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Abstract

Automotive manufacturers currently face a challenge with expeditious enhancement
of the vibro-acoustic properties of their vehicles. A major reason for this setback is
the limited design information available during initial development stages added with
limited knowledge of damping within complex structures. It is now well established
that CAE studies of vibration energy flow show good correlation between power
flowing into trimmed body and the interior noise produced. Aim of the dissertation
is to harness this "good" correlation between power input and interior noise, by
learning about the changing behaviour of system in different suspension damping
scenarios. It investigates how the mechanical power input to body from suspension,
interior road noise produced, and their relation is affected by changing the way
damping is modelled into suspension. This is being done to make stronger design
decisions from NVH point of view during the concept phases of vehicle development.

The investigation is for vehicle programs during early development phases, and
hence a simplified vehicle CAE model was chosen, that contains a trimmed body with
cavity fluid, and wheel suspension to capture all relevant effects of varying damping.
Then, a detailed flowchart of suspension and trimmed body connections was prepared
to understand how power flows into the trimmed body through suspension. Using
results of power flow study, the most relevant paths and their frequency ranges
were identified (to reduce the number of parts in study, yet results relevant and
easily extrapolatable to a larger system). Lastly, responses are analyzed for various
damping cases of suspension and trimmed body.

Results obtained show a reducing trend in mechanical input power and interior
noise values with increasing damping in system. Whereas, for good correlation be-
tween power and noise, a great inclination towards structural damping localized into
bushings is observed compared to other damping cases. Additionally, a strong de-
pendency of noise, active power and reactive power is observed on trimmed body
and cavity fluid damping. Active power is reduced when trimmed body damping is
decreased to zero, and more so when cavity fluid damping is put to zero. On the
other hand, noise and reactive power have an exact opposite correlation compared
to active power and noise.

These results suggest that although active mechanical input power is the cause
of interior noise, their correlation starts to deteriorate with reducing damping within
the system, and instead it is the reactive power that starts to correlate better at very
low damping values. But, it is physically impossible to have no damping or very
low damping, so a modelling of damping within suspension that provides relatively
better correlation between (active) input power and noise is when structural damping
is localized within connectors.
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Chapter 1

Introduction

It takes years of research and millions of kronor to produce a new car. An effectively
engineered product combined with attractive marketing strategies is what makes
a vehicle ¨good value for money¨ for the customers and sells moderately well in
today’s competitive market. One such area within vehicle engineering that holds
great importance for vehicle refinement is the study of its NVH (noise, vibration
and harshness) characteristics, which aims at identification and reduction of audible
sound and tactile vibration experienced by passengers, and is therefore one of the
most crucial cases of dynamic loading analysed for NVH performance.

Predicting the noise and vibration characteristics of a vehicle is an extremely chal-
lenging task because of its dependence on the behaviour of a large number of parts
and their highly elaborate connections contributing to complicated transmission of
forces within the vehicle. The structural design of a vehicle body has come to rely
heavily on CAE analysis, built upon strong engineering concepts that bridge the gap
between simulation and experimental results to a great extent. Whereas, the regu-
lation of its NVH properties has traditionally been based mostly on the use of CAE
supported by simplified models or evaluated using detailed numerical models and ap-
proximated parametric values. This has failed to provide highly reliable results from
NVH perspective, limited the understanding of correlation between road disturbance
and cabin noise, and restricted the scope of research in vehicle NVH applications.
But with the growing demand of vehicle quality in today’s competitive market, it
has become crucial to move towards a more accurate and highly reliable simulation
driven workflow, so as to get a good idea beforehand of the acoustic properties of a
vehicle under development.

During the early development stages of vehicle programs, there is a lack of de-
tailed information available on the chassis and trimmed body design, which means
important decisions must be based on the chosen concepts. In order to predict the
structure borne interior noise during early design phases, a key performance indi-
cator needs to be chosen that relates cabin noise to the tire excitation by involving
structure-acoustic interaction. Acoustic pressure at occupants’ ears (from mic data)
can be a poor indicator unless a probabilistic FRF is available for the model [2].
So, CAE procedures for vibration energy flow through the wheel suspension into
vehicle body have been proposed because of their robustness and good correlation
to the road noise levels [8] [4] [7]. This method is based on mechanical input power
(MIP), that is an indicator based on active vibrational power input to trimmed body
from suspension. However, Mechanical Input Power, is largely dependent on mod-
elling of damping within the suspension system, that has traditionally been simplified

1



2 Chapter 1. Introduction

in vehicle CAE models. Damping has been modelled using generalized models and
damping values for most materials and connectors (such as ball joints, bushings, etc.).
Therefore, evaluation of a good correlation between MIP and cabin noise would be
incomplete without an in-depth investigation of modelling of damping within suspen-
sion. So, the research finds its roots in milestone in this thesis would be to identify
best practises of modelling of damping within vehicle CAE models.

So, the dissertation takes first steps in a new research direction at Volvo cars,
wherein it is being investigated if design decisions from NVH viewpoint can be based
on power input to body and the problem being attacked is the the poor knowledge of
damping within suspension. Therefore, if the central problem of this thesis is solved,
it can have far-fetched implications in the automotive industry in terms of better
prediction of NVH characteristics of a vehicle under development by basing design
decisions on MIP, and by providing a better understanding of modelling of damping
within complete vehicle CAE models for vehicle NVH simulation.

1.1 Literature review

What is considered a relevant indicator to a noise and vibration problem depends on
the system type, ease of solution and output required. Power input to a structure as
an indicator has been associated widely with the vibro-acoustic parameters in recent
years. There have been previous studies adopting power formulation for understand-
ing the behaviour of various types of vibrating systems owing to its simplicity, and
a few such have pointed out a distinct relation between power input to a car body
and cabin noise produced, calculated analytically, experimentally or by simulation.

A strong correlation has been found between mechanical power input to a car
body and low frequency interior noise; [2] shows high similarities between power
injected with the averaged quadratic sound pressure for a physical test setup con-
sisting of front axle and tires, tested for different elastic mounts. However, in an
era where the trend is to make accurate predictions about NVH characteristics by
moving towards a more reliable simulation driven workflow, researchers have be-
come increasingly interested in estimation of road noise during development phases,
because only during the early stages is it possible to alter concepts [8].

For instance in [4], the author aims to understand vibroacoustic early design
performance for a FE model by calculating structure-borne noise using energy for-
mulation through input mobility and vibroacoustic transfer functions, and concludes
that if main sources of power are connected to the structural frame, any reduction in
power input (achieved by altering structure) results in a proportional noise reduction.

Several studies have focused on comparison of different key-performance-indicators
(KPIs) with power input, such as in [8] it has been concluded that input power as
a key performance indicator turns out to give better correlation to the insertion loss
of sound pressure level than that with other KPIs (such as forces or velocities) for
changes in design of a simple beam model with elastic connectors. Similar conclu-
sions are obtained for [9], where a simple 2D left rear axle model (assumed to behave
linearly and in steady state) is taken as the calculation model and reduced to a net-
work of substructures, for simplified understanding of connections and identification
of important power flow paths.



1.2. Aim and Thesis questions 3

This trend in studies suggest the simplicity of power studies and detailed relation
between input power and radiated sound for any mechanical structure. Nonetheless,
there is a need to investigate this new direction of research in Volvo Cars that focusses
on detailed vehicle body FE models used to scrutinize this relation between power
input and radiated noise, and impact of damping modelling within suspension on
both as well as their relation.

1.2 Aim and Thesis questions

Aim of this thesis is to investigate the role of damping in basing input power at
the forefront of NVH design decisions, and it does so by studying the influence of
different modelling of damping within suspension on a number of aspects – firstly,
the mechanical input power to trimmed body from suspension due to the excitation,
secondly, the interior road noise produced due to this excitation and lastly, the
relation between input power and interior noise.

From the foregoing description of research aim and challenges of estimating NVH
characteristics, the following thesis question emerges -

How are mechanical power input, cabin noise and their relation dependent
on modelling of damping within the suspension?

To be able to answer this question, it is important to understand the complex
dynamic relation between input power, cabin noise, and damping within suspension,
which leads to the need of following sub-research questions -

1. Which paths contribute majorly to the flow of power from suspension to trimmed
body? How does the energy flow vary at different frequencies/frequency ranges?

2. Does a change in MIP produce proportional change in SPL? How can the
relation between cabin noise and input power be quantified?

3. How can the quality of correlation between MIP and interior noise be measured?

4. How can impact of damping models, damping values, damping localization,
etc. within suspension be captured?

1.3 Objectives

The aim and research questions of this thesis, highlight the need for following research
objectives:

• Prepare/choose a suitable calculation model that is simple yet capable to cap-
ture most relevant effects for radiation of vibrational power into cabin noise

• Develop a flowchart representing the network of components within vehicle
suspension for a simplified yet detailed understanding of connections and power
flows from excitation to vehicle body.
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• Calculate the power flowing into trimmed body and its contribution from var-
ious paths, in order to identify the most crucial paths contributing to the
mechanical power input.

• Identify the relation between mechanical input power and cabin noise.

• Identify the dependence of mechanical input power and cabin noise on mod-
elling of damping within a suspension system.

1.4 Structure of Report
A methodology is developed in light of the thesis objectives and divided into different
chapters. Firstly, a chapter is dedicated to introducing the vehicle model used for
study and discussing its suitability for the research. The next chapter is then focused
on developing an understanding of the connections within model by using detailed
illustrations and flowcharts of the model. Thirdly, a chapter is dedicated to results.
Firstly, results related to calculations of power through various paths into the body,
where power flow within system is discussed such that the most important paths
and their dominant frequency ranges can be identified to limit the scope of this
study. Lastly, a few sections within the chapter of results are dedicated to developing
mathematical relation between power and noise as well as studying effects of damping
within suspension and body, on the mechanical input power, interior noise and their
relation before final conclusions are drawn.



Chapter 2
Theoretical Foundation

This chapter deals with providing definitions of common terminologies used through-
out the thesis and necessary theories surrounding them.

2.1 Single-Degree-of-Freedom Systems
A particle or body is said to be vibrating or oscillating if it exhibits a to-and-fro
periodic motion about a mean position. Usually, the term oscillation is associated
with such motions of low frequency (for e.g. oscillation of a pendulum 1Hz), and
the term vibration is associated with high frequency motions (e.g. vibration of a car
engine up to a few hundred Hz). So, within vehicle applications, these motions are
referred to as automotive vibrations.

Vibration is a complex dynamic phenomenon, that can be extremely complicated
to model mathematically and predict the behaviour of vibrating systems, owing to the
lack of homogeneity of systems, approximate models, and infinite degrees of freedom
a system can possess. Hence, such a system is generally illustrated with ideal springs,
masses and dashpots that represent stiffness, inertia and damping within the system.
These are the three most important physical quantities that define a dynamic system.

