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1. Introduction

The tremendous work of Hopf, Stiefel, and Whitney in the 1930’s demonstrated the 
importance of principal bundles for various applications to algebraic topology, geometry 
and mathematical physics. In the noncommutative setting the notion of a free action 
of a quantum group on a C∗-algebra provides a natural framework for noncommutative 
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principal bundles (see, e.g., [5,24,51,58] and ref. therein). Their structure theory and 
their relation to K-theory (see, e.g., [9,12,18,25,56–58] and ref. therein) certainly appeal 
to operator algebraists and functional analysts. In addition, noncommutative principal 
bundles are becoming increasingly prevalent in various applications of geometry (cf. [35,
36,43,59]) and mathematical physics (see, e.g., [6,10,19,20,23,32,41,62] and ref. therein).

Geometric aspects of noncommutative principal bundles, however, have not been stud-
ied yet in a cohesive way. Using a universal differential calculus, the algebraic framework 
of Hopf-Galois extensions yields abstract notions of connections and curvature (see, 
e.g., [18,31,41] and ref. therein). In this article we take a different approach and in-
vestigate the geometry of principal bundles by means of Connes’ spectral triples.

Spectral triples lay the foundation for noncommutative geometric spaces. Along with 
some additional structure they allow to extend many techniques from Riemannian spin 
geometry (see, e.g., [13,14,31,61] and ref. therein). Another reason for looking at spectral 
triples is the role they play in mathematical physics. For instance, they provide a non-
commutative formulation of the standard model of particle physics and of the integrality 
of the quantum Hall current (cf. [11,16,42]). Spectral triples and their applications in 
quantum field theory are also an area of active research (see, e.g., [1,16] and ref. therein).

The purpose of this paper is to give a methodical construction of spectral triples on 
noncommutative principal bundles that are build upon the geometry of the “quantum 
base spaces” and the underlying structure groups. Since the subject of noncommutative 
principal bundles or, equivalently, free actions is better understood in the compact case 
(see, e.g., [5,12,56,58] and ref. therein), we will restrict our study to free actions of com-
pact Lie groups on unital C∗-algebras. More precisely, for a free action of a compact 
Lie group G on a unital C∗-algebra A and a spectral triple on the corresponding fixed 
point algebra AG, we provide a systematic construction of a spectral triple on A by means 
of the geometry of AG and G. To the best of our knowledge, such spectral triples on non-
trivial noncommutative principal bundles with higher dimension non-Abelian structure 
groups have not been worked out yet.

Survey of the field

Let us briefly summarize the current research frontiers covered by this article. Re-
garding the notation, we refer the reader to Section 2 below.

Let B be a C∗-algebra, let D be a spectral triple on B, and let α be a ∗-automorphism 
of B. Bellissard, Marcolli, and Reihani established in their seminal work [7] that there 
is a canonical spectral triple on the crossed product B �α Z that is built upon D and a 
differential operator on the circle (via Fourier transform) and characterizes the metric 
properties of the C∗-dynamical system (B, Z, α). The Bellissard-Marcolli-Reihani theory 
was developed further in the articles [33,35,48] for actions of more general classes of 
groups (e.g., discrete and second-countable locally compact). In this context we recall 
that, given a C∗-dynamical system (A, G, α) with a countable discrete Abelian group G, 
the natural dual action of the compact dual group Ĝ on the crossed product A �α G
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is free (cf. [57, Sec. 4]). For this reason crossed products provide a natural source of 
noncommutative principal bundles.

Ammann and Bär [3,4] looked into the properties of the Riemannian spin geometry 

of a smooth principal U(1)-bundle. Under suitable hypotheses they related the Rieman-
nian spin geometry of the total space to the Riemannian spin geometry of the base 

space. A noncommutative generalization of these results for the Hopf-Galois analogue of 
principal torus bundles was developed about a decade later by Dabrowski, Sitarz, and 

Zucca [19,20]. Of particular interest is also Zucca’s unpublished PhD-thesis [63, Sec. 8], 
in which he presented conditions in order to build a real spectral triple for cleft extensions 
of compact connected semisimple Lie groups. Moreover, Sitarz and Venselaar [60] studied 

spectral triples on quantum lens spaces as orbit spaces of free actions of cyclic groups 
on the spectral geometry of SUq(2). Aiello, Guido, and Isola [2] provided examples of 
noncommutative coverings and extended spectral triples on the base space to spectral 
triples on the inductive family of coverings in such a way that the covering projections 
are locally isometric.

We would also like to mention some connections to unbounded KK-theory, which 

was developed over the last decade by Kaad, Lesch, Mesland et al. Indeed, Gabriel and 

Grensing [27] proposed a construction of spectral triples for a class of crossed product-like 

algebras that gives an unbounded representative of the Kasparov product of the original 
spectral triple and the Pimsner-Toeplitz extension associated with the crossed product 
by a Hilbert module. Forsyth and Rennie [25] provided sufficient conditions to factorize 

an equivariant spectral triple as a Kasparov product of unbounded classes constructed 

from the compact Abelian group action on the algebra and from the fixed point spectral 
triple. In addition, they showed that each equivariant Dirac-type spectral triple on the 

total space of a torus principal bundle factorizes and that the Kasparov product [37,44]
can be used to recover the original triple. Kaad and van Suijlekom [39,40] established 

that the Dirac operator on the total space of an almost-regular fibration can be written, 
up to an explicit “obstructing” curvature term, as the tensor sum of a vertically elliptic 

family of Dirac operators with the horizontal Dirac operator representing the interior 
Kasparov product in bivariant K-theory (see [38] for a similar discussion in the context 
of toric noncommutative manifolds).

Finally, we would like to draw attention to a recent paper by Ćaćić and Mesland [10]. 
There the authors presented a new, general approach to gauge theory on principal 
G-spectral triples, where G is a compact connected Lie group. It is our hope that this 
work will contribute to the development and understanding of a noncommutative gauge 

theory, for instance, by providing a geometric oriented notion of “parallel transport” or, 
more generally, of “parallelity” on a noncommutative principal bundle - a concept whose 

importance cannot be overemphasized.
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Organization of the article

After some preliminaries, we present in Section 3, Lemma 3.1, yet another characteri-
zation of freeness for C∗-dynamical systems, which is well-adapted to our purposes. Given 
a free C∗-dynamical system (A, G, α), we make use of this characterization in Section 4
to get a faithful covariant representation of (A, G, α) on some suitable amplification of 
its fixed point algebra AG (Lemma 4.1). We also classify all faithful covariant represen-
tations of (A, G, α) up to unitary equivalence (Theorem 4.4). As a further application 
we show that the isotypic components of A act nondegenerately (Corollary 4.6).

Now, let (A, G, α) be a free C∗-dynamical system with a compact Lie group G and 
let D be a spectral triple on AG. Section 5, the main body of this article, is devoted 
to the construction of a spectral triple on A in terms of D and the geometry of G. As 
a preliminary step we briefly recall the notion of a factor system. Our procedure then 
naturally splits into the following five main steps:

1. We form a “quantum manifold” or, in greater detail, a dense unital ∗-subalgebra 
A0 ⊆ A of smooth elements (Theorem 5.4).

2. We extend the faithful ∗-representation of AG to a faithful covariant representation 
of (A, G, α) (Theorem 5.7).

3. We lift the Dirac operator on AG to a Dirac-type operator Dh on A (Corollary 5.8) 
and show that Dh has, under some suitable conditions, bounded commutators with 
A0 (Theorem 5.9). The operator Dh later becomes the horizontal component of a 
Dirac operator.

4. Using the group action, we construct a Dirac operator Dv, which later becomes the 
vertical component of the Dirac operator (Corollary 5.12).

5. Finally, it remains to tie everything together. More precisely, we suitably assemble 
the operators Dh and Dv to a Dirac operator DA on A (Theorem 5.13), and in this 
way we get a spectral triple on A (Corollary 5.16).

The remaining Sections, 6, 7 and 8, are devoted to thoroughly treating examples 
or, more precisely, to investigating how our construction compares to well-established 
examples. Indeed, in Section 6 we show that our construction generalizes the construc-
tion given in the pioneering article [7, Sec. 3.4] by Bellissard, Marcolli, and Reihani. 
In Section 7 and Section 8 we explore our construction for a free 2-torus action on the 
quantum 4-torus and for homogeneous spaces, respectively. The analysis in Section 7 is 
straightforward and we recover the standard Dirac operator on the quantum 4-torus. 
The computations in Section 8 are more technical and we find that our construction 
differs from the standard Dirac operator on the group by a central term (Theorem 8.2
and Remark 8.3).

Last but not least, we would like to mention that we have put in enough detail so 
that this paper will be accessible to a broad readership.
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2. Preliminaries and notation

Our study revolves around permanence properties of noncommutative principal bun-
dles with respect to spectral triples. Along the way we use various tools from geometry 
and operator algebras. This preliminary section exhibits the most fundamental defini-
tions and notations in use.

To begin with, we provide some standard references. For a recent account of the the-
ory of spectral triples and, more generally, of noncommutative geometry we refer to 
the excellent expositions [31,61] by Gracia-Bondía, Figueroa, and Varilly. Our standard 
references for operator algebras are the opuses [8,50] by Blackadar and Pedersen, respec-
tively. For a thorough treatment of Hilbert module structures we refer to the book [53]
by Raeburn and Williams and the memoirs [22] by Echterhoff et al.

About Hilbert spaces All Hilbert spaces are assumed to be complex and come equipped 
with an inner product that is linear in the second component if not explicitly mentioned 
otherwise.

About tensor products In this paper tensor products of C∗-algebras are taken with 
respect to the minimal tensor product, which is simply denoted by ⊗. Let A, B, and C
be unital C∗-algebras. If there is no ambiguity, then we consider each one of them as a 
C∗-subalgebra of A ⊗B⊗C and extend maps on A, B, or C canonically by tensoring with 
the respective identity map. For the sake of clarity, we may make use of the leg numbering 
notation, for instance, given x ∈ A ⊗C, we write x13 to denote the corresponding element 
in A ⊗ B ⊗ C.

About groups Let G be a compact group. We write Irr(G) for the set of equivalence 
classes of irreducible representations of G and let 1 ∈ Irr(G) stand for the class of the 
trivial representation. There are two C∗-algebras associated with G: the algebra C(G) of 
continuous complex-valued functions on G and the (reduced) group C∗-algebra C∗

r (G). 
If G is a Lie group, then we denote its Lie algebra by L(G) and the algebra of smooth 
functions by C∞(G). For each X ∈ L(G) we write ∂G

X for the skew-adjoint operator on 
C∞(G) given by

∂G
Xf(g) := d

dt

∣∣∣
t=0

f
(
exp(−tX)g).

About Clifford algebras For a real Hilbert space H we write C�(H) for the associated 
complex Clifford algebra and use the symbol “·” for its product. We consider H as a 
linear subspace of C�(H) and follow the convention that the defining relation is

ξ · η + η · ξ = −2〈ξ, η〉H 1
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for all ξ, η ∈ H. In particular, if G is a compact Lie group, then we simply write C�(G)
instead of C�

(
(L(G)

)
for ease of notation.

About unbounded operators By an unbounded operator on a Hilbert space H we mean 
a linear map D : dom(D) → H defined on a dense subspace dom(D) ⊆ H. The following 
results about unbounded self-adjoint operators are well-known to experts, but we could 
not spot a prominent reference. The proofs are postponed to Appendix A.

