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Abstract
Cross‐project defect prediction (CPDP), where data from different software projects are
used to predict defects, has been proposed as a way to provide data for software projects
that lack historical data. Evaluations of CPDP models using the Nearest Neighbour (NN)
Filter approach have shown promising results in recent studies. A key challenge with
defect‐prediction datasets is class imbalance, that is, highly skewed datasets where non‐
buggy modules dominate the buggy modules. In the past, data resampling approaches
have been applied to within‐projects defect prediction models to help alleviate the
negative effects of class imbalance in the datasets. To address the class imbalance issue in
CPDP, the authors assess the impact of data resampling approaches on CPDP models
after the NN Filter is applied. The impact on prediction performance of five over-
sampling approaches (MAHAKIL, SMOTE, Borderline‐SMOTE, Random Over-
sampling and ADASYN) and three undersampling approaches (Random Undersampling,
Tomek Links and One‐sided selection) is investigated and results are compared to ap-
proaches without data resampling. The authors examined six defect prediction models on
34 datasets extracted from the PROMISE repository. The authors' results show that there
is a significant positive effect of data resampling on CPDP performance, suggesting that
software quality teams and researchers should consider applying data resampling ap-
proaches for improved recall ( pd ) and g‐measure prediction performance. However, if
the goal is to improve precision and reduce false alarm (pf ) then data resampling ap-
proaches should be avoided.

KEYWORD S
class imbalance, defect prediction, software metrics, software quality

1 | INTRODUCTION

Defect prediction models can help to identify defective soft-
ware components and thereby support managers in resource
allocation. Previous studies have shown that defect prediction
models can yield useful results [1, 2], but their reliability might
be affected by the quality of the underlying datasets [3] or
confounding variables affecting the measures used for creating
the prediction models [4, 5, 6]. Several studies have proposed
prediction models based on different statistical and machine‐
learning approaches [7, 8, 9]. However, the performance on
these models largely depends on historical data, obtained either

from the same project (in case historical data exist) or from
projects that are very similar to the project under consideration
regarding content and context.

Zimmermann et al. [10] cautioned that defect prediction
models perform well within projects as long as enough data for
training of the prediction models exist. However, for new and
unfamiliar projects, the lack of historical data becomes a
challenge. A promising approach to handle this issue is to use a
cross‐company or cross‐project defect prediction (CPDP),
where data from other companies or projects are used for
model training. To help in obtaining the most suitable training
data for CPDP, different techniques have been proposed and
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validated, including data filtering techniques such as Nearest
Neighbour (NN) filter [11], Double Transfer Boosting [12],
and clustering [13, 14].

NN filter, a data filtering approach, has been shown to
perform significantly better than several ensemble, boosting or
transfer‐learning‐based approaches [15]. Hosseini et al. [16]
and Turhan et al. [17] confirmed that the NN filter can have a
positive impact on the performance of CPDP models. NN
filter eliminates irrelevant data instances based on the charac-
teristics of the target distribution, selecting only the more
suitable defective and clean instances [11].

However, class imbalance is a prevalent problem in data
mining and defect prediction [18, 19], where the majority of
the instances are clean or not faulty [19, 20]. Consequently, the
acquired dataset for cross‐project model training will most
likely be highly skewed towards one class (that is the non‐
defective or clean instance). Resampling approaches such as
simple Random Over‐Sampling (ROS), Random Under‐
Sampling (RUS), and synthetic methods such as SMOTE
have been proposed to alleviate the negative effects of class
imbalance on the performance of Within Project Defect Pre-
diction (WPDP) models [21]. Resampling approaches aim to
increase the number of minority class samples (defective
modules), and they can significantly improve the performance
(recall, G‐mean) of defect prediction models [22].

The potential benefit of data resampling approaches in
mitigating the negative effect of class imbalance on CPDP
models has been investigated by few researchers. Previous
studies [23, 12, 24, 25] considered the effect of very few data
resampling approaches or evaluate the performances of data
resampling approaches on CPDP using a few datasets. Other
studies propose complex methods integrated with data
resampling approaches to improve CPDP performances
[26, 27]. A recent systematic literature review by Hosseini et al.
[16] revealed that most studies in CPDP fail to use multiple
performance measures and fail to apply robust statistical tests,
including effect sizes, which resulted in an unfair comparison
of the performances of CPDP to WPDP models.

The motivation of this study is to augment the few existing
studies and examine the practical benefits of data resampling
approaches on CPDP models. We assess the impact of
applying eight commonly used data resampling methods
(MAHAKIL, SMOTE, Borderline‐SMOTE, ADASYN, ROS,
RUS, Tomek links and OSS) in the domain of CPDP after
acquiring data from different projects (using the NN filter) and
use the resampled data datasets for the training of the defect
prediction model for a different project. Additionally, we
conduct robust statistical tests on the results by testing for
statistical significance using Brunner’s statistical test [28] and
apply Cliff ’s effect size to examine the practical benefits of the
applied data resampling approaches. We selected the NN filter
because it is easy to implement compared to other CPDP
approaches and has been shown to improve CPDP perfor-
mance in previous studies [29, 14, 16, 15]. To assess the impact
of data resampling approaches on NN‐filtered datasets, this
study explores the following research questions.

1. RQ1: What is the impact of data resampling approaches on
NN‐filtered datasets in CPDP?

2. RQ2: What are the high‐performing resampling approaches
for NN‐filtered datasets in CPDP?

3. RQ3: Is the application of data resampling approaches
practical for CPDP?

The contributions of this paper are as follows:

� A benchmark experiment that shows that recall ( pd ) and g‐
mean performances of CPDP can be improved by applying
data resampling approaches to NN‐filtered datasets.

� A demonstration that oversampling and random under‐
sampling methods always produce higher false alarms ( pf )
in CPDP. NN‐filtered data with no resampling produces the
best pf values.

� A python package for MAHAKIL—an easy‐to‐use tool for
oversampling class imbalanced data.