First step in the analysis of a structural vibration problem is making a simplified
illustration using inertia, stiffness and damping elements. The simplest form of
vibrating system that can be illustrated, is with an ideal spring, an ideal mass and
an ideal damper, and is called a Single Degree of Freedom (SDOF/1DOF) system.
For example, a generator mounted on its foundation through rubber pads to isolate
some or most of its vibrations, can be simplistically modelled as a SDOF system
shown in Figure 2.1:

Figure 2.1: SDOF System [1]

5



6 Chapter 2. Theoretical Foundation

Where,
m is the mass of machine,
k is the stiffness of isolator,
c is the damping coefficient of isolator (assuming viscous damping model), and
x is the displacement of mass from mean position.

Table 2.1: SDOF vibration parameters and their units
Quantity SI-System (MKS) mm-t-s

Mass (m) kg tonne
Stiffness (k) N.m N.mm
Damping coefficient (c) N.s/m N.s/mm

Table 5.1 shows the commonly used units of dynamic parameters of system which
cause three forces to act on this SDOF system, namely the spring force, viscous
damping force and external force F , that cause it to accelerate as shown in Figure
2.1. They must be expressed in terms of known constants and variables in order to
understand the behaviour of this SDOF system.

As modelled in this system, ideal springs follow Hooke’s law, which states that
the force acting on a spring (or applied by it) is proportional to its displacement
(change in length) and dependent on stiffness k of the spring as given by Equation
2.1.

Spring force = kx (2.1)

Viscous damping model is widely used to represent vibrational damping within many
systems because of its ability to capture roughly the damping effects and also because
it makes the system easier to solve. The corresponding viscous damping force is
proportional to velocity of damping element and calculated using Equation 2.2.

Damping force = cẋ (2.2)

Figure 2.2: Free Body Diagram of SDOF System

Once illustrated as an SDOF system, the next step is formulation of its mathematical
model. Applying Newton’s Second Law to system is one of the most popular meth-
ods of mathematically modelling a SDOF system to obtain its equation of motion.
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Making a free body diagram (Figure 2.2) of the SDOF model and applying Newton’s
Second Law to it gives: ∑

F = ma (2.3)

Where,∑
F is the vector sum of forces acting on system, and

a is the acceleration vector of the system.

F − kx− cẋ = mẍ (2.4)

mẍ+ cẋ + kx = F (2.5)

where, F is the force of excitation/external force applied to the system. Equation
2.5 is a second order, homogeneous, ordinary differential equation in x, known as
equation of motion of the SDOF system and provides a relation between forces and
kinematic parameters of system. This equation can be solved to obtain dynamic
response x(t) of the system.

2.1.1 Complex notations in vibration and Free/Forced vibra-
tions

Equation of motion of a SDOF system is second order differential equation and can
be solved either using mathematical integration or alternate methods which convert
the ODE to a polynomial equation of degree 2. One such widely used method
in engineering dynamics is by representation of sinusoidal force and displacement
using complex exponential time functions, as it provides magnitude as well as phase
information of system parameters. For example, a sinusoidal excitation force can be
expressed as:

F = Re(F 0 eiωt) (2.6)

Or, according to Euler’s formula,

F = Re(F0cosωt+ iF 0sinωt) (2.7)

Where,
F0 is the amplitude of applied force, and
ω is the angular frequency of excitation.

Let, z = z0 ei(ωt−ϕ) , such that corresponding displacement of mass is expressed
as:

x = Re(z) (2.8)

x = Re(z0 ei(ωt−ϕ)) (2.9)

Where,
x0 is the amplitude of applied force
ϕ is the phase difference between excitation force and displacement
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Since, the system is driven by an external excitation frequency, it is highly likely that
there would be a phase difference between the applied force and response displace-
ment of the system, and it hence finds its place in Equation 2.9.
Now, substituting complex exponential functions into Equation 2.5 and solving gives:

−mω2z0 ei(ωt−ϕ) + icωz0 ei(ωt−ϕ) + kz0 ei(ωt−ϕ) = F0 eiωt (2.10)

Expressing Equation 2.8 on a complex plane gives Figure 2.3 which is called a phasor
diagram, where forces and displacements can be represented as rotating vectors on
a complex plane and every time translation is just a rotation. i represents a 900

phase shift i2 a 1800 phase shift as can be seen from the phasor. It also shows how
the applied force (ϕ radians out of phase with displacement) is a resultant of the
spring force (in phase with displacement), damping force (900 out of phase with
displacement) and inertial force (1800 out of phase with displacement).

Figure 2.3: Phasor Diagram - SDOF equation on motion expressed in complex plane

The phasor diagram is just a geometrical description of mathematical models and
provides great insight into the system behaviour. For example, as seen from phasor
diagram, the inertial force relies greatly on the frequency of applied force as it is pro-
portional to ω2, whereas spring force is independent of vibration frequency and hence
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does not contribute significantly to the system behaviour at high frequencies, result-
ing in a greater phase difference between displacement and applied force. Solving
Equation 2.10 further gives a second-degree polynomial in ω as:

(−mω2 + icω + k) z0 e−iϕ = F0 (2.11)

This equation is much easier to solve than its ODE counterpart and is solved in the
next sections.

2.1.2 Free vibrations

For free vibrations, the excitation force is zero and system vibrates freely. The
equation of motion for free vibrations of SDOF system is obtained by putting force
ϕ to zero in Equation 2.11 (since there can be no phase difference), such that the
following is obtained:

(−mω2 + icω + k) z0 = 0 (2.12)

Diving the equation be m gives:

(−ω2 +
icω

m
+

k

m
) z0 = 0 (2.13)

or, the equation can be rewritten as:

−ω2 + i2ζω0ω + ω2
0 = 0 (2.14)

Where,
ω0 =

√
k
m

, is the undamped natural frequency of system
ζ = c

cc
, is the damping ratio of system

cc = 2
√
mk, is the critical damping of system

Solving for ω in the polynomial Equation 2.14 gives:

ω1,2 = ω0

(
iζ ±

√
1− ζ2

)
(2.15)

This result of vibration frequency leads to three cases:

1. Underdamped system (ζ < 1):

For underdamped case, Equation 2.15 can be rewritten as,

ω1,2 = ω0

(
iζ ±

√
1− ζ2

)
(2.16)

Substituting value of ω1,2 into Equation 2.8 gives:

z1,2 = z0 e−ζω0t e±i
√

1−ζ2ω
0
t (2.17)

So, x = Re(z) gives:
x1,2 = Re

(
z0e

−ζω0te±i
√

1−ζ2ω
0
t
)

(2.18)
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The basic general solutions are:

x1 = z0e
−ζω0tcos

(
ω0

√
1− ζ2 t

)
(2.19)

x2 = z0e
−ζω0tsin

(
ω0

√
1− ζ2 t

)
(2.20)

The general real solution is calculated by taking linear combination of the two basic
solutions. So,

x(t) = A1e
−ζω0tcos

(
ω0

√
1− ζ2 t

)
+ A2e

−ζω0tsin
(
ω0

√
1− ζ2 t

)
(2.21)

x (t) = A0e
−ζω0tcos

(
ω0

√
1− ζ2 t+ ϕ

)
(2.22)

It is evident from the expression that:

• The frequency of vibration is ω0

√
1− ζ2 = ω, called the damped resonant

frequency of underdamped SDOF system.

• The e−ζω0t term indicates an exponential decay. So, the amplitude of vibration
will exponentially die out because of damping within system.

• ϕ is the phase angle, indicating the initial condition of position of mass element.

So, the expression can be rewritten as:

x(t) = A(t) cos(ωt+ ϕ)x(t) = A(t) cos(ωt+ ϕ)x(t) = A(t) cos(ωt+ ϕ) (2.23)

Where, A(t) = A0e
−ζω0t, is the amplitude of vibration

2. Critically damped system (ζ = 1):

For critically damped case, Equation 2.15 can be rewritten as,

ω1,2 = iζω0 (2.24)

Substituting value of ω1,2 into Equation 2.8 gives:

z1,2 = z0 e−ζω0t (2.25)

So, x = Re(z) gives:
x1,2 = Re(z0 e−ζω0t) (2.26)

So, the basic general solutions are:

x1 = z0e
−ζω0t (2.27)

x2 = tz0e
−ζω0t (2.28)

The general real solution is calculated by taking linear combination of the two basic
solutions. So,

x (t) = (A+Bt)e−ζω0tx (t) = (A+Bt)e−ζω0tx (t) = (A+Bt)e−ζω0t (2.29)

It is evident from the expression that:
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• The equation has no sinusoidal term and hence system does not vibrate.

• The e−ζω0t term indicates an exponential decay of amplitude with time without
vibrations.

This case provides the least time in which system can return to its original position.

3. Overdamped system (ζ > 1):

For overdamped case, Equation 2.15 can be rewritten as,

ω1,2 = ω0i
(
ζ ±

√
ζ2 − 1

)
(2.30)

Substituting value of ω1,2 into Equation 2.8 gives:

z1,2 = z0 e(−ζ±
√

ζ2−1)ω
0
t (2.31)

So, x = Re(z) gives:
x1,2 = Re

(
z0 e(−ζ±

√
ζ2−1)ω

0
t
)

(2.32)

So, the basic general solutions are:

x1 = z0 e(−ζ+
√

ζ2−1)ω
0
t (2.33)

x2 = z0 e(−ζ−
√

ζ2−1)ω
0
t (2.34)

The general real solution is calculated by taking linear combination of the two basic
solutions. So,

x(t) = A1e
(−ζ+

√
ζ2−1)ω

0
t + A2e

(−ζ−
√

ζ2−1)ω
0
tx(t) = A1e

(−ζ+
√

ζ2−1)ω
0
t + A2e

(−ζ−
√

ζ2−1)ω
0
tx(t) = A1e

(−ζ+
√

ζ2−1)ω
0
t + A2e

(−ζ−
√

ζ2−1)ω
0
t (2.35)

Figure 2.4: Displacement-Time graph of a typical system for all 3 damping cases

It is evident from Equation 2.35 that there is no oscillation, and the two terms
decay exponentially. Damping force in the system is so large, that it can control
the rate at which mass reaches its original position. Figure 2.4 shows typical case of
displacement-time plots for all three damping cases.
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2.1.3 Forced vibrations

A system being forced to vibrate under the influence of external excitation is said to
be exhibiting forced vibrations. Let, ωd be the driving frequency of vibrations and δ
the phase difference between Force and displacement, then the equation of motion for
a SDOF under forced vibrations derived and simplified in previous section is given
by Equation 2.11 as: (−mωd

2 + icωd + k
)
z0e

−iδ = F0 (2.36)

Dividing the equation by m gives:(
−ωd

2 + i
c

m
ωd +

k

m

)
=

F0

mz0
(cosδ + isinδ) (2.37)

Now, rewriting in terms of damping ratio and natural frequency gives:

(−ωd
2 + i2ζω0ωd + ω0

2
)
=

F0

mz0
(cosδ + isinδ) (2.38)

Comparing the real and imaginary terms on both sides of equation gives:

ω0
2 − ωd

2 =
F0

mz0
cosδ (2.39)

2ζω0ωd =
F0

mz0
sinδ (2.40)

Squaring and adding Equations 2.39 and 2.40 gives:

z0 =
F0/m√

(ω0
2 − ωd

2)2 + 4ζ2ω0
2ωd

2

(2.41)

Now,dividing equation 2.40 by 2.39 gives:

tanδ =
2ζω0ωd

ω0
2 − ωd

2
(2.42)

Substituting values of z0 and ϕ in equation x = Re
(
z0e

i(ωdt−δ)
)

gives:

x = z0cos (ωdt− δ) (2.43)

or,
x(t) = B (ωd) cos (ωdt− δ (ωd)) (2.44)

Here,
B = z0, is the amplitude of vibrations and is a function of ωd. Also, δ is the phase
difference and is a function of ωd.