Lemma 2.1. Let D be an unbounded self-adjoint operator on a Hilbert space H with do-
main dom(D) and let p ∈ L(H) be an orthogonal projection such that p dom(D) ⊆
dom(D) and such that the commutator [D, p] is bounded. Consider the unbounded oper-
ator

Dp := pDp with domain dom(Dp) := p dom(D)

on the Hilbert space p(H). Then the following assertions hold:

1. Dp is self-adjoint.
2. If D has compact resolvent, then Dp has compact resolvent.

We also make use of the following construction of an essentially self-adjoint operator 
from a continuous unitary representation u : G → U(H) of a finite-dimensional compact 
Lie group G. For this, let H∞ ⊆ H stand for the subspace of smooth vectors, which is 
G-invariant and dense in H due to [30] (see also [45,46]). Equip L(G) with an Ad-invariant 
inner product and let πspin : C�(G) → L(Hspin) be a finite-dimensional ∗-representation 
of the Clifford algebra C�(G). Finally, for each X ∈ L(G) set FX := πspin(X) and denote 
by ∂Xu the unbounded operator on H with domain dom(∂Xu) := H∞ defined as

∂Xu(η) := lim
t→0

uexp(tX)(η) − η

t
.

Then [28, Prop. 4.1] establishes that for any orthonormal basis X1, . . . , Xn of L(G) we 
obtain an essentially self-adjoint operator with dom(D) := H∞ ⊗ Hspin by putting

D :=
n∑

k=1

∂Xk
u⊗ FXk

.

Lemma 2.2. Suppose the unitary representation u : G → U(H) has finite-dimensional 
multiplicity spaces. Then the closure of D has compact resolvent.

About spectral triples Let A be a unital C∗-algebra. By a spectral triple on A we mean 
a quadruple DA = (A0, π, H, D) consisting of a dense unital ∗-subalgebra A0 ⊆ A, 
a faithful ∗-representation π : A → L(H) on a Hilbert space H, and a possibly unbounded 
self-adjoint operator D on H such that
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1. D has compact resolvent,
2. π(A0) dom(D) ⊆ dom(D),
3. and all commutators [D, π(x)] for x ∈ A0 are bounded.

About C∗-dynamical systems Let A be a unital C∗-algebra and G a compact group that 
acts on A by ∗-automorphisms αg : A → A, g ∈ G, such that G ×A → A, (g, x) �→ αg(x)
is continuous. Throughout this article we call such data a C∗-dynamical system, denote 
it briefly by (A, G, α), and typically write B := AG for its fixed point algebra. In case G
is a compact Lie group, we make use of the symbol A∞ ⊆ A to denote the ∗-subalgebra 
of smooth elements.

For σ ∈ Irr(G) we let A(σ) stand for the corresponding isotypic component of A and 
regard it as a correspondence over B in terms of the usual left and right multiplication 
and the right B-valued inner product given by 〈x, y〉B :=

∫
G
αg(x∗y) dg for all x, y ∈

A(σ). On account of the Peter-Weyl Theorem (see, e.g., [34, Thm. 4.22]) A decomposes 
into its isotypic components, which amounts to saying that the algebraic direct sum ⊕alg

σ∈Irr(G) A(σ) is a dense ∗-subalgebra of A.
Aside from the isotypic components, it is expedient to look at the corresponding 

multiplicity spaces, by which we mean the sets

ΓA(σ) := {x ∈ A⊗ Vσ : (αg ⊗ σg)(x) = x ∀g ∈ G}, σ ∈ Irr(G).

They also play the role of modules of sections of a vector bundle (with standard fibre 
Vσ) associated with (A, G, α). Each ΓA(σ), σ ∈ Irr(G), is naturally a correspondence 
over B with respect to the canonical left and right action and the restriction of the right 
A-valued inner product on A ⊗ Vσ determined by 〈a ⊗ v, b ⊗ w〉A := 〈v, w〉a∗b for all 
a, b ∈ A and v, w ∈ Vσ. The corresponding mapping σ �→ ΓA(σ) can be extended to an 
additive functor from the representation category of G into the category of correspon-
dences over B. Most notably, for each σ ∈ Irr(G) we get a G-equivariant isomorphism

Φσ : ΓA(σ) ⊗ V̄σ → A(σ̄) (1)

of correspondences over B, where σ̄ ∈ Irr(G) denotes the corresponding conjugated 
representation and the G-action on ΓA(σ) ⊗ V̄σ is the obvious one on the second tensor 
factor, by restricting the map

A⊗ Vσ ⊗ V̄σ → A, a⊗ v ⊗ w̄ �→ 〈w, v〉 a.

More generally, if (σ, Vσ) is a finite-dimensional representation of G and σ = σ1⊕· · ·⊕σn

is a decomposition into irreducible subrepresentations, then the same recipe as above 
gives a G-equivariant morphism Φσ : ΓA(σ) ⊗ V̄σ → A(σ̄) of correspondences over B, 
where A(σ̄) :=

⊕n
i=1 A(σ̄i) ⊆ A. The functor σ �→ ΓA(σ) together with the family of 

transformations
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ΓA(σ) ⊗B ΓA(τ) → ΓA(σ ⊗ τ), x⊗ y �→ x12y13 (2)

for all finite-dimensional representations σ and τ of G constitute a so-called weak tensor 
functor and allows to reconstruct the reduced form of the C∗-dynamical system (A, G, α)
up to isomorphism (see [47, Sec. 2]).

Remark 2.3. In some situations it might be convenient to work with the inverse map 
Φ−1

σ : A(σ̄) → ΓA(σ) ⊗ V̄σ, σ ∈ Irr(G), which is for an orthonormal basis v1, . . . , vn of 
Vσ given by the formula Φ−1

σ (x) = n ·
(∑n

i=1
∫
G
αg(x) ⊗ σg(vi) ⊗ v̄i dg

)
.

3. Free C∗-dynamical systems

A C∗-dynamical system (A, G, α) is called free if the so-called Ellwood map

Φ : A⊗alg A → C(G,A), Φ(x⊗ y)(g) := xαg(y)

has dense range with respect to the canonical C∗-norm on C(G, A). This condition was 
originally introduced for actions of quantum groups on C∗-algebras by Ellwood [24]
and is known to be equivalent to Rieffel’s saturatedness [54] and the Peter-Weyl-Galois 
condition [5]. Additionally, Phillips [52] considered some stronger variants of freeness.

One of the key tools used in this article is a characterization of freeness that we 
provided in [58, Lem. 3.3], namely that a C∗-dynamical system (A, G, α) is free if and 
only if for each irreducible representation (σ, Vσ) of G there is a finite-dimensional Hilbert 
space Hσ and an isometry s(σ) ∈ A ⊗L(Vσ, Hσ) satisfying αg

(
s(σ)

)
= s(σ)(1A ⊗σg) for 

all g ∈ G. However, to simplify notation we patch this family of isometries together and 
use the following characterization instead.

Lemma 3.1. For a C∗-dynamical system (A, G, α) the following statements are equivalent:

(a) (A, G, α) is free.
(b) There is a unitary representation μ : G → U(H) with finite-dimensional multiplicity 

spaces and, given any faithful covariant representation (π, u) of (A, G, α) on some 
Hilbert space HA, an isometry s ∈ L(HA ⊗ L2(G), HA ⊗ H) satisfying

sA⊗K(L2(G)) ⊆ A⊗K(L2(G),H), (3)

(ug ⊗ 1H)s = s(ug ⊗ rg) ∀g ∈ G, (4)

(1A ⊗ μg)s = s(1A ⊗ λg) ∀g ∈ G. (5)

Here, we do not distinguish between A and π(A) ⊆ L(HA) for the sake of brevity, 
and the tensor product A ⊗K(L2(G), H) is closed with respect to the operator norm, 
where K(L2(G), H) is regarded as the respective corner of K(L2(G) ⊕ H).
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As we will mainly be concerned with the implication “(a) ⇒ (b)”, we here only prove 
this implication and postpone the proof of the implication “(b) ⇒ (a)” to Appendix A.

Proof. If the C∗-dynamical system (A, G, α) is free, then for each σ ∈ Irr(G) there is 
a finite-dimensional Hilbert space Hσ and an isometry s(σ) ∈ A ⊗ L(Vσ, Hσ) satisfying 
αg

(
s(σ)

)
= s(σ)(1A⊗σg) for all g ∈ G (cf. [58, Lem. 3.3]). To establish the claims in (b), 

we consider the unitary representation μ : G → U(H) defined by

H :=
⊕

σ∈Irr(G)

Hσ ⊗ V̄σ and μg :=
⊕

σ∈Irr(G)

1Hσ
⊗ σ̄g. (6)

Additionally, we choose a faithful covariant representation (π, u) of (A, G, α) on some 
Hilbert space HA and decompose L2(G) =

⊕
σ∈Irr(G) Vσ⊗V̄σ into its isotypic components 

such that the left and right regular representation read as λg =
⊕

σ∈Irr(G) 1Vσ
⊗ σ̄g and 

rg =
⊕

σ∈Irr(G) σg⊗1V̄σ
for all g ∈ G, respectively. We also patch together the isometries:

s :=
⊕

σ∈Irr(G)

s(σ) ⊗ 1V̄σ
∈ L(HA ⊗ L2(G),HA ⊗ H). (7)

By construction, μ : G → U(H) has finite-dimensional multiplicity spaces. Furthermore, 
straightforward computations reveal that

s∗s =
⊕

σ∈Irr(G)

s(σ)∗s(σ) ⊗ 1V̄σ
= 1A ⊗ 1G,

(ug ⊗ 1H)s(u∗
g ⊗ r∗g) =

⊕
σ∈Irr(G)

αg

(
s(σ)

)
(1A ⊗ σ∗

g) ⊗ 1V̄σ
= s ∀g ∈ G,

μgs =
⊕

σ∈Irr(G)

s(σ) ⊗ σ̄g = sλg ∀g ∈ G.

In other words, s is an isometry satisfying the Equations (4) and (5). It therefore remains 
to deal with Equation (3). Indeed, given a ∈ A and an operator T on L2(G) such that 
T
(
L2(G)

)
⊆ Vσ ⊗ V̄σ for some σ ∈ Irr(G), it is easily seen that a ⊗ T ∈ A ⊗ K

(
L2(G)

)
has the following property:

s(a⊗ T ) = (s(σ) ⊗ 1V̄σ
)(a⊗ T ) ∈ A⊗K(L2(G),Hσ ⊗ V̄σ) ⊆ A⊗K(L2(G),H).

But from the above we also obtain Equation (3), because the set of such operators is 
total in A ⊗K

(
L2(G)

)
. This completes the proof of the implication “(a) ⇒ (b)”. �

For the trivial representation of G we may without loss of generality choose H1 = C

and s(1) = 1A. If this holds, then we refer to the isometry s in Equation (7) as normalized
and notice that the projection ss∗ acts trivially on HA ⊗ H1 = HA ⊗C.
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Remark 3.2. In much the same way as in the proof of Lemma 3.1 we see that the adjoint 
s∗ ∈ L

(
HA⊗H, HA⊗L2(G)

)
of s satisfies s∗A ⊗K(H) ⊆ A ⊗K

(
H, L2(G)

)
or, equivalently, 

that the isometry s additionally satisfies

A⊗K(H)s ⊆ A⊗K(L2(G),H).

For this reason, we can assert that s is a multiplier for A ⊗ K(L2(G) ⊕ H), that is, 
s ∈ M

(
A ⊗K(L2(G) ⊕H)

)
, with (1A⊗ pH)s = 0 = s(1A⊗ pL2(G)), where pH and pL2(G)

denote the canonical projections onto H and L2(G), respectively.

Remark 3.3. Let s′(σ) ∈ A ⊗L(Vσ, H′
σ), σ ∈ Irr(G), be another family of isometries such 

that αg(s′(σ)) = s′(σ)(1A⊗σg) for all g ∈ G. Moreover, let μ′ : G → U(H′) and s′ be the 
corresponding unitary representation and isometry, respectively. Then there is a partial 
isometry t : HA⊗H → HA⊗H′ satisfying (1A⊗μ′

g)t = t(1A⊗μg) for all g ∈ G as well as 
s′(s′)∗ = tt∗ and ss∗ = t∗t (cf. [58, Lem. 4.3]). In particular, the projections s′(s′)∗ and 
ss∗ are Murray-von Neumann equivalent. This will be relevant later on for our attempt 
to characterize the faithful covariant representations of free C∗-dynamical systems.

