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Abstract
Causal relations in natural language (NL) requirements convey strong, semantic information. Automatically extracting such 
causal information enables multiple use cases, such as test case generation, but it also requires to reliably detect causal rela-
tions in the first place. Currently, this is still a cumbersome task as causality in NL requirements is still barely understood 
and, thus, barely detectable. In our empirically informed research, we aim at better understanding the notion of causality 
and supporting the automatic extraction of causal relations in NL requirements. In a first case study, we investigate 14.983 
sentences from 53 requirements documents to understand the extent and form in which causality occurs. Second, we present 
and evaluate a tool-supported approach, called CiRA, for causality detection. We conclude with a second case study where 
we demonstrate the applicability of our tool and investigate the impact of causality on NL requirements. The first case 
study shows that causality constitutes around 28 % of all NL requirements sentences. We then demonstrate that our detec-
tion tool achieves a macro-F

1
 score of 82 % on real-world data and that it outperforms related approaches with an average 

gain of 11.06 % in macro-Recall and 11.43 % in macro-Precision. Finally, our second case study corroborates the positive 
correlations of causality with features of NL requirements. The results strengthen our confidence in the eligibility of causal 
relations for downstream reuse, while our tool and publicly available data constitute a first step in the ongoing endeavors of 
utilizing causality in RE and beyond.

Keywords Causality · Multi-case study · Requirements engineering · Natural language processing

1 Introduction

Motivation Sentences containing causal relations, for exam-
ple “A confirmation message shall be shown if the system 
has successfully processed the data.”, are often used to 
capture the intended behavior of a system. In fact, causal 
relations are inherently embedded in many textual descrip-
tions of requirements. Both understanding the extent of use, 
but also detecting and reliably extracting these causal rela-
tions, provide great potential for applications in the domain 
of Requirements Engineering (RE). Among these are, for 
instance, supporting the automated test case generation 
[16, 17] or facilitating reasoning about inter-requirements 
dependencies [15]. However, the automated extraction of 
causal relations from requirements is still challenging for 
two reasons: On the one hand, even though controlled natu-
ral language in RE [20, 35] aims to minimize ambiguity 
and can easily be reused for further formalization [23, 46], 
unrestricted natural language is still predominantly used 
in RE [50]. This complicates information retrieval from 
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requirements due to the inherent complexity and ambigu-
ity of NL. On the other hand, causal relations can occur 
in different forms [3] such as marked/unmarked (i.e., con-
taining a cue phrase indicating the causal relationship) or 
explicit/implicit (i.e., explicitly stating both the cause and 
the effect), further rendering the identification and extraction 
of causes and effects cumbersome. Existing approaches still 
fail to extract causal relations from NL with a performance 
that allows for efficient and reliable use in practice [1]. We 
therefore argue that a novel method for detecting and extract-
ing causal relations from requirements is imperative for the 
effective utilization of causality in RE.

Contribution Causality extraction entails two distinct 
challenges: first, one needs to determine whether a require-
ment contains causal relations. Only sentences containing 
causal relations are eligible for extraction, so sentences con-
taining no causal relations can be discarded. Second—if they 
contain causal relations, these need to be properly under-
stood and extracted. Addressing both challenges requires 
comprehending to which extent, form, and complexity cau-
sality occurs in practice in RE. Reliable knowledge about 
the distribution of causality is a necessary precondition to 
develop efficient approaches for the automated detection and 
extraction of causal relations. However, empirical evidence 
on causality in requirements artifacts is still unavailable to 
this day. In this manuscript, we report on how we addressed 
those challenges to close the existing research gap by mak-
ing the following contributions (C): 

C 1 Prevalence of Causality: We report on an exploratory 
case study analyzing the extent, form, and complexity 
of causality in requirements rooted in 14,983 sentences 
and emerging from 53 requirement documents, which 
originate from 18 different domains. We corroborate 
that causality tends to occur predominantly in explicit 
and marked form, and that about 28 % of the analyzed 
sentences contain causal information about the expected 
system behavior. This strengthens our confidence in 
the relevance of causality and, in consequence, of our 
approach to automatically extract causality.

C 2 Automated Detection of Causality: We present our tool-
supported approach CiRA (Causality in Requirement 
Artifacts), which constitutes a first step toward causal-
ity extraction from NL requirements by automatically 
detecting causal relations in NL requirements. We train 
and empirically evaluate CiRA using the pre-analyzed 
data set and achieve a macro-F

1
 score of 82 %. Com-

pared to baseline systems that classify causality relying 
on the presence of certain cue phrases, or shallow ML 
models, CiRA leads to an average performance gain 
of 11.43 % in macro-Precision and 11.06 % in macro-
Recall.