The remainder of this paper is structured as follows:
Section 2 presents the related work. In Section 3, we discuss
our methods and experimental settings. Our results and a
discussion of the results are reported in Sections 5 and 6,
followed by a discussion of potential threats to validity in
Section 7. Finally, we present our conclusion from this study
with potential future work directions in Section 8.

2 | RELATED WORK

2.1 | Cross‐project defect prediction

One of the first to attempt at developing CPDP models was
Zimmermann et al. [10]. By conducting a large‐scale experi-
ment on 12 real‐world datasets, 622 cross‐project prediction
models were analysed and investigated for the feasibility of
cross‐company defect prediction (CCDP) models. After
observing a low success rate of 3.4%, they conclude that
CCDP is still a challenge. Turhan et al. [11] proposed a prac-
tical defect prediction approach for organizations aiming to
employ defect prediction but that lacks historical data.
Applying the principles of analogy‐based learning, they use the
k‐nearest neighbour algorithm to select 10 nearest data in-
stances from other company data for every unlabelled test
instance for CCDP. They demonstrated that even small data
samples acquired using their approach could be used to build
effective defect predictors. He et al. [30] conducted a large
study using open‐source projects to investigate the feasibility
of CPDP, considering careful data selection approaches. The
obtained results were similar to those achieved by previous
studies [10, 11], indicating that CPDP works well in a few cases
and carefully selecting the training data improves prediction
performance though not necessarily selecting projects in the
same domain. A recent benchmark study by Herbold et al. [15]
complemented the positive impact of the data filtering ap-
proaches on CPDP models.

2 - BENNIN ET AL.



Other studies, including [31, 12, 32, 33], have employed
several transfer learning and data boosting techniques to
improve CPDP performance. Considering two projects,
Watanabe et al. [34] conducted an inter‐project prediction and
demonstrated that data characteristics had an impact on the
success of cross‐project predictions. They adapted CPDP by
using a metric compensation method that adjusted the
average values of each metric in both the training and test set
to the same level and achieved high precision and recall
values. Transfer learning techniques have also been applied in
the domain of CPDP. In order to make the feature distri-
bution of the source projects and target projects similar, Nam
et al. [31] applied Transfer Component Analysis, which
transforms the data based on the new feature representation
discovered from both the source and target projects. They
found that the prediction performance increased significantly
after experimenting on eight open‐source projects. Similarly,
Yu et al. [32] proposed a novel semi‐supervised clustering‐
based data filtering method that filters the data and adopts
multi‐source TrAdaBoost algorithm, an effective transfer
learning method, into cross‐company prediction to import
knowledge not from one but from multiple sources to avoid
a negative transfer. Poon et al. [35] proposed a Credibility
theory‐based Naive Bayes (CNB) classifier that uses a novel
re‐weighting mechanism to adapt the source data to the
target data distribution simultaneously. The method ensures
that the pattern of the source data and experimental results
improved the performance over other CPDP methods. The
study of Zhou et al. [36] investigated the performances of a
number of CPDP techniques and models with simple size
models and observed that simple size models in most cases
outperformed the complex and recently proposed CPDP
techniques. Asano et al. [37] applied bandit algorithms to help
in selecting the most suitable projects for CPDP models. Our
study aims to complement prior studies by aiming to improve
the performance of existing CPDP models that adopts the
NN filter approach.

2.2 | Data resampling application in CPDP

Although the class imbalance issue is known to be critical for
defect prediction models, only a few studies have discussed the
challenge of class imbalance in the context of CPDP. Ryu et al.
[26, 27] proposed two methods, a boosting and instance
weighting technique that uses transfer learning to solve the
class imbalance issue. Jing et al. [38] employed a semi‐
supervised transfer component analysis to balance the source
and target datasets before applying their proposed semi‐
supervised transfer component analysis and improved sub-
class discriminant analysis for prediction.

Most of the previous studies' aim was to improve pre-
diction performance by integrating data resampling ap-
proaches as part of their solutions. A study by Kamei et al.
[25] on Just‐In‐Time (JIT) defect prediction models using 11

open‐source cross‐projects revealed that JIT models rarely
improved in general, but did improve when selected training
projects are similar to the testing data, larger set of training
data is provided or using ensemble models. The random
undersampling approach was applied to the training datasets
before training the JIT models. Other studies have adopted
the popular SMOTE approach in alleviating the negative ef-
fects of class imbalance. Chen et al. [12] used the SMOTE
resampling approach to balance their training datasets before
applying their proposed Double Transfer Boosting model.
Recently, Limsettho et al. [29] proposed CDE‐SMOTE that
adopts the SMOTE data resampling approach to alleviate the
negative effects of class distribution mismatch and imbalance
between the training and test datasets. The authors estimate
the proportion of each class of the target dataset using class
distribution estimation and employ the SMOTE method to
generate data samples equal to the estimated amount. Addi-
tionally, Goel et al. [23] observed that SMOTE improves the
performance of CPDP models. Yu et al. [24] were the first to
conduct an empirical study comprising of more than one data
resampling approach. They applied six data resampling ap-
proaches on 15 open‐source datasets and three CPDP models
and observed that the performance improved when data
resampling approaches are applied. More information on
CPDP studies can be found in the recent literature review and
meta‐analysis study conducted by Hosseini et al. [16]. The
comprehensive studies of Bennin et al. [21] and Tantitham-
thavorn et al. [39] provide more information on the impact of
data resampling approaches on software defect prediction
models.

Previous studies aim to improve CPDP performance by
using complex boosting and transfer learning techniques.
Most studies [23, 12, 29, 25] investigated the effects of a single
type of data resampling approach on CPDP performances.
The study presented in this paper differentiates itself from the
studies discussed above, and specifically, the study of Yu et al,
[24], in which it applies eight data resampling approaches to
the acquired data after applying an NN filter and empirically
investigate the impact of data resampling approaches on the
performance of CPDP. Compared to WPDP, filter‐based
CPDP approaches including the NN filter try to generate a
project dataset that is similar to a target project dataset. This
NN filter procedure is a simple approach that is independent
of the prediction model, straightforward to implement and
has been shown to have a positive impact on CPDP models
[17, 15, 16].