Remark 3.4. A rich class of free actions is given by so-called cleft actions (see [57]), which 
we now briefly recall. We say that a C∗-dynamical system (A, G, α) is cleft if there is a 
unitary u ∈ M

(
A ⊗ C∗

r (G)
)

satisfying

ᾱg(u) = u(1A ⊗ rg) ∀g ∈ G, (8)

where ᾱg denotes the strictly continuous extension of αg ⊗ idC∗
r (G) to M

(
A ⊗ C∗

r (G)
)
. 

It is clear that each cleft C∗-dynamical system is free with a possible choice for μ and H

given by λ and L2(G), respectively. Regarded as noncommutative principal bundles, 
these actions are essentially characterized by the fact that all associated noncommutative 
vector bundles are trivial.

4. Representations of free C∗-dynamical systems

In this section we look more closely into covariant representations of free C∗-dynamical 
systems. For this purpose we fix a free C∗-dynamical system (A, G, α) and let B be its 
fixed point algebra.

Our first goal is to characterize all faithful covariant representations of (A, G, α) up 
to unitary equivalence. For a start we consider a faithful covariant representation (π, u)
of (A, G, α) with representation space HA. In accordance with Lemma 3.1 we choose a 
unitary representation μ : G → U(H) with finite-dimensional multiplicity spaces as well 
as an isometry s ∈ L(HA ⊗ L2(G), HA ⊗ H) satisfying the Equations (3), (4), and (5). 
We assume that s is normalized. Then ss∗ acts trivially on HA ⊗ H1 = HA ⊗ C and, 
by Equation (5), we have (1A ⊗ μg)ss∗ = ss∗(1A ⊗ μg) for all g ∈ G. Furthermore, 
Equation (4) implies that ss∗ may be restricted to a projection on HA(1) ⊗ H, where 
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HA(1) denotes the trivial isotypic component of HA. We shall use the letter p for this 
projection in L

(
HA(1) ⊗ H

)
.

Next, let us take into account the isometry

Ju : HA → HA ⊗ L2(G) = L2(G,HA), (Juη)(g) := u∗
gη. (9)

We write KA for its range, which is the fixed point space of HA⊗L2(G) under the action 
ug ⊗ rg, g ∈ G. Moreover, we denote by jα the ∗-homomorphism

jα : A → C
(
G, π(A)

)
⊆ L

(
HA ⊗ L2(G)

)
,

jα(x)(g) = π
(
αg−1(x)

)
= u∗

gπ(x)ug.

It is evident that jα is injective and that Ad[1A ⊗ λg] ◦ jα = jα ◦ αg for all g ∈ G.

Lemma 4.1. Consider the Hilbert space Hs := ss∗(HA ⊗ H) along with the map

πs : A → L(Hs), πs(x) := sjα(x)s∗. (10)

Then πs is a faithful ∗-representation. Additionally, πs is equivariant w.r.t. the action 
αg, g ∈ G, on A and the action Ad[1A ⊗ μg], g ∈ G, on L(Hs), respectively.

Proof. Using the isometry property of s and the injectivity of jα, we easily infer that πs

is a well-defined faithful ∗-representation. Next, let g ∈ G and let x ∈ A. Then

Ad[1A ⊗ μg]
(
πs(x)

) (5)= s
(
Ad[1A ⊗ λg](jα(x)

)
s∗ = πs

(
αg(x)

)
,

which proves that πs is also G-equivariant. �
Because ss∗ lies in M

(
B ⊗ K(H)

)
(see Remark 3.2) and the compact operators form 

an ideal, we instantly get the following statement.

Corollary 4.2. πs(A) is a subset of the multiplier algebra M
(
ss∗

(
B ⊗K(H)

)
ss∗

)
.

The preceding discussion entails that (A, G, α) can be covariantly represented as mul-
tipliers on B ⊗ K(H). In consequence, any ∗-representation πB : B → L(HB) gives rise 
to a covariant representation, 

(
(πB ⊗ id) ◦ πs, 1B ⊗ μ

)
, of (A, G, α) on the Hilbert space 

πB ⊗ id(ss∗)(HB ⊗ H) that has trivial isotypic component HB. If πB is faithful, then so 
is the covariant representation. We shall now demonstrate that, in fact, each faithful 
covariant representation of (A, G, α) is of this form.

To begin with, we notice that each πs(x), x ∈ A, intertwines the unitary representation 
G 
 g �→ ug ⊗ 1H ∈ U(Hs). Hence the subspace Hp := p

(
HA(1) ⊗ H

)
⊆ Hs is invariant 

under πs and, thus, we obtain a ∗-representation of A on Hp by putting
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πp : A → L(Hp), πp(x) := πs(x)|Hp

Hp
. (11)

Our next result establishes that Hp is isomorphic to KA, the range of the map Ju from 
Equation (9).

Lemma 4.3. For the map Φs : KA → Hp, Φs(f) := s(f) the following assertions hold:

1. Φs is a unitary map such that (1A ⊗ μg)Φs = Φs(1A ⊗ λg) for all g ∈ G.
2. Φs(η ⊗ 1L2(G)) = η ⊗ 1C for all η ∈ HA(1).
3. Φsjα(x) = πp(x)Φs for all x ∈ A.

Proof. For the first statement we claim that s(KA) = Hp. From this it follows that Φs is 
well-defined, surjective, and hence unitary, because s is an isometry. To prove the claim, 
we apply ss∗s = s and s to the inclusions s(KA) ⊆ HA(1) ⊗H and s∗(HA(1) ⊗ H) ⊆ KA, 
respectively, which in turn are a consequence of Equation (4). Furthermore, the com-
mutation relations λgrg = rgλg, g ∈ G, and Equation (5) make it obvious that Φs is 
G-equivariant. The second statement is due to the fact that s is normalized, while the 
last statement is clear from the defining Equation (10). �
Theorem 4.4. Let (A, G, α) be a free C∗-dynamical system with fixed point algebra B. 
Furthermore, let HB be a nontrivial representation space of B. Then each faithful covari-
ant representation of (A, G, α) such that the trivial isotypic component of the underlying 
representation space is isomorphic to HB is, up to unitary equivalence, of the form

(
p(HB ⊗ H), πp, 1B ⊗ μ

)
, (12)

where H, μ, p, and πp are as above (cf. Lemma 3.1 and Equation (11)).

Proof. We shall have established the theorem if we show that there is a unitary map 
Φ : HA → Hp such that Φug = (1A ⊗ μg)Φ for all g ∈ G, Φ(η) = η ⊗ 1C for all 
η ∈ HA(1), and Φπ(x) = πp(x)Φ for all x ∈ A. For this, we simply need to look at the 
composition ΦsJu, because the map Ju happens to satisfy equations similar to those of 
Lemma 4.3. �

Taking advantage of Remark 3.3, we get the following result:

Corollary 4.5. All faithful covariant representations of (A, G, α) are unitarily equivalent.

We continue by considering an arbitrary covariant representation (π, u) of (A, G, α) on 
a Hilbert space HA and bring to mind that π

(
A(σ)

)
. HA(1) ⊆ HA(σ) for all σ ∈ Irr(G). 

Our second goal is to establish that these inclusions are, in fact, equalities. To prove this, 
we proceed as follows. For each σ ∈ Irr(G) we identify
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ΓHA(σ) := {η ∈ HA ⊗ Vσ : ug ⊗ σg(η) = η ∀g ∈ G}

with the multiplicity space of HA(σ̄) and note that Φu ⊗ idVσ
provides an isomorphism 

between ΓHA(σ) and the multiplicity space of KA(σ̄), the latter being the σ̄-isotypic 
component of KA under the action 1A ⊗ λg, g ∈ G. Furthermore, for each σ ∈ Irr(G) we 
write Hσ for the multiplicity space of H(σ̄) (cf. Equation (6)) and infer that p(HA(1) ⊗Hσ)
may be regarded as the multiplicity space of Hp(σ̄) = p(HA(1) ⊗ H)(σ̄). From this and 
Lemma 4.3 it follows that for each σ ∈ Irr(G) the map

HA(1) ⊗ Hσ → ΓHA(σ), ζ �→ π
(
s(σ)

)∗(ζ) (13)

is surjective, where π
(
s(σ)

)
∈ π(A) ⊗ L(Vσ, Hσ) ⊆ L(HA ⊗ Vσ, HA ⊗ Hσ) denotes the 

isometry coming from disassembling s (cf. Lemma 3.1). Finally, we recall that for each 
σ ∈ Irr(G) the map ΓHA(σ̄) ⊗Vσ → HA(σ) given on simple tensors by ζ⊗v �→ id⊗evv(ζ)
is unitary, where evv(w̄) := 〈w, v〉 for all w̄ ∈ V̄σ. Having disposed of these preliminary 
steps, for each σ ∈ Irr(G) we may now conclude that

HA(σ) = span{evv(ζ) : v ∈ Vσ, ζ ∈ ΓHA(σ̄)}

= span
{
evv

(
π
(
s(σ̄)

)∗(ξ ⊗ η)
)

: v ∈ Vσ, ξ ∈ HA(1), η ∈ Hσ̄

}
.

Since for each v ∈ Vσ and η ∈ Hσ̄ the operator HA(1) 
 ξ �→ evv

(
π
(
s(σ̄)

)∗(ξ ⊗ η)
)
∈ HA

lies in π
(
A(σ)

)
, we have established our claim:

Corollary 4.6. Let (π, u) be a covariant representation of (A, G, α) on a Hilbert space HA. 
Then for each σ ∈ Irr(G) we have π

(
A(σ)

)
. HA(1) = HA(σ).

5. Lifting spectral triples

In this section we study permanence properties of free C∗-dynamical systems with 
respect to spectral triples. For a start we fix the following data:

• a compact Lie group G of dimension n with Lie algebra L(G);
• a free C∗-dynamical system (A, G, α) with fixed point algebra B;
• for each σ ∈ Irr(G) a finite-dimensional Hilbert space Hσ and an isometry s(σ) in 

A ⊗L(Vσ, Hσ) satisfying αg

(
s(σ)

)
= s(σ)(1A ⊗ σg) for all g ∈ G (cf. [58, Lem. 3.3]). 

In particular, for 1 ∈ Irr(G), we choose H1 := C and s(1) := 1A;
• a spectral triple DB := (B0, πB, HB, DB) on B.

Our main objective is to construct a spectral triple DA on A by means of the above data 
that extends DB in the sense of Definition 5.1 and incorporates the geometry of G.
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Definition 5.1. Let DA = (A0, πA, HA, DA) and DB = (B0, πB, HB, DB) be two spectral 
triples and suppose that B0 ⊆ A0. We say that DA is a lift of DB or that DA lifts DB if 
there is an isometry t : HB → HA such that the following conditions are satisfied:

1. πA(b)t = tπB(b) for all b ∈ B0;
2. t

(
dom(DB)

)
⊆ dom(DA) and DAt = tDB on dom(DB).

Combining 5.1.1. and 5.1.2. gives [DA, πA(b)]t = t[DB, πB(b)] for all b ∈ B.

Remark 5.2. Definition 5.1 is weak in the sense that it only addresses the Hilbert space 
t(HB) ⊆ HA. We may look at the sets of differential 1-forms Ω1(A0) and Ω1(B0) as-
sociated with the spectral triples DA and DB, respectively (see, e.g., [29, Sec. 8.1] and 
ref. therein). If DA is a lift of DB, then it follows immediately that

πA(x)[DA, πA(y)] t = t πB(x)[DB, πB(y)]

for all x, y ∈ B0, and hence Ω1(B0) = t∗Ω1(A0)t. However, in general Ω1(B0) does 
not embed into Ω1(A0) as a B0-bimodule. For the naïve construction of a lift given in 
the present study the natural embedding πB(x)[DB, πB(y)] �→ πA(x)[DA, πA(y)] for all 
x, y ∈ B0 is well-defined only under additional assumptions. Without further require-
ments we do not yet know whether this map becomes well-defined with a more refined 
construction.