C 3 Impact of Causality: We report on a second exploratory 
case study evaluating the correlation between the occur-
rence of causality and its effects on the requirements life 
cycle, not only demonstrating a possible use case of the 
automatic causality detection approach and tool but also 
corroborating the positive impact on causality on the 
requirements process.

C 4 Open Data and Source Code: To strengthen the transpar-
ency and, thus, the credibility of our research, but also to 
facilitate independent replications, we publicly disclose 
our tool, code, and data set used in the case study. A 
demo of CiRA can be accessed at http:// www. cira. bth. 
se/ bert. Our code and annotated data sets can be found 
at https:// doi. org/ 10. 5281/ zenodo. 55966 68.

1.1  Previously published material

This manuscript extends our previously published confer-
ence paper [14] in the following aspects: we extend our 
case study (C1) and development of our own approach (C2) 
by the aforementioned second case study (C3) based on 
an extensive data set of requirements from a multinational 
software development company. In addition, we expand the 
evaluation of the resulting data from the first case study in 
response to discussions with the requirements engineering 
community to increase the generalizability of our results. 
Please note that we took the liberty of intentionally reusing 
minor parts of our previously published material for this 
manuscript at hand in a verbatim manner, such as discus-
sions on related work or terminological definitions.

1.2  Outline

The manuscript is structured as follows: Sect. 2 introduces 
the terminology used throughout the manuscript based on 
the established literature. Sect. 3 reports on the first case 
study investigating the extent, form, and complexity to which 
causality is used in NL requirements (C1). Our approach 
for automatically detecting causal requirements (C2) is pre-
sented in Sect. 4. Sect. 5 reports on the second case study 
(C3) investigating the impact of causality in natural language 
requirements on their life cycle. Section 6, finally, presents 
related work in the research area before concluding our work 
with Sect. 7.

2  Terminology

The concept of causality has received notable attention in 
the studies of various disciplines, e.g., in psychology [53]. 
Before investigating the extent to which causality occurs in 
requirements, we elaborate on a definition of causality.

http://www.cira.bth.se/bert
http://www.cira.bth.se/bert
https://doi.org/10.5281/zenodo.5596668
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Concept of Causality Causality describes a relation 
between at least two events: a causing event (the cause) and 
a caused event (the effect). An event is commonly defined as 
“any situation (including a process or state) that happens or 
occurs either instantaneously (punctual) or during a period 
of time (durative)” [39]. The connection between causes and 
effects is counterfactual [34]: if a cause c

1
 does not occur, 

then an effect e
1
 cannot occur either. Consequently, a causal 

relation entails that the effect may only occur if and only 
if the cause has occurred. If this is not the case, then the 
relation might be confounded and is hence not causal. This 
relation can be interpreted in the view of Boolean algebra as 
an equivalence between a cause and effect ( c

1
⇔ e

1
 ): if the 

cause is true, the effect is true and if the cause is false, the 
effect is also false. The representation of a causal relation-
ship as a logical equivalence is not entirely reflecting the 
nature of the relation, especially in regards to the temporal 
order of events, which is not determined in propositional 
logic. The challenges of formalizing causal relationships 
both regarding the used notation and the ambiguity when 
interpreting these relationships are discussed in depth in a 
different paper [13]. For the remainder of this manuscript, 
we use the notation of a logical equivalence to represent 
a causal relationship. We refer the reader interested in an 
extended discussion on the logical formalization of causal 
relationships to our previous publication on the matter [13]. 
The type of causal relation between the two events can take 
one of three different forms [52]: a causing, enabling, or 
preventing relationship.

• c
1 causes e

1
 : If c

1
 occurs, e

1
 also occurs ( c

1
⇔ e

1
 ). This 

can be illustrated by REQ 1: “After the user enters a 
wrong password, a warning window shall be shown.” 
In this case, the wrong input is the trigger to display the 
window.

• c
1 enables e

1
 : If c

1
 does not occur, e

1
 does not occur either 

( e
1
 is not enabled, ( ¬c

1
⇔ ¬e

1
)). REQ 2: “As long as you 

are a student, you are allowed to use the sport facilities 
of the university.” Only the student status enables to do 
sports on campus.

• c
1 prevents e

1
 : If c

1
 occurs, e

1
 does not occur ( c

1
⇔ ¬e

1
 ). 

REQ 3: “Data redundancy is required to prevent a single 
failure from causing the loss of collected data.” There 
will be no data loss due to data redundancy.

Temporal Ordering of Causes and Effects Causes and effects 
can be related to each other in three temporal ways [39]. In 
the first temporal relation, the cause occurs before the effect 
(before relation). In REQ 1, the user has to enter a wrong 
password before the warning window will be displayed. In 
this example, the cause and effect represent two punctual 
events. In the second temporal relation, the occurrence of 
the cause and effect overlaps: “The fire is burning down 

the house.” In this case, the occurrence of the emerging fire 
overlaps with the occurrence of the increasingly brittle house 
(overlaps relation). In the third temporal relation (during 
relation), cause and effect occur simultaneously. REQ 2 
describes such a relation: the effect—being allowed to do 
sports on the campus—is only valid as long as one has the 
student status. The start and end time of the cause is there-
fore also the start and end of the effect. Here, both events 
are durative.

