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Abstract: This article proposes an Automatic Target Recognition (ATR) algorithm to classify non-
cooperative targets in Synthetic Aperture Radar (SAR) images. The scarcity or nonexistence of
measured SAR data demands that classification algorithms rely only on synthetic data for training
purposes. Based on a model represented by the set of scattering centers extracted from purely
synthetic data, the proposed algorithm generates hypotheses for the set of scattering centers extracted
from the target under test belonging to each class. A Goodness of Fit test is considered to verify each
hypothesis, where the Likelihood Ratio Test is modified by a scattering center-weighting function
common to both the model and target. Some algorithm variations are assessed for scattering center
extraction and hypothesis generation and verification. The proposed solution is the first model-based
classification algorithm to address the recently released Synthetic and Measured Paired Labeled
Experiment (SAMPLE) dataset on a 100% synthetic training data basis. As a result, an accuracy of
91.30% in a 10-target test within a class experiment under Standard Operating Conditions (SOCs)
was obtained. The algorithm was also pioneered in testing the SAMPLE dataset in Extend Operating
Conditions (EOCs), assuming noise contamination and different target configurations. The proposed
algorithm was shown to be robust for SNRs greater than −5 dB.

Keywords: synthetic aperture radar; automatic target recognition; scattering center; classification

1. Introduction

Since the 1990s, Automatic Target Recognition (ATR) has been a very active field
of study, given the diversity of its applications and the growing development of remote-
sensing technologies [1]. In this context, Synthetic Aperture Radar (SAR) appears to be an
outstanding tool for producing high-resolution terrain images. Such sensors stand out for
three reasons: (i) radar is an active sensor that provides its own illumination, which gives it
the ability to operate in the dark; (ii) clouds and rain do not prevent the passage of electro-
magnetic waves at common radar operating frequencies; (iii) the radar energy backscattered
by different materials allows a complementary detail for target discrimination [2].

The human eye is conditioned to differentiate objects based on the reflection properties
of sunlight wavelengths [3]. In turn, SAR images are formed from the backscattering of
electromagnetic microwaves and their interaction with the geometry and target material.
However, although rich in details, the focused image is not friendly for human eye interpre-
tation. To successfully address this problem, it is necessary to automate the process using
an intelligent computer system.

SAR ATR algorithms can be divided into three basic tasks: Pre-screening, Low-Level
Classifier (LLC), and High-Level Classifier (HLC), which can also be called Detection,
Discrimination, and Classification, respectively [4]. The detection task consists of extracting
regions that may contain targets from an image that comprises the entire imaged area.
Then, the detection output feeds the discriminator, which rejects spurious noises and clutter
originating from natural and artificial formations that have characteristics different from
those of the targets of interest. Finally, the classification task assigns a label that refers to
the most likely class of each target candidate remaining from the discrimination task.
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Over the last 30 years of research on target classification with SAR images, different
approaches and algorithms have been proposed to maximize the Percentage of Correct
Classification (PCC). In the literature, while some authors follow a taxonomy that separates
the classification algorithms into template-based and feature-based [3], others consider
template-based and feature-based to be one and suggest instead model-based and semi-
model-based categories [4].

Regardless of the category of the algorithm, it is supported by features of three
types: (1) Geometric features that describe the target by its area [5–9], contour [10,11] or
shadow [11,12]; (2) Transformation features that reduce the dimensionality of the target data
by representing it in another domain such as Discrete Cosine Transform (DCT) [13], Non-
Negative Matrix Factorization (NMF) [14,15], Linear Discriminant Analysis (LDA) [16] and
Principal Component Analysis (PCA) [17]; and (3) Scattering Centers Features which are
based on the highest amplitude returns of the targets [18] and based on a statistical distance,
such as Euclidean [19–26], Mahalanobis [27–30], or another statistical distance [31–37].

Feature-based algorithms are those with methods that run offline training supported
exclusively by features extracted from the targets of interest. Among the methods em-
ployed by feature-based algorithms, we can highlight the following: Template Match-
ing (TM) [5–7,11,30,37], Hidden Markov Model (HMM) [12,13,22], K-Nearest Neighbor
(KNN) [27,28], Sparse Representation-based Classification (SRC) [8,29], Convolutional Neu-
ral Networks (CNN) [17,18,36,38–48], Support Vectors Machine (SVM) [9] and Gaussian
Mixture Model (GMM) [10].

Model-based classifiers are distinguished from feature-based classifiers mainly by the
approach adopted [19–21,23–26,31–35,49]. Model-based classifiers try to find similarities in
constructed models from the image, while feature-based classifiers start from a training
task to find similarities in the image. Features are extracted from potential targets, and
similarities are sought in the models using hypothesis testing [4]. The tasks of a model-
based classifier are performed in two steps: (i) offline construction of the class models
and (ii) online prediction of the target class. During online classification, model-based
methods rely on features extracted from the target candidates to generate hypotheses. Each
hypothesis gives a score that assigns a target to a class from a class book. The scores are
then compared, and the most likely class is identified. Figure 1 illustrates the steps of both
feature-based and model-based classifications.

 Model-Based  Feature-Based 

Test Target 
Chip

Feature Extraction Training / Learning

Classification

Hypotesis
Verification

Hypotesis
GenerationFeature Extraction

Model
Construction

Scattering Centers
Extraction

Scattering Centers
Extraction

Class Reference 
Chip

Predicted Class Classification

Offline

Online

Predicted Class

Figure 1. Feature and model-based classification approaches. Blocks in red and green are processed
offline and online, respectively.

Some model-based algorithms, prior to feature extraction, employ the Hungarian
Algorithm [23,24,29–33,36] to assign each scattering center of the model to a scattering
center of the target. Then, features are created for both the target and the models of
each class.

Ding and Wen [32] used a statistical-based distance measure between pairs of scat-
tering centers assigned by the Hungarian Algorithm to compute global similarity and
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triangular structures of scattering centers to identify local similarities, as shown in Figure 2.
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Figure 2. (a) Hungarian Algorithm scattering centers assignment, (b) global similarity and (c) local
similarity.

Shan et al. [49] used morphological opening and closing operations to create Dominant
Scattering Areas (DSA) in the original image. Subtracting the DSA of the test image from
those of different classes of models resulted in the residues representing the differences
between the test image and the classes. An example is presented in Figure 3.

(a) (b) (c)

Figure 3. (a) Dominant Scattering Area of the target, (b) true class residues and (c) false class residues.