Example 5.3. In [19,21] the authors consider spectral triples that are equivariant with 
respect to a torus action. Given such a spectral triple DA = (A0, πA, HA, DA, JA), they 
show that DA may under certain conditions (cf. [21, Def. 3.3 and Def. 3.4]) be restricted 
to a spectral triple DB = (B0, πB, HB, DB, JB) of the respective fixed point algebra B0. 
Then it is an easy matter to check that DA lifts DB in the sense of Definition 5.1.

A key feature of our free C∗-dynamical system (A, G, α) is the factor system associated 
with the isometries s(σ), σ ∈ Irr(G), (see [58, Def. 4.1]), which we now recall for the 
convenience of the reader. Given a finite-dimensional representation (σ, Vσ) of G, we 
decompose it into irreducible subrepresentations σ = σ1⊕· · ·⊕σn and define an isometry 
s(σ) ∈ A ⊗ L(Vσ, Hσ) satisfying αg

(
s(σ)

)
= s(σ)(1A ⊗ σg) for all g ∈ G by summing 

up the isometries s(σ1), . . . , s(σn). That is, we put Hσ := Hσ1 ⊕ · · · ⊕ Hσn
and s(σ) :=

s(σ1) ⊕ · · · ⊕ s(σn). In this way we extend the mapping σ �→ Hσ to an additive functor 
from the representation category of G into the category of finite-dimensional Hilbert 
spaces and the mapping σ �→ s(σ) to a family of G-equivariant isometries that is indexed 
by the representation category of G and behaves naturally with respect to intertwiners. 
Notably, for each finite-dimensional representation σ of G we have

ΓA(σ) = s(σ)∗(B ⊗ Hσ).
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Furthermore, we obtain a ∗-homomorphism

γσ : B → B ⊗ L(Hσ), γσ(b) := s(σ)(b⊗ 1Vσ
)s(σ)∗,

to which we refer as coaction of the factor system. For each pair (σ, τ) of finite-
dimensional representations of G we obtain an element

ω(σ, τ) := s(σ ⊗ τ)s(σ)∗s(τ)∗ ∈ B ⊗ L(Hσ ⊗ Hτ ,Hσ⊗τ ),

which we call the cocycle of the factor system. Here s(σ) and s(τ) are regarded amplified 
to act trivially on Vτ and Hσ, respectively. The most important relations of the coactions 
and the cocycles are captured by the following equations:

ω(σ, τ)ω(σ, τ)∗ = γσ⊗τ (1B), ω(σ, τ)∗ω(σ, τ) = γτ ⊗ id
(
γσ(1B)

)
132, (14)

γσ⊗τ (b)ω(σ, τ) = ω(σ, τ) γτ ⊗ id
(
γσ(b)

)
132,

ω(σ, τ ⊗ ρ)ω(τ, ρ)134 = ω(σ ⊗ τ, ρ) γρ ⊗ id
(
ω(σ, τ)

)
1423

for all finite-dimensional representations σ, τ, ρ of G and b ∈ B (see [59, Lem. 4.3]). The 
subindices refer to the leg numbering within the underlying tensor product indicating 
the reasonable permutation of tensor factors.

5.1. Lifting the algebra

We do not require that A comes equipped with a dense unital ∗-subalgebra of smooth 
elements as initial data. Hence, as a first step towards a spectral triple on A, we fix such an 
algebra. To this end, we recall that each isotypic component A(σ̄), σ ∈ Irr(G), admits a 
linear bijection Φσ : ΓA(σ) ⊗V̄σ → A(σ̄) (see Equation (1)). Since ΓA(σ) = s(σ)∗(B⊗Hσ), 
it immediately follows that A(σ̄) is linearly spanned by the elements

aσ(b⊗ η ⊗ v̄) := Φσ

(
s(σ)∗(b⊗ η) ⊗ v̄

)
, (15)

where b ∈ B, η ∈ Hσ, and v̄ ∈ V̄σ. We may extend this notation linearly to define an 
element aσ(x) ∈ A(σ̄) for each x ∈ B⊗Hσ⊗ V̄σ. Moreover, we may extend Equation (15)
to any finite-dimensional representation σ of G to get an element aσ(x) ∈ A for each 
x ∈ B ⊗ Hσ ⊗ V̄σ. The action α and the multiplication on A then take the form

αg

(
aσ(b⊗ η ⊗ v̄)

)
= aσ(b⊗ η ⊗ σ̄gv), (16)

aσ(b⊗ η ⊗ v̄) · aτ (c⊗ ϑ⊗ w̄) = aσ⊗τ

(
ω(σ, τ) γτ (b)13 (ξ ⊗ η ⊗ ϑ⊗ v̄ ⊗ w̄)

)
(17)

for all g ∈ G, σ, τ ∈ Irr(G), b, c ∈ B, η ∈ Hσ, ϑ ∈ Hτ , v̄ ∈ V̄σ, and w̄ ∈ V̄τ . It is shown 
in [58, Sec. 5] that also the involution can be made explicit on these elements. Indeed, 
for each σ ∈ Irr(G) there is an antilinear map Jσ : B ⊗ Hσ → B ⊗ Hσ̄ such that
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aσ(x⊗ v̄)∗ = aσ̄
(
Jσ(x) ⊗ v

)
(18)

for all x ∈ B⊗Hσ and v̄ ∈ V̄σ. Summarizing, the elements aσ(x) for a finite-dimensional 
representation σ of G and x ∈ B⊗Hσ⊗V̄σ form a unital ∗-subalgebra, which is dense and 
G-invariant. Furthermore, under some relatively mild conditions on the factor system we 
may restrict to elements x ∈ B0 ⊗ Hσ ⊗ V̄σ:

Theorem 5.4. Suppose that for each σ, τ ∈ Irr(G) we have γσ(B0) ⊆ B0 ⊗ L(Hσ) and 
ω(σ, τ) ∈ B0 ⊗ L(Hσ ⊗ Hτ , Hσ⊗τ ). Then the set

A0 := {aσ(x) : σ finite-dimensional representation of G, x ∈ B0 ⊗ Hσ ⊗ V̄σ}.

is a dense and G-invariant unital ∗-subalgebra of A satisfying AG
0 = B0. The action α, 

the multiplication, and the involution on A0 are given by the Equations (16), (17), (18), 
respectively.

Proof. Choosing σ trivial, we see at once that B0 ⊆ A0. Since B0 is dense in B, it 
follows that A0 is dense in A. Equation (16) shows that A0 is α-invariant and that 
AG

0 = B0. Equation (17) implies that A0 is, under the given conditions, a subalgebra 
of A. We leave it to the reader to follow the construction in [58, Sec. 5] to verify that 
Jσ(B0 ⊗Hσ) ⊆ B0 ⊗Hσ̄ for all σ ∈ Irr(G) and hence that A0 is, in fact, a ∗-algebra. �

Throughout the rest of the paper we make the standing assumptions that

γσ(B0) ⊆ B0 ⊗ L(Hσ) and ω(σ, τ) ∈ B0 ⊗ L(Hσ ⊗ Hτ ,Hσ⊗τ )

for all σ, τ ∈ Irr(G), and we proceed with the subalgebra A0 as the algebra of smooth 
functions in the spectral triple on A.

Remark 5.5.

1. Since the action α is smooth on each isotypic component, the algebra A0 is contained 
in A∞, the smooth domain of α.

2. Putting A0(σ) := span{aσ(x) : x ∈ B0 ⊗ Hσ̄ ⊗ Vσ} for each σ ∈ Irr(G), we see at 
once that A0 decomposes into the algebraic direct sum 

⊕alg
σ∈Irr(G) A0(σ).

Remark 5.6. Concrete examples of C∗-dynamical systems typically offer a canonical sub-
algebra for a spectral triple. For a reasonable choice of isometries s(σ), σ ∈ Irr(G), the 
algebra A0 is included, because it is the minimal ∗-subalgebra compatible with the given 
data. More precisely, A0 is the smallest ∗-subalgebra of A that is invariant under α, 
satisfies B0 ⊆ AG

0 , and such that each s(σ), σ ∈ Irr(G), lies in A0 ⊗ L(Vσ, Hσ).
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5.2. Lifting the ∗-representation

Our next goal is to provide a faithful covariant representation of (A, G, α) that ex-
tends the ∗-representation πB : B → L(HB). For this purpose, we consider the unitary 
representation μ : G → U(H) on H as introduced in the proof of Lemma 3.1, that is,

H :=
⊕

σ∈Irr(G)

Hσ ⊗ V̄σ and μg :=
⊕

σ∈Irr(G)

1Hσ
⊗ σ̄g. (19)

We recall from Corollary 4.2 that A admits a faithful ∗-homomorphism

πs : A → M
(
ss∗

(
B ⊗K(H)

)
ss∗

)
.

Composing this with the faithful ∗-representation πB ⊗ id : B ⊗K(H) → L(HB ⊗H) and 
putting p := πB ⊗ id(ss∗) ∈ L(HB ⊗H), we obtain a faithful ∗-representation of A on the 
Hilbert space Hp := p(HB ⊗ H):

πA : A → L(Hp), πA := (πB ⊗ id) ◦ πs. (20)

For an explicit form of πA, we proceed analogously to Section 5.1. To simplify notation 
we regard B as subalgebra of L(HB), omitting the representation πB. For σ ∈ Irr(G), 
ξ ∈ HB, η ∈ Hσ, and v̄ ∈ V̄σ we define a vector in Hp by

ψσ(ξ ⊗ η ⊗ v̄) := s(σ)s(σ)∗(ξ ⊗ η) ⊗ v̄.

We extend this notation linearly in all components to arbitrary finite-dimensional repre-
sentations σ of G and vectors x ∈ HB ⊗Hσ ⊗ V̄σ as argument and notice that the vectors 
ψσ(x) are dense in Hp. The action uA := 1B ⊗μ on Hp and the ∗-representation πA then 
take the form

(uA)g . ψσ(ξ ⊗ η ⊗ v̄) = ψσ(ξ ⊗ η ⊗ σ̄g v̄),

πA
(
aσ(b⊗ η ⊗ v̄)

)
. ψτ (ξ ⊗ ϑ⊗ w̄) = ψσ⊗τ

(
ω(σ, τ) γτ (b)13 (ξ ⊗ η ⊗ ϑ⊗ v̄ ⊗ w̄)

)
(21)

for all g ∈ G, σ, τ ∈ Irr(G), b ∈ B, ξ ∈ HB, η ∈ Hσ, ϑ ∈ Hτ , v̄ ∈ V̄σ, and w̄ ∈ V̄τ . 
One instantly becomes aware of the similarities to the Equations (16) and (17) above. 
Choosing the trivial representation as σ, we see at once that πA(b) acts as γτ (b) for all 
b ∈ B, and, in consequence, the ∗-representation πB is recovered on HB = HB ⊗C ⊆ Hp. 
That is, in summary:

Theorem 5.7. The pair (πA, uA) is a faithful covariant representation of (A, G, α) on Hp. 
Furthermore, writing t : HB → Hp for the isometry given by t(ξ) := ξ ⊗ 1C, we have 
πA(b)t = tπB(b) for all b ∈ B.
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5.3. Lifting the Dirac operator

We now turn to the construction of a Dirac operator, which is the only point remaining 
in our endeavour to establish a spectral triple on A. The procedure naturally falls into 
three parts. First, we construct a “horizontal” lift of DB to an operator on Hp. Second, 
we associate a “vertical” Dirac operator with the unitary representation μ : G → U(H). 
Finally, we put together the horizontal and the vertical part in a suitable way.