Forms of Causality The form in which causality can 
be expressed has three further characteristics [3]: marked 
and unmarked causality, explicit and implicit causality, and 
ambiguous and non-ambiguous regarding its cue phrases, a 
linguistic concept commonly used when dealing with causal-
ity in natural language [5, 22]. A cue phrase is defined as “a 
word, a phrase, or a word pattern, which connects one event 
to the other with some relation” [5] and therefore a lexical 
indicator for the causal relationship.

• Marked and unmarked: A causal relation is marked if a 
certain cue phrase indicates its causality. The require-
ment “If the user presses the button, a window appears” 
is marked by the cue phrase “if”, while “The user has no 
admin rights. He cannot open the folder.” is unmarked.

• Explicit and implicit: An explicit causal relation con-
tains information about both the cause and effect. The 
requirement “In case of an error, the systems prints an 
error message to the console” is explicit since it contains 
both the cause (error) and effect (error message). “A par-
ent process kills a child process” is implicit because the 
effect that the child process is terminated is not explicitly 
stated. Implicitly causal sentences are particularly hard 
to process and might be a potential source of ambiguity 
in RE due to their obscuring nature.

• Ambiguous and non-ambiguous cue phrases: Due to 
the specificity of most cue phrases in marked causality, 
it seems feasible to deduce the classification of a sen-
tence as containing causality based on the occurrence of 
certain cue phrases. However, certain cue phrases (e.g., 
since) indicate causality, but also occur in other contexts 
(e.g., denoting time constraints). Such cue phrases are 
called ambiguous, while cue phrases (e.g., because) that 
predominantly indicate causality are called non-ambig-
uous.

Complexity of Causality All previous examples use the 
complexity-wise simplest form of causality where the causal 
relation consists of one single cause and one single effect. 
Due to the increasing complexity of systems, however, 
the expected behavior is described by multiple causes and 
effects that are connected to each other. They can be linked 
either by conjunctions ( c

1
∧ c

2
∧⋯ ⇔ e

1
 ) or disjunctions 

( c
1
∨ c

2
∨⋯ ⇔ e

1
 ) or a combination of both. Furthermore, 
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the constituents of causal relations can be contained in more 
than one sentence, which is a significant challenge for cau-
sality extraction as it increases the scope of causality detec-
tion beyond one single sentence. Therefore, we also consider 
two-sentence causality. However, causal relations scattered 
over more than two adjacent sentences are not considered in 
this research work. Additionally, the complexity increases 
when several causal relations are linked together, i.e., if the 
effect of a relation r

1
 represents a cause in another relation 

r
2
 . We define such causal relations, where r

2
 is dependent 

on r
1
 , as event chains (e.g., r

1
∶ c

1
⇔ e

1
 and r

2
∶ e

1
⇔ e

2
).

3  Case study 1: prevalence of causality 
in requirement artifacts

We designed and conducted the case study following the 
well-established guidelines of Runeson and Höst [45]. Our 
case study is of exploratory nature based on the classifi-
cation of Robson [44], as we aim to unravel new insights 
into causality in requirement artifacts. In this section, we 
describe our research questions, study objects, study design, 
study results, and threats to validity. We conclude by giving 
an overview of the implications of the study on causality 
detection and extraction from NL requirements.

3.1  Research questions

Our goal in understanding the prevalence of causality in 
requirements artifacts encompasses the extent, form, and 
complexity of causality. Based on the terminology previ-
ously established in Sect. 2, we investigate the following 
research questions (RQ) in the scope of this first case study: 

RQ 1  To which degree does causality occur in requirement 
documents?

RQ 2  How often do the relations cause, enable, and pre-
vent occur?

RQ 3  How often do the temporal relations before, overlap, 
and during occur?

RQ 4  In which form does causality occur in requirement 
documents?

• RQ 4a: How often does marked and unmarked causality 
occur?

• RQ 4b: How often does explicit and implicit causality 
occur?

• RQ 4c: Which causal cue phrases are used? Are they 
mainly ambiguous or non-ambiguous?

RQ 5  At which complexity does causality occur in RE 
documents?

• RQ 5a: How often do multiple causes occur?
• RQ 5b: How often do multiple effects occur?
• RQ 5c: How often does two-sentence causality occur?
• RQ 5d: How often do event chains occur?

RQ 6  Is the distribution of labels in all categories 
domain-independent?