3 | BACKGROUND

In this section, we present a brief description of the NN filter
and an overview of the data resampling approaches we
employed in our experiments. The NN filter is selected
because (1) it is easier to implement, compared to other similar
approaches, (2) it has been widely (and successfully) used in
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previous studies [29, 14, 40] and (3) it is known to improve
prediction performance in comparison to other data filtering
techniques [16, 15].

3.1 | NN filter

This approach proposed by Turhan et al. [11] is a relevancy
filter that effectively selects the closest data instances with
respect to the new target project from a collection of various
projects based on the K‐NN algorithm. It is a pre‐processing
approach that could be combined with the normal classifi-
cation process. It was combined with a Naive Bayes classifier
by the same authors. The procedure for NN filtering is as
follows:

1. Aggregate and merge all training data into one set of data.
2. For each module in the target project, find k neighbours

from the combined training data considering their pairwise
Euclidean distances.

3. Collect the selected neighbours and remove duplicated data
instances to obtain the filtered dataset.

3.2 | Oversampling approaches

3.2.1 | Random oversampling (ROS)

ROS can be considered as one of the most basic over-
sampling approaches. Minority instances are randomly
selected and replicated, and thus, no new information is
provided for the classifier. ROS is very easy to implement
and has been widely used in several studies in defect pre-
diction [41, 19, 21, 42].

3.2.2 | Synthetic Minority Oversampling
TEchnique (SMOTE)

A technique designed to alleviate the effect of class imbalance
on prediction performance [43]. Several defect prediction
studies [44, 45, 46] have adopted and applied SMOTE in the
literature. SMOTE generates 'synthetic' minority samples by
considering each minority class sample. Based on the param-
eter values (k), new synthetic samples are created along with
the line segments that join k minority class NNs of each
sample under consideration.

3.2.3 | MAHAKIL

A recently developed state‐of‐the‐art oversampling technique
that aims to generate diverse minority class samples in order to
improve prediction performance and reduce false alarms [22].
Different from the conventional k NN methods, MAHAKIL
utilizes the chromosomal theory of inheritance to generate
diverse synthetic data instances. MAHAKIL alleviates the

overgeneralization of prediction models since synthetic data
instances created are not clustered into a specific region of the
minority class of the dataset. The code used in this study
(a python package) is provided online for future use and
replication studies.1

3.2.4 | Adaptive Synthetic Sampling (ADASYN)

By focusing only on the minority class samples that are
difficult to classify, the ADASYN approach [47] assigns
weights to the minority classes and dynamically adjusts the
weights in a bid to reduce the bias in the imbalanced dataset
by considering the characteristics of the data distribution. The
ADASYN algorithm incorporates a density distribution in
automatically deciding the number of synthetic samples
needed for each minority class sample. In contrast to the
SMOTE algorithm, which generates equal synthetic samples
for each minority class, the ADASYN learning algorithm is
induced to focus on the hard to learn examples within the
minority class samples; therefore, samples generated are not
equal for all samples.

3.2.5 | Borderline‐SMOTE

This technique is a modification of the original SMOTE [43]
that focuses more on the instances that are harder‐to‐classify,
that is, instances on the borderline of the classifier [48]. In-
stances that are marked as hard‐to‐classify are labelled and
considered for generating new synthetic data using SMOTE.
Borderline‐SMOTE aims to clearly set the decision bound-
ary for the trained classifier for improved prediction
performance.

3.3 | Undersampling approaches

3.3.1 | Random undersampling (RUS)

RUS aims to balance the dataset by randomly selecting and
deleting the majority of instances. RUS is easy and fast to
implement. As a conventional technique, it is a widely used
undersampling technique in several empirical studies [41, 21,
19, 42].

3.3.2 | Tomek links

Tomek [49] observed that instances of different classes could
be very close neighbours and overlap each other. These in-
stances are closer to each other than they are to their own class
samples, and they form what is referred to as Tomek links. The
majority of instances that are part of the Tomek links are

1
https://bit.ly/3oVDji7
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considered as noise and are deleted by this technique until all
minimally distanced nearest‐neighbour pairs are of the same
class.

3.3.3 | One‐sided selection

Kubat et al. [50] proposed the undersampling approach called
One‐sided selection. This technique aims to remove noisy and
borderline majority instances by adopting the concept of
Tomek links [49]. The technique works by randomly selecting a
majority sample and combining it with all minority instances to
create a new set S. The new set S is used to classify the original
dataset and all misclassified instances are added to S. It con-
siders majority instances to be redundant if these instances in S
participate in Tomek links.

4 | EVALUATION AND EMPIRICAL
ANALYSIS

The research questions and experimental design and execution
are described in this section.

4.1 | Research questions and experiment
design

The goal of this study is to empirically examine and assess the
impact of using data resampling approaches on NN‐filtered
datasets used in CPDP models. To achieve our goal, we car-
ried out two sets of experiments. The experiments are con-
ducted and executed to answer the following three research
questions.

1. RQ1: What is the impact of data resampling approaches on
NN‐filtered datasets in CPDP?

2. RQ2: What are the high‐performing resampling approaches
for NN‐filtered datasets in CPDP?

3. RQ3: Is the application of data resampling approaches
practical for CPDP?

The research questions are used to examine the impact of
applying several data resampling approaches on the perfor-
mance of the CPDP. The study considered only defect‐
proneness (predicting if a module is defective or not) and
not defect counts. We follow the criteria used by Peters et al.
[51] and Zimmermann et al. [10] to determine if resampling
approaches are beneficial and practical for CPDP. The work of
Zimmermann et al. [10] demonstrated that a strong predictor is
the one that achieves g‐mean, recall and accuracy above 75%.
By using a simple criterion, the total count of test‐sets with
predictors (models) that produced g‐mean, recall and auc
above 75% are computed. Since we include pf measures, we set
it as practical if pf is less than 15%. Detailed description on the
dataset used, experimental setup and analysis is discussed
below.