5.3.1. The horizontal lift
By the definition of the ∗-algebra A0, for each σ ∈ Irr(G) the operator p(σ) :=

s(σ)s(σ)∗ lies in B0 ⊗ L(Hσ). Hence Lemma 2.1 implies that the unbounded operator

Dσ := p(σ)(DB ⊗ 1Hσ
)p(σ) with domain dom(Dσ) := p(σ)(dom(DB) ⊗ Hσ)

on the Hilbert space Hp(σ) = p(σ)(HB ⊗ Hσ) is self-adjoint and has compact resolvent. 
In particular, we have D1 = DB. Passing over to the Hilbert space direct sum, we may 
conclude, from [49, Lem. 5.3.7] for instance, that there is a unique self-adjoint operator, 
let’s say, Dh on Hp such that Dh | dom(Dσ) ⊗ V̄σ = Dσ ⊗ 1V̄σ

for all σ ∈ Irr(G). We now 
put all of this on record:

Corollary 5.8. The following assertions hold for the unbounded operator Dh on Hp:

1. Dh is a self-adjoint.
2. Dht = tDB on dom(D), where t : HB → Hp denotes the isometry from Theorem 5.7.
3. (1B ⊗ μg)Dh = Dh(1B ⊗ μg) for all g ∈ G.

The task is now to establish that Dh has bounded commutators with A0. For a start 
we notice that the span of vectors ψσ(ξ ⊗ η ⊗ v̄) for a finite-dimensional representation 
σ of G, ξ ∈ dom(DB), η ∈ Hσ, and v̄ ∈ V̄σ lie in the domain of Dh and that

Dhψσ(ξ ⊗ η ⊗ v̄) = ψσ

(
DB ⊗ 1 p(σ)12 (ξ ⊗ η ⊗ v̄)

)
. (22)

Moreover, by our standing assumptions, we have

[DB ⊗ 1Hσ
, γσ(b)] ∈ L(HB ⊗ Hσ) ∀b ∈ B0, (23)

[DB ⊗ 1, ω(σ, τ)] ∈ L(HB ⊗ Hσ ⊗ Hτ ,HB ⊗ Hσ⊗τ ) (24)

for all finite-dimensional representations σ, τ of G, where [DB ⊗ 1, ω(σ, τ)] informally 
stands for the difference (DB ⊗ 1Hσ⊗τ

)ω(σ, τ) − ω(σ, τ)(DB ⊗ 1Hσ
⊗ 1Hτ

).

Theorem 5.9. Suppose that there are constants C(b) > 0 and C(σ) > 0 for all b ∈ B0
and σ ∈ Irr(G), respectively, such that
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∥∥
sup
τ∈Irr(G)

∥∥[DB ⊗ 1Hτ
, γτ (b)]

∥∥ < C(b) ∀b ∈ B0,

sup
τ∈Irr(G)

∥∥[DB ⊗ 1, ω(σ, τ)]
∥∥ < C(σ) ∀σ ∈ Irr(G).

Then Dh has bounded commutators with A0.

Proof. It clearly suffices to demonstrate that Dh has a bounded commutator with each 
operator πA

(
aσ(x)

)
for a finite-dimensional representation σ of G and x = b ⊗η⊗ v̄ with 

b ∈ B0, η ∈ Hσ, and v̄ ∈ V̄σ. Hence let us consider such an operator and, in addition, a 
vector ψτ (y) for some finite-dimensional representation τ of G and

y =
∑
i∈I

ξi ⊗ ζi ⊗ w̄i ∈ dom(DB) ⊗ Hτ ⊗ V̄τ .

Then the Equations (21) and (22) together with the identity p(σ ⊗ τ)ω(σ, τ) = ω(σ, τ)
from Equation (14) imply

DhπA
(
aσ(x)

)
ψτ (y) =

∑
i∈I

ψσ⊗τ

(
DB ⊗ 1ω(σ, τ)123 γτ (b)13 (ξi ⊗ η ⊗ ζi ⊗ v̄ ⊗ w̄i)

)

and

πA
(
aσ(x)

)
Dhψτ (y) =

∑
i∈I

ψσ⊗τ

(
ω(σ, τ)123 γτ (b)13 DB ⊗ 1 p(τ)13 (ξi ⊗ η ⊗ ζi ⊗ v̄ ⊗ w̄i)

)
.

For the commutator it follows that

[
Dh, πA

(
aσ(x)

)]
ψτ (y) =

∑
i∈I

ψσ⊗τ

(
[DB ⊗ 1, ω(σ, τ)γτ (b)13] p(τ)13 (ξi ⊗ η⊗ ζi ⊗ v̄⊗ w̄i)

)
.

By the hypothesis, the operator [DB⊗1, ω(σ, τ)γτ (b)13] is bounded in τ by some constant 
that only depends on σ and b, let’s say C(σ, b), and, in consequence,

[
Dh, πA

(
aσ(x)

)]
ψτ (y)

∥∥ ≤
∥∥[DB ⊗ 1, ω(σ, τ)γτ (b)13]

∥∥ ·
∥∥∥∑
i∈I

p(τ)13(ξi ⊗ η ⊗ ζi ⊗ v̄ ⊗ w̄i)
∥∥∥

≤ C(σ, b) · ‖η ⊗ v̄‖ · ‖ψτ (y)‖.

Therefore, [Dh, πA
(
aσ(x)

)
] is bounded, because the vectors ψτ (y) for a finite-dimensional 

representation τ of G and y ∈ dom(D) ⊗ Hτ ⊗ V̄τ are dense in Hp. �
Remark 5.10. The condition that the operators in Equation (23) are uniformly bounded 
is closely related to the notion of a so-called equicontinuous group action on a spectral 
metric space, [7, Def. 3] (see Section 6 below).
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Remark 5.11. The commutators in Equation (24) do not vanish in general. To see this, we 
recall a C∗-algebraic version of the nontrivial Hopf-Galois extensions studied in [41] (see 
also [15]). Let θ ∈ R and let θ′ denote the skewsymmetric 4 ×4-matrix with θ′1,2 = θ′3,4 = 0
and θ′1,3 = θ′1,4 = θ′2,3 = θ′2,4 = θ/2. The Connes-Landi sphere A(S7

θ′) is the universal 
unital C∗-algebra generated by normal elements z1, . . . , z4 subject to the relations

zizj = e2πıθ′
i,j zjzi, z∗j zi = e2πıθ′

i,j ziz
∗
j ,

4∑
k=1

z∗kzk = 1

for all 1 ≤ i, j ≤ 4. On account of [58, Expl. 3.5], it comes equipped with a free action 
of the non-Abelian group G = SU(2) given for each U ∈ SU(2) on generators by

αU : (z1, . . . , z4) �→ (z1, . . . , z4)
(
U 0
0 U

)
.

The corresponding fixed point algebra is the universal unital C∗-algebra A(S4
θ) generated 

by normal elements w1, w2 and a self-adjoint element x satisfying

w1w2 = e2πıθ w2w1, w∗
2w1 = e2πıθ w1w

∗
2 , w∗

1w1 + w∗
2w2 + x∗x = 1.

Moreover, for the fundamental representation (σ1, C2) of SU(2) the element

s(σ1) :=

⎛
⎜⎝

z∗1 z∗2
−z2 z1
z∗3 z∗4
−z4 z3

⎞
⎟⎠ ∈ A(S7

θ′) ⊗ L(C2,C4)

is an isometry satisfying αU

(
s(σ1)

)
= s(σ1)(1A ⊗ U) for all U ∈ SU(2) and, in conse-

quence, an easy computation with zθ := eπıθ gives

p(σ1) := s(σ1)s∗(σ1) = 1
2

⎛
⎜⎝

1 + x 0 w1 w2
0 1 + x −zθw

∗
2 z̄θw

∗
1

w̄1 −z̄θw2 1 − x 0
w̄2 zθw1 0 1 − x

⎞
⎟⎠ .

For a Dirac operator on A(S4
θ) one has the following construction. Let D be the classical 

Dirac operator on S4, that is, the unbounded self-adjoint operator on the space L2(S4, S)
of square integrable spinors on S4. Furthermore, let L2(A2

θ/2) be the GNS space of the 
quantum 2-torus A2

θ/2 with respect to its tracial state (cf. Section 7) and consider the 
essentially self-adjoint operator D⊗1 on L2(S4, S) ⊗L2(A2

θ/2) with domain dom(D⊗1) :=
dom(D) ⊗algL

2(A2
θ/2). The latter Hilbert space comes equipped with a natural action of 

the classical T 2-torus and the restriction Dθ of the self-adjoint extension of D⊗ 1 to the 
corresponding fixed point algebra L2(S4

θ , S) is the Dirac operator on A(S4
θ). It is now a 

consequence of [41, Sec. 4] that the commutator [Dθ ⊗ 1C4 , ω(σ1, 1)] = [Dθ ⊗ 1C4 , p(σ1)]
does not vanish.
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Summarizing, we have seen that the operator Dh has a number of good properties and 
is almost a Dirac operator for our noncommutative principal bundle (A, G, α). In fact, 
one missing feature for Dh to be a Dirac operator on A is that it does not incorporate 
the geometry of the “fibre” G. Another one is that Dh does in general not need to have 
compact resolvent. In order to resolve these issues, we will add a vertical term, whose 
construction is the concern of the upcoming section.

5.3.2. The vertical Dirac operator
In this section we associate a vertical Dirac operator with the free C∗-dynamical 

system (A, G, α). For this purpose, we endow L(G) with an Ad-invariant inner product, 
consider a finite-dimensional ∗-representation πspin : C�(G) → L(Hspin) of the Clifford 
algebra C�(G) of L(G), and put FX := πspin(X) for each X ∈ L(G).

For the construction of a Dirac operator, we proceed similar to [28]. In greater detail, 
we consider the unitary representation μ : G → U(H) and recall from Section 2 that for 
any orthonormal basis X1, . . . , Xn of L(G) the unbounded operator

Dv :=
n∑

k=1

∂Xk
μ⊗ FXk

on H ⊗Hspin with domain dom(Dv) := H∞⊗Hspin is essentially self-adjoint. For simplicity 
of notation, we utilize the same letter for its unique self-adjoint extension. Because the 
unitary representation μ : G → U(H) has finite-dimensional multiplicity spaces, Dv has 
compact resolvent by Lemma 2.2. Throughout the remainder of this article, we refer 
to Dv as the vertical Dirac operator associated with (A, G, α).

Next, let us look at the unbounded operator associated with the unitary representa-
tions uA : G → U(Hp), which is the self-adjoint extension of

D̂v :=
n∑

k=1

∂Xk
uA ⊗ FXk

on Hp ⊗ Hspin with domain dom(D̂v) := H∞
p ⊗ Hspin. Furthermore, for each X ∈ L(G), 

we have [∂XuA, πA(x)] = ∂XπA
(
α(x)

)
for all x ∈ A∞.

Corollary 5.12 (cf. [27, Prop. 2.10]). The following assertions hold for the unbounded 
operator D̂v on Hp ⊗ Hspin:

1. D̂v is self-adjoint and D̂v = 1HB ⊗Dv on H∞
p ⊗ Hspin.

2. [D̂v, πA(x)] is bounded for all x ∈ A∞. In greater detail, for each x ∈ A∞ we have 
πA(x)

(
dom(D̂v)

)
⊆ dom(D̂v) and [D̂v, πA(x)] =

∑n
k=1 ∂Xk

πA
(
α(x)

)
⊗ FXk

.