3.2  Study objects

To obtain evidence on the extent to which causality is used 
in requirements artifacts in practice, we had to generate a 
large and representative collection of artifacts. We consid-
ered data sets as eligible for our case study based on three 
criteria: (1) the data set shall contain requirements artifacts 
that are/were used in practice, (2) the data set shall not be 
domain-specific, but rather contain artifacts from different 
domains, and (3) the documents shall originate from a time 
frame of at least 10 years. Following these criteria ensures 
that our analysis is not restricted to a single year or domain, 
but rather allows for a comprehensive and generalizable 
view on causality in requirements. We accordingly selected 
the data set provided by Fischbach et al. [15]. To the best of 
our knowledge, this data set is currently the most extensive 
collection of requirements available to the research com-
munity. From its 463 documents containing 212k extracted 
and pre-processed sentences, we randomly selected 53 docu-
ments from the data set for our analysis. Our final data set 
consists of 14,983 sentences from 18 different domains (see 
Fig. 1).

3.3  Study design

Model the phenomenon Answering the research questions in 
the scope of our first case study entails to annotate the sen-
tences of our data set with respect to the categories elicited 
in Sect. 2. For example, each causal sentence has to be clas-
sified in the category Explicit as either explicit or implicit. 
According to Pustejovsky and Stubbs [43], the first step in 
each annotation process is to “model the phenomenon” that 
needs to be annotated. Specifically, the phenomenon should 
be defined as a model M that consists of a vocabulary T, the 
relations R between the terms as well as the interpretations 
I of terms. RQ 1 can be understood as a binary annotation 
problem, which can be modeled as:

• T: {sentence, causal, not causal}
• R: {sentence : ∶= causal | not causal}
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• I: {causal = “A sentence is causal if it contains a relation 
between at least two events, where e1 causes the occur-
rence of e2”, ¬causal = “A sentence is not causal if it 
describes a state that is independent on any events”}

Explicitly modeling an annotation problem according to the 
aforementioned framework does not only contribute an 
unambiguous definition of the research problem but can also 
be used as a guideline for the annotators explaining the 
meaning of the labels. Each RQ has been modeled accord-
ingly and communicated with all annotators. In addition to 
interpretation I, we have also provided an example for each 
label to avoid misunderstandings. The following nine cate-
gories emerged in the process of modeling RQ 1-5, accord-
ing to which we annotated our data set: Causality  , 

Explicit  , Marked  , Single Sentence  , Single Cause  , 

Single Effect  ,  Event Chain  ,  Relationship  a n d 

Temporality  . We refer to all categories except Causality  
as dependent categories, as they are dependent on the 

Causality  label. To answer RQ 6, we perform a stratified 
analysis for each of the aforementioned categories using the 
domains as strata. Due to the imbalance of the data set in 
respect to the domains, the requirements sentences originate 
from, we formulate the following null hypothesis for each 
category X: sentences from different domains have the same 
distribution of values in category X.

Annotation Environment We developed our own annota-
tion platform tailored to our research questions.1 In contrast 
to other annotation platforms [40] which only show single 
sentences to the annotators, we also display the predeces-
sor and successor of each sentence, which is required to 
determine whether the causal relation is not confined to one 
sentence, but extends across two (see RQ 5c). For the binary 
annotation problems (see RQ 1, RQ 4a, RQ 4b, RQ 5a - d), 
we provide two labels for each category. Cue phrases present 
in the sentence can be manually selected by either choosing 
from a list of already identified cue phrases or by adding a 

Fig. 1  Descriptive statistics of our data set. The upper graph shows the number of sentences per domain. The lower graph depicts the year of 
creation per document

1 A read-only view of the platform can be accessed at http:// clabel. 
dipts rv003. bth. se.

http://clabel.diptsrv003.bth.se
http://clabel.diptsrv003.bth.se
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new cue phrase using a text input field (see RQ 4c). Since 
RQ 2 and RQ 3 are ternary annotation problems, the plat-
form provides three labels for these categories.

Annotation Guideline To ensure a common understand-
ing both of causality itself and of the respective categories, 
we conducted a workshop with all annotators prior to the 
labeling process. The results of the workshop were recorded 
in the form of an annotation guideline. All annotators were 
instructed to comply with all of the annotation rules. One 
important, initially counter-intuitive instruction was to not 
entirely depend on the occurrence of cue phrases, as this 
approach is prone to introducing too many False Positives. 
Rather than focusing on lexical or syntactic attributes, the 
annotation process has to be initiated by fully reading the 
sentence and comprehending it on a semantic level. The 
impact of this becomes evident when considering some 
examples: requirements like “If the gaseous nitrogen sup-
ply is connected to the ECS duct system, ECS shall include 
the capability of monitoring the oxygen content in the duct-
ing.” are easy to classify as causal due to the occurrence of 
the cue phrase if and the explicit phrasing of both the cause 
and the effect. Requirements containing a relative clause like 
“Any items or issues which will limit the options available to 
the platform developers should be described.” are more dif-
ficult to correctly classify due to the lack of cue phrases. The 
semantically equivalent paraphrase “If an item or issue will 
limit the options available to the platform developers, the 
item or issue should be described.” reveals the causal rela-
tion contained by the requirement. A second vital instruction 
was to check if the cause is really necessary for the effect to 
occur. Only if the existence of the cause is mandatory for the 
effect to happen, the relation can be deemed causal.