Fan and Thomas [35] created masks by drawing circles centered on each scattering
center of the target under test. The masks were then used by the Neighbor Matching
Algorithm (NMA) to filter the scattering centers of each model class. This last approach,
illustrated in Figure 4, was implemented for comparison purposes with the proposed
algorithm, and the results are presented in Section 3.3.

(a) (b)

Matched Target SC
Matched Model SC
Unmatched Target SC
Unmatched Model SC

Figure 4. Neighbor Matching Algorithm applied to (a) the true class and (b) a false class.

Unlike these approaches, the proposed algorithm does not need to assign pairs of
scattering centers or perform morphological or filtering operations; it is directly applicable,
simple and fast, as the features are the scattering centers themselves.
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This article proposes an approach to solve the problem of non-cooperative target
classification in SAR images. It is taken as a premise that the targets are non-cooperative,
i.e., they are not exposed frequently, so there are not enough SAR images of the targets
to be used in a classification algorithm based on measured data. Therefore, the proposed
approach considers only synthetic data to train the algorithm. Synthetic data, also known
as simulated data, are generated through computer simulations. The most common way to
produce synthetic data is by using asymptotic electromagnetic scattering prediction codes
with the support of Three-Dimensional Computer-Aided Design (3D-CAD) [40].

The proposed algorithm is model-based and uses scattering centers as features. The
hypotheses were verified through a Modified Goodness of Fit (MGoF) test, consisting of a
weighted GoF test. The algorithm was tested by varying the following parameters—the scat-
tering center-extraction method, the hypothesis-generation method, and the GoF test—to
determine the configuration that achieved the best performance under Standard Operating
Conditions (SOCs). Moreover, the performance of the algorithm was also verified under
Extended Operating Conditions (EOCs), which involved images contaminated with noise
and different target configurations. The works [19–21,23–26,31–35] that most resembled
this one are those where the implemented algorithms aimed at the model-based classifica-
tion of targets in the Moving and Stationary Target Acquisition and Recognition (MSTAR)
dataset [50].

The recently released SAMPLE dataset [38], which is presented in Section 2.1, is a
set of SAR images containing synthetic and measured data with very high fidelity. This
dataset has great potential to become the main benchmark for SAR ATR classification
algorithms, replacing or improving the MSTAR dataset, which has already been extensively
explored. Therefore, there is an enormous demand for works that address the SAMPLE
dataset [51]. So far, few works [38–48] have been carried out that focus on the SAMPLE
dataset for classifying measured data based exclusively on synthetic data, and they all use
a feature-based approach with machine-learning algorithms like CNN or DenseNet.

There a two main contributions from this work:

1. A simple but efficient model-based algorithm for target classification using a modified
Goodness of Fit test in its decision rule that significantly reduces the dimensionality
of the data because it works with a small number of scattering centers; and

2. The SAMPLE dataset was used to evaluate the proposed algorithm, the performance
of which was assessed under an EOC, which considered only synthetic data for
training and only measured data for testing. Various combinations of hypothesis
generation and verification were evaluated.

In the remainder of this article, Section 2 details the SAMPLE dataset and the proposed
SAR model-based target classification algorithm. Section 3 presents all the experiments and
their results using the SAMPLE dataset. Section 4 provides insightful discussion comparing
the proposed algorithm to other recent solutions addressing the SAMPLE dataset. Section 5
concludes the article.

2. Materials and Methods

We used a training dataset consisting exclusively of synthetic data to test the proposed
algorithm assuming a non-cooperative target classification scenario. The methodology for
the proposed algorithm is concerned with avoiding leaks between the training and test
data sets, where the former and the latter are composed only of synthetic and measured
data, respectively.



Sensors 2022, 22, 1293 5 of 28

2.1. Materials: Measured and Synthetic SAR Data

Automatic target recognition in SAR images, when strictly based on synthetic data,
must meet certain requirements so that experiments can achieve satisfactory results. An
evident and natural requirement is the similarity of synthetic data when compared to the
measured data. The more similar the synthetic and measured data, the more similar the
features used by the classification algorithms.

Electromagnetic Computing (EMC) systems allow the simulation of a scenario where
a 3D-CAD, representative of a target, interacts with radar signals. By properly setting
the radar’s parameters and trajectory, the backscatter signal can be recorded, and then
a simulated image of the target can be obtained using SAR processing. In addition, it is
essential that appropriate EMC algorithms be used and that the physical characteristics of
the simulated target be as close as possible to those of the real target [26].

Thanks to the Air Force Research Laboratory and Wright State University, a valuable
tool has recently been made available to the scientific community: the Synthetic and
Measured Paired and Labeled Experiment (SAMPLE) dataset [38], which consists of an
upgraded MSTAR dataset [50], previously made available in 1995. The great difference
in the SAMPLE dataset lies in the fidelity of the physical characteristics of the targets
introduced in the simulation. Thorough work was carried out in the SAMPLE dataset to
determine the geometric shapes, roughness, and dielectric characteristics of each section of
the targets.

The SAMPLE dataset contains 10 target classes that had been preprocessed, resulting
in complex SAR image chips of 128 × 128 pixels. For each measured data chip obtained
by the X-band sensor, a synthetic data chip was available (respecting the same depression
and azimuth angles). In one-degree increments, the dataset chips discontinuously ranged
from 10 to 80 degrees in azimuth and from 14 to 17 degrees in depression angle. The
10 classes from the SAMPLE dataset are listed in Table 1, and examples of both measured
and synthetic data are shown in Figure 5.

Table 1. SAMPLE dataset target classes (k).

k 0 1 2 3 4 5 6 7 8 9

Class 2S1 BMP-2 BTR-70 M1 M2 M35 M60 M548 T-72 ZSU-23

Considered state of the art for simulating SAR images, the SAMPLE dataset was
used in this work. As presented in Section 2.2.2, the synthetic data were used as inputs
to generate a model based on scattering centers to feed the classification algorithms. The
measured data were considered for classification and to evaluate the proposed algorithm.
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Figure 5. Example of one image of each vehicle in the SAMPLE dataset. Measured MSTAR images
are on the top row, and the corresponding synthetic images are on the bottom row. The order of the
vehicles from left to right is the same as presented in Table 1. We see that details such as shadows,
orientation, and relative return magnitudes are in good agreement [38,44] .