We note that D̂v = 0 on HB ⊗ Hspin ⊆ H∞
p ⊗ Hspin and that [D̂v, πA(b)] = 0 for all 

b ∈ B, which may justify the expression “vertical”.
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5.3.3. The assembled Dirac operator
We are finally in a position to present a spectral triple on A that lifts the spectral 

triple DB and incorporates the geometry of G. Let Dh be the horizontal lift of DB to Hp

from Section 5.3.1 and let Dv be the vertical Dirac operator on H ⊗Hspin as introduced 
in the preceding section. Additionally, let γspin ∈ L(Hspin) be a self-adjoint operator 
satisfying γ2

spin = 1Hspin and Dv(1H ⊗ γspin) = −(1H ⊗ γspin)Dv. Such an operator can 
always be found by increasing Hspin if necessary. Then we may look at the symmetric 
operator

Dref := DB ⊗ 1H ⊗ γspin + 1HB ⊗Dv

with domain

dom(Dref) := dom(DB) ⊗alg dom(Dv) ⊆ HB ⊗ H⊗ Hspin.

According to [17, Sec. 4], its closure D̄ref is self-adjoint with pure point spectrum 
consisting of countably many real eigenvalues, each with finite multiplicity, and the only 
limit point of their absolute values is given by +∞. In particular, D̄ref has compact 
resolvent. Applying Lemma 2.1 and combining Theorem 5.9 with Corollary 5.12, we get 
the main results of this paper:

Theorem 5.13. For the operator

DA := pD̄ref p = Dh ⊗ γspin + p(1HB ⊗Dv)p = Dh ⊗ γspin + D̂v (25)

with domain p dom(D̄ref) in HA := p(HB ⊗ H ⊗ Hspin) the following assertions hold:

1. DA is self-adjoint and has compact resolvent.
2. Under the hypotheses of Theorem 5.9, the commutator [DA, πA(x)] is bounded for 

all x ∈ A0, where πA is understood to be amplified in the obvious way.

We occasionally write D̂h := Dh ⊗ γspin for the horizontal part of DA if no confusion 
regarding the operator γspin can arise. Equation (25) then reads as DA = D̂h + D̂v.

Remark 5.14. Suppose the spectral triple DB is even, which amounts to saying that there 
is a self-adjoint unitary operator γB on HB such that γBπB(b) = πB(b)γB for all b ∈ B
and γBDB = −DBγB. Then one may work with the operator

D′
ref := DB ⊗ 1H⊗Hspin + γB ⊗Dv

with domain dom(D′
ref) := dom(DB) ⊗alg dom(Dv) ⊆ HB ⊗ H ⊗ Hspin. All arguments of 

this article considering Dref likewise apply to D′
ref.
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Remark 5.15. Theorem 5.13 has a clear meaning in unbounded KK-theory as was kindly 
pointed out to us by van Suijlekom. Indeed, our Dirac operator DA in Equation (25)
is an example of the Kasparov product [37,44] of the unbounded Kasparov A-B-module 
(A0, πA, Hp, D̂v) with the spectral triple DB and the DB-connection induced by Dh.

Corollary 5.16. DA := (A0, πA, HA, DA) is a spectral triple on A that lifts DB in the 
sense of Definition 5.1 w.r.t. the isometry t : HB → HA, t(ξ) := ξ ⊗ 1Hspin ⊗ 1C2 .

Remark 5.17. We briefly resume the discussion in Remark 5.2 by looking at the dif-
ferential 1-forms Ω1(A0) associated with the spectral triple DA of Corollary 5.16. A 
moment’s thought shows that Ω1(B0) embeds into Ω1(A0) if, for instance, γσ(b) = b ⊗ 1
for all σ ∈ Irr(G) and b ∈ B0 (cf. Equation (21)). This is guaranteed for classical principal 
bundles, but also in some noncommutative situations (see, e.g., [56, Sec. 5]).

In the following sections we investigate how the lift constructed above compares to 
established examples.

6. Example: crossed products

Let B be a unital C∗-algebra and let α ∈ Aut(B). This example focuses on the crossed 
product A := B �α Z equipped with the natural dual circle action α̂. We consider B as 
a subalgebra of A and write v ∈ B �α Z for the generator of the Z-action defined by α. 
Then the action α̂ is given by

α̂z(b) = b ∀b ∈ B and α̂z(v) = z · v

for all z ∈ T . The fixed point algebra AT is equal to B. More generally, each isotypic 
component A(k), k ∈ Z ∼= Irr(T ), is given by Bvk. From this it may be concluded 
that the C∗-dynamical system (A, T , α̂) is cleft and, therefore, free (cf. [57, Lem. 4.5]). 
Moreover, we may put Hk := C for every k ∈ Z and let the isometries u(k) := v−k, 
k ∈ Z, serve as initial data for the construction provided in Section 5.

Next, let DB := (B0, πB, HB, DB) be a spectral triple on B. For the sake of simplicity, 
we identify B with πB(B) ⊆ L(HB). Then the dense subalgebra A0 ⊆ A from Section 5.1
consists of all elements of the form 

∑
k∈Z bkv

k with only finitely many nonzero elements 
bk ∈ B0. The lifted ∗-representation πA : A → L(Hp) introduced in Section 5.2 is given 
by the Hilbert space Hp := �2(Z, HB) and the relations

(
πA(b)η

)
k

= α−k(b)ηk and
(
πA(v)η

)
k

= ηk−1

for all b ∈ B, η ∈ �2(Z, HB), and k ∈ Z. The horizontal Dirac operator constructed in 
Section 5.3.1 is given by the self-adjoint extension of the operator Dh = DB ⊗ 1�2(Z) on 
the domain dom(Dh) = dom(DB) ⊗ �2(Z). The vertical Dirac operator Dv, as presented 
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in Section 5.3.2, is the tensor product of the standard operator on the circle T ∼= R/Z, 
that is, −ı d

dt , with the Pauli matrix σ2 :=
( 0 −ı
ı 0

)
or, equivalently,

(
Dv(ζ)

)
k

= k · σ2(ζk)

for all ζ = (ζk)k∈Z ∈ �2(Z) ⊗C2 = �2(Z, C2).
Now, we additionally assume that the automorphism α generates an equicontinuous 

group (see [7, Def. 3]). In particular, we may choose

B0 :=
{
b ∈ B : sup

k∈Z

∥∥[D,πA
(
αk(b)

)
]
∥∥ < ∞

}

as a dense unital ∗-subalgebra of B, which ensures that the operators in Equation (23)
are uniformly bounded. Corollary 5.16 therefore implies that DA := (A0, πA, HA, DA)
is a spectral triple on A that lifts DB in the sense of Definition 5.1 and builds in the 
geometry of circle, where HA := Hp ⊗C2 = �2(Z, HB) ⊗C2 and

(
DA(η)

)
k
=

(
DB ⊗ σ1 + (k · 1HB) ⊗ σ2

)
(ηk)

for all η = (ηk)k∈Z ∈ HA and the Pauli matrix σ1 :=
( 0 1

1 0

)
. In summary, our construction 

extends the construction provided in the seminal work [7, Sec. 3.4] by Bellissard, Marcolli, 
and Reihani.

7. Example: quantum 4-tori

Let θ be a real skew-symmetric 4 × 4-matrix and, for 1 ≤ k, � ≤ 4, put λk,� :=
exp(2πıθk,�) for short. In this example we consider the quantum 4-torus A4

θ, which is 
the universal C∗-algebra with unitary generators u1, . . . , u4 satisfying the commutation 
relations uku� = λk,�u�uk for all 1 ≤ k, � ≤ 4. The classical torus T 4 acts naturally on 
A4

θ via the ∗-automorphisms given by τ(uk) = zk · uk for all z = (z1, . . . , z4) ∈ T 4 and 
1 ≤ k ≤ 4. This is the so-called gauge action. We write L2(A4

θ) for the GNS space with 
respect to the canonical τ -invariant tracial state on A4

θ and assume A4
θ ⊆ L

(
L2(A4

θ)
)
. For 

this example it is expedient to consider the canonical inner product on the Lie algebra 
L(T 4) = R4 and to work with the standard orthonormal basis. Because the gauge action 
is implemented by unitaries on L2(A4

θ), the directional derivatives for each coordinate 
provide unbounded skew-symmetric operators ∂1, . . . , ∂4 on L2(A4

θ). For a Dirac operator 
on A4

θ, we take into account the irreducible ∗-representation of C�(T 4) on the spinors 
Hspin := C2 ⊗ C2. That is, we choose operators σ1, σ2, σ3 ∈ L(C2) satisfying σ2

k = −1
and σkσ� = −σ�σk for all 1 ≤ k �= � ≤ 3 and put

F1 := σ1 ⊗ σ3, F2 := σ2 ⊗ σ3, F3 := 1 ⊗ σ1, F4 := 1 ⊗ σ2.

Then the canonical Dirac operator on A4
θ is the self-adjoint extension of
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D4 := ∂1 ⊗ F1 + ∂2 ⊗ F2 + ∂3 ⊗ F3 + ∂4 ⊗ F4

defined on some suitable domain in L2(A4
θ) ⊗ Hspin.

Our study revolves around the restricted gauge action α : T 2 → Aut(A4
θ) defined by

αz(u1) := u1, αz(u2) := u2, αz(u3) := z1 · u3, αz(u4) := z2 · u4

for all z = (z1, z2) ∈ T 2. Its fixed point algebra is the quantum 2-torus A2
θ′ generated 

by the unitaries u1 and u2, where θ′ denotes the real skew-symmetric 2 × 2-matrix with 
upper right off-diagonal entry θ12. More generally, for each (k, �) ∈ Z2 the corresponding 
isotypic component is A4

θ(k, �) takes the form u(k, �)A2
θ′ for the unitary u(k, �) := u�

4u
k
3 . 

In particular, the C∗-dynamical system (A4
θ, T

2, α) is cleft and therefore free. Next, let 
L2(A2

θ′) be the GNS space of A2
θ′ with respect to its gauge-invariant trace. By Section 4, 

the unitaries give rise to the ∗-representation πu : A4
θ → L

(
L2(T 2) ⊗ L2(A2

θ′)
)

uniquely 
determined by

πu(u1) = rθ31,θ41 ⊗ u1, πu(u2) = rθ32,θ42 ⊗ u2,

πu(u3) = z1 ⊗ 1, πu(u3) = rθ34,0z2 ⊗ 1

where rt, t = (t1, t2) ∈ R2, denotes the rotation operator given by (rtf)(z) := f(zt11 , zt22 )
for all f ∈ L2(T 2) and z = (z1, z2) ∈ T 2 and z1/2 stands for the multiplication operator 
(z1/2)f(z) := z1/2f(z) for all f ∈ L2(T 2) and z ∈ T 2. Now, a standard computation 
establishes that this ∗-representation is unitarily equivalent to the GNS-representation.

In order to apply the construction of Section 5.3, we pick the canonical Dirac operator 
D2 = ∂1 ⊗ F1 + ∂2 ⊗ F2 on L2(A2

θ′) ⊗C2. Then Section 5.3.1 immediately provides the 
horizontal lift Dh of D2, which is the self-adjoint extension of

Dh = 1 ⊗ ∂1 ⊗ σ1 + 1 ⊗ ∂2 ⊗ σ2

on some suitable dense domain in L2(T 2) ⊗ L2(A2
θ′) ⊗ C2. The vertical Dirac operator 

constructed in Section 5.3.2 is given by

Dv = ∂T
2

1 ⊗ σ1 + ∂T
2

2 ⊗ σ2

on some suitable dense domain in L2(T 2) ⊗C2, where ∂T
2

1 and ∂T
2

2 denote the derivatives 
of the translation on L2(T 2) along the respective coordinates. According to Section 5.3.3, 
the assembled Dirac operator on A4

θ then reads

DA4
θ

= Dh ⊗ σ3 + 1 ⊗Dv

= 1 ⊗ ∂1 ⊗ F1 + 1 ⊗ ∂2 ⊗ F2 + ∂T
2

1 ⊗ 1 ⊗ F3 + ∂T
2

2 ⊗ 1 ⊗ F4
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on some suitable dense domain in L2(T 2) ⊗L2(A2
θ′) ⊗Hspin. A straightforward verification 

finally shows that this operator coincides with the canonical Dirac operator of A4
θ up to 

unitary equivalence to the GNS representation.