4.2 | Datasets

We obtained data from thirty‐four (34) versions of twenty‐two
(22) open‐source projects that are extracted from the
PROMISE data repository, which are freely available.2 Dataset
size, imbalance ratio and projects with more than one version
all carry heavyweight in our selection criteria, though we keep
to datasets widely used in previous studies. Table 1 shows a
summary of the description of these datasets. These projects,
donated by Jureczko and Madeyski [13] and Jureczko and
Spinellis [52], were written in Java where a module corre-
sponds to a Java file. We only consider top‐level classes (where
the class has the same name as the source file, i.e. inner classes
are ignored). The datasets vary in size and imbalance ratios,
and they provide an extensive domain for evaluating the
impact of resampling approaches and have been used in
several previous studies. Twenty‐one (21) code metrics from
the CK and other metrics suites (see Table 2 for details) are
collected using the BugInfo and ckjm3 tools from each
module. A non‐defective module is labelled as zero, and
defective modules are labelled with the number of bugs pre-
sent in the module. Projects that had more than one version
available were all merged to create our training (source)
datasets. Single‐version datasets (the first 14 projects) were
thus used as the test (target) dataset where we applied the NN
filter to selectively produce the filtered training datasets for
each of the test datasets.

4.3 | Evaluation measures

To assess our modules, we use four performance evaluation
metrics: recall (i.e. probability of detection [pd]), Area Under
the ROC Curve (AUC), g‐ measure and Probability of false
alarm ( pf ). These performance metrics range between the
values of 0%–100%. We decided not to include precision and
F‐ measure as they have been refuted as unstable for assessing
imbalanced datasets [53]. Recall (pd ) measures how much of
the defective modules were detected.

In the general sense, a higher recall denotes better per-
formance. The probability of false alarm ( pf ) measures the
rate of wrongly predicted modules that were non‐defective. A
low or zero value for pf implies a better prediction model. For a
highly imbalanced dataset, the AUC and g‐measure (g‐mean)
performance metrics are preferred as they consider both the pf
and pd values and do not value one metric over the other. AUC
has also been recommended to be very stable for imbalance
learning [21, 39]. For practical results, Zimmermann et al. [10]
recommend pd values of 75% and above, which is maybe very
challenging to achieve in CPDP studies. Herbold et al. [15] also
observed that CPDP models rarely achieved a high recall of
75%. We use multiple performance measures to fully grasp the
capabilities and dynamics of the examined prediction models

2
https://zenodo.org/communities/seacraft

3
http://www.spinelis.gr/sw/ckjm
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and resampling methods as noted by the authors in [16]. The
mathematical definitions of pd, pf and g‐measure metrics are
presented below. Computation of the AUC of ROC can be
found elsewhere [54].

RecallðpdÞ ¼
TP

TP þ FN
ð1Þ

pf ¼
FP

FP þ TN
ð2Þ

g −measure¼
2 ∗ pd ∗ ð100 − pf Þ
pd þ ð100 − pf Þ

ð3Þ

4.4 | Experimental setup

Two sets of empirical experiments are conducted. We first
evaluate the performance of using an NN filter for CPDP, and
we then investigate the influence data resampling approaches
on the performance of CPDP models after filtering the
training datasets. Implementation of the data resampling
methods and the NN filter was executed using Imbalanced‐
learn [55], an open‐source processing toolbox and the model
construction and evaluation were executed using the open‐
source scikit learn [56] library available in python. We use all
metrics from the datasets as suggested in [2]. For this study,
five methods widely used in defect prediction studies were
chosen. We considered Random Forests, Naive Bayes, K‐NN
algorithm, NNET and SVM [1]. Furthermore, we adopted a
recently proposed boosting model called XGBoost [57].
XGBoost is an improved implementation of a gradient
boosting framework optimized to be highly efficient, effective
and better performance [57, 58]. The parameters used for the

TABLE 1 Summary of 34 systems extracted from PROMISE data
repository

# Release No. of modules No. of defects Defects (%)

(Target Data)

1 Arc 234 27 11.5

2 Berek 43 16 37.2

3 e‐learning 64 5 8

4 Intercafe 27 4 14.8

5 Kalkulator 27 6 22.2

6 nieruchomosci 27 10 37

7 Pdftranslator 33 15 45.5

8 Redaktor 176 27 15.3

9 Serapion 45 9 20

10 Skarbonka 45 9 20

11 Systemdata 65 9 13.8

12 Tomcat 858 77 9

13 Workflow 39 20 51.3

14 Zuzel 29 13 44.8

(Source Data)

15 ant‐1.3 125 20 16

16 ant‐1.4 178 40 22.5

17 ant‐1.5 293 32 10.9

18 ant‐1.6 351 92 26.2

19 camel‐1.0 339 13 3.8

20 camel‐1.4 872 145 16.6

21 camel‐1.6 965 188 19.5

22 ivy‐1.1 111 63 56.8

23 ivy‐1.4 241 16 6.6

24 ivy‐2.0 352 40 11.4

25 jedit‐4.0 306 75 24.5

26 jedit‐4.1 312 79 25.3

27 jedit‐4.2 367 48 13.1

28 jedit‐4.3 492 11 2.2

29 pbeans1 26 20 76.9

30 pbeans2 51 10 19.6

31 synapse‐1.0 157 16 10.2

32 xalan‐2.4 723 110 15.2

33 xerces‐1.2 440 71 16.1

34 xerces‐1.3 453 69 15.2

TABLE 2 Description of static code metrics [30]