Annotation Validity We utilize the calculation of the inter-
annotator agreement to verify the reliability of our annota-
tions. Each of the six annotators was assigned 3,000 sen-
tences, of which 2,500 were unique and 500 overlapping. 
Consequently, among the approximately 15,000 annotated 
sentences 3,000 were labeled by two annotators. To maxi-
mize the meaningfulness of the inter-annotator agreement, 
the 500 overlapping sentences were selected in batches of 

100, such that every annotator had an overlap with every 
other annotator. Based on the overlapping sentences, we cal-
culated the Cohen’s Kappa [6] measure to evaluate how well 
the annotators made the same annotation decision for a given 
category. We chose Cohen’s Kappa since it is widely used 
for assessing inter-rater reliability [49]. However, a number 
of statistical problems are known to exist with this measure 
[36]. In case of a high imbalance of ratings, Cohen’s Kappa 
is low and indicates poor inter-rater reliability even if there 
is a high agreement between the raters (Kappa paradox [11]). 
Thus, the calculation of Cohen’s Kappa is not meaningful in 
such scenarios. Consequently, studies [54] suggest that 
Cohen’s Kappa should always be reported together with the 
percentage of agreement and other paradox resistant meas-
ures (e.g., Gwet’s AC1 measure [25]) in order to make a 
valid statement about the inter-rater reliability. We involved 
six annotators in the creation of the corpus and assessed the 
inter-rater reliability on the basis of 3,000 overlapping sen-
tences, which represent about 20 % of the total data set. We 
calculated all measures using the cloud-based version of 
AgreeStat [24]. Cohen’s Kappa and Gwet’s AC1 can both be 
interpreted using the taxonomy developed by Landis and 
Koch [32]: values ≤ 0 as indicating no agreement and 
0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–0.60 as 
moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost 
perfect agreement. Table 1 provides an overview of the con-
fusion matrices and calculated agreement measures per cat-
egory. The inter-rater agreement for the category Causality  
was calculated on the basis of all 3000 overlapping sen-
tences. Since the other categories represent specific forms 
of causality, we computed their inter-rater agreement only 
on the sentences marked as causal. Our analysis demon-
strates that the inter-rater agreement of our annotation pro-
cess is reliable. Across all categories, an average percentage 
of agreement of 86 % was achieved. Except for the catego-
ries Single Cause  and Single Effect  , all categories show 
a percentage of agreement of at least 84 %. We hypothesize 
that the slightly lower value of 76 % for these two categories 
is caused by the fact that in some cases the annotators 

Table 1  Inter-annotator agreement statistics per category. The two categories “Relationship” and “Temporality” were jointly labeled by the first 
and second author and therefore do not require a reliability assessment

Causality Explicit Marked Single Sen-
tence

Single Cause Single Effect Event Chain avg.

0 1 0 1 0 1 0 1 0 1 0 1 0 1
Confusion 0 2034 193 24 25 1 22 12 8 41 77 63 72 450 27
Matrix 1 274 499 39 411 12 464 17 462 43 338 46 318 13 9
Agreement 84.4 % 87.2 % 93.1 % 95.0 % 76.0 % 76.4 % 92.0 % 86.3 %
Cohen’s Kappa 0.579 0.358 0.023 0.464 0.261 0.362 0.27 0.331
Gwet’s AC1 0.753 0.84 0.926 0.945 0.645 0.625 0.91 0.806
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interpret the causes and effects with different granularity 
(e.g., annotators might break some causes and effects down 
into several sub causes and effects, while some do not). 
Hence, the annotations differ slightly. The Kappa paradox is 
particularly evident for the categories Marked  and 
Event Chain  . Despite a high agreement of over 90 %, 

Cohen’s Kappa yields a very low value, which “paradoxi-
cally” suggests almost no or only fair agreement. A more 
meaningful assessment is provided by Gwet’s AC1 as it did 
not fail in the case of prevalence and remains close to the 
percentage of agreement. Across all categories, the mean 
value is above 0.8, which indicates a nearly perfect agree-
ment. Therefore, we assess our labeled data set as reliable 
and suitable for further analysis and the implementation of 
our causality detection approach.