Like any other integration problem, the full solution of a second order differential
equation must have two free parameters, whereas B and δ are functions of the driving
frequency. So, the missing link here is a homogeneous solution of the ODE.

x(t) = Response due to forced input+ Free Responsex(t) = Response due to forced input+ Free Responsex(t) = Response due to forced input+ Free Response
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Homogeneous solution provides the initial motion of system or free response, that the
system was set in before force started acting on it. It dies out as t → ∞. Whereas
particular solution provides the steady state solution of this system or response due
to forced input. So, the complete solution of forced response of SDOF system is:

x(t) = Bcos (ωdt− δ) + Acos(ωt+ ϕ)x(t) = Bcos (ωdt− δ) + Acos(ωt+ ϕ)x(t) = Bcos (ωdt− δ) + Acos(ωt+ ϕ) (2.45)

So, A and ϕ are the free parameters which are calculated using initial conditions.

Resonance: As can be seen in Equation 2.41, if the driving frequency equals natural
frequency of SDOF system (ωd = ω0), it gives a huge rise in response of the system.
This phenomenon is known as resonance and is crucial for understanding dynamic
behaviour of systems.
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2.2 Multiple-Degree-of-Freedom Systems

Degree of freedom of a system is the number of independent coordinates required
to define its configuration. More the degrees of freedom of a system, more are the
natural frequencies, and greater the number of ways it can move independently.
These types of motion it can exhibit are known as mode shapes and the number of
mode shapes = number of natural frequencies = number of DOF.

Figure 2.5: n-DOF system

Figure 2.5 shows a MDOF system where n number of masses are present. To fully
define the dynamic configuration of this system, coordinates of all n masses are re-
quired, hence it is an n-DOF system. Similar to a SDOF system, making a free body
diagram of the masses (Figure 2.6) followed by applying Netwon’s laws is done to
derive equations of motion of this MDOF. Since, there are n-masses in the system,
it would have n-equations of motion as below:

m1ẍ1 + (k1 + k2) x1 − k2x2 + (c1 + c2) ẋ1 − c2ẋ2 = F1

m2ẍ2 − k2x1 + (k2 + k3) x2 − k3x3 − c2ẋ1 + (c2 + c3) ẋ2 − c3ẋ3 = F2

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

mn−1ẍn−1−kn−1xn−2+(kn−1 + kn) xn−1−knxn−cn−1ẋn−2+(cn−1 + cn) ẋn−1−cnẋn =
Fn−1

mnẍn − knxn−1 + knxn − cnẋn−1 + cnẋn = Fn
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Figure 2.6: FBDs of masses in the MDOF system

It can be seen from the equations that they are interdependent and must be solved
simultaneously. Although, there are n equations of motion, they can be dealt in a
simplistic and straightforward manner using the tools of matrix algebra. Equation
of motion in matrix form can be written as:

MẌ + CẊ +KX = F (2.46)

where, each element in the equation is in its matrix form and expressed as given
below:

MN×N =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 · · · 0 0

0 m2 · · · 0 0
...

...
. . .

...
...

0 0 · · · mn−1 0

0 0 · · · 0 mn

⎤
⎥⎥⎥⎥⎥⎦ (2.47)
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KN×N =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 · · · 0 0

−k2 k2 + k3 · · · 0 0
...

...
. . .

...
...

0 0 · · · k(n−1) + kn −kn
0 0 · · · −kn kn

⎤
⎥⎥⎥⎥⎥⎦ (2.48)

CN×N =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 · · · 0 0

−c2 c2 + c3 · · · 0 0
...

...
. . .

...
...

0 0 · · · c(n−1) + cn −cn
0 0 · · · −cn cn

⎤
⎥⎥⎥⎥⎥⎦ (2.49)

XN×1 =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...

x(n−1)

xn

⎤
⎥⎥⎥⎥⎥⎦ (2.50)

FN×1 =

⎡
⎢⎢⎢⎢⎢⎣

F1

F2

...

F(n−1)

Fn

⎤
⎥⎥⎥⎥⎥⎦ (2.51)



2.3. Continuum Formulation 17

2.3 Continuum Formulation
Consider a solid occupying an arbitrary volume V and surface area S as shown in
Figure 2.7. dP is a force vector acting on an infinitesimal area dA on surface of the
body. Force dP is called a traction vector if dA approaches zero. Mathematically,
the traction vector is expressed as:

ti =

⎡
⎣ tx
ty
tz

⎤
⎦ = σijni =

⎡
⎣ σxxnx + σxyny + σxznz

σyxnx + σyyny + σyznz

σzxnx + σzyny + σzznz

⎤
⎦ (2.52)

where, ni =

⎡
⎣ nx

ny

nz

⎤
⎦ is a unit vector acting normal to the surface of body

and, σij is the stress tensor

Figure 2.7: Forces on an arbitrary body

For derivation of the strong form of equation of motion, Newton’s second law is
applied to the arbitrary part of body on which act traction force ti and body force
bi [6]. This yields: ∫ S

A

tidA+

∫ S

V

bidV =

∫ S

V

ρüidV (2.53)

where, ρ is the density of body, and üi is the acceleration vector. The formulation
here is in terms of the body volume and surface area, which gives way to application
of Gauss’ divergence theorem for reformulating traction force in terms of volume V
as: ∫ S

A

tidA =

∫ S

A

σijnjdA =

∫ S

V

σij,jdV (2.54)

Where, σij,j =
dσij

dxj
is the differentiated stress tensor with respect to coordinates xj.

So, Equation 2.53 can be rewritten as,∫ S

V

σij,jdV +

∫ S

V

bidV =

∫ S

V

ρüidV (2.55)

∫ S

V

(σij,j + bi − ρüi)dV = 0 (2.56)
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Simplifying the equation yields:

σij,j + bi = ρüiσij,j + bi = ρüiσij,j + bi = ρüi (2.57)

Equation of motion for an arbitrary body is given by Equation 2.57. If the displace-
ment gradients ui,j are considered small, the strain tensor is expressed as:

εij =
1

2
(ui,j + uj,i) (2.58)

Assuming linear-elastic behaviour of the body, the stress-strain relation is expressed
as,

σij = Dijklεkl (2.59)

where, Dijkl is the elastic stiffness tensor

Boundary conditions are defined as

ui = ubc
i on Su (2.60)

ti = tbci on Su (2.61)

known displacement ui prescribed on Su and known tractions ti prescribed on St,
where Su and St make up the entire surface S.
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2.4 Finite Element formulation
This section provides the necessary theoretical background of applying Finite Ele-
ment Method to solve equation of motion as derived in the previous. First step in
FEM is deriving the weak form of Equation 2.57, which can be obtained by multi-
plying it with an arbitrary weight function vi that represents virtual displacement,
and integrating this product over the volume as given:∫ S

V

vi(σij,j + bi − ρüi)dV = 0 (2.62)

Using Green Gauss theorem and then applying chain rule to the equation gives:∫ S

V

viρüidV +

∫ S

V

vi,jσijdV =

∫ S

S

vitidS +

∫ S

V

vibidV = 0 (2.63)

The weak form is now developed but a few more steps will be taken to rewrite it.
Defining εvij =

1
2
(vi,j + vj,i) and symmetrical σij gives:

vi,jσij =
1

2

(
vi,jσij + vj,iσji

)
=

1

2

(
vi,jσij + vi,jσji

)
= εvijσij (2.64)

Second step is to derive the FE formulation by firstly rewriting the quantities in
Equation 2.64 in matrix form as given:

εv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εvxx
εvyy
εvzz
2εvxy
2εvyz
2εvzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; σij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σxy

σyz

σzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; ü =

⎡
⎣ üx

üy

üz

⎤
⎦ ; v =

⎡
⎣ vx
vy
vz

⎤
⎦ ; b =

⎡
⎣ bx
by
bz

⎤
⎦

So, the weak from in matrix form can be written as:∫ S

V

ρvvvT üuudV +

∫ S

V

(εεεv
vv)TσσσdV =

∫ S

S

vvvTtttdS +

∫ S

V

vvvTbbbdV = 0 (2.65)

Now, the next step involves approximating displacement vector with global shape
function vector NNN and global displacement vector aaa as:

u = Na => ü = Näu = Na => ü = Näu = Na => ü = Nä (2.66)

Using Galerkin’s method to choose weight function v, the following relations can be
defined:

ε = Ba; v = Nc; εv = Bc;ε = Ba; v = Nc; εv = Bc;ε = Ba; v = Nc; εv = Bc; BBB =
dNNN

dxi

where, ccc is an arbitrary weight vector. Using these newly introduced relations, Equa-
tion 2.65 can be rewritten as:

cccT
[(∫ S

V

ρNNNTNNNdV

)
äaa+

∫ S

V

(BBB)T σσσdV −
∫ S

S

NNNTtttdS −
∫ S

V

NNNTbbbdV

]
= 0 (2.67)
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Based on linear elastic material assumption made earlier, following relations can be
defined:

MMM =

(∫ S

V

ρNNNTNNNdV

)
äaa; KKK = (BBB)T σσσdV ; fff =

∫ S

S

NNNTtttdS−
∫ S

V

NNNTbbbdV

where, MMM , KKK are the mass and stiffness matrix and fff is the force vector. Since, c is
arbitrary, Equation 2.67 can be rewritten as:

MMMäaa+KaKaKa = fff (2.68)

his equation of motion represents a system without damping. For example, viscous
damping can be introduced in the system by adding a term CCCȧaa, where CCC is the
damping matrix.

MMMäaa+CCCȧaa+KaKaKa = fff (2.69)

Equation 2.67 provides the FE form of equation of motion for an arbitrary body
occupying volume V .
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2.5 Structural Dynamic Analysis
This section deals with the various ways of analyzing a MDOF dynamic system (and
the steps involved in it), such as the one represented by Equation 2.69.