2.2. Methods

One of the greatest difficulties in working with target recognition in SAR images lies
in the nature of the sensor. Two images of the same target obtained by the same optical
sensor but with small variations in aspect angles still have a significant similarity. However,
when it comes to a SAR sensor, small variations in aspect angles substantially change the
resulting image [19].

Many studies on SAR ATR are being developed focusing on machine learning. In
training a class, such an approach uses a set of measured data chips with different aspect
angles representative of the same class. Suspecting that the great distinction of SAR images
of the same target as a function of aspect angles may cause an unwanted bias, we decided
not to use a machine-learning-based approach. Instead, we proposed a model-based
algorithm.

The classification algorithm proposed in this article (detailed in Figure 6) does not
use a set of measured data chips to train a specific class. Basically, the algorithm training
consists of creating a model, strictly based on synthetic data, for each combination of class
(k) and aspect angles (θ,φ) and then storing them in a database. The classification task is
performed online to verify the generated hypotheses based on the most adherent models in
the database.
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Figure 6. General design of the proposed classification algorithm.

2.2.1. Image Simulation

The offline tasks start with simulations of the SAR images for each class (k) of a set
(K). The completeness of the model database depends on the range (Θ,Φ) of aspect angles
(θ,φ) and the spacing between adjacent chips (∆θ,∆φ). The higher the depression angle
(θ) span, the greater the probability that chips extracted at the edges of the image range
axis will be correctly classified. Furthermore, the larger the azimuth angle (φ) span, the
greater the range of target poses the algorithm can correctly classify. The spacing between
adjacent chips (∆θ,∆φ) plays an important role in model accuracy, considering that even
small angular variations greatly distort a SAR image. At the end of this task, there is a
synthetic data chip S0(k, θ, φ) for each combination of class, depression angle, and azimuth
angle. Since each class presents a slightly different value in its azimuth angle (φ) decimals,
this angle is rounded to the nearest integer to become a common label reference. Figure 7a
shows an example of a T-72 class (k = 8) synthetic-target data at 17◦ depression angle and
17.77◦ azimuth angle S0(8, 17, 18).
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Figure 7. (a) Synthetic data chip of a T-72 tank—S0(8, 17, 18). Reconstructed image with (b) 400,
(c) 350, (d) 300, (e) 250, (f) 200, (g) 150, (h) 100, and (i) 50 scattering centers.

2.2.2. Offline Extraction of Scattering Centers

The proposed algorithm performs target classification, the last stage of an automatic
target-recognition activity. Therefore, it is assumed that the targets to be classified already
went through the detection and discrimination stages. Consequently, the target candidates
are already centered on the chips to be tested. This task aims to reduce the dimension of the
data used for classification, providing greater processing speed and more accurate results.
The idea here is to use a sparse image representation based on the parts of the target that
are sufficient for its characterization.

According to Potter and Moses [52], the high-frequency scattering response of a
distributed object is well approximated as a sum of responses from individual scatterers, or
scattering centers, which are good candidates to be used in automatic target recognition.
Their research resulted in an established model for the backscattered electric field in the
frequency-aspect domain

E( f , θ) =
N

∑
n=1

An

(
j f
fc

)αn

exp{βnθ} exp
{
−j4π f

c
(xn cos θ + yn sin θ)

}
, (1)

where fc is the center frequency, and the parameters of the nth scattering center are the
complex magnitude and phase (An), slant plane location (xn, yn), geometry/frequency
dependence (αn) and angular dependence (βn).
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Some algorithms can be used to extract scattering centers in the image domain [53]. The
CLEAN algorithm, although originally developed for applications in radio astronomy [54],
is one of the most used for extracting scattering centers on SAR images [8,23,31,53,55].

The CLEAN algorithm employs a filter derived from the Point Spread Function (PSF),
which is given by

ps f (x, y) =
(

ej 4π fc
c (x+θcy) 4 fcBΩ

c2

)
sinc

(
2B
c

x
)

sinc
(

2 fcΩ
c

y
)

, (2)

where (x, y) denotes the position of the scattering center; fc is the center frequency; θc is the
center azimuth; B is the frequency bandwidth of the radar; and Ω is the azimuth aperture.

To extract the scattering centers properly, the filter used in the CLEAN algorithm
had to incorporate the same smoothing window w(x, y) used during image formation,
resulting in

h(x, y) = ps f (x, y)w(x, y). (3)

This work used a−35dB Taylor Window [56], the same one employed by the SAMPLE
dataset [38]. The PSF is set with the radar parameters specified in Table 2. The filter used
by the CLEAN algorithm is illustrated in Figure 8.

Table 2. Radar parameters.

fc B Ω θc

9.6 GHz 591 MHz 0.04◦ 0◦
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(a) (b)

Figure 8. Filter used by CLEAN algorithm with SAMPLE dataset. (a) 2D plot; (b) 3D plot.

For the scattering center extraction procedure, the CLEAN algorithm searches for the
highest amplitude pixel in the image, recording both the amplitude (An) and its coordinates
(xn, yn). Then the filter h(x, y) shifts to the center of the pixel location and is multiplied by
An, resulting in Anh(x− xn, y− yn), which is subtracted from the image. Those steps are
repeated with the residual image until all N scattering centers have been extracted. The
entire process can be written as

Sn(k, θ, φ) = {Sn−1(k, θ, φ)− Anh(x− xn, y− yn)|n = 1, 2, . . . , N}, (4)

where Sn(k, θ, φ) is the resulting image after the nth scattering center has been extracted
from the Sn−1(k, θ, φ) image.

Typically, the total energy of the residual image drops sharply after a few interactions.
At the end of the extraction process, the scattering centers are stored in an N × 3 matrix,
EN(k, θ, φ) = {An, xn, yn|n = 1, 2, . . . , N}, the sparsity of which provides a great reduction
in data storage compared to the original complex image. Data compression rates greater
than 60:1 can be easily achieved [57]. As an example, Figure 7b–i presents reconstructed
images with different amounts of scattering centers extracted from the simulated image.
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2.2.3. Model Construction

The proposed algorithm uses a score obtained from the GoF test, which has the
scattering centers amplitude as inputs. The ratio between each scattering center and the
sum of all scattering centers amplitudes is registered for the models

MN(k, θ, φ) =

{
An

∑N
i=1 Ai

, xn, yn|n = 1, 2, . . . , N

}
. (5)

All models are stored in a database, which is accessed later during online classification
(Section 2.2.5) to extract the proper scattering centers from the measured testing data to
generate a classification hypothesis.