Data Analysis RQ 1-5 are answered by providing descrip-
tive statistics of the distribution of labels for each category. 
For RQ 6, inferential statistics are applied. Since the hypoth-
eses formulated for each category aim to investigate the 
independence between the association of a requirement to a 
specific domain and the distribution in the respective cate-
gory, a statistical hypothesis test for independence can be 
used. As both the independent variable (the domain) and the 
dependent variable (the respective category) are categorical, 
the Chi-squared test will be used. The category Causality  
is tested with respect to the full annotated data set. All 
dependent categories are tested on the causal subset of the 
data since only causal sentences are annotated in the other 
categories. For all tests, only domains with at least 100 sen-
tences were selected as eligible strata to confine the hypoth-
esis tests to sufficiently represented domains. This threshold 
was introduced to RQ 6 to avoid the noise of underrepre-
sented domains. Since the data set was aggregated in RQ 
1−5, this change is only necessary for RQ 6. Using the sub-
set of domains as strata implies the degree of freedom of the 
Chi-squared tests exceeding 2, hence the risk of the multiple 
comparison problem, i.e., the likelihood for a Type I error 
in rejecting null hypotheses, arises [2]. For example, when 
evaluating the null-hypothesis of independence for the 
dichotomous category Explicit  , considering the nine eli-
gible domains with more than 100 causal sentences yields a 
degree of freedom of 8, as it is calculated as follows [37] 
(considering that the number of rows is 2 for dichotomous 
variables):

The p-value of the Chi-squared test of this hypothesis is 
0.000036, far below the significance level � = 0.05 , even 
though the relative number of values in the category 
Explicit  among the eligible domains suggests an equal dis-

(1)

dof = (number of rows − 1) ∗ (number of columns − 1)

= (2 − 1) ∗ (9 − 1) = 8

tribution and therefore independence of the domain, as seen 
in Fig. 3. Hence, we are not reporting the p-value of the 
Chi-square hypothesis test, as it is not meaningful in this 
case. Instead, we apply a Bonferroni correction [2] on the 
significance level and perform the Chi-squared test in each 
category for each domain against the sum of all samples 
outside of the domain, as applied in similar scenarios [33]. 
Applying the Bonferroni correction to the significance level 
based on the following formula, [2] yields a significance 
level that counteracts the large degree of freedom m and 
reduces the likelihood of Type I errors when refuting null 
hypotheses:

The previously calculated p-value for the Chi-square test 
of independence considering all domains still suggests to 
reject the null hypothesis. Hence, a post-hoc test similar to 
[33], where each domain is compared to the sum of all other 
domains, is applied to reveal, that only the null-hypothesis 
for the domain sustainability can be refuted with a p-value of 
0.0001 < 0.00625 , which aligns with Fig. 3. This procedure 
is applied to all hypotheses of RQ 6.

3.4  Study Results

The results of each labeled category are visualized in Fig. 2. 
Detailed values for the distribution of labels among all cat-
egories and domains are given in Table 11. When interpret-
ing the values, it is important to note that for our analysis we 
consider complete requirement documents. Consequently, 
our data set contains records with different contents, which 
do not necessarily represent all functional requirements. For 
example, requirement documents also contain non-func-
tional requirements, phrases for content structuring, purpose 
statements, etc. The results are hence to be interpreted in 
respect to the content of a full requirements artifact, not only 
to its functional requirements.

Answer to RQ 1: Figure 2 confirms that causality occurs 
in requirement documents to a significant extent. About 28 
% of the analyzed sentences are causal. From this result, we 
can conclude that causality is a major linguistic element of 
requirement artifacts as almost one-third of all sentences 
are causal.

Answer to RQ 2: The majority (56 %) of causal sentences 
contained in requirement artifacts represent an enable rela-
tionship between certain events. Only about 10 % of the 
causal sentences indicate a prevent relationship. Cause rela-
tionships are found in about 34 % of the annotated data.

Answer to RQ 3: Interestingly, we found that causes and 
effects occur almost equally often in a before and during 
relation. With about 48 %, the before relation is the most 
frequent temporal relation in our data set, but only with a 

(2)pc =
�

m
=

0.5

8
= 0.00625
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difference of about 6 % compared to the during relation. 
The overlap relation occurred only in a minority (8.78 % of 
the sentences).

Answer to RQ 4a: The majority of causal sentences con-
tain one or more cue phrases, as Fig. 2 indicates, to indicate 
the causal relationship between certain events. Only around 
15 % of the labeled sentences were categorized as unmarked 
causality.

Answer to RQ 4b: Most causal sentences are explicit, i.e., 
they contain information about both the cause and the effect. 
Only about 10 % of causal sentences are implicit.