2.5.1 Free undamped vibration

The equation of motion for an undamped MDOF system with no forces acting on it,
can be represented as:

MMMäaa+KaKaKa = 0 (2.70)

Assuming response of the system to be harmonic, given by:

a(t) = Âeiωtφ (2.71)

where, Â is the complex amplitude,
and, φ is a time independent constant vector Differentiating Equation 2.71 with
respect to time and substituting the result into equation 35 yields,(

K − ω2M
)
φ = 0 (2.72)

For a non-trivial solution to the eigenvalue problem,

det
(
K − ω2M

)
= 0 (2.73)

If the MDOF system has n-DOFs, there would be n solutions or eigenfrequencies
ωj = ω1, ω2 . . . ωn. Corresponding to each eigenfrequency will be a mode shape or
eigenmode (vibrational pattern), which is obtained by substituting calculated eigen-
frequency into Equation 2.72. Then, solution to Equation 2.71 can be represented
as a sum of eigenmodes because of its orthogonality as:

aaa (t) =
n∑

j=1

qj (t)φj (2.74)

where, qj (t) = q̂j (t) e
iωt, and the complex amplitude q̂j of φj is determined by initial

conditions.

2.5.2 Forced undamped harmonic vibration

The equation of motion for an undamped MDOF system experiencing a harmonic
excitation is represented by:

MMMäaa+KaKaKa = f̂ffeiωt (2.75)

where, f̂ is the complex amplitude of force

As discussed in previous SDOF section, full solution of Equation 2.75 contains a
homogeneous solution (obtained in Equation 2.74, by solving the free response) and
a particular solution which is the steady state response and hence independent of
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initial conditions. The particular solution can be derived by assuming a harmonic
solution as:

a(t) = âeiωt (2.76)

and, â is a time independent constant vector. Differentiating Equation 2.76 with
respect to time and substituting the result into Equation 2.75 yields,(

K − ω2M
)
â = f̂ (2.77)

Multiplying 2.77 with eigenmodes φφφTTT ,(k=1,2,...,k)
k , and modally decomposing â as,

âaa =
n∑

j=1

r̂j (t)φφφj (2.78)

the following equation is obtained:

−ω2

n∑
j=1

φφφT
kMMMφφφj r̂j +

n∑
j=1

φφφT
kKKKφφφj r̂j = φφφ

TTTf̂ff (2.79)
k

Considering orthogonal eigenmodes, φφφTTT
kMMMφφφj and φφφTTT

kKKKφφφj r̂j are zero for if j �= k. This
yields n independent systems represented by:

−ω2m̄j r̂j + k̄j r̂j = f̄j (2.80)

Where, m̄j = φφφTTT
kMMMφφφj, k̄j = φφφTTT

kKKKφφφj r̂j and f̄j = φφφTTT
k f̂ff (j = 1, 2..., n) The ampli-

tude corresponding to each eigenmode is obtained from the each of the n uncoupled
systems as:

r̂j =
f̄j
k̄j

1

1− (ω/ωj)
2 (2.81)

Where, ωj =
√

k̄j
m̄j

Hence, the steady state solution and homogeneous solution of Equation 2.75 can be
obtained using equations derived above as:

aaa(t) = eiωt
n∑

j=1

f̄j
k̄j

1

1− (ω/ωj)
2φj +

n∑
j=1

qj (t)φj (2.82)

2.5.3 Forced harmonic vibration on a damped system

The equation of motion for a viscous damped MDOF system experiencing a harmonic
excitation is represented by:

MMMäaa(t) +CCCȧaa(t) +KaKaKa(t) = fff(t) (2.83)

Using the concepts of modal contribution to assume same steady state solution as in
equation 41 and similar modal expansion as in Equation 2.78 yields:

−ω2

n∑
j=1

φφφT
kMMMφφφj r̂j + iω

n∑
j=1

φφφT
kCCCφφφj r̂j +

n∑
j=1

φφφT
kKKKφφφj r̂j = φφφTTT

k f̂ff (2.84)
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Considering orthogonal eigenmodes, φφφTTT
kMMMφφφj,φφφ

TTT
kCCCφφφj r̂j and φφφTTT

kKKKφφφj r̂j are zero for if
j �= k. This yields n independent systems represented by:

−ω2m̄j r̂j + iωc̄j r̂j + k̄j r̂j = f̄j (2.85)

Where, m̄j = φφφTTT
kMMMφφφj, c̄j = φφφTTT

kCCCφφφj r̂j, k̄j = φφφTTT
kKKKφφφj r̂j and f̄j = φφφTTT

k f̂ff(j = 1, 2..., n)

Introducing the damping ratio term represented by:

ζj =
c̄j

2m̄jωj

(2.86)

Rewriting Equation 2.86 in terms of the damping ratio gives:

−ω2m̄j r̂j + 2iωζjωj r̂j + k̄j r̂j = f̄j (2.87)

The amplitude corresponding to each eigenmode is obtained from the each of the n
uncoupled systems as:

r̂j =
f̄j
ωj

2

1

1− (ω/ωj)
2 + 2iζj(ω/ωj)

(2.88)

Since, the system is damped, its transient response would die out very soon. Hence,
the steady state solution can be treated as the complete solution of Equation 2.83
given by:

aaa(t) = eiωt
n∑

j=1

f̄j
ωj

2

1

1− (ω/ωj)
2 + 2iζj(ω/ωj)

φφφj (2.89)

2.5.4 Frequency Response Function

Frequency Response Function (FRF) is a dynamic response analysis tool used in the
frequency domain to understand how a structure transmits vibration. FRF of a point
within a linear, time-invariant system is a measure of the steady state response of the
point due to a unit harmonic load acting at the same point or another. FRF contains
the amplitude as well as phase information for the system parameter. For a damped
system under harmonic load represented by Equation 2.83, FRF is represented by:

H (ω) =
â

f̂
=

1

K + iωC − ω2M
(2.90)

In modal coordinates, obtained by modal decomposition of the given system, FRF
is represented as:

Hj =
1

ωj
2

1

1− (ω/ωj)
2 + 2iζj (ω/ωj)

(2.91)

The FRF stated in equation above is known as Dynamic Stiffness. Simply stated,
FRF is a transfer function or output divided by input, and depending on which
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parameter is considered the output, FRF can be of many different types. For exam-
ple, in case of mechanical systems where force is the input, there are three common
FRFs, namely Dynamic Stiffness (Displacement/Force), Mobility (Velocity/Force)
and Accelerance (Acceleration/Force).

(Mobility) Mj =
1

ωj
2

iω

1− (ω/ωj)
2 + 2iζj (ω/ωj)

(2.92)

(Accelerance) Aj =
1

ωj
2

−ω2

1− (ω/ωj)
2 + 2iζj (ω/ωj)

(2.93)

Each FRF has its own advantages and is used to extract a different dynamic pa-
rameter of the system, but most common observations from FRFs are firstly, natural
frequencies of a system (peaks in spectrum indicate resonances), secondly, damping
(proportional to width of peaks), thirdly, mode shapes (using amplitude and phase
data), and many more. FRFs are also calculated experimentally by firstly converting
discrete time signals into frequency domain by fast fourier transformation (FFT) of
them.
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2.6 Damping Models
Damping within a system is its ability to dissipate mechanical energy, usually by
converting it into heat. There can be a large number of factors that lead to damping
within a system such as internal friction, mechanical hysteresis, joint friction, micro-
scopic/macroscopic defects, opening and closure of microcracks, acoustic radiation,
structural radiation, etc. Such factors make damping a highly complex phenom-
ena and almost impossible to rely entirely on mathematical models for realistically
capturing the effects of damping within a system. Instead, to predict the dynamic be-
haviour of system with higher accuracy, modal damping ratios are considered which
are obtained empirically using actual response data, having less assumptions and
able to accommodate more non-linear behaviour of damping within structures.

Like every other engineering mechanics problem, mathematical model is a great
starting point and there are a few damping models that are commonly used for mod-
elling damping within different systems depending on their suitability like Viscous
Damping, Structural Damping, Proportional Damping, Coulomb Damping, etc. The
scope of this thesis is limited to viscous and structural damping models that are de-
scribed further in this section.

Figure 2.8: (a) Structural and (b) Viscous Damping in SDOF

2.6.1 Viscous damping model

Viscous damping model is usually represented by a dashpot as shown in Figure
2.8 as it is a good representation of damping within automotive damped and such
damping mechanisms. Equation of motion for an SDOF system with viscous damping
experiencing forced harmonic vibrations is given by:

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.94)

Where, damping force Fd = cẋ, and is proportional to the velocity. So, the energy
dissipated per cycle can be calculated as:

Wd =

∫
Fddx (2.95)

expressing damping force in terms of damping coefficient and velocity gives:

Wd =

∫
cẋdx (2.96)
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But, dx = ẋdt. So,

Wd =

∫ 2π
ω

0

cẋ2dt (2.97)

For a harmonic output, let the response would for this SDOF be

x = Xcos (ωt− φ) (2.98)

Differentiating with respect to time gives:

ẋ = −ωXsin (ωt− φ) (2.99)

Putting the value of ẋ in Equation 2.97 gives:

Wd =

∫ 2π
ω

0

c [−ωXsin (ωt− φ)]2dt (2.100)

Solving the integral yields:
Wd = πcωX2 (2.101)

rewriting in terms of damping ratio and frequency gives:

Wd = πm2ζω2X2 (2.102)

Note:

1. Viscous damping force is proportional to and in-phase with velocity

2. The energy dissipated per cycle is proportional to the frequency of vibration,
square of amplitude of vibrations

2.6.2 Structural damping model

Structural (or Hysteretic) damping model is usually represented by a complex stiff-
ness as shown in Figure 2.8. It is a good representation of damping within viscoelastic
materials for their non-linear behaviour caused due to the hysteresis losses. Some
material properties like elasticity(E), stiffness(k) are defined as:

Ē = ERe + iEIm (2.103)

k̄ = kRe + ikIm (2.104)

Where, ERe is called the storage modulus and EIm loss modulus

Now, a new parameter called loss factor (η) is introduced, given by:

η =
ERe

EIm

=
kRe

kIm
= tanδ (2.105)

Where, δ is called the loss angle.
Equation of motion for an SDOF system with structural damping experiencing forced
harmonic vibrations is given by:

mẍ(t) + k(1 + iη)x(t) = f(t) (2.106)
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The loss factor is also defined as:

η =
Energy dissipated in a cycle

Total energy
(2.107)

Let, ceq be the equivalent viscous coefficient. Then loss factor is:

η =
πceqωX

2

2π
(
1
2
kX2

) (2.108)

on solving,
η =

ceqω

k
(2.109)

Note:

1. Structural damping force is proportional to displacement and in-phase with
velocity

2. Structural damping depends on material type, and the constant stiffness and
loss factor are valid only for harmonic force

3. Structural damping work is independent of velocity and frequency

At resonance (ω = ωn), consider a viscous damping system with damping factor ζ
and damping coefficient ceq, that has the same equivalent dissipation over a cycle as
the structural damping model. Then the loss factor can be rewritten as:

η =
2mζωn

2

k
(2.110)

or,

η =
2ζωn

2

k
m

(2.111)

Since, ωn =
√

k
m

, the equation can be rewritten as:

ηηη = 222ζζζ (2.112)

So, at resonance, for equivalent dissipation by structural and viscous damping mod-
els, they must follow the relation in Equation 2.112.
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2.7 Road Noise
A vehicle cabin is subjected to three major sources of noise and vibration, namely
engine and power-train excitation (due to direct connection with the body), wind
excitation (due to air friction acting on body) and road excitation (due to contact
between road and tires). So, a refined vehicle from NVH perspective, needs to have
low response due to these excitation.