Metrics Description Metrics Description

WMC Weighted methods
per class

CAM Cohesion among
methods of class

DIT Depth of inheritance
tree

IC Inheritance coupling

NOC Number of children CBM Coupling between
methods

CBO Coupling between
objects

AMC Average method
complexity

RFC Response for a class Ca Afferent couplings

LCOM Lack of cohesion of
methods

Ce Efferent couplings

LCOM3 Another form of LCOM CC McCabe's cyclomatic
complexity

NPM Number of public
methods

Max(CC) Max CC values of
methods in class

DAM Data access metric Avg(CC) Mean CC values of
methods in class

MOA Measure of aggregation LOC Lines of code

MFA Measure of functional
abstraction

Defects Number of detected
bugs in the class
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prediction models are displayed in Table 3. It should be noted
that we predicted the presence of defects (binary) in a module
and not the number of defects (continuous). The two main
experiments conducted are summarized in Figure 1 and
described below:

(1) Applying NN Filter: we first examined the performance
of the defect prediction models when the NN filter
procedure (described in Section 3.1) is used in selecting
the training data. Considering 14 test and 20 training
datasets, we conducted 14 cross‐project experiments
where the training datasets are merged and used by the
test data for filtering to extract the NN modified
training data. Following the procedure used by the
original creators of the NN filter [11], we used k =10
for the NN filter experiments. The models are trained
on the filtered datasets. After model training, the model
is tested on a separate test dataset and evaluated using
the performance measures discussed in Section 4.3. Our
experiment algorithm is shown in Algorithm 1. The NN
filter experiment starts from step 1 and stops at step 6,

with a sequential flow. The process continues from step
10 through to step 13 where the classifiers are con-
structed on the filtered Pfilter instead of the resampled
data Psyn.

(2) Resampled Datasets for CPDP: similar to experiment 1,
we only modify the training data after applying the NN
filter. For the second experiment, the five oversampling
approaches discussed in Section 3.2 (i.e. ROS, MAHAKIL,
SMOTE, Borderline‐SMOTE and ADASYN) and three
undersampling approaches (i.e. RUS, OSS, Tomek Links)
are applied to the filtered dataset to generate exactly the
same number of samples for the minority class and reduce
the samples of the majority class, respectively, in the
dataset. For both SMOTE and ADASYN, we set k = 5 as
used by the original authors of these approaches [47, 43].
Each data resampling approach is applied separately, and
hence, a total of 84 (14 datasets � 6 prediction models)
CPDP models are conducted for each resampling
approach. Overall, 672 (84 � 8 resampling approaches)
CPDPs are conducted across all resampling approaches.
Algorithm 1 displays the procedure followed in conducting
experiment 2.

4.4.1 | Statistical test and comparison

As recommended by Kitchenham et al. [59] and Hosseini
et al. [16], the application of non‐parametric statistical tests
and effect sizes to empirical studies in software engineering
are beneficial to produce more practical and relevant results
for valid conclusions and insights. We compare the results of
the performance measures using the original NN‐filtered
dataset (represented as NOS) and that of using the

TABLE 3 Classification models and their parameter configurations

Model Overview Parameters

NB Naive Bayes Default

NNET Neural Network Hidden‐layer‐sizes={30, 30, 30}

KNN K‐Nearest Neighbour n‐neighbours=3

RF Random Forest n−estimators=(1000),
random−state=(42)

SVM Support Vector Machine kernel=(linear)

XGB Extreme Gradient Boosting Default

F I GURE 1 Framework of experiments
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resampled data (NN‐filtered datasets modified with data
resampling approaches). To analyse the statistical significance
of the prediction performance of models trained on the
original NN filter and resampled dataset experiments, Brun-
ner’s statistical test [28] is adopted for pairwise comparison.
Across all four performance measures, the Win‐Tie‐Loss
values are computed for each pairwise comparison and pre-
sented to clearly show any significant difference in prediction
performances. Brunner’s statistical test was recently recom-
mended as a more robust alternative to the t‐test for
empirical studies in software engineering [59]. For each
selected prediction model and training dataset, Brunner’s test
is performed across the cross‐project pairs for each perfor-
mance measure and the Win, Tie or Loss value is reported
based on the significant value at p < 0.05 two‐tailed test.

We also apply Cliff’s effect size with Hochberg’s method
proposed by the authors in [28], which measures the size (no
effect, small, medium, large) of values between two distribu-
tions. The magnitude labels for the effect sizes ðδ̂Þ are inter-
preted using the thresholds (small [δ̂ ≤ 0.112], medium
[0.112 > δ̂ < 0.428] and large δ̂ ≥ 0.428]) proposed in [60].

5 | RESULTS

Here, we present our results, which is presented based on the
three research questions we address in this paper.

5.1 | RQ1: What is the impact of data
resampling approaches on NN‐filtered
datasets in CPDP?

For better demonstration, the results are presented in Figure 2
using quartile plots. The quartile plot displays the variation of
the results produced by each resampling approach for each
prediction model on the 14 datasets. For each performance
measure, the quartile plot compares the performance of each
resampling approach for each prediction model. These plots
are generated by sorting the performance values for all 14 test
datasets to isolate the median, lower and upper quartiles. In the
performance results in Figure 2, the median is displayed by a
solid dot and the quartile limits represent the 25th and 75th
percentiles.

Higher medians denote better performance for all perfor-
mance measures except the pf measure, where lower median
values denote better performance. The AUC performance
values were comparable for all prediction models and resam-
pling approaches. Data resampling approaches did not signifi-
cantly improve AUC prediction performance values. Prediction
models trained on resampled datasets produced better result
values on average for the g‐mean and recall( pd ) values but
performed poorly for the pf performance measure.

Models trained on the resampled datasets attained higher
recall (pd) and g‐ mean values over models trained on the
default NN‐filtered datasets (represented as NOS). All
oversampling methods and the RUS method improved the pd
and g‐mean values. Tomek links and One‐Sided Selection
(OSS) approaches did not significantly improve the pd and
g‐mean values compared to the default NN‐filtered datasets
(NOS) results. Models trained on the default NN‐filtered
datasets (NOS) performed well with very low pf. The
models trained on resampled datasets, however, attained high
pf comparatively. This confirms, the conclusion previously
made by Turhan et al. [11], that higher pd values are
accompanied by higher pf values. Most of the oversampling
methods and the RUS undersampling method result in higher
pf across all models except NB. We observe that no single
prediction model performed best for all target datasets
considering all the performance measures. This could be
explained by the difference in class distribution within the
target datasets.