Answer to RQ 4c: All causal cue phrases identified in the 
investigated requirements artifacts are listed in Table 2. The 

left side of the table shows the cue phrases ordered by word 
group. On the right side, all verbs used to express causal 
relations are listed. The verbs are further ordered according 
to whether they express a cause, enable, or prevent relation-
ship. To assess the ambiguity of a cue phrase x, we formu-
late a binary classification task: consider all sentences as 
the sample space. The causal sentences of that sample space 
represent the relevant elements. The precision of cue phrase 
x as a selection criterion for causal sentences is the condi-
tional probability, that a sentence from the sample space is 
causal given that it contains cue phrase x, and hence reflects 
the ambiguity of the cue phrase:

Fig. 2  Annotation results per 
category. The y axis of the bar 
plot for the category “Causal-
ity” refers to the total number of 
analyzed sentences. The other 
bar plots are only related to the 
causal sentences
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Table 2  Overview of cue phrases used to indicate causal-
ity in requirement documents. Bold precision values high-
light non-ambiguous phrases that mostly indicated causality 
( Pr(Causal ∣ X is present in sentence) ≥ 0.8)

Type Phrase Causal Not Causal Precision

Conjunctions If 387 41 0.90
As 607 1313 0.32
Because 78 7 0.92
But 100 204 0.33
In order to 141 33 0.81
So (that) 88 86 0.51
Unless 23 4 0.85
While 71 90 0.44
Once 48 15 0.76
Except 9 5 0.64
As long as 12 1 0.92

Adverbs Therefore 61 6 0.91
When 331 64 0.84
Whenever 10 0 1.00
Hence 21 9 0.70
Where 213 150 0.59
Then 111 70 0.61
Since 65 32 0.67
Consequently 2 6 0.25
Wherever 5 2 0.71
Rather 16 30 0.35
To this/that end 12 0 1.00
Thus 66 17 0.80
For this reason 7 3 0.70
Due to 91 26 0.78
Thereby 4 2 0.67
As a result 11 4 0.73
For this purpose 1 2 0.33

Pronouns Which 277 608 0.31
Who 28 52 0.35
That 732 1178 0.38
Whose 16 11 0.59

Adjectives Only 127 126 0.50
Prior to 26 20 0.57
Imperative 1 3 0.25
Necessary (to) 36 19 0.65
Given 73 140 0.34
Following 53 175 0.23

Preposition For 1209 2753 0.31
During 327 137 0.70
After 133 57 0.70

Table 2  (continued)

Type Phrase Causal Not Causal Precision

By 506 1171 0.30
With 680 1554 0.30
In the course of 2 1 0.67
Through 114 204 0.36
As part of 19 51 0.27
In this case 18 3 0.86

Before 54 27 0.67
Until 33 11 0.75
Upon 25 48 0.34
In case of 30 7 0.81
In both cases 1 0 1.00
In the event of 15 2 0.88
In response to 6 7 0.46
In the absence of 8 1 0.89
Within 150 315 0.32
As far as 4 5 0.44
According to 21 54 0.28
Around 25 41 0.37
From 370 990 0.27
Based on 56 175 0.24

Cause Force(s/ed) 21 18 0.54
Cause(s/ed) 32 10 0.76
Lead(s) to 5 0 1.00
Reduce(s/ed) 48 28 0.63
Minimize(s/ed) 28 11 0.72
Affect(s/ed) 13 19 0.41
Maximize(s/ed) 11 5 0.69
Eliminate(s/ed) 8 11 0.42
Result(s/ed) in 50 43 0.54
Increase(s/ed) 49 34 0.59
Decrease(s/ed) 5 8 0.38
Impact(s) 37 68 0.35
Degrade(s/ed) 11 2 0.85
Introduce(s/ed) 11 12 0.48
Enforce(s/ed) 2 1 0.67
Trigger(s/ed) 11 7 0.61
Imply 7 14 0.33
Attain(s/ed) 3 13 0.18
Create(s/ed) 39 88 0.30
Impose(s/ed) 7 13 0.35
Perform(s/ed) 26 60 0.30
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A high precision value indicates a non-ambiguous cue 
phrase, i.e., the occurrence of the cue phrase in a sentence 
is a strong indicator for the sentence being causal, while 
low values indicate strongly ambiguous cue phrases. Table 2 
demonstrates that a number of different cue phrases are used 
to express causality in requirement documents. Not sur-
prisingly, cue phrases like “if”, “because” and “therefore” 
show precision values of more than 90 %. However, there 
is a variety of cue phrases that indicate causality in some 
sentences but also occur in other non-causal contexts. This 
is especially evident in the case of pronouns. Relative sen-
tences can indicate causality, but not in every case, which is 
reflected by the low precision value of for example which. 
A similar pattern emerges with regard to the used verbs. 
Only a few verbs (e.g., “leads to, degrade, and enhance”) 
show a high precision value. Consequently, the majority of 
used pronouns and verbs do not necessarily indicate a causal 
relation if they are present in a sentence.