Noise produced due to contact between moving tires and road, transmitted through
structure-borne as well as air-borne paths to the interior of vehicle is known as road
noise. The term road noise might seem misleading, as it does not involve noise pro-
duced in the exterior of vehicle due to the contact between tires and road, which is
commonly known as tire noise. Vehicle interior road noise is of frequencies below
1000 Hz (low-frequency range), and can be classified into:

• Structure-borne road noise:

– Transferred through vehicle suspension from tire

– Predominant at frequencies < 400 Hz

• Airborne road noise:

– Transferred through vehicle structure from tire

– Predominant at frequencies > 400 Hz

These two are entirely different physical phenomena and usually dealt with sepa-
rately. This thesis deals with only the structure-borne road noise and it will com-
monly be referred to as road noise throughout the text hereon.

For Road noise analysis, the first step is identification of excitation points, re-
sponse points and the transfer paths, second is freezing the response and excitation
quantities such as force at body interface points, noise at driver’s ear, etc. Lastly,
measurement of these excitation and response parameters needs to be done for fur-
ther analysis. For example, staying within the scope of this thesis of studying road
noise, firstly, excitation point is considered as tire patch and the response points as
the microphone locations at driver and passengers’ ears. Secondly, the input param-
eter is considered as the force acting on tire patch due to its interaction with road
and output parameter the noise signal obtained at microphone locations. Lastly,
these forces are usually measured using accelerometers at the excitation points while
driving vehicle on a track or by applying similar load to CAE model of car at the
excitation points, depending on the scope of study. For cabin noise, sound pres-
sure level (SPL) values at the microphone locations are obtained experimentally or
through NVH CAE analysis. The SPL values at individual microphone or averaged
sum as given by Equation 2.113, can be expressed on a decibel (dB) scale, or on
pressure scale depending on analysis required.

SPLmean(f) =
1

n

n∑
i=1

SPLi(f) (2.113)

where,
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SPLmean is the averaged SPL,
SPLi is the sound pressure measure at ith location,
n is the number of response points (= 4, generally), and
f denotes the frequency domain in which SPL is measured.

To express SPL in dB scale, the following equation is used:

SPLdB = 20log10

(
SPLmean (f)

P0

)
(2.114)

where,
SPLdB is the averaged SPL in decibel scale,
and, P0 = 2× 10−5 Pa is the reference pressure.

Additionally, it is crucial to have a good understanding of the transfer paths for
road noise analysis, as some dominant structural parts cause most of the peaks in
frequency spectrum of road noise. For example, low frequency peaks in structure-
borne road noise spectra are commonly attributable to:

• Acoustic modes of cabin space

• Vibrational modes of tire structure

• Acoustic modes of tire cavity
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2.8 Mechanical Input Power
In this dissertation, the cycle mean power input is referred to as Mechanical Input
Power, and for a continuous system can be derived using the linear elastic wave
equation given by:

∂EtotV

∂t
+∇∇∇III = −D (2.115)

Where,
EtotV is the total energy density of system contained in control volume V and
III is the instantaneous mechanical intensity or vector of acoustic energy fluence.

Also, III = σv. Where,
σ is the stress tensor and v the velocity vector.
D is the rate of dissipated energy per volume or dissipation power density.

Integrating Equation 2.115 over the control volume V and using divergence theorem
gives:

∂

∂t

∫
V

EtotV dV +

∫
S

III.nnndS = −
∫
V

DdV (2.116)

Let, P =
∫
S
III.nnndS and Pdiss = − ∫

V
DdV , such that P is the instantaneous power

out of surface S and is calculated by the surface integral of scalar product of the
mechanical intensity and surface normal vector (nnn) and Pdiss is the dissipated power.
Then,

P =

∫
S

IIITTT .nnndS =

∫
S

nnnTσvσvσvdS (2.117)

In steady state harmonic conditions, mean power can be calculated as:

P̄ =
1

T

∫ T

0

Pdt =
1

T

∫ T

0

Pdissdt (2.118)

Where, T is the time period of harmonic cycle. Steady state systems are usually
dealt in frequency domain and following the relation of complex quantities â and b̂
in complex domain as R(â).R(b̂) = 1

2
R(â.b̂∗) , where ∗ denotes conjugate complex.

Complex power can be expressed as:

P̂ =
1

2

∫
S

nnnT σ̂σσv̂vv∗dS (2.119)

Now, for steady state conditions, the cycle average of total energy is constant
(
or, ∂

∂t

∫ O

V
EtotV dV = 0

)
so the Equation 2.115 can be rewritten as:

0 + P̂out = −P̂diss (2.120)

or, for power into the system -

−P̂in = −P̂diss (2.121)

P̂in = P̂diss (2.122)
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So, in steady state conditions, the cycle average power into a system equals the
cycle-average of the dissipated power of system. The cycle averaged power P̄ also
known as active power corresponds to the real part of complex power P̂ , and is the
power that is dissipated due to damping present within system. Imaginary part of
complex power is the reactive power whose time averaged value is zero and is hence
not relevant to the study [5].

P̄ = R(P̂diss) = R(P̂in) (2.123)

Equation 2.119 provides a means to calculate power for continuous systems, but cal-
culation is simplified further for a finite element model by defining it as the sum of
time averaged product of nodal forces (and moments) with the in-phase component
of corresponding nodal velocities (and angular velocities), for all nodes that are an
input loading point for the component [3], [5]. For time harmonic analysis, where
complex quantities are used, this operation is the same as multiplying force (and mo-
ment) vector by the Hermitian transpose of velocity (and angular velocity) vector,
or vice versa.

Active mean power is expressed in terms of nodal dynamic parameters as:

P̄ =
1

2
R (f̂ ∗.v̂ + M̂∗.ω̂) (2.124)

Where,
f̂ is the nodal force vector
v̂ is the nodal velocity vector
M̂ is the nodal moment vector
ω̂ is the nodal angular velocity vector

Using the equation for active power, mechanical power input to any component can
be calculated in FE models if the values for required nodal dynamic parameters are
available for input nodes. Since, power is a scalar quantity, a positive power exchange
means power input to the component, and a negative power exchange means power
being lost to the source. The term active power refers to mechanical input power in
this thesis unless mentioned otherwise.





Chapter 3
Example Vehicle Model

This section deals with either developing a new model or choosing a pre-existing
vehicle model that is able to provide necessary output values using which can be cal-
culated power and interior road noise values. Road noise calculation involves three
subsystems within the vehicle, namely wheels, suspension and body. So, the calcu-
lation model to be developed for this dissertation must contain at least a trimmed
body and a suspension system, simple enough to be studied within the available time
frame and yet detailed enough to:

• Represent all major parts of a car available to the road noise team in early
development phases

• Provide nodal forces and displacements/velocities of various interface points
within the model for an applied load case

• Allow for change of damping parameters within the suspension components
(such as link arm, subframe, etc.) as well as connectors (bushings, ball joints,
etc.) within the model

• Capture all relevant effects of varying damping parameters on suspension and
trimmed body components

• Capture sound pressure produced at mic locations near occupants’ ears within
the trimmed body cabin

The simulation model chosen is a concept BEV (Battery Electric Vehicle) wheel
suspension model with Continental tires (not shown due to confidentiality), to which
is attached a suitable trimmed body (example of trimmed body shown in Figure 3.1)
that includes air as the fluid medium within the cabin cavity and four mic locations
to capture noise produced at occupants’ outer ears (1 driver and 3 passengers).

Damping within the suspension in calculation model is generalized at 8% struc-
tural damping into all the components and 5% structural damping into all the bushes
(not the RBE2 elements for rigid connectors).

The rear left and rear right tires given in the calculation model consist of 177
tag points each that collectively behave as tire patch to be used as source for model
excitation.

For this study, a simplified load case is devised with excitation in the form of
displacement instead of force. Only the left tire patch is excited with vertical dis-
placement of 0.01 mm in an entire frequency range from 10 – 400 Hz, while vehicle
model is simulated to be travelling at 80kmph.
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Figure 3.1: Trimmed body and rear suspension model of Volvo XC90

The model so chosen can be useful for the team at Volvo Cars to benefit from
thesis outcomes in the long run. It is detailed enough to be able to capture all relevant
quantities such as MIP, SPL as well as vary damping in different parts of the model.
The results can be extrapolated for other load cases and more detailed models. Since,
the road noise team works on Altair Optistruct and NVH Director for their NVH
simulations, which are dynamics tools able to capture all the details required for the
study in frequency domain, the simulation model is chosen in accordance with the
team’s expertise as well.
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Network Representation

The calculation model consists of more than a hundred parts joined together to
transmit power from tire to the trimmed body. These connections are usually very
complex, and at first glance almost impossible to estimate the details of how power
flows from source all the way into trimmed body.

To deal with this complexity, a flowchart is prepared in this chapter that dia-
grammatically represents all components within the model as well as the connections
between them in detail. Figure 4.1 shows an example of a rear suspension model,
suspension components, body interface points, and some connections that need to
be represented in the flowchart.

Figure 4.1: Model of an XC90 rear suspension

To deal with the requirement of developing a network representation, a plan is devised
as follows. Components are represented by a box, with their respective names written
inside as shown in Figure 4.2. Arrows are used to depict a connection between
components, where the arrow heads point in positive direction of power flow. To
understand how any two components are connected, the IDs of their linked nodes
are given below the arrow connecting them, and the ID (in software) of connector
mentioned on top of the arrow. For example, starting from the left hub as source
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of excitation, its connection to neighbouring components is represented by arrows
(pointing towards trimmed body, to represent positive direction of power flow) with
information of connector IDs and node IDs, as shown in Figure 4.2.