Remark 7.1. Let γk,� for (k, �) ∈ Z2 = Irr(T 2) be the coaction of the associated factor 
system. It is straightforward to check that γk,� is, in fact, the gauge action γk,� = τz for 
z = (λk

31λ
�
41, λ

k
32λ

�
42). The gauge-invariance of the Dirac operator D2 therefore yields

[D2, γk,�(x) ⊗ 1C2 ] = γk,� ⊗ id
(
[D2, x⊗ 1C2 ]

)
(26)

for all x ∈ A2
θ′ and k, � ∈ Z. This, and the fact that the cocycle of the factor system takes 

values in C · 1A2
θ′

, entail that the hypotheses of Theorem 5.9 are fulfilled. Furthermore, 
coming back to Remark 5.2, it is an easy task to show that Equation (26) implies that 
Ω1(A2

θ′) naturally embeds into Ω1(A4
θ).

8. Example: homogeneous spaces

In this example we consider a compact Lie group G together with a closed subgroup 
H ≤ G acting on G from the right. This gives rise to a principal H-bundle over G/H. 
Algebraically we look at the C∗-algebra C(G) endowed with the action rh, h ∈ H, given 
by (rhf)(g) := f(gh) for all g ∈ G and h ∈ H, which is certainly free in the sense of 
Ellwood according to [51, Prop. 7.1.12 and Thm. 7.2.6]). We identify the corresponding 
fixed point algebra with C(G/H).

In what follows, we write πG : C(G) → L
(
L2(G)

)
and πH : C(H) → L

(
L2(H)

)
for 

the ∗-representation by multiplication operators, respectively. For the adjoint action of 
G on L(G) we write Adg, g ∈ G, and we use the same notation for its extension to the 
Clifford algebra C�(G) by algebra automorphisms.

8.1. Regarding freeness

To establish freeness algebraically, we regard L2(H) ⊆ L2(G) as the subspace of func-
tions with support in H and identify the multiplier algebra M

(
C(G) ⊗K

(
L2(H), L2(G)

))
with the algebra of strongly continuous bounded functions f : G → L

(
L2(H), L2(G)

)
, 

which we denote by Csb
(
G, L

(
L2(H), L2(G)

))
(cf. [53, Lem. 2.57]). Then the element 

s ∈ Csb
(
G, L(L2(H), L2(G))

)
defined by

s(g) := rg|L2(H)

satisfies the conditions of Lemma 3.1 for the Hilbert space H := L2(G) equipped with the 
left translations μh := λh|L2(H), h ∈ H. We set p := ss∗ for short. The ∗-representation 
πs : C(G) → Csb

(
G/H, L(H)

)
associated with s, introduced in Lemma 4.1, reads as

πs(f)(g) := s(g) πG

(
jf(g, ·)

)
s(g)∗, g ∈ G,
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where j : C(G) → C(G ×H) is given by (jf)(g, h) := f(gh−1) for all g ∈ G and h ∈ H.

8.2. Dirac operators

For the Dirac operators on G and G/H we follow Rieffel [55] up to a conventional sign. 
For the convenience of the reader we briefly recall their construction. For this purpose, 
we endow L(G) with an Ad-invariant inner product and decompose it into the direct sum 
of L(H) and its orthogonal complement, denoted by L(G/H). We utilize PH and PG/H

to be the corresponding orthogonal projections onto L(H) and L(G/H), respectively, 
and we write C�(G/H) for the Clifford algebras of L(G/H).

8.2.1. Dirac operators on G
For the rest of the paper, we let FX : C�(G) → C�(G) stand for the multiplication by 

a vector X ∈ L(G), i.e., FX(ϕ) := X ·ϕ for all ϕ ∈ C�(G). To construct a Dirac operator 
on G, we first look at the representation of C(G) on the Hilbert space

S2(G) := L2(G,C�(G)
)

by pointwise multiplication operators and identify T (G) := C∞(
G, L(G)

)
with the space 

of smooth sections of the tangent bundle of G in terms of left translations. Obviously, 
C∞(G) acts on T (G) by pointwise multiplication. Second, we define both a connection 
and a Clifford multiplication on the subspace S∞(G) ⊆ S2(G) of all smooth functions 
by putting for each X ∈ T (G) and ϕ ∈ S∞(G)

∂G
Xϕ(g) := d

dt

∣∣∣
t=0

ϕ
(
exp(−tX(g))g

)
and FXϕ(g) := FX(g)ϕ(g)

for all g ∈ G, respectively. Finally, we fix a standard module frame (Xk)k of T (G) and 
extend the essentially self-adjoint operator

DG :=
∑
k

FXk
∂G
Xk

from the domain S∞(G) to a self-adjoint Dirac operator, which we again denote by DG. 
This operator is independent of the choice of standard module frame (see [55, Sec. 8]). 
However, there is a convenient choice of a standard module frame of T (G) in order to 
work with the quotient. Since the identification of T (G) with the tangent bundle is done 
via left translation and H acts on G from the right, it is expedient to decompose L(G)
in the range of elements of T (G) at a point g ∈ G into

L(G) = Adg

(
L(G/H)

)
⊕ Adg

(
L(H)

)
.

We may then fix an orthonormal basis (Xk)k of L(G) and put
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Yk(g) := Adg PG/H Ad−1
g (Xk) and Zk(g) := Adg PH Ad−1

g (Xk) (27)

for all g ∈ G. Together (Yk)k and (Zk)k form a standard module frame of T (G) and we 
call the corresponding summands of DG,

Dh :=
∑
k

FYk
∂G
Yk

and Dv :=
∑
k

FZk
∂G
Zk

,

the horizontal part and the vertical part of DG, respectively.

8.2.2. Dirac operators on G/H

For a Dirac operator on G/H we consider the Hilbert space

S2(G/H) := {ϕ ∈ L2(G,C�(G/H)
)

: ϕ(gh) = Ad−1
h

(
ϕ(g)

)
∀g ∈ G, h ∈ H}

and let πG/H : C(G/H) → L
(
S2(G/H)

)
stand for the ∗-representation of C(G/H) on 

S2(G/H) by multiplication operators. Moreover, we denote by S∞(G/H) ⊆ S2(G/H)
the subspace of smooth functions, we point out that the module

T (G/H) := {X ∈ C∞(
G,L(G/H)

)
: X(gh) = Ad−1

h

(
X(g)

)
∀g ∈ G, h ∈ H}

can be recognized as smooth sections of the tangent bundle of G/H, and we write FX

for the pointwise Clifford multiplication on S∞(G/H) by some X ∈ T (G/H). We also 
bring to mind that S2(G/H) and T (G/H) can naturally be regarded as subspaces of 
S2(G) and T (G), respectively, with respect to the embeddings ϕ �→ ϕ̂ and X �→ X̂ given 
by

ϕ̂(g) := Adg

(
ϕ(g)

)
and X̂(g) := Adg

(
X(g)

)

for all g ∈ G, respectively. Correspondingly, each X ∈ T (G/H) ⊆ T (G) gives rise to a 
connection ∂G/H

X : S∞(G/H) → S∞(G/H) by putting

∂
G/H
X ϕ(g) := d

dt

∣∣∣
t=0

ϕ
(
g exp(−tX(g))

)

for all g ∈ G. We may now choose any standard module frame (Yk)k for T (G/H) and 
define an operator DG/H : S∞(G/H) → S∞(G/H) via

DG/H :=
∑
k

FYk
∂
G/H
Yk

.

It follows from [55, Cor. 8.5] that DG/H , the so-called Hodge-Dirac operator, is formally 
self-adjoint, and hence it admits a self-adjoint, possibly unbounded extension, for which 
we use the same letter DG/H .
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8.2.3. The horizontal and the vertical part of the lifted Dirac operator
The task is now to lift the Hodge-Dirac operator DG/H to a Dirac type operator on 

G. For this purpose, we consider the possibly degenerated ∗-representation of C(G) on 
the Hilbert space S2(G/H) ⊗ H ⊗C�(H) given by

π(f) :=
(
πG/H ⊗ idL(H)

)(
πs(f)

)
⊗ 1C�(H), f ∈ C(G).

To simplify notation, we swap tensor factors and restrict π to its non-degenerate range, 
which is the subspace S2 ⊆ L2(G, H ⊗C�(G/H) ⊗C�(H)

)
of functions ϕ with

ϕ(gh) =
(
p(g) ⊗ Ad−1

h ⊗Ad−1
h

)
ϕ(g) ∀g ∈ G, h ∈ H. (28)

Moreover, we consider the subspace S∞ ⊆ S2 of functions with range in the algebraic 
tensor product H∞ ⊗C�(G/H) ⊗C�(H), where H∞ denotes the smooth domain of the 
unitary representation μ : H → U(H). Following the construction of Section 5, we infer 
that the horizontal part D̂h : S∞ → S∞ of the Dirac operator is given by

D̂hϕ = (p⊗ 1C�(G/H) ⊗ 1C�(H))(1H ⊗DG/H ⊗ Ω)ϕ,

Ω being the grading operator on C�(H). The vertical part D̂v : S∞ → S∞ is given by

D̂vϕ(g) =
∑
k

d
dt

∣∣∣
t=0

(μexp(tXk) ⊗ 1C�(G/H) ⊗ FXk
)ϕ(g), g ∈ G,

for an arbitrarily chosen orthonormal basis (Xk)k of L(H). The lifted Dirac operator 
D̂ : S∞ → S∞ on G established in Theorem 5.13 thus takes the form D̂ := D̂h + D̂v.

8.2.4. Comparing the Dirac operators on G
We are finally in a position to compare the lifted Dirac operator D̂ with the canonical 

Dirac operator DG. To this end, we let W : C�(G/H) ⊗ C�(H) → C�(G) stand for the 
unitary map defined by W (X ⊗ Y ) := X · Ω(Y ) for all X ∈ C�(G/H) and Y ∈ C�(H). 
We also write ev1 : L2(H) ⊇ C∞(H) → C for the evaluation at the unit element of H, 
that is, ϕ �→ ϕ(1). Then the map U : S∞ → L2(G, C�(G)

)
given by

(Uϕ)(g) := U(g)ϕ(g) with U(g) := ev1 s(g)∗ ⊗ Adg W (29)

for all ϕ ∈ S∞ and g ∈ G extends to a unitary map U : S2 → S2(G).

Lemma 8.1. The covariant representations (πG, rh) and (π, μ) are unitarily equivalent. 
More precisely, for all f ∈ C(G) and h ∈ H we have

Uπ(f) = πG(f)U and rhU = Uμh.
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Proof. Let us first fix f ∈ C(G). Then for each g ∈ G and ϕ ∈ C∞(H) we find

(ev1 ◦πH)
(
jf(g, · )

)
ϕ = f(g) · ϕ(1) = f(g) · ev1(ϕ).

From this, for each ϕ ∈ S∞(G) and g ∈ G we obtain that

(
Uπ(f)ϕ

)
(g) =

(
ev1 s(g)∗ ⊗ Adg W

)
((

s(g)πH

(
jf(g, · )

)
s(g)∗

)
⊗ 1C�(G/H) ⊗ 1C�(H)

)
ϕ(g)

= f(g) ·
(
ev1 s(g)∗ ⊗ Adg W

)
ϕ(g) =

(
πG(f)Uϕ

)
(g).

In other words, we have Uπ(f) = πG(f)U as claimed. To deal with the second assertion, 
we fix h ∈ H and note that

ev1 s(gh)∗ (4)= ev1 r
∗
hs(g)∗ ev1 λhs(g)∗

(5)= ev1 s(g)∗μh (30)

for all g ∈ G. Hence for each ϕ ∈ S∞ and g ∈ G we deduce that

(rhUϕ)(g) =
(
ev1 s(gh)∗ ⊗ Adgh W

)
ϕ(gh)

(30)=
(
ev1 s(g)∗ ⊗ Adg W

)
(μh ⊗ Adh ⊗Adh)ϕ(gh)

(28)=
(
ev1 s(g)∗ ⊗ Adg W

)
(μh ⊗ 1C�(G/H)⊗C�(H))ϕ(g) = (Uμhϕ)(g).