5.2 | RQ2: What are the high‐performing
resampling approaches for NN‐filtered
datasets in CPDP?

To find the statistical significant differences between the
performances of the default NN‐filtered datasets (NOS) and

Algorithm 1 Outline of the experiments
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resampled datasets on the prediction models, total aggre-
gated win‐tie‐loss values from Brunner’s statistical test are
presented in Tables 4 and 5. Due to space limitations,
we present the top 14 and bottom 14 per each performance
measure. Considering the AUC performance measure, we
observe from Table 4 that the use of data resampling ap-
proaches could not improve the CPDP for all models. Out
of the 54 pairwise Win‐Tie‐Loss comparisons, all resampling
approaches combined with the Naive Bayes classifier were
found in the bottom half with Borderline‐SMOTE and RUS
outperforming the other resampling approaches. The ma-
jority of the tests resulted in ties and very few losses.
Notwithstanding, resampling approaches performed worse
for the Random Forest and XGBoost models. However, we
observe that the losses are few compared to the three
performance measures (g‐mean, pd and pf). Considering the
g‐mean and recall (pd) win‐tie‐loss comparison results in
Table 4, the prediction performances on the resampled
datasets were statistically significant and different from the
prediction performances on the original NN‐filtered data.
The models trained on the default NN‐filtered data were
always found in the bottom half of the table indicating that
data resampling approaches were always better than no
sampling method.

However, the models trained on the default NN‐filtered
datasets (NOS) were significantly improved regarding the pf

performance measure, thus outperforming most data resam-
pling approaches. The next best performing data resampling
approaches were the undersampling methods Tomek links and
OSS. Random under and oversampling, SMOTE and ADA-
SYN recorded less than three wins with the highest number of
losses.

Furthermore, we compute the overall effect sizes after
conducting the win‐tie‐loss statistical tests across all datasets
and present the results in Figure 3. As shown in Figure 3, the
performance values of the default models (NOS) is compared
to each resampling approach across all datasets and the win‐
tie‐loss statistic is recorded. Additionally, the practical effect
(effect sizes) of the statistical results are also computed and
presented in Figure 3. For each pairwise comparison, the wins,
ties or losses (represented with square shapes) and the
magnitude of the effect size (represented with circle shapes)
across all datasets per each performance measure are
presented.

Considering the AUC performance measure, we observe
from Figure 3 that the use of data resampling approaches
could not improve the cross‐project prediction performance
for all models. Out of the pairwise Win‐Tie‐Loss comparison,
the majority of the tests resulted in ties and only two wins for
MAHAKIL and one win for BSMOTE. The wins were,
however, not practically significant (no effect). There were no
losses. This is in agreement with prediction performance in

F I GURE 2 Quartile plots of performance values for all resampling approaches on the filtered datasets per different predictive models (across all 14‐test
datasets)
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within‐project defect prediction where the AUC prediction
performance of models trained on resampled datasets was
not significantly different from that trained on default data-
sets [21].

Considering the g‐mean and recall (pd) win‐tie‐loss
comparison results in Figure 3, the prediction performances
on the resampled datasets were statistically significant and
different from the prediction performances on the original
NN filtered data. The data resampling approaches specifically
the oversampling and Random undersampling approaches
significantly outperformed the NOS method mostly achieving

large effect sizes (green square and red circle). For most
pairwise comparisons, the data resampling approaches ach-
ieved significant (win) statistical tests and few no effects as
the effect size status. However, the models trained on the
default NN‐filtered datasets (NOS) were significantly better
regarding the pf performance measure, thus outperforming
most data resampling approaches. In agreement with the
results in Table 4, the next best performing data resampling
approaches were the undersampling approaches Tomek links
and OSS. This indicates that the combining data resampling
approaches with the original NN‐filtered data should be

TABLE 4 Performance in terms of wins, losses, and wins‐losses aggregated from the predictors (model � resampling method) on the 14 datasets per each
performance measure

AUC g‐mean

Model Resampling approach Wins Losses Wins–Losses Ties Model Resampling approach Wins Losses Wins–Losses Ties

1 NB BORDERLINE 36 0 36 17 NB BORDERLINE 32 0 32 21

2 NB RUS 32 0 32 21 NB RUS 30 0 30 23

3 NB ROS 20 0 20 33 NNET BORDERLINE 27 0 27 26

4 NB SMOTE 20 1 19 32 RF RUS 27 0 27 26

5 NB OSS 17 0 17 36 KNN MAHAKIL 26 0 26 27

6 NB MAHAKIL 16 0 16 37 NB SMOTE 26 0 26 27

7 NB TOMEK 13 0 13 40 SVM SMOTE 25 0 25 28

8 NNET BORDERLINE 11 0 11 42 KNN ROS 24 0 24 29

9 NB NOS 9 1 8 43 KNN SMOTE 24 0 24 29

10 XGB MAHAKIL 6 1 5 46 NB ADASYN 25 1 24 27

11 NB ADASYN 5 1 4 47 SVM MAHAKIL 24 0 24 29

12 KNN MAHAKIL 3 0 3 50 KNN BORDERLINE 23 1 22 29

13 KNN ROS 2 0 2 51 NB MAHAKIL 22 0 22 31

14 SVM TOMEK 4 2 2 47 SVM ROS 21 0 21 32

. . . . . . . . . . . . .