Figure 4.2: Network Representation between wheel hub and suspension

There are some components within the suspension that presumably do not con-
tribute substantially to the power input into trimmed body (for e.g.: hub to brake
disk) as they do not have direct connections to any paths leading to trimmed body.
These components are boxed in dash-dotted lines and also connected using dash-
dotted lines to adjacent components. Other components that are common to the
left and right suspension such as Rear Subframe (SubR), etc., are represented using
green boxes and their connections are represented to self with green dashed lines.

A detailed network flowchart of suspension representing all the components from
hub to trimmed body present on both sides of rear suspension, with their respective
connections and connector details is prepared (not shown due to confidentiality).
A simplified network flowchart (for easier understanding of connections for readers)
consisting of only the connections between a few components (and no connector
details) is shown in Figure 4.3. The trimmed body is represented by a grey box to
distinguish from other suspension components and is at the centre of flowchart as are
the interface points in FEM model. Power is input to the left hub which is connected
to many components directly or in-directly such as ERAD (Electric Rear Axle Drive),
driveshaft, link arms, Tie Rods, ARB (anti roll bar) through left knuckle. The rear
subframe, left spring, left strut, right spring, right spring are the components that
connect suspension to body.
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Figure 4.3: Simplified Network Representation of left rear suspension

Figure 4.3 shows the left hand suspension, with connections between hub and trimmed
body. Right hand suspension is its mirror image about the trimmed body with the
only difference being a lack of power input from right hub.





Chapter 5

Results

5.1 Power Calculations in the Network

The aims of this section are twofold. Firstly - produce results of power flow within the
system to develop an understanding of how much and at what frequencies, power is
transferred to and from different components. Secondly - restrict the study to fewer
transfer paths whose results are extrapolatable and hence can generalized for entire
system. This is done by referring to network flowchart produced in previous chapter.
This section is planned into three phases for a structured workflow:

1. Firstly, the network diagram is used to identify interface points between sus-
pension and trimmed body. Then nodal forces and velocities are extracted
and post-processed in Python/MATLAB to calculate power input to trimmed
body from all body interface components. Decision is made on the highest
contributing components(s) based on plots produced.

2. Similarly, in the second phase, path is traced back from the highest contribut-
ing body interface component(s) to its power input paths. Then, power is
calculated from all these paths in the same way as done in Phase I.

3. Lastly, using observation from the first two phases, paths of most relevant
components (from the viewpoint of body input power) are charted and a revised
network representation is prepared, in order to define the scope of next section
of damping study.

5.1.1 Phase I: Power to trimmed body

Trimmed body is connected to the rear suspension at several interface points through
5 interface components which are Rear Subframe, left and right springs, left and
right struts. Rear Subframe (SubR) is connected through subframe bushings, left
and right springs through connectors each and left and right strut through bushings.
The algebraic sum of power exchange through each of these interface points over the
entire frequency range provides the net MIP to trimmed body spectrum. Figure 5.1
shows the total MIP to trimmed body, the contribution of each of the five components
attached to it, and some important peaks in the spectrum. As can be seen from the
plot, there are peaks throughout the spectrum, but the distinct ones are below 200
Hz, and the most distinguished of all is the tire cavity peak at 197Hz.
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Figure 5.1: Power input to body from the interface components and some important
peaks

Figure 5.2: Percentage contribution of major contributors to body MIP

In Figure 5.1, rear subframe contributes to about 68% of the total power input to
body, whereas left strut and left spring contribute 24% and 8% respectively. These
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three turn out to be the top contributors as right strut and spring have a very low
and net negative contribution, which means power flows from body into them. This
result is somewhat expected, as the load is applied to left tire patch only and no
direct load is applied to right hand side suspension.

Figure 5.2 is then produced, showing percentage contribution of top contributors,
for a better picture of power contribution to body and stronger decision making on
which body interface component(s) can be chosen for the next phase. It is evident
from the plots that subframe is the dominant contributor in frequency ranges 82
– 192 Hz and 330 – 400 Hz as it has a positive contribution anywhere between
50% – 100% in these ranges. Left strut has certain dominant peaks but no distinct
frequency range where it dominates the power input, whereas left spring is the lowest
contributor among the three overall as well as at all frequencies.

Figure 5.3: Power Input to body from Subframe (82-192 Hz)

Figure 5.3 shows the contribution of subframe towards body MIP, which is in excess
of 95% in the frequency range 82 – 192 Hz. From the observations so far, it seems
logical to choose only rear subframe in 82 - 192 Hz for further study, as there is
an excellent correlation between subframe and trimmed body power in this range.
Every change in subframe can be expected to have a direct impact on trimmed body
MIP in this range.

In conclusion for this section, rear subframe in the frequency range 82 – 192 Hz
is chosen for further analyses as it is presumed to have a very strong link to body
MIP. A schematic of interface components that are rejected and accepted for further
study, are shown in Figure 5.4



42 Chapter 5. Results

Figure 5.4: Schematic representation of chosen and discarded contributors

5.1.2 Phase II: Power to Body Interface Components

This section deals with investigation of power input to rear subframe from neigh-
bouring components such as links arms, tie rod, etc., which will further narrow down
the search for most important path(s).

Rear subframe is connected to several components through one or more points such
as:

1. ERAD

2. ARB

3. Left UpLA (upper link arm)

4. Left LoLAF (upper link arm)

5. Left LoLAR (upper link arm)

6. Right UpLA

7. Right LoLAF

8. Right LoLAR

These connections to the rear subframe seem very complex at first glance but can
be divided into four different sections as left suspension, right suspension, ERAD
and ARB for a simplified understanding. Left suspension consists of the components
connecting left knuckle to rear subframe, namely left UpLA, left tie rod, left LoLAF
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and left LoLAR. Right suspension consists of respective components connecting right
knuckle to rear subframe.

Figure 5.5: MIP to rear subframe from all contributors in 82 – 192 Hz

As concluded in the previous section, this study will be conducted in the frequency
range 82 – 192 Hz. So, the algebraic sum of power exchange between subframe and
its connected components over this frequency range is calculated, which provides the
net MIP to subframe spectrum.

Figure 5.5 shows the total MIP to subframe (= 5.61 mW) plotted with contri-
bution of each of the 4 sections attached to it. Power exchange from ERAD is very
small in the low frequencies and close to zero in the mid and high frequencies, hence,
the overall contribution (= -0.45 mW) is negative and small enough to be neglected.
Similarly, for ARB the overall contribution although higher than that of ERAD, is
entirely negative (= -2.23 mW). In case of right suspension, the total power input to
subframe (= -4.75 mW) is very high ( 80% of the net power input to subframe) but
negative throughout the spectrum. The only section that provides a positive power
input to rear subframe (= 13.04 mW) and hence the only section of interest, is the
left suspension. The plots of MIP to subframe and contribution of left suspension
have a highly similar trend as can be seen in Figure 5.5. This brings us to a conclu-
sion, that making changes in the left suspension would have considerable impact on
the power input to subframe and hence trimmed body.
Figure 5.6 shows the breakdown of each component’s contribution from right sus-
pension to the rear subframe. All the components have an entirely negative power
spectrum except one positive peak of right UpLA because of its complex connections
to both sides of suspension through ARB.
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Figure 5.6: MIP to rear subframe from right suspension in 82 – 192 Hz

Figure 5.7: MIP to rear subframe from left suspension in 82 – 192 Hz

As mentioned earlier, the only section of interest now is the left suspension and
Figure 5.7 shows the breakdown of each component’s contribution from left suspen-
sion to the rear subframe’s MIP. All the components have substantial contribution
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towards subframe power input, but the connections of left UpLA and left LoLAR are
quite complex, as left UpLA is connected to right UpLA through ARB and another
component (not written due to confidentiality), whereas the motion of left LoLAR
is highly dependent on its connections to left spring and left strut.

To be able to draw strong conclusions from damping study, it is crucial that
the path(s) chosen is as independent as possible and any alterations to its damping
properties have direct impact on the MIP of subframe and hence body. Therefore,
the relevant components in left suspension need to be narrowed down to left Tie Rod
and left LoLAF as they contribute greatly to the power input to rear subframe and
also have direct connections to subframe.

In conclusion, the paths connecting left Tie Rod and left LoLAF to trimmed
body through subframe are considered for further study, whereas the contribution of
left UpLA, left LoLAR, right suspension, ERAD and ARB are neglected for further
study.

5.1.3 Phase III: Conclusions from Power Study and Revised
Network Flowchart

A revised network is prepared in this section based on conclusions drawn on most
relevant paths that affect MIP to trimmed body, from Phase I and Phase II ob-
servations. The purpose of this exercise is to list out explicitly the path that will
be studied in later sections. So, revised network should contain the components as
well as connector details from NVHD (not shown due to confidentiality) to design
experiments around them.
Revised network representation should have paths that consist of left suspension’s
tie rod and LoLAF and their connections to trimmed body through rear subframe.
A simplified revised flowchart is prepared as shown in Figure 5.8 (Detailed flowchart
is not shown due to confidentiality). Components like left knuckle and left hub are
only indicative of the source of power flow in the flowchart. They are not included
in power calculations and will not be used in damping study for the same reason
as discussed in previous phase for left UpLA and left LoLAR, that their complex
connections might interfere with behaviour of other components and in turn make it
difficult to draw final conclusions based on the left Tie rod and left LoLAF.

Figure 5.8: Revised network flowchart
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5.2 Correlation between Mechanical Input Power and
Noise

Power calculations in previous section were aimed at identifying paths within the
suspension network that have strong relationship with trimmed body in terms of
MIP. This chapter acts as a bridge between power calculations and damping study.
It deals with cabin sound pressure calculations and develops a method of correlating
body MIP and cabin noise. To do so, the model is provided with 4 mics on occupants’
ear locations as shown by an example in Figure 5.9. Data from these mics are used
for further analysis.

Figure 5.9: Example of Mic 1 and 3 locations in a trimmed body model

5.2.1 Interior Noise Calculations

This section is focussed on calculation of average acoustic pressure (Equation 2.114)
within the cabin obtained from all four mics, positions of which are shown in Figure
5.9. Averaged sound pressure in the entire frequency spectrum in dB scale is plotted
in Figure 5.10.
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Figure 5.10: Average SPL in the entire spectrum in dB scale

The maximum sound pressure level (SPL) is about 60 dB obtained at 197 Hz, the
cavity peak frequency. SPL values are within expected range of interior noise lev-
els and most peaks in spectrum are observed at same frequencies as in body MIP
spectrum, which points at a good relation between MIP and SPL.

5.2.2 Results

This section is focussed on developing ways of studying the correlation between body
MIP and SPL. For an all-round study of MIP and SPL relation, it is important to
firstly compare them graphically, and then mathematically. Mathematical compari-
son can be done by defining an indicator that acts as a measure of their correlation.