Figure 9 illustrates the construction of models for classes BMP-2, BTR-70, and T-72
considering the depression and azimuth angles of 17◦ and 18◦ respectively. It exem-
plifies a hypothetical case where only three scattering centers are extracted from each
simulated image.

Figure 9. Illustrative example of the construction of three different class models (BMP-2, BTR-70 and
T-72) at the same aspect angles (θ = 17◦ and φ = 18◦) with three scattering centers each.

2.2.4. Discriminator Tasks

Online classification starts after receiving a test chip T0(θ̂, φ̂) from the discriminator
stage. For the success of the classification, image registration must be ensured by the
discriminator since the precise location of each part of the target has a large impact on the
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Percentage of Correct Classification (PCC). In addition, the discriminator needs to provide
an accurate estimate of the azimuth angle (φ̂) of the longitudinal axis of the candidate
target. In this article, it is assumed that the depression angle (θ̂) can be calculated since the
distance and relative height between the radar platform and the target are known.

In the SAMPLE dataset, the targets are perfectly centered on chips and labeled with
the depression (θ) and azimuth (φ) angles in which they were simulated, thus meeting the
requirements of the discriminator stage.

2.2.5. Selection of Adherent Models

Taking the estimated aspect angles (θ̂, φ̂) as inputs, this task aims to find the most
relevant models MN(k, θ, φ) in the database to be used in the hypothesis generation task.
Thus, each selected model will lead to a hypothesis to be tested further and confronted
with the others.

The ∆φ̂ parameter defines the error tolerance in estimating the azimuth angle of the
target. Therefore, all models that have the same depression (θ) and azimuth angle (φ)
within φ̂± ∆φ̂ will be selected as adherent models DN(k, θ, φ).

While observing the images from the SAMPLE dataset (Figure 5), we saw a great
similarity between the front and rear faces of each target. The difficulty in distinguishing
them entails a 180-degree ambiguity. Thus, models with azimuth angles (φ) within 180 +
φ̂± ∆φ̂ were also selected. In the SAMPLE dataset, this ambiguity did not apply, since the
azimuth angles of its chips were limited to a range from 10 to 80 degrees.

2.2.6. Online Extraction of Scattering Centers

Two different means of hypothesis generation were implemented, as presented in
Section 2.2.7 and analyzed in Section 3. The difference between these approaches is in how
the chip data were handled. Each approach used a different source to extract the scattering
centers to deliver distinct inputs to the hypothesis-generation task. Both approaches— Single
Look Complex (SLC)-based and Scattering Center (SC)-based—provided the Hypothesis
Generation with the location of the scattering centers, which were in the same coordinates
of the model.

The SC-based approach performed scattering centers extraction from the measured data
in the same way as it was done offline for the synthetic data, as described in Section 2.2.2.
No matter how many models were selected in the Selection of Adherent Models task
(Section 2.2.5), only a single set of N scattering centers TSC

N were extracted and used in the
Hypothesis Generation task.

Conversely, the SLC-based approach extracted a set of N scattering centers for each
adherent model DN(k, θ, φ). These extractions were carried out in a guided manner. The
CLEAN method still extracted the highest amplitude scattering centers. However, it
only saved the scattering centers located in the same coordinate pair (x, y) of the model.
For each adherent model DN(k, θ, φ) selected by the Selection of Adherent Models task
(Section 2.2.5), a set of scattering centers TSLC

N (k, θ, φ) was created to be used later for
hypothesis generation.

2.2.7. Hypothesis Generation

As previously stated, different approaches to extracting scattering centers produce
different sources as inputs for generating hypotheses.

In the SLC-based approach, each set TSLC
N (k, θ, φ) resulting from the Online Extraction

of Scattering Centers task generated a hypothesis HN(k, θ, φ) by computing the amplitudes
ratio in the same way as in Section 2.2.3—Model Construction, as given by Equation (5).

Figure 10 illustrates an example of the SLC-based approach, where a test target
T0(17, 18) has its scattering centers TSLC

3 (k = [1, 2, 8], 17, 18) extracted according to three
different models, resulting in three hypotheses H3(k = [1, 2, 8], 17, 18).
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Figure 10. Illustrated example of three hypotheses generation by the SLC-based approach. Each
hypothesis (BMP-2, BTR-70 and T-72 classes) was generated by extracting three scattering centers
from the T-72 test target accordingly to the respective class model.

For the SC approach, the input source was a single set TSC
N containing the N highest

scattering centers in the test image. Thus, a complete match between their locations and
those in the selected models was not likely. Therefore, if a (xn, yn) pair of the model
DN(k, θ, φ) existed in the extracted scattering centers TSC

N , the amplitude of the test image
scattering center was assigned to the hypothesis under construction TSC

N (k, θ, φ). Otherwise,
zero was assigned as the amplitude. In the end, as considered in the previous approach, the
Equation (5) was applied to calculate the ratio between the amplitudes. Then hypothesis
HN(k, θ, φ) was generated.

Although the SC-based approach handled a smaller amount of information, we will
see in Section 3.1.2 that it resulted in a considerable improvement in the percentage of
correct classification performance.

Figure 11 illustrates an example of the SC-based approach where a test target T0(17, 18)
has its scattering centers with the highest amplitudes extracted TSC

3 . It also resulted in three
hypotheses H3(k = [1, 2, 8], 17, 18) with amplitudes defined by the location of the scattering
centers of the models.
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Figure 11. Illustrated example of the three hypotheses generated by SC-based approach. Each
hypothesis (BMP-2, BTR-70, and T-72 classes) was generated by extracting three scattering centers
from the T-72 test target accordingly to the respective class model.

2.2.8. Hypothesis Verification

Once each hypothesis referring to a selected model has been generated, the final task
is to predict the class of the target under test. For this purpose, the verification of the
hypotheses is carried out through a Goodness of Fit (GoF) test.

Three testing algorithms were initially implemented: Mean Square Error (MSE), Pear-
son’s Chi-Square (PXS), and the Likelihood Ratio Test (LRT). Considering that each pair
formed by a model DN(k, θ, φ) and a hypothesis HN(k, θ, φ) had its own scattering centers
located at the same coordinates (x, y), a Goodness of Fit test was run for each, as depicted
in the hypothetical example of Figure 12.