41 RF TOMEK 0 6 −6 47 NNET NOS 0 23 −23 30

42 KNN RUS 0 7 −7 46 RF BORDERLINE 2 25 −23 26

43 RF BORDERLINE 0 7 −7 46 XGB BORDERLINE 2 25 −23 26

44 XGB TOMEK 0 7 −7 46 XGB TOMEK 2 25 −23 26

45 NNET ADASYN 0 8 −8 45 NNET OSS 0 27 −27 26

46 RF OSS 0 8 −8 45 RF OSS 2 29 −27 22

47 XGB ROS 0 9 −9 44 RF TOMEK 2 30 −28 21

48 KNN NOS 0 10 −10 43 NNET TOMEK 0 29 −29 24

49 XGB BORDERLINE 0 10 −10 43 KNN NOS 0 30 −30 23

50 XGB RUS 0 10 −10 43 XGB OSS 0 33 −33 20

51 RF NOS 0 11 −11 42 RF ROS 1 35 −34 17

52 XGB OSS 0 13 −13 40 SVM NOS 0 35 −35 18

53 RF ROS 0 14 −14 39 RF NOS 0 45 −45 8

54 XGB NOS 0 14 −14 39 XGB NOS 0 45 −45 8

Note: Higher wins (%), wins‐losses (%) and lower losses (%) indicate the higher performance of the predictor. The predictors are ordered by wins‐losses.
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avoided if we aim at achieving lower pf values while the data
resampling approaches should be considered when higher pd
and g‐mean values are required.

5.3 | RQ3: Is the application of data
resampling approaches practical and
beneficial for CPDP?

To assess the practical benefits of data sampling approaches,
the actual number of test sets that meet the practical criteria of

75% for all performance measures except pf, where the crite-
rion is 15%, is summarised in Figure 4. For each performance
measure, after 756 (14 � 6 � 9) runs across all 14 test sets, six
prediction models and nine sampling methods, the success
rates were very low. All data resampling approaches attained
success rates of less than 10% for the AUC and g‐mean per-
formance measures. Similarly, all the resampling approaches
excluding the RUS and ADASYN also attained success rates of
less than 10% for the recall (pd) performance measure. RUS
attained the highest success rate (22.6%) considering the pd
performance measure, whereas OSS attained the lowest

TABLE 5 Performance in terms of wins, losses, and wins‐losses aggregated from the predictors (model � resampling approach) on the 14 datasets per
each performance measure

pd pf

Model Resampling approach Wins Losses Wins–Losses Ties Model Resampling approach Wins Losses Wins–Losses Ties

1 RF RUS 43 0 43 10 SVM NOS 52 0 52 1

2 SVM RUS 41 0 41 12 RF NOS 50 0 50 3

3 KNN RUS 38 0 38 15 SVM TOMEK 49 1 48 3

4 XGB RUS 36 0 36 17 SVM OSS 44 1 43 8

5 KNN MAHAKIL 35 1 34 17 RF TOMEK 42 2 40 9

6 SVM ADASYN 34 0 34 19 NB NOS 39 3 36 11

7 NNET RUS 32 1 31 20 XGB NOS 39 3 36 11

8 NNET MAHAKIL 30 1 29 22 RF OSS 38 3 35 12

9 SVM SMOTE 29 0 29 24 XGB TOMEK 34 4 30 15

10 NNET BORDERLINE 28 0 28 25 RF BORDERLINE 35 6 29 12

11 NNET SMOTE 28 0 28 25 NB TOMEK 32 4 28 17

12 SVM BORDERLINE 29 1 28 23 NNET OSS 30 4 26 19

13 KNN ADASYN 28 1 27 24 NB OSS 31 6 25 16

14 KNN ROS 29 3 26 21 NNET NOS 29 6 23 18

. . . . . . . . . . . . .

41 SVM OSS 2 26 −24 25 NNET MAHAKIL 4 34 −30 15

42 NNET NOS 0 25 −25 28 NNET SMOTE 3 33 −30 17

43 KNN NOS 3 30 −27 20 KNN BORDERLINE 4 35 −31 14

44 NNET OSS 1 29 −28 23 SVM BORDERLINE 3 34 −31 16

45 SVM TOMEK 2 31 −29 20 KNN ADASYN 4 37 −33 12

46 XGB TOMEK 3 32 −29 18 SVM SMOTE 2 35 −33 16

47 RF BORDERLINE 2 32 −30 19 KNN MAHAKIL 4 38 −34 11

48 RF OSS 2 33 −31 18 NNET RUS 1 35 −34 17

49 RF TOMEK 1 34 −33 18 SVM ROS 1 35 −34 17

50 RF ROS 1 36 −35 16 SVM ADASYN 0 37 −37 16

51 XGB OSS 0 36 −36 17 RF RUS 0 44 −44 9

52 SVM NOS 0 42 −42 11 KNN RUS 0 45 −45 8

53 RF NOS 0 46 −46 7 SVM RUS 0 47 −47 6

54 XGB NOS 0 46 −46 7 XGB RUS 0 48 −48 5

Note: Higher wins (%), wins‐losses (%) and lower losses (%) indicate the higher performance of the predictor. The predictors are ordered by wins‐losses.
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F I GURE 3 Brunner’s statistical test win‐tie‐loss and effect‐size comparison of NOS versus ROS, ADASYN, Borderline‐SMOTE, SMOTE, MAHAKIL,
OSS and TOMEK across all datasets per each defect prediction model and performance measure (AUC, g‐mean, pd, pf )

F I GURE 4 Measuring the practical success of sampling approaches on cross‐project defect prediction by the percent of test sets whose defects were
predicted and met the criteria for pd, AUC and g‐mean greater than 75% and pf less than 15%
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success rate (1.19). The default NN filter approach (NOS)
attained lower success rates for pd, AUC and g‐mean than the
oversampling methods indicating that data resampling
methods with the NN filter result in better performance.
However, for false alarms (pf), the default NN filter attained
the highest success rate closely followed by OSS and TOMEK
links. RUS performed worse for the pf measure with the
oversampling methods attaining higher success rates than RUS.

