ \/2Inf, # T+ ——rt
/ ( I ,&mh*J

= (12)

w0 | Y (H()A2 * G (f)) * df.
f:flow

2.3. Derivation of Damage Equivalent Accelerated Test
Spectrum. Since the accuracy of the damage equivalent accel-
erated test spectrum is strongly affected by uncertain param-
eters, dispersion of multiple non-Gaussian samples, and the
smoothness of the derived PSD, an optimum design proce-
dure is presented as follows:

(1) Calculate the FDS of multiple samples in time
domain and take the envelope using different damp-
ing ratios (denoted by quality factor Q) and fatigue
exponent b

(2) Predetermine the accelerated test time, and synthe-
size the initial PSD using the FDS envelope and
Equation (10)

(3) Choose Q and b in a dynamic way, so that the most
conservative PSD is derived

(4) Calculate the FDS in the frequency domain using the
derived PSD, Equation (7), and Equation (8)

(5) Compare the calculated FDS in Step (1) and Step (4),
and define the weighted sum of FDS errors:

Dnum(fn) B Denv(fn)

fhzaesl
We (&) = |:
e = D env (f )
fi_flowest n (13>
w100+ _ Denll) ]
275 e P (F)

where f, .. is the lowest natural frequency, f,,., is the
highest natural frequency, D, (f,) is the FDS envelope cal-
culated in Step (1), and D, (f,) is the FDS calculated in
Step (4)

(6) Update the PSD in Step (3) until a certain error is
reached:

2/b
G = 6ot + (52 0) 7 )

where G,,(f,) is the damage equivalent PSD after m
iterations

(7) Calculate the ERS in frequency domain using the
updated PSD and Equation (12) and compare with
the ERS envelope calculated in time domain

(8) Update the predetermined test time and PSD level to
match both the FDS and ERS envelope of the field
data
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3. Results and Discussion

3.1. Case Study. Field measured non-Gaussian data are used
to demonstrate the procedure in Section 4. The field data is
from an Ericsson Mast Project. The random acceleration sig-
nal induced by wind is taken from a test item installed on a
mast, as shown in Figure 1. The test item is a standard Erics-
son Micro Radio Base equipment, manufactured in cast
lightweight alloy with integrated heat sinks, equipped with
B&K WB0179 triaxial accelerometer sets and a wind speed
measuring device. The dimensions are 530 * 400 * 185 mm,
and the weight is about 21kg. The back side of the box
was mounted to the mast at a height of 50 meters.

Acceleration signals were collected using 8 channels, as
shown in Figure 2. From Figure 2, we can see that the kurto-
sis of each signal is greater than 3, indicating the non-
Gaussianity. To show the error introduced by direct calcula-
tion of PSD from the non-Gaussian signal, the data collected
from channel 5 is used here as an example. The PSD is cal-
culated, and the Gaussian signal is synthesized, as shown in
Figure 3. The PSD and the PDF are compared between the
field data and the synthesized Gaussian signal, as shown in
Figures 4 and 5, respectively. From Figures 4 and 5, we can
see that the PDF of the field data is clearly different from that
of the synthesized Gaussian signal, although the PSD are
basically the same. The pseudovelocity FDS of the measured
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non-Gaussian signal is significantly higher than that of the
synthesized Gaussian load, as shown in Figure 6. From
Figures 3-6, we can see that the direct calculation of PSD
from a non-Gaussian signal will lead to an obvious
undertest.

To determine the effects of damping ratio and fatigue
exponent on the calculation of response spectra and PSD
synthesis, the pseudovelocity FDS of field data were calcu-
lated with different values of Q (10, 25, 50) and b (4, 8,
12), as shown in Figure 7. From Figure 7, we can see that
the FDS decreases and the dispersion increases, as the value
of b increases. The value of Q has little effects on FDS (com-
pared with the effect of b).

Set the value of Q to 50, calculate FDS with different
values of b, and take the envelope. The equivalent PSD
under different test times (T =600s, 100s, 10s) are derived
using the FDS envelope and Equation (10), as shown in
Figure 8. From Figure 8, we can see that the equivalent
PSD level increases as the test time decreases. The effects
of the value of b on the equivalent PSD depend on the
predetermined accelerated test time. With T equals to
600s (not accelerated), the equivalent PSD increases as
the value of b increases. With T equals to 100s, the value
of b has little effect on the equivalent PSD. With T equals
to 10s, however, the equivalent PSD decreases as the value
of b increases.
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The FDS of equivalent PSD for different test times
remain the same, as shown in Figure 9. A comparison is
made between the FDS of equivalent PSD and non-
Gaussian field data. Due to the nonsmooth shape of the
equivalent PSD, the mismatch is clearly seen, especially
within the peak and valley frequency band. To account for
the nonsmooth shape, the PSD is updated using Equation
(14). A better match between the FDS of the field data and
the equivalent PSD is reached after the first iteration, as
shown in Figure 10.

The weighted sum of FDS error (see Equation (13)) cal-
culated from the field data and equivalent PSD is reduced
from 80.1% to 7.5% after 7 iterations. Particularly, the error
is close to 0 within the peak and valley frequency band, as

shown in Figures 11 and 12. The deviation of PSD between
150 Hz and 200 Hz is trivial due to the low level.

A good match between the ERS calculated from the
equivalent PSD and that calculated from the field data is
shown in Figure 13. Note that although the PSD level can
be further increased to reduce the test time, the test item
may fail due to the peak response which will not be experi-
enced in the field.

4. Conclusions

Considering the effects of dispersion of field data, parameter
uncertainties, and the nonsmooth shape of the PSD, on the
accuracy of the derived damage equivalent accelerated test
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spectrum, an optimized procedure for PSD synthesis using
non-Gaussian data is presented in this paper. Conclusions
are as follows:

(1) Direct calculation of PSD from non-Gaussian field
data leads to undertest. The envelope of FDS and
ERS can be used to derive the damage equivalent
PSD, considering the dispersion of multiple non-
Gaussian field data

(2) Model parameters must be selected dynamically if a
priori information is unknown, i.e., the selection of
model parameters depends on the predetermined
accelerated test time, so as to avoid undertest

(3) The damage equivalent PSD must be updated to
account for its nonsmooth shape. The weighted
sum of FDS error between field data and derived
PSD can be reduced dramatically after only a few
iterations. Particularly, the error can be reduced
close to 0 within the peak and valley frequency band
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