The MSE test score of a model and hypothesis pair is given by

PMSE
N (k, θ, φ) =

N

∑
n=1

(AHn − ADn)
2, (6)

where ADn and AHn are the expected and real amplitudes of the nth scattering centers.
Pearson’s Chi-Square Test is a normalization of the MSE Test, where the score is

calculated by

PPXS
N (k, θ, φ) =

N

∑
n=1

(AHn − ADn)
2

ADn

, (7)

while the Likelihood Ratio Test (LRT) score can be computed as
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PLRT
N (k, θ, φ) = 2×

N

∑
n=1

(AHn + ε) ln
(

AHn + ε

ADn

)
. (8)

Figure 12. Illustrated example of hypothesis verification where the test target (T-72 class) is confronted
against three hypotheses (BMP-2, BTR-70, and T-72 classes).

A constant ε was added to AHn to prevent the computation of an undefined logarithm
when the hypothesis measured amplitude was equal to zero. The value assigned to the
constant also acted as a weight for the influence of null scattering centers on the score. The
constant was empirically determined as

ε =

{
0, if AHn 6= 0
10−10, otherwise.

(9)

The fourth GoF test was proposed as a variation of the LRT, considering a particularity
of the SC-based approach. The set of scattering centers extracted from the test image was
unique (TSC

N ). It was expected that the majority of the scattering centers in this set would
also be found in the true-class model. Therefore, a weight inversely proportional to the
number of scattering centers found in the same (x, y) coordinate pair of both the model and
hypothesis was incorporated into the GoF test. As will be shown in Section 3, since the LRT
achieved the best results of all GoF tests, its weight was used in the Modified Likelihood
Ratio Test (MLRT) as

PMLRT
N (k, θ, φ) =

2
ND∩H

N

∑
n=1

(AHn + ε) ln
(

AHn + ε

ADn

)
, (10)

where ND∩H is the amount of co-located scattering centers found in both the model and
hypothesis. Figure 11 presents an illustrative example, where ND∩H is equal to 2, 1, and 3
for PMLRT

3 (1, 17, 18), PMLRT
3 (2, 17, 18) and PMLRT

3 (8, 17, 18), respectively.
The scores resulting from the GoF tests, performed for each model and hypothesis

pair, are compared. The lower the score of a given test, the greater the similarity between
the model and the hypothesis. In this work, where only Within Class (WIC) classification
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was considered, the hypothesis verification that resulted in the lowest score determined
the target’s predicted class.

k̂ = arg min
ki

PN(ki, θ, φ). (11)

However, in a test where confusers are present, a threshold (Ptshd
N ) should be adjusted

such that

k̂ =

{
ki, if PN(k j, θ, φ)− PN(ki, θ, φ) > Ptshd

N | ∀k j ∈ K, θ ∈ Θ, φ ∈ Φ, i 6= j
confuser, otherwise.

(12)

3. Results

As stated in Section 2.1, the Standard Operating Condition (SOC) experiments were
designed based on the SAMPLE dataset to use the maximum amount of chips available
from each class. However, although the dataset contained image chips for the 10 classes, for
θ = [14◦, 17◦] (∆θ = 1◦) and for φ = [10◦, 80◦] (∆φ = 1◦), this range was discontinuous. In
other words, there were no images with certain aspect angles for some classes. The aspect
angles (θ, φ) of all 10 classes available in the data set were identified. The 23 pairs of aspect
angles used in the experiments are listed in Table 3.

Table 3. Aspect angles used in the experiments.

θ φ

16◦ 14◦, 16◦, 17◦, 18◦, 21◦, 23◦, 29◦, 31◦, 35◦, 36◦, 37◦, 38◦, 41◦, 44◦, 58◦

17◦ 14◦, 15◦, 18◦, 19◦, 32◦, 37◦, 38◦, 51◦

3.1. Standard Operating Condition

A total of 230 chips were taken to generate the selected models according to Table 3.
From these chips, models with 50, 100, 150, 200, 250, 300, 350, and 400 scattering cen-
ters were built by applying the CLEAN scattering center extraction algorithm. GoF test
experiments were performed to evaluate the classification methods.

3.1.1. Goodness of Fit Test Experiments

In this analysis, an experiment was performed for each GoF test: MSE, PXS, and LRT
in 10-class within class classification tests by using the SLC-based approach as the source
for hypothesis generation.

The experiment considered 24 configurations evaluated through the GoF tests. For
each combination of a test and a different number of scattering centers in the model, all
230 chips underwent classification.

The first three columns of Table 4 summarize the maximum PCC obtained by each
GoF test. As can be seen, regardless of the number of scattering centers within the model,
the LRT stood out in the results, obtaining the highest PCC. The results were also shown by
the three lowest curves in Figure 13.
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Table 4. Standard Operating Condition—Percentage of Correct Classification for different implemen-
tations resulting from 10-class within class classification tests.

MSE PXS LRT LRT MLRT MLRT MLRT
SLC SLC SLC SC SC SC SCR

CLEAN CLEAN CLEAN CLEAN CLEAN PIXEL PIXEL
SC ——– ——– ——– ——– ——– - - - - - - - - - -

50 22.61% 24.35% 26.96% 49.13% 52.17% 49.13% 51.30%
100 29.57% 35.22% 37.89% 56.09% 57.83% 62.61% 63.48%
150 32.17% 37.83% 40.87% 63.91% 70.43% 65.65% 69.57%
200 33.91% 43.04% 45.22% 68.70% 74.78% 75.65% 76.52%
250 34.35% 47.39% 52.17% 70.43% 79.57% 79.57% 82.61%
300 37.39% 52.17% 54.35% 70.87% 82.17% 83.48% 86.52%
350 38.70% 54.78% 56.52% 74.78% 83.91% 86.96% 90.43%
400 39.13% 56.09% 59.57% 77.83% 85.22% 86.96% 91.30%
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Figure 13. Standard Operating Condition—Classification resulting from different implementations.

3.1.2. Hypothesis Generation Source Experiments

In recognition of the superiority of its results, the LRT was selected to be used as the
reference to compare sets obtained through different hypothesis generation approaches,
i.e., SLC- and SC-based (Section 2.2.7). The same 24 settings from Section 3.1.1 were used to
assess the performance of these two different approaches.

Figure 13 also presents the LRT SC-based approach results, which, as can be seen,
(green curve) outperformed the SLC-based approach (red curve) in all configurations.

The fourth column of Table 4 shows that the results obtained by the LRT SC-based
approach were superior to the SLC-based approach, providing a PCC that was up to
23% higher.