MIP and SPL are two different physical quantities having units of power and
pressure, hence a logic needs to be developed to be able to graphically study their
correlation. Now, it is worth noting that decibel values for quantities with squared
units (Let, A2) or power spectra are calculated using the following relation:

AdB = 10log10(A/A0) (5.1)

Whereas, decibel values for other quantities (Let, B) are calculated using the follow-
ing relation:

BdB = 20log10(B/B0) (5.2)

where, A0/B0 is the reference value of quantity A/B. Hence, to study the correlation
between MIP and SPL values, a preliminary idea could be to compare the values of
SPL2 with MIP , since SPL is a quantity like B and MIP like A.



48 Chapter 5. Results

Figure 5.11: SPL2 compared with MIP in frequency range 50 – 400 Hz

Figure 5.12: SPL2 compared with MIP in frequency range 82 – 192 Hz

Figure 5.11 and 5.12 show plots comparing MIP and SPL2 against frequency and the
correlation between them appears very strong. Every peak of one quantity follows
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the other. This analysis shows that the idea behind comparison of MIP and SPL2

is a good direction for this study, but it needs to be followed with more concrete
mathematical relation. So, to build up on the idea of establishing a mathematical
indicator relating SPL2 with MIP , the following expression can be studied:

SPL2 = T (f) ∗MIP (5.3)

Where, T (f) is like a transfer function with MIP as input and SPL2 as response.
It can be used as the mathematical indicator to study their correlation as it provides
the ratio of their magnitudes in SI units. For example, if the relation between MIP
and SPL is perfect, then T (f) would have a constant value throughout the frequency
range, or in words the standard deviation of T (f) would be zero.

Figure 5.13: T(f) plot for frequency range 50 – 400 Hz

Transfer function T (f) is plotted against frequency in the range 50 – 400 Hz as given
in Figure 6.5, where its values lie within 7 units. T (f) shows a linearly increasing
trend in the frequency range around 75 – 225 Hz. Since, the chosen frequency range
for study, 82 – 192 Hz lies within it, damping study in later sections can be focussed
in this range that compares values of T (f) for different damping cases.

5.3 Impact of Damping
After the relation between MIP and interior noise in developed, this concluding
chapter deals with studying the impact of different modelling of damping within the
chosen suspension paths on the MIP, SPL and their relation, by basing the study on
a set of design of experiments (DOEs) applicable to pre-decided transfer paths and
frequency ranges.
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5.3.1 Damping models

The two types of damping models to be used for studying impact of damping in
this dissertation, are the viscous and structural damping models. Parameter used to
define structural damping within a system is loss factor (η) and viscous damping in
a system is defined by either damping coefficient (c) or damping ratio (ζ).

For an analysis like in this section, where different damping models are compared,
it is crucial to compare equivalent values of damping parameters corresponding to
each model (and not just random damping values), to draw strong conclusions. For
example, in this dissertation, where viscous and structural damping models are to be
compared, it must firstly be identified which equivalent viscous damping parameter
(ceq or ζeq) should be compared to structural damping loss factor (η). Here, this
choice is driven by what input does the software accept for defining viscous damping
within a system.

Now, according to documentation of Altair Optistruct, the software uses damping
coefficient c as input for viscous damping parameter. So, equivalent relation between
structural and viscous damping for an element, that can be used to obtain values for
comparison (derived in Section 2.6.2), is given as:

ceq =
ηk

ω
(5.4)

Where, ceq is the equivalent viscous damping coefficient corresponding to structural
damping loss factor η, and k is the stiffness of element. Since, the frequency range
of interest is 82− 192Hz, the frequency at which equivalent viscous damping needs
to be calculated is preferred between the frequency range at 126Hz (as the structure
has a considerable response at 126Hz, seen in Figure 5.12). This can help capture
relevant effects at high as well as low frequency withing the range. Now, putting the
value of ω = 2πf = 2π ∗ 126Hz, equivalent viscous damping is calculated for this
study.
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5.3.2 Design of Experiments

In this subsection, a set of DOEs are prepared to investigate influence of high and
low damping ratios, types of localization of damping, modelling of damping, etc.
Hence, the DOEs are so constructed that they deal with extreme cases of damping,
such that the effect of different damping scenario can be observed with ease. It is
to be noted that these DOEs are applied only to the connectors and components in
chosen transfer paths and frequency range 82 - 192 Hz as stated in previous chapter.

Table 5.1: DOEs for Damping Study
Exp Experiment Damping Coefficient/
Nr. Description Loss Factor

1 Baseline – original damping case ηbush = 0.05
ηcomponent = 0.08

2 5% structural damping localized into connectors ηbush = 0.05
3 Viscous damping equivalent to 5% structural cbush ≡ ηbush = 0.05

damping localized into connectors
4 25% structural damping localized into connectors ηbush = 0.25
5 Viscous damping equivalent to 25% structural cbush ≡ ηbush = 0.25

damping localized into connectors
6 8% structural damping localized into components ηcomponent = 0.08
7 40% structural damping localized into components ηcomponent = 0.4

First DOE is the calculation model in its original state of damping (generalized
structural damping of 5% in suspension bushings and 8% in suspension components).
For second DOE, 5% structural damping is localized into bushings and no damping
is in the components. For third DOE, viscous damping (equivalent to 5% structural
damping) is localized into bushings and no damping is in the components. For
fourth DOE, very high structural damping of 25% (5 times the nominal value of
5%) is localized into bushings and no damping is in the components. For fifth
DOE, very high viscous damping (equivalent to 25% structural damping) is localized
into bushings and no damping is in the components. In sixth DOE, 8% structural
damping is localized into components and no damping is in the bushings. In final
DOE, very high structural damping of 40% (5 times the nominal value of 8%) is
localized into components and no damping is in the bushings. So, the DOE 2 to
5 deal with localizing viscous and structural damping into connectors (bushings),
whereas DOE 6 and 7 deal with localizing structural damping into components.
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5.3.3 Effects on Power and Noise

This section deals with results of DOEs obtained in terms of MIP, SPL and T (f).

Figure 5.14: MIPs compared for all Experiments in range 82 – 192 Hz

Figure 5.15: SPLs compared for all Experiments in range 82 – 192 Hz
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Figure 5.14 and 5.15 show plots comparing body MIPs and average cabin SPLs re-
spectively for all experiments. At a first glance, experiment 2 with 2.5% structural
damping localized into bushings seems to show the highest power and SPL through-
out the frequency range, and experiment 7 with 40% structural damping localized
into components has the lowest power and SPL almost in the entire frequency range.
Experiment 3 has the second highest response whereas all other have responses that
lie between results of 2 and 7 for both MIP and SPL, without a clear difference
between the response levels. These results also confirm the good agreement between
body input power and cabin sound pressure levels.

Based on results obtained for MIPs and SPLs for all experiments (in Figure 5.14
and 5.15), it is evident that increasing value of damping results in a decrease MIP
and hence SPL values. There seems to be a great agreement between the rate of
change in MIP and SPL values.

5.3.4 Effects on relation between Power and Noise

After obtaining results of damping effect on MIP and SPL, the impact on their re-
lation T(f) needs to be studied. But, before obtaining values of T(f), a method of
interpreting the results of T(f) needs to be identified such that the quality of cor-
relation of MIP and SPL can be judged. Since, T(f) is a ratio of SPL2 and MIP ,
an ideal system with the best correlation will have a constant value of T(f). So, the
quality of their correlation can be judged by calculating the amount of variation or
deviation of T(f) from its mean value. A measure of it is the standard deviation
of T(f). So, calculating the standard deviation of T(f) can be directly related to
the quality of correlation of SPL and MIP, such that higher the standard deviation,
poorer is the correlation and vice versa. Standard deviation of T(f) can be calculated
by taking the following steps.

Firstly, considering that there are n data points in the frequency range, mean μ
of the transfer function is calculated using formula:

μ =
T (f1) + T (f2) + . . .+ T (fn)

n
(5.5)

Now, the variance σ2 is calculated by taking the mean of square of deviation of all
data points as given by the equation:

σ2 =
(T (f1)− μ)2 + (T (f2)− μ)2 + ...+ (T (fn)− μ)2

n
(5.6)

Where, σ is the standard deviation and can be calculated by taking the square root
of variance. Or,

σ =

√
(T (f1)− μ)2 + (T (f2)− μ)2 + ...+ (T (fn)− μ)2

n
(5.7)
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Figure 5.16: Plot of T(f) in frequency range 82 – 192 Hz

Table 5.2: Standard deviation of T (f)
Exp.Nr. Experiment Description Standard Deviation

1 Baseline – original damping case 1.496
2 5% structural damping localized into connectors 1.483
3 Viscous damping equivalent to 5% structural 1.478

damping localized into connectors
4 25% structural damping localized into connectors 1.407
5 Viscous damping equivalent to 25% structural 1.526

damping localized into connectors
6 8% structural damping localized into components 1.555
7 40% structural damping localized into components 1.731

Figure 5.16 shows comparison between T(f) for all experiments. Standard deviation
of T(f) in frequency range 82− 192Hz is calculated (and presented in Table 5.2) for
better interpretation of results. Conclusions will be drawn on two parameters namely
standard deviation of T (f) and how it changes with an increase in the damping value.

It is observed that standard deviation is the least for damping case where struc-
tural damping is localized into bushings (experiment 2 and 4), and it decreases with
an increase in the value of loss factor. This can also be validated in Figure 5.16, where
experiment 4 has the most uniform graph as observed visually, owing to smaller peaks
(at many frequencies) or flattened peaks (around 158 Hz). Viscous damping local-
ized into bushings (Experiment 3 and 5) have similar standard deviation level but
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they increase with increased damping value. Structural damping localized into com-
ponents (experiment 6 and 7) has a similar behavior to experiment 3 to 5, as its
standard deviation increases with increasing damping values.

Based on results obtained for T(f), it can be concluded that:

1. Structural damping localized into connectors: The correlation between
MIP and SPL improves with an increase in the value of loss factor.

2. Viscous damping localized into connectors: The correlation between MIP
and SPL deteriorates with an increase in the value of loss factor.

3. Structural damping localized into components: The correlation between
MIP and SPL deteriorates with an increase in the value of loss factor.

In conclusion, structural damping localized into bushings show better correlation be-
tween MIP and SPL with increasing damping values, and seems to capture damping
losses better than other damping cases.

5.3.5 Active and Reactive Power

Active power is the cycle averaged power that corresponds to the real part of com-
plex power and is the power that is dissipated due to damping present within system.
Imaginary part of complex power is the reactive power that causes standing waves
withing structure. Although reactive power is assumed irrelevant to the study ac-
cording to [5], to instil confidence in the chosen “active power” for this study, a check
is conducted in this section that compares correlation between:

Case 1: interior noise – active power
Case 2: interior noise – reactive power

in the entire frequency spectrum, i.e., 50 – 400 Hz.For the comparison to be conclu-
sive, firstly, plot between SPL2 and MIP is compared for both cases. The baseline
experiment or experiment 1 with original system damping parameters is used for
this comparison. Secondly, T(f) is compared for both cases. Results of all seven
experiments in DOE are used to draw conclusions for this comparison.