That is, rhU = Uμh, and so the proof is complete. �
Theorem 8.2. For the module frame in Equation (27), and hence for all module frames, 
the following assertions hold:

1. Dh = UD̂hU
∗ +

∑
k FYk

(dYk
U)U∗ on S∞(G).

2. Dv = UD̂vU
∗ on S∞.

Here, for each Y ∈ T (G), we put (dY U)ϕ(g) := d
dt

∣∣∣
t=0

U
(
exp(−tY (g))g

)
ϕ(g) for all 

ϕ ∈ S∞ and g ∈ G.

Remark 8.3. The operator 
∑

k FYk
(dYk

U)U∗ appearing in Lemma 8.2 above commutes 
with every element π(x) for x ∈ C(G). Consequently, this additional term does not effect 
any of the commutators [Dn

h , π(x)], n ∈ N.

Proof. For the computation we fix an orthonormal basis of L(G) and utilize the standard 
module frame of T (G) introduced in Equation (27). Accordingly, we choose (Y ′

k)k with 
Y ′
k(g) := Ad−1

g

(
Yk(g)

)
∈ L(G/H), g ∈ G, and (Z ′

k)k with Z ′
k(g) := Ad−1

g

(
Zk(g)

)
∈ L(H), 

g ∈ G, as standard module frames of T (G/H) and T (H), respectively.
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1. Let ϕ ∈ S∞ and g ∈ G. Applying the Leibniz rule, for each k we deduce that

(
∂G
Yk
Uϕ

)
(g) = d

dt

∣∣∣
t=0

U
(
e−tYk(g)g

)
ϕ
(
e−tYk(g)g

)

= (dYk
Uϕ)(g) +

(
U∂

G/H
Y ′
k

ϕ
)
(g).

(31)

Furthermore, since FY W = W (FY ⊗ Ω) for every Y ∈ L(G/H), for each k we find

FYk(g)U(g) = ev1 s(g)∗ ⊗ FYk(g) Adg W = ev1 s(g)∗ ⊗ Adg FY ′
k(g)W

= ev1 s(g)∗ ⊗ Adg W
(
FY ′

k(g) ⊗ Ω
)

= U(g)
(
FY ′

k(g) ⊗ Ω
)
.

(32)

From this the asserted equation follows:

U∗DhUϕ =
∑
k

U∗FYk
∂G
Yk
Uϕ

(31)=
∑
k

U∗FYk

(
U∂

G/H
Y ′
k

+ dYk
U
)
ϕ

(32)=
∑
k

(
FY ′

k
⊗ Ω

)
∂
G/H
Y ′
k

ϕ +
∑
k

U∗FYk
dYk

Uϕ

= D̂hϕ +
∑
k

U∗FYk
dYk

Uϕ.

2. Let ϕ ∈ S∞ and g ∈ G. By Equation (28), for each k we have

ϕ
(
e−tZk(g)g

)
= ϕ

(
ge−tZ′

k(g)) =
(
1H ⊗ Adexp(tZ′

k(g)) ⊗Adexp(tZ′
k(g))

)
ϕ(g). (33)

For the vertical derivatives it may thus be concluded that
(
∂G
Zk

Uϕ
)
(g) = d

dt

∣∣∣
t=0

U
(
e−tZk(g)g

)
ϕ
(
e−tZk(g)g

)

= d
dt

∣∣∣
t=0

U
(
ge−tZ′

k
)
ϕ
(
ge−tZ′

k(g))
(30)= d

dt

∣∣∣
t=0

U(g)
(
μexp(−tZ′

k(g)) ⊗ Adexp(−tZ′
k(g)) ⊗Adexp(−tZ′

k(g))
)

× ϕ
(
ge−tZ′

k(g))
(33)=

(
U
(
∂Z′

k
μ⊗ 1C�(G/H)⊗C�(H)

)
ϕ
)
(g),

where ∂Xμ, X ∈ T (H), denotes the operator on L2(G, H∞) ⊆ L2(G, H) given by

(∂Xμϕ)(g) := d
dt

∣∣∣
t=0

μexp(tX(g))ϕ(g).

Furthermore, since FZW = W (1 ⊗ FZ) for all Z ∈ T (H) ⊆ T (G), for each k we see 
in much the same way as above that FZk

Uϕ = U
(
1 ⊗ FZ′

)
ϕ. Hence
k
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U∗DvUϕ =
∑
k

U∗FZk
∂G
Zk

Uϕ =
∑
k

U∗FZk
U∂Z′

k
μϕ =

∑
k

FZ′
k
∂Z′

k
μϕ.

This gives Dv = UD̂vU
∗ as claimed, because the choice of the standard module 

frame of T (G) in the definition of D̂v is irrelevant. �
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Appendix A. Complementary results and proofs

In this appendix we provide complementary results and proofs for the sake of com-
pleteness.

Lemma A.1. Let D be an unbounded self-adjoint operator on a Hilbert space H with 
compact resolvent and let x ∈ L(H). Then D + x has compact resolvent.

Proof. Let λ ∈ ıR such that ‖x(λ −D)−1‖ < 1. Then the operator 
(
1 − x(λ −D)−1) is 

invertible and thus the identity 
(
λ − (D + x)

)
=

(
1 − x(λ −D)−1)(λ −D) implies that 

λ is also a regular value for D + x. In particular, we deduce that

(
λ− (D + x)

)−1 = (λ−D)−1(1 − x(λ−D)−1)−1
.

Since (λ − D)−1 is compact, this operator is compact, too. Hence D + x has compact 
resolvent. �
Proof of Lemma 2.1. We first note that Dp has dense domain, because p is contractive. 
That is, Dp is indeed an unbounded operator on p(H).

1. For all ξ, η ∈ dom(Dp) we have

〈ξ,Dpη〉 = 〈ξ,Dη〉 = 〈Dξ, η〉 = 〈Dpξ, η〉,

which entails that Dp is symmetric. Therefore, it suffices to prove that dom(D∗
p) ⊆

dom(Dp). To do this, let us fix ξ ∈ dom(D∗
p). Then for each η ∈ dom(D) we find
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〈ξ,Dη〉 = 〈ξ, pDη〉 = 〈ξ,Dpη〉 − 〈ξ, [D, p]η〉 = 〈ξ,Dp(pη)〉 − 〈ξ, [D, p]η〉.

Since [D, p] is bounded, the right-hand side of the above equation is a continuous 
function of η. Consequently, ξ ∈ dom(D∗) = dom(D), and ξ = pξ thus belongs to 
p dom(D) = dom(Dp).

2. Suppose D has compact resolvent. Due to p dom(D) ⊆ dom(D), we can assert that 
the linear operator D̃p := pDp + (1 − p)D(1 − p) on H is a well-defined unbounded 
operator with domain dom(D̃p) := dom(D). Moreover, rewriting D̃p as

D̃p = D − (1 − p)Dp− pD(1 − p) = D +
[
[D, p], (1 − p)

]

we see that D̃p has compact resolvent by Lemma A.1. From this and the fact that 
D̃p commutes with p it follows that Dp = pD̃p has compact resolvent, too. �

Preface to Lemma 2.2. We begin by briefly reviewing the Dirac operator associated with 
the left regular representation λ : G → U

(
L2(G)

)
, g �→ λg and the ∗-representation πspin, 

which is the self-adjoint extension of

DG =
n∑

k=1

∂Xk
λ⊗ FXk

defined on some suitable domain in L2(G) ⊗Hspin. Decomposing L2(G) into its isotypic 
components L2(G) =

⊕
σ∈Irr(G) Vσ ⊗ V̄σ such that the left and right translation read as

λg =
⊕

σ∈Irr(G)

1Vσ
⊗ σ̄g and rg =

⊕
σ∈Irr(G)

σg ⊗ 1V̄σ

for all g ∈ G, respectively, we easily infer that each eigenspace Eν(DG) for an eigenvalue 
ν ∈ R of DG takes the form

Eν(DG) =
⊕

σ∈Irr(G)

Vσ ⊗Eν(σ̄),

where, for each σ ∈ Irr(G), Eν(σ) denotes the ν-eigenspace of the self-adjoint operator 
Dσ :=

∑n
k=1 ∂Xk

σ⊗FXk
on Vσ⊗Hspin. Since DG has compact resolvent (see, e.g., [26,55]), 

each eigenspace Eν(DG) is finite-dimensional, and hence for a given ν only finitely many 
Eν(σ), σ ∈ Irr(G), are non-zero. �
Proof of Lemma 2.2. Let Hσ, σ ∈ Irr(G), be the finite-dimensional multiplicity spaces 
of the unitary representation u : G → U(H) and, for convenience, let us assume that

H =
⊕

σ∈Irr(G)

Hσ ⊗ V̄σ, and ug =
⊕

σ∈Irr(G)

1Hσ
⊗ σ̄g.



34 K. Schwieger, S. Wagner / Advances in Mathematics 396 (2022) 108160
It is a simple matter to check that D commutes with the elements of the C∗-subalgebra ⊕
σ∈Irr(G) L(Hσ) ⊗ 1V̄σ

⊗ 1Hspin ⊆ L(H ⊗Hspin), and so do the spectral projections of D. 
It follows that the eigenspace Eν(D) of any eigenvalue ν takes the form

Eν(D) =
⊕

σ∈Irr(G)

Hσ ⊗ Eν(σ̄).

Since each Hσ, σ ∈ Irr(G) is finite-dimensional and only finitely many Eν(σ), σ ∈ Irr(G), 
are non-zero, Eν(D) is finite-dimensional. The same argument shows that spec(D) ⊆
spec(DG). In particular, the eigenvalues of D form a discrete set. �
Proof of Lemma 3.1, “(b) ⇒ (a)”. Let μ : G → U(H) be a unitary representation with 
finite-dimensional multiplicity spaces, let’s say, Hσ, σ ∈ Irr(G), like in Equation (6), let 
(π, u) be a faithful covariant representation of (A, G, α) on some Hilbert space HA, and 
let s ∈ L(HA⊗L2(G), HA⊗H) be an isometry satisfying the Equations (3), (4), and (5). 
Our analysis starts with the simple observation that Equation (5) is equivalent to saying 
that s is an intertwiner between the representations 1A ⊗ λ and 1A ⊗ μ on HA ⊗ L2(G)
and HA⊗H, respectively. In particular, s maps each multiplicity space of 1A⊗λ into the 
corresponding multiplicity space of 1A⊗μ or, to be more precise, HA⊗Vσ into HA⊗Hσ

for all σ ∈ Irr(G). Consequently, s may be disassembled into a family of isometries

s(σ) ∈ L(HA ⊗ Vσ,HA ⊗ Hσ), σ ∈ Irr(G).

We proceed with a fixed σ ∈ Irr(G) and write pσ for the orthogonal projection onto the 
isotypic component L2(G)(σ̄) = Vσ ⊗ V̄σ. Then pσ ∈ K

(
L2(G)

)
and s(1A ⊗ pσ) lies in 

A ⊗K(L2(G), H), the latter being a consequence of Equation (3). Moreover, restricting 
s(1A ⊗ pσ) to HA ⊗ Vσ and HA ⊗ Hσ in domain and codomain, respectively, gives an 
operator that is equal to s(σ). It follows that s(σ) ∈ A ⊗ L(Vσ, Hσ), and hence that 
αg

(
s(σ)

)
= s(σ)(1A ⊗ σg) for all g ∈ G due to Equation (4). As σ was arbitrary and the 

∗-representation π assumed to be faithful, [58, Lem. 3.3] now implies that (A, G, α) is 
free, and this is precisely the desired conclusion. �
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