3.1.3. Modified Likelihood Ratio Test Experiment

In this experiment, the performances obtained from the proposed GoF and MLRT tests
were assessed. As can be seen in the solid blue line of Figure 13 and the fifth column of
Table 4, the PCC achieved by the MLRT test presented gains of up to 11% over the LRT.

3.1.4. Modified CLEAN Extraction Method Experiment

Since the CLEAN algorithm performs a large number of operations in the extraction
of each scattering center (Equation (4)), its implementation may be unfeasible in real-time
applications where a quick system response is expected. For example, considering a
128× 128 pixel chip, the original PSF would have to perform 16, 384 operations for each
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scattering center extraction. An alternative for speeding up the execution of the CLEAN
algorithm was proposed: limiting the filter kernel (PSF) (Figure 8) to a single pixel, i.e.,
the central one, by replacing the PSF for the impulse function δ(x, y). Thus, only one
operation was performed in the extraction of each scattering center. The proposed method
was named PIXEL.

An experiment was carried out to verify how the PIXEL extraction method affected
the PCC. The dashed blue line in Figure 13 illustrates the results obtained when the PIXEL
method was used as the filter kernel in the extraction of scattering centers. The sixth
column of the Table 4 shows that there were no significant changes in results compared
to the original CLEAN method. On the contrary, a small performance improvement was
acquired with the simplified kernel.

3.1.5. Scattering Centers Reduction Based Approach Experiment

The SC-based approach achieved a good performance in hypotheses generation by
increasing accuracy by up to 16%. A modification of this approach, called Scattering Centers
Reduction (SCR), was proposed as a variant. For the models with N scattering centers, the
SC-based approach assigned zero to the scattering centers amplitudes that were not ranked
within the N highest ones. The SCR-based approach was motivated by the possibility
of assigning zero to an even greater number of scattering centers on the test chip. Thus,
the SCR-based experiment was carried out by varying the number of non-zero amplitude
scattering centers from 1 to N on the measured data chip.

Figure 14 shows the results of the SCR-base approach experiments in conjunction with
the MLRT. The number of scattering centers of the models (N) was 50, 100, 150, 200, 250,
300, 350, and 400, while the number of non-zero scattering centers of the measured data
chips ranged from 1 to N.
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400 SC MODEL (MAX: 91.30% PCC at 259, 260, 271 SC)
350 SC MODEL (MAX: 90.43% PCC at 266 SC)
300 SC MODEL (MAX: 86.52% PCC at 247 SC)
250 SC MODEL (MAX: 82.61% PCC at 197, 228, 229 SC)
200 SC MODEL (MAX: 76.52% PCC at 197, 198, 199 SC)
150 SC MODEL (MAX: 69.57% PCC at 111 SC)
100 SC MODEL (MAX: 63.48% PCC at 92, 97 SC)
50 SC MODEL (MAX: 51.30% PCC at 30 SC)

Figure 14. SCR-based approach experiments considering the number of non-zero scattering centers
in the measured data.

It can be seen in Figure 14 that for the results of all sets greater than 250, the maximum
PCC points lay between 247 and 271 scattering centers. From this range, when the number
of scattering centers increased, the PCC decreased. Thus, we can infer that the average
number of scattering centers representative of the target is within this range.

The last column of Table 4 and the dashed black line of Figure 13 show the results
obtained from the SCR-based approach.

Table 5 presents the confusion matrix resulting from the experiment carried out
according to model size in which the highest PCC were verified, i.e., 400 extracted scattering
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centers. The results were obtained using the PIXEL extraction method, SCR-based approach,
and MLRT. An overall PCC of 91.30% was acquired.

Table 5. Confusion matrix: Standard Operating condition (SOC), 400 Scattering Centers models,
PIXEL extraction method, SCR-based approach, Modified Likelihood Ratio Test (MLRT), Global PCC
= 91.30%.

Class 2S1 BMP-2 BTR-70 M1 M2 M35 M60 M548 T-72 ZSU-23 PCC

2S1 21 1 0 0 0 0 0 0 0 1 91.30%
BMP-2 2 21 0 0 0 0 0 0 0 0 91.30%
BTR-70 0 0 23 0 0 0 0 0 0 0 100%

M1 0 0 0 23 0 0 0 0 0 0 100%
M2 2 0 0 0 21 0 0 0 0 0 91.30%
M35 0 0 2 0 1 19 0 0 0 1 82.61%
M60 0 0 0 0 0 0 23 0 0 0 100%
548 0 0 0 0 0 0 0 19 0 4 82.61%
T-72 1 0 0 0 1 0 0 0 21 0 91.30%

ZSU-23 3 0 0 0 1 0 0 0 0 19 82.61%

3.2. Extended Operating Condition

When dealing with SOCs, synthetic data presented maximum similarity to the mea-
sured data, and image acquisition was considered ideal as it lacked real-system degradation.
In the real world, targets found in the images can present relevant variations in their geom-
etry and in the materials that comprise them. The SAR imaging system is also subject to a
wide range of factors that can affect the quality of the images, whether they are inherent
to the system or arise from the natural conditions of the environment. Then, Extended
Operating Conditions (EOCs) were considered in two experiments to verify the proposed
algorithm under conditions where either there were structural differences between the
measured and the synthetic data or the image was contaminated by noise.

3.2.1. Noise Corruption Experiments

Noise Corruption Experiments were performed to evaluate the proposed algorithms
under different Signal-to-Noise Ratios (SNRs). The average noise power is given by the
difference between the average power of the measured data (E[T0(k, θ, φ)2]) in dB and the
desired SNR. As the average power of noise is equal to the noise variance, E[N2

SNR] = µ2 +
σ2, and the average noise is equal to zero, the added Gaussian noise can be approximated by

NSNR(k, θ, φ) ∼ N

(
0, 10

10 log(E[T0(k,θ,φ)2 ])−SNR
10

)
. (13)

Before the Gaussian noise is added, the measured data is transformed into the fre-
quency and aspect domain to reflect the raw data. Afterwards, the noise is added to
simulate the phenomenon that is supposed to occur during data acquisition. Finally, the
data are transformed back into the range and cross-range domains. The noise addition
procedure is illustrated in Figure 15.