Figure 5.17 and 5.18 show comparison between SPL2 and MIP for case 1 and 2
respectively. The correlation between active as well as reactive power and SPL looks
very similar, but on a closer look the differences can be spotted. Focussing on peaks
between 100 and 200 Hz, interior noise seems to show a better correlation with active
power than reactive power. SPL2 shows a proportional change with active MIP for
peaks at 111 Hz, 125 Hz, 177 Hz and 197 Hz. Whereas, reactive MIP overshoots
SPL2 in the peak at 125 Hz. The sizes of reactive MIP peaks at 111 Hz and 177 Hz
are similar but those of SPL2 differ by about 50%. Additionally, in the frequency
range between 300 – 400 Hz, SPL2 follows the plot of active power much better in
relation to reactive power, which appears to have an extra peak around 330 Hz.
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Figure 5.17: Plot of Active power and Interior Noise showing their correlation

Figure 5.18: Plot of Reactive power and Interior Noise showing their correlation

Now, that active and reactive MIPs of experiment 1 are compared based on their
correlation to SPL2, plots of Tactive (f) and Treactive (f) are produced for all seven
experiments to draw robust conclusions for this comparison.
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Figure 5.19: Plots of active T(f) for all experiments

Figure 5.20: Plots of Reactive T(f) for all experiments

where,

Tactive (f) =
SPL2

MIPactive

(5.8)
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Treactive (f) =
SPL2

MIPreactive

(5.9)

As discussed in previous chapter, lesser the variation in value of transfer function
T(f), better is the correlation between SPL and MIP. Figure 5.19 and 5.20 show that
value of Tactive (f) stays within 0 to 9 units whereas Treactive (f) varies between 200
to -2000 units in the entire spectrum.

The values of Treactive (f) are similar or slightly higher to Tactive (f) in most of the
frequency spectrum and much higher than in others, especially around 50 – 70 Hz,
200 – 210 Hz, etc. This results in a clear victory for active MIP, or in other words
the correlation between SPL2 and active MIP is much better than that of reactive
MIP, which means the chosen active power is indeed relevant to the study and is the
power that contributes to production of interior noise.A
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5.3.6 Body damping cases

Damping within suspension has shown to have a direct impact on mechanical input
power and interior noise, but no frequency dependence is observed in system response
by changing damping models. Additionally, the impact of varying damping within
suspension on interior noise is not as high as expected, which raises the question of
impact of damping within trimmed body and cavity fluid on the interior noise. A
set of DOEs is prepared to study the influence of trimmed body damping and cavity
damping on MIP and interior noise as given in table below:

Table 5.3: DOEs for studying impact of trimmed body damping and cavity damping
Exp. Experiment Description

1 Baseline – original damping case
2 Equivalent structural damping in Trimmed Body
3 Trimmed body damping = 0
4 Trimmed body damping = 0 and Cavity damping = 0

First DOE is the calculation model in its original state of damping. For second
DOE, equivalent structural damping is modelled into trimmed body. For third DOE,
damping in trimmed body is set to zero. For final DOE, trimmed body damping as
well as damping within cavity fluid is set to zero.

Figure 5.21: Active MIP for all 4 experiments

Figure 5.21 shows the active MIPs compared for all 4 experiments and it is observed
that equivalent structural damping (<experiment 2) produces same result as baseline
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case. Additionally, for experiment 3, where damping in trimmed body is removed,
the cavity peak obtained is about 70% higher compared to baseline and the response
is very erratic with random high and low responses throughout the spectrum. The
most interesting result however is of experiment 4, which suggests that active MIP
reduces to less than 5% of baseline, when the cavity damping is put to zero. This
suggests an important role played by cavity fluid damping in input power.

Figure 5.22: Reactive MIP for all 4 experiments

Reactive power results obtained in Figure 5.22 show expected behaviour, that is
the reactive power increases with a decrease in damping within system. This happens
because of undamped vibrations and standing waves produced. A large peak at 112
Hz is obtained which suggests the resonant frequency of cavity fluid is at 112 Hz.
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Figure 5.23: SPL for all 4 experiments

Figure 5.23, 5.24 and 5.25 show the SPLs obtained for all experiments. SPL obtained
for first two experiments is the same as observed in previous sections, of the order of
2∗10−2 Pa. Whereas for zero trimmed body damping, interior noise is of the order of
103 to 104 Pa, and increases to the order of 104 to 108 Pa as the cavity damping is
also reduced to zero with a distinct peak at 112 Hz. This behaviour is quite intuitive,
for decreasing damping within system. However, it also shows that without cavity
damping, reactive power has better correlation to SPL. The recurring large peak for
noise and reactive power at 112 Hz confirms a good correlation between them for no
cavity damping, and also shows that the natural frequency of cavity fluid is at this
frequency.
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Figure 5.24: SPL for all 4 experiments

Figure 5.25: SPL for all 4 experiments

Because of relatively low active powers and extremely high interior noise obtained for
experiment 3 and 4, the transfer function Tactive (f) also shows a similar behaviour
to SPLs as can be seen in Figure 5.26, 5.27 and 5.28.
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Figure 5.26: T(f) for Active power and SPL

Figure 5.27: T(f) for Active power and SPL
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Figure 5.28: T(f) for Active power and SPL

Figure 5.29: T(f) for Reactive power and SPL

However, in the case of relation between reactive MIP and SPL as shown in Figure
5.29 and 5.30, although still a poor correlation, reactive MIP correlates better than
active MIP to the interior noise.
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Figure 5.30: T(f) for Reactive power and SPL

In conclusion, body and cavity damping show a huge impact on the active/re-
active MIP as well as SPL. The correlation between SPL and active MIP appears
to starts deteriorating as damping is reduced within trimmed body. Whereas, an
opposite effect is observed for reactive MIP and SPL relation. But, if in addition to
trimmed body the cavity fluid damping is also put to zero, a similar impact is ob-
tained but in much greater magnitude. That is, SPL starts to correlate much better
with reactive MIP, whereas, active MIP seems to lose any connection to SPL.





Chapter 6
Discussion

Limited knowledge of damping and its modelling within parts of a vehicle body has
led to subpar enhancement of its vibro-acoustic properties. This has long restricted
the expected addition to vehicle design from NVH perspective, that is planned for
early phases of vehicle development programs. This is the central problem that the
research has aimed to take first steps towards.

Results obtained indicate that although values of MIP and SPL reduced with
increasing damping values within suspension (Figure 5.14 and 5.15), impact on the
measure of their correlation or T(f) was not so straight forward (Figure 5.16). Lo-
calization of structural damping into connectors provided the most uniform T(f) and
hence the best correlation among measured cases, with an increasingly improved
correlation for higher damping value. Contrary to this, equivalent viscous damping
localized into connectors or structural damping localized into components displayed
a poorer correlation that deteriorated with increasing damping value. Since, it is
connectors where the actual dissipation of energy takes place, localization of struc-
tural damping into connectors (out of all damping cases) has shown to capture the
effect of damping better.

The data of comparison between active and reactive mechanical input power sug-
gests a strong correlation between active power and interior road noise for most
damping cases other than where damping in trimmed body and/or cavity is put to
zero, in which case, reactive mechanical input power takes an upper hand in corre-
lating with interior noise. The correlation between both seems to improve drastically
with decreasing damping withing trimmed body and cavity. The values of both (reac-
tive power and noise) jump up to very high magnitudes and this behaviour indicates
a disparity in actual belief, that active power is the only cause of interior noise.

These results build on existing evidence of good correlation between mechanical
input power and interior road noise, and add a layer of knowledge about damping
to NVH CAE procedures. These however, do not fit completely with the claims of
active power being the sole source of interior noise and it is beyond the scope of this
study to compare or dive further into active and reactive power contribution.
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Conclusions and Future Work

The dissertation raises questions on reliability of damping models used for NVH
CAE studies during early development phases of vehicle development programs, and
takes the first steps in investigating how different damping models impact system
behaviour. Understanding the role of damping in using mechanical input power
as an indicator for estimating interior noise has been the final goal of this research
direction. This dissertation has aimed to achieve that by studying impact of different
modelling of damping within the suspension, on the power input to trimmed body,
interior road noise produced and the relation between them.

The methodology started off defining the scope of research to the most relevant
transfer paths within calculation model and frequency ranges they are major contrib-
utors in. This was followed by defining a mathematical relation between MIP and
SPL (T(f)) and also a measure of the quality of their correlation (standard deviation
of T(f)).

In expectation to find out answers to damping effects, the methodology so chosen
turned out to yield straightforward and robust results, while providing new insights
into the limitations of this research which are discussed further in this section. For
instance, changing damping within suspension showed a meagre impact on dynamic
behaviour of system even after increasing 5 times the damping values within suspen-
sion, and this has led to the research pointing towards role of other dynamic effects
within the suspension or trimmed body, etc., in the process of energy transfer from
wheels to body. Similarly, though there have been studies in the past aiming at cor-
relating body input power and interior noise levels, they have restricted their study
to studying relation between active power and SPL (based on theoretical results)
and deemed reactive power as irrelevant to the study. This research provides a basis
to direct future studies in investigating further the role of complex mechanical input
power (active + reactive power) in producing interior road noise.

The dissertation is directed towards conceptualizing a new way of estimating
interior road noise for a vehicle during concept phases at Volvo Cars, by considering
power as an indicator for road noise (owing to its exceptionally good correlation
with interior sound pressure levels) and it has taken a first step in this direction and
provided a background to continue the work further by conducting in depth research
studies on the dynamic behaviour of vehicle body and addressed gaps within available
research projects that did not explicitly involve impact of damping parameters on the
system behaviour. Furthermore, based on these conclusions, future studies should
consider validating the results of simulation model by conducting physical tests on
actual vehicles and include concrete evidence for choosing active power for analysis
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among others.
This has led to a conclusion that localization of structural damping into connec-

tors could be a better modelling technique to capture damping within suspension,
and physical tests can be conducted to validate these claims.

Although a conclusion has been drawn in favour of active power, a correlation
between interior noise and reactive power that improves with decreasing damping
within trimmed body and cavity, arises questions on role of active power being the
sole contributor to production of interior noise. This also results in a suggested
future work to check the correlation between SPL and magnitude of complex power
for more concrete conclusions.

These behaviours suggest a very complex dynamic relation between the trimmed
body, suspension and its components, wheel assembly, and cavity fluid. To develop
better understanding of the system, it is recommended to include their study into
future work, and check if it indeed it is majorly suspension or other components that
are related to interior noise reduction.
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