In summary, our results show the following: (1) The use of
data resampling approaches significantly improved prediction
performance (pd, g‐mean). Considering the number of ties and
losses, there was a statistical difference between the perfor-
mances of the prediction models trained on resampled data
and the original filtered data. (2) To attain better pf values, the
default NN‐filtered data should not be combined with data
resampling approaches. (3) Similar to observations from
WPDP [21, 39], the performance of AUC is not significantly
impacted by data resampling methods for CPDP models.

6 | DISCUSSIONS

The experimental results indicate that data resampling ap-
proaches significantly impact the performance of CPDP
models. Comparatively, the oversampling approaches out-
performed the undersampling approaches regarding the g‐mean
and pd performance values. The experimental results show that
the NN filter alone (NOS) obtained very low practical results,
suggesting data sampling methods are needed in addition to the
NN filter method to obtain more significant and practical re-
sults. Conventional sampling approaches such as the SMOTE,
RUS and ROS produced significant and improved performance
results but were accompanied with a high false alarm rate.

Predictors that generalize well on training data are known
to perform better than models trained on restricted/few data
samples. Training prediction models on very large (infinite)
training datasets that capture all variations in the data distri-
bution is ideal for higher and improved prediction perfor-
mance. Due to the inability to obtain infinite training datasets,
it has been recommended to extend the training set with
artificially created examples that increases the diversity within
the data distribution [61]. It was also suggested that a variety of
(diverse) data samples will significantly improve the prediction
performance. However, this was not the case for CPDP as the
diversity‐based oversampling approach (MAHAKIL), although
improving performance, could not outperform the more
conventional approaches, which do not necessarily increase the
diversity within the dataset. This is because MAHAKIL aims
to carefully generate diverse minority class instances in a
specified region reducing the false alarms. However, with the
NN Filter and CPDP whereby data samples are selected from
different projects, the final obtained datasets for training will
be by default diverse. MAHAKIL will thus generate very few
or limited diverse instances and this affects the performance.
Nevertheless, MAHAKIL outperforms the other oversampling
approaches regarding lower pf values. Similarly, TOMEK and
OSS undersampling approaches significantly resulted in lower

pf values compared to the traditional RUS approach. Quality
assurance teams will prefer MAHAKIL, TOMEK and OSS
over the other conventional sampling approaches since low pf
values are preferred by these teams.

Additionally, our analysis revealed that, although the per-
formance of data resampling approaches on the CPDP models
did improve the AUC values, the values were not too high,
ranging between 45% and 65% across all models (see Figure 2).
This is confirmed by the low success rates (<10%) obtained as
presented in Figure 4. Data resampling approaches, especially
the oversampling approaches, with the Naive Bayes model
produced the highest AUC values. The AUC performance
metric is useful in ranking or prioritizing the crucial target
samples [62], which is the defective modules in our experiment.
A perfect AUC value of 100% implies that all modules are
efficiently ranked—assigning higher priorities to the defective
modules than the non‐defective modules. An average AUC
value of 50% indicates that a random prioritization is no worse
than the prioritization using the advanced model (resampled
dataset and prediction model). With very small practical AUC
values, the use of data resampling approaches for prioritization
of modules for quality assurance activities (such as testing and
code review) is not recommended for software projects. With
large pf values, the selection of top k% faulty modules will
always be contaminated with the non‐defective modules.
Notwithstanding, data resampling approaches have a silver
lining. They can aid in classifying all defective modules.

7 | THREATS TO VALIDITY

As an empirical study, there are several potential limitations.
We discuss below the internal and external threats to the val-
idity of the study. The main external limitation of this study is
that it is dependent on the NN filter. All experiments were
conducted using the NN filter as the preprocessor of the
dataset. As stated in the introduction, the NN filter has been
widely evaluated as having a positive impact on CPDP models.
Studies without the use of the NN filter is left as future work.
Considering only open‐source software projects with source
code metrics poses an external threat. These metrics extracted
with automated software are easy to collect but the results
cannot be generalized to all other projects that have different
metrics apart from static code or to projects in the commercial
domain. Also, the number of projects considered could have an
effect on our results. We, however, considered a wide range
and sufficient sizes of projects and, therefore, produced robust
results, which we expect to be similar for other unconsidered
projects. We intend to consider commercial projects in future
studies. The selection of our source and target data also poses a
threat to our results. Since we only considered single‐version
projects as our target projects, it is unclear if our results
would generalize to the other datasets, which were not used as
the source data. Further work where every project is consid-
ered as a target project is required to clarify this.

A limited number of predictive models were also consid-
ered in this paper. Considering different types of predictive
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models could have different implications. However, these are
widely used models in past studies. Similarly, the number of
neighbours chosen for the NN filter had an impact on our
results. Exploring large values for these neighbours could lead
to different results since the filtered dataset sizes would be
affected. We considered four major performance measures,
which are widely used for defect prediction on class imbal-
anced datasets. Other evaluation measures such as the effort‐
aware measures could be considered in future studies.

8 | CONCLUSION

This paper investigates the impact of using data sampling
methods for improving the performance of CPDP models.
Employing eight data resampling approaches, we resampled
the datasets and used them in training CPDP models after
filtering the training data using the NN filter. The data
resampling methods did improve the prediction performance
as expected by significantly improving the recall (pd) and g‐
mean performance measures. The use of the default NN‐
filtered dataset was significantly better than the resampled
data in terms of the false alarms ( pf ). However, data resam-
pling methods did not improve the AUC performance values.
For practical results, AUC and g‐mean results of all models
attained success rates of less than 10%. Random under-
sampling improved the recall values but that was accompanied
with high false alarms. The experiments demonstrated that
data resampling methods could mitigate the negative effects of
class imbalance on the performance of CPDP in terms of
improving the probability of detection (recall).

From these results, we have demonstrated that data
resampling methods should be adopted for constructing pre-
diction models in a bid of reducing the negative effects of class
imbalance within a dataset obtained from several projects. This
study lays the foundation for further future works. We aim to
investigate the use of cost‐sensitive techniques for CPDP. With
a low practical success rate (less than 10%), a further empirical
study is required to investigate how prediction performance
can be improved using other methods.
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