Measured Data 2D IFFT

Gaussian Noise

2D FFT Measured Data with
Noise Added

Figure 15. Addition of noise do the measured data.
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The corrupted images were simulated for the SNR = 10, 5, 0,−5 and−10 dB. Figure 16
illustrates an example of the resulting noise-contaminated images relative to each de-
sired SNR.
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Figure 16. (a) Measured data chip of a T-72 tank—T0(8, 17, 18). Gaussian noise added relative to
either (b) 10 dB, (c) 5 dB, (d) 0 dB, (e) −5 dB and (f) −10 dB of SNR.

Table 6 details the accuracy obtained from each set of models for SNRs.

Table 6. Extended Operating Condition—Percentage of Correct Classification (PCC) for different
SNR resulting from noise contamination.

SC SOC SNR = +10 SNR = +5 SNR = 0 SNR = −5 SNR = −10

50 51.30% 48.70% 50.00% 49.57% 46.96% 48.26%
100 63.48% 64.78% 60.00% 61.30% 60.87% 52.61%
150 69.57% 66.52% 66.09% 66.09% 65.22% 58.26%
200 76.52% 76.09% 76.52% 76.52% 68.26% 64.78%
250 82.61% 82.17% 80.87% 79.57% 73.48% 64.35%
300 86.52% 83.48% 84.35% 81.74% 75.65% 65.65%
350 90.43% 88.26% 89.13% 85.65% 79.57% 68.26%
400 91.30% 90.00% 90.43% 89.13% 82.17% 68.70%

Figure 17 illustrates the results presented in Table 6. Note that the results are still
reliable when the noise had an SNR greater than −5 dB. However, when the SNR reached
−5 dB the noise started to compromise the classification results, decreasing the PCC signifi-
cantly.
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Figure 17. Classification results considering the addition of white Gaussian noise. The results were
obtained for SNR = +10, +5, 0, −5 and −10 dB.

3.2.2. Configuration Variant Experiment

In the SAMPLE dataset, all images of the same class were obtained from a single-class
instance. To carry out the Configuration Variant Experiment, measured data from the
MSTAR dataset were used since they had different instances of targets that had classes
found in the SAMPLE dataset.

In the MSTAR dataset, the BMP-2 and T-72 classes had two vehicles with different
serial numbers. While in the SAMPLE dataset, the models of these targets were built based
on vehicles with the serial number 9563 (BMP-2) and 812 (T-72), in the MSTAR dataset,
there were also images of the BMP-2 vehicles with serial numbers 9566 and C21, and images
of T-72s with serial numbers 132 and S7. A total of 69 chips (34 BMP-2 and 35 T-72) were
found in the MSTAR dataset that could be used in a within-class classification experiment,
considering the two classes.

According to [50] the main characteristics that differentiate these targets of the same
classes are related to configuration, articulation, and damage. For example, the different
versions of the T-72 stand out for the presence or absence of fuel drums and side skirts.

Figure 18 depicts images of targets from the same class (T-72), but with different
serial numbers. Note that, in this example, the synthetic data from the SAMPLE dataset
based on the serial number 812 of the T-72 target (Figure 18a) was used to build the model
(Figure 18e) and the MSTAR dataset measured data referring to the T-72 targets of serial
number S7 and 132 (Figure 18c,d) were used in the classification experiment (Figure 18g,h).

The results were verified for both Standard and Extended Operating Conditions
through Goodness of Fit tests, scattering centers extraction methods, and hypothesis
generation approaches.

Figure 19 details the comparative results between the SOC and EOC (Configuration
Variance) experiments. Due to the relevant variations between targets of different serial
numbers, a reduction in the PCC in the Configuration Variance Experiment was expected.
Note that in addition to the expected degradation of the overall results, the performance
of the Configuration Variance Experiment increases with the reduction in the number
of scattering centers of the model, while the performance in the SOC enhances with the
increase in the number of scattering centers of the model.
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Figure 18. (a) Synthetic data chip of a T-72 tank (SN 812). Measured data of a T-72 tank of serial
number: (b) 812, (c) S7 and (d) 132. Image reconstructed with 400 Scattering Centers extracted from
(e) the synthetic data of the T-72 tank of serial number 812 and the measured data of the T-72 tanks of
serial numbers (f) 812, (g) S7 and (h) 132.
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Figure 19. Comparison between the Configuration Variant classification and Standard Operating
Condition.

The opposite performance between SOC and EOC regarding the number of scattering
centers was due to the differences between the configurations. Two targets of the same
class, differently configured, presented great similarities between their basic cores; that is,
a limited number of scattering centers. As the number of scattering centers is increased,
fine details were incorporated into the model. Therefore, as these fine details were not
common to the different configurations, there was no match between the scattering centers;
consequently, the score was affected.

3.3. Neighbor-Matching Algorithm

As introduced in Section 1, the NMA considers the proximity of the scattering centers
of the targets to those of the model, as shown in Figure 4.

NMA creates a binary region (mask) by drawing circles of radius R centered on
each scattering center of the target image (IT). When a model scattering center is in the
constructed binary region, it is selected; otherwise, it is discarded. A model image (IM) is
reconstructed for each model with the selected scattering centers for the target under test.
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The number of circumscribed target scattering centers (MS) was counted by centering
the circumferences on each scattering center of the model. Finally the normalized similarity
was computed as follows:

fs(IT , IM) = Cor(IT , IM)× MS
M

, (14)

where M is the total amount of scattering centers, and Cor(IT , IM) is the correlation coeffi-
cient between the target image and the reconstructed model image.

In their original work, Fan and Thomas [35] addressed the MSTAR dataset that ob-
tained a PCC of 99.04% in a 10-class experiment. However, their models were built with
measured data rather than synthetic data. The radius of the circles assumed values of
0.3, 0.4, and 0.5 m. The number of scattering centers of both the target and models were
not reported.

For comparison purposes, we reproduced the experiment using NMA. Circumferences
with the same dimensions as the original work were used. The number of scattering centers
ranged from 50 to 400 with a step of 50. From analyzing the results presented in Figure 20,
we saw that the algorithm increased the performance by increasing the number of scattering
centers. However, increasing the number of scattering centers above 200 did not imply a
PCC increase, which remained below 78%.
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Figure 20. Comparison between the Neighbor Matching and the proposed algorithms.

4. Discussion

The first experiment reported in this article compares different Goodness of Fit tests.
As seen in Section 3.1.1, the LRT stood out regarding PXS and MSE variation. This result
refers to the small samples due to a large number of categories (scattering centers). For
small samples, the chi-square approximation in many cases did not fit well with the actual
distribution [58]. In building the model, the expected value of each category had an average
value of 1/N, where N was the number of scattering centers in the model. In an example
with N = 400, the average expected value was 0.0025, much less than 5, which is the
minimum expected value required by PXS.

In Section 3.1.2, better accuracy in the results was observed when the hypotheses were
generated based on the scattering centers of the test image (SC-based approach) compared
to those obtained when the entire test image was used (SLC-based approach). In the SLC-
based approach, when using the observed value of all scattering centers, the assumed risk
was that the observed scattering centers would present random values as they tend to be
very close to the noise level. As their amplitudes were very low, the randomness caused
a substantial error to the categorical partial score. The SC-based approach addressed this
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problem by assigning zero to the observed value of scattering centers not found within the
N ones extracted from the test image and then fixing a partial error of 100% for the category.

The goodness-of-fit test with weighting function was also efficient based on the inter-
section of the scattering center sets present in both the model and the test image. A greater
coincidence of scattering centers was expected for the true class than the false classes.
Therefore, assigning the number of elements at the intersection of the two sets of scattering
centers as an inversely proportional weight further reduced the true hypothesis test score.

The simplification of the Point Spread Function (PSF) used by the CLEAN algorithm
did not significantly improve accuracy. However, since it did not compromise the results, it
is recommended for applications limited by processing resources and execution time.

It was observed that the SCR-based approach achieved the best performance among
all implementations, indicating that the exclusion of low-ranking scattering centers from
the target was worthy. The number of scattering centers to be excluded was approximated
experimentally, showing that the PCC started to drop using a larger number of scattering
centers. This result showed that there was an adequate number of scattering centers to
represent the target properly, and more than that may have jeopardized the performance.

Lewis et al. [38], the developers of the SAMPLE dataset, provided not only measured
and synthetic data but also some results of potential experiments and suggested perfor-
mance metrics so that researchers could compare experimental results appropriately. In
one of those experiments, the 10 classes were used for training and testing, varying the
proportion of measured and synthetic data in the training batch. Using an algorithm based
on a Convolutional Neural Network (CNN) with four convolutional layers and four fully
connected layers, the average PCC was 24.97% when only synthetic data were used in the
training batch.

Consideration must be made regarding a self-imposed constraint that potentially
affected the accuracy of the reference experiments. Perhaps to maintain certain compatibil-
ity with previous works focused on the MSTAR dataset, thereby enabling a comparison
of results, they used the 17-degree depression angle images exclusively for testing. The
same condition was not applied in the proposed algorithm since its success was directly
connected to the similarity between synthetic and measured data. Therefore, there was no
reason to generate hypotheses based on models with different aspect angles. Furthermore,
as the SAMPLE dataset lacked images at some aspect angles, the entire set was used to
extract the maximum amount of images with the same aspect angles.

Lewis et al., in their most recent work, achieved average accuracies of 51.58% [39]
and 82.05% [43] by training a DenseNet with the assistance of a Generative Adversarial
Network (GAN). Scarnati et al. reached an accuracy of 55.62% [41] also by using DenseNet
and no more than 35% [45] when using Complex-Valued Neural Networks (CVNN). To
preprocess images and augment data with adversarial training, Inkawhich et al. used
Deep Neural Networks (DNN) to achieve an average PCC of 95.06% [44]. Seller et al. [42]
developed an algorithm based on CNN capable of achieving an accuracy of 95.1% when
synthetic data correspond to 99% of the data used in training. However, when using 100%
of synthetic data in training, the PCC dropped below 85%. Jennison et al. [47] achieved
an accuracy of 88.45% although their synthetic data were transformed based on measured
data, which in some ways can be considered a leak between test and training data. Finally,
the best result obtained so far can be considered to be the one achieved by Melzer et al. [48].
They tested 53 different neural networks achieving an average PCC of 96.88% with a CNN
VGG HAS.

As can be seen in Figure 13e and Table 5, for the 10 classes the best SOC classifica-
tion accuracy reached by our proposed algorithm was 91.30%. All classification results
considering the SAMPLE dataset with purely synthetic data are summarized in Figure 21.

Although the proposed algorithm has been outperformed by two of the referenced
works, its applicability can be recommended based on processing-speed requirements. All
other works used machine learning/deep learning to train their algorithms. Although
this work does not contemplate a study of processing speed, it is a fact that DNN and
CNN require a high processing time for training. The proposed algorithm replace the
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training process with a direct data inspection method for building the model. During
online classification, the proposed algorithm performed a single set of operations for
a reduced number of scattering centers (400). The other algorithms performed, for all
16,384 image pixels, a large number of operations in each layer of their networks.

Figure 21. Classification results (PCC) of all works, the training of which was performed using purely
synthetic data.

However, some constraints can characterize disadvantages in applying the proposed
algorithm. The main one is dependence on the discriminator stage. If the discriminator
stage cannot perfectly center the target on the chip and estimate its pose within the tolerance
limits, the classification results will not be successful. Another drawback is the dependence
on database completeness. To achieve operationally satisfactory results, it is necessary to
simulate a wide range of target poses.

5. Conclusions

This article proposed a model-based classification algorithm addressing the SAMPLE
dataset. As can be seen in Section 3.2, this work pioneered the SAMPLE dataset EOC
classification relating to noise corruption and configuration variance. The algorithm proved
to be robust and reliable when the added noise had an SNR of up to −5 dB. In the configu-
ration variance experiment due to the particularities of the structures of the different serial
numbers of the same class. In contrast to the SOC classification, the performance of the
algorithm improved with a reduced number of scattering centers within the model.

Among several future works that may provide potential improvements to the proposed
algorithm, we can highlight the generation of additional hypotheses. Despite the high
agreement between the measured and simulated targets of the SAMPLE dataset, small
variations in the scene and the acquisition geometry resulted in scattering centers migrating
to neighboring cells, given the pixel spacing of only 20 cm. Therefore, for each hypothesis,
eight additional hypotheses could be verified considering the possible migration of the
target scattering centers set in each direction.

Using a secondary classification logic to decide on two or more hypotheses with close
scores is also promising. If the difference between the score of the predicted class and the
second-placed class does not exceed a threshold, the decision power can be transferred
to a secondary algorithm. The secondary algorithm could explore different features not
explored by the main algorithm, such as the physical dimensions of the target. Such an
algorithm could be implemented using morphological transformations to obtain pixel
clusters representative of the target dimensions.
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