Answer to RQ 5a Fig. 2 illustrates that most causal rela-
tions in requirement documents include only a single cause. 
Multiple causes occur in only 19.1 % of the analyzed causal 
sentences. The exact number of causes was not documented 

(3)
Pr(sentence is causal ∣ sentence contains x)

=
Pr(sentence is causal ∩ sentence contains x)

Pr(sentence contains x)

during the annotation process. However, the participating 
annotators reported consistently that two to three causes 
were predominantly prevalent in the case of complex causal 
relations. More than three causes were rare.

Answer to RQ 5b Interestingly, the distribution of effects 
is similar to that of causes. Likewise, single effects occur 
significantly more often than multiple effects. According to 
the annotators, the number of effects in the case of complex 
relations is mostly limited to a maximum of two effects. 
Three or more effects occur rarely.

Answer to RQ 5c Most causal relations can be found 
in single sentences. Relations, where cause and effect are 
distributed over two sentences, occur only in about 7 % of 
the analyzed data. Among the marked subset of these sen-
tences ( n = 242 ), the cue phrase “therefore” was used most 
frequently, occurring 58 times. The next-most frequent cue 
phrase, “thus”, appeared only 14 times.

Answer to RQ 5d Fig. 2 shows that event chains are rarely 
used in requirement documents. Most causal sentences con-
tain isolated causal relations, while only roughly 7 % contain 
event chains.

Answer to RQ 6 Figure 4 visualizes the distribution of 
causality among all domains which are represented with 
more than 100 sentences. As the percentage of causal sen-
tences ranges from 17.8 % up to 44.4 %, we can assume that 
causality is indeed a phenomenon occurring in all eligible 
domains. The Chi-squared test reported in Table 3 suggests 
rejecting the null hypothesis for domain-independence for 
10 out of 14 eligible domains considering the Bonferroni-
corrected significance level. We can conclude that causality 
is a phenomenon observable independent of the domain 
from which requirements originate, but the extent to which 
causality occurs differs with statistical significance. For all 
dependent categories, the domains Aerospace, Astronomy, 
Banking, Data Analytics, Health, Infrastructure, Smart City, 
Sustainability, and Telecomm are eligible for consideration 
as they contain more than 100 causal sentences. On the right 
side of Table 3, each cell contains the p-value for a Chi-
squared test comparing the distribution of the given domain 
to the rest of the sample. Where the p-value for a given 
domain and category is lower than the Bonferroni-corrected 
significance level (denoted for each category as pc ), the cell 
is prefixed with an asterisk. The Chi-squared test of inde-
pendence does not suggest to reject the null hypothesis for 
the categories Single Cause  and Event Chain  , but the 
distribution of 4 out of the eligible 9 domains in the category 
Temporality  is significantly different. We can conclude 

that the distribution of values in all categories is domain-
independent to a certain degree: while the complexity of 
causality is mostly domain-independent, the distribution of 
temporality differs significantly for a about a third of the 
eligible domains. A stratified analysis for RQ 4c is reported 

Table 2  (continued)

Type Phrase Causal Not Causal Precision

Enable Depend(s) on 28 21 0.57
Require(s/ed) 316 262 0.55
Allow(s/ed) 187 130 0.59
Need(s/ed) 98 162 0.38
Necessitate(s/ed) 7 2 0.78
Facilitate(s/ed) 29 28 0.51
Enhance(s/ed) 16 4 0.80
Ensure(s/ed) 145 66 0.69
Achieve(s/ed) 30 24 0.56
Support(s/ed) 128 301 0.30
Enable(s/ed) 75 36 0.68
Permit(s/ed) 10 13 0.43
Rely on 3 5 0.38
Measure(s/ed) 99 247 0.28
Provide(s/ed) 75 125 0.37

Get 13 23 0.36

Meet 42 34 0.55
Prevent Hinder(s/ed) 1 1 0.50

Prevent(s/ed) 38 17 0.69
Avoid(s/ed) 14 23 0.38
Mitigate(s/ed) 3 8 0.27
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in Table 4a and shows considerable differences in the usage 
of cue phrases in the domains, but also a degree of overlap: 
the cue phrase if is among the five most frequent cue phrases 
in all domains, closely followed by the cue phrases when and 
where. The stratified frequencies align with the overall dis-
tribution reported in Table 2 and lead to the assumption, that 
the distribution of cue phrases is mostly domain independ-
ent. When looking at the most precise cue phrases per 
domain in Table 4b and the least precise cue phrases per 
domain in Table 4c, the cue phrases also reflect the findings 
from the overall distribution: precise cue phrases like if, 

when, and because as well as infrequent, but precise causa-
tive verbs are equally represented in the domains just as 
imprecise cue phrases like for or by. We conclude that 
despite slight domain-specific variations, the results for RQ 
4c are also domain-independent2.

3.5  Implications for causality detection 
and extraction

Based on the results of our case study, we draw the following 
conclusions: Causality is prevalent in requirements artifacts 
and therefore matters in requirements engineering, which 
motivates the necessity of not only an effective and reli-
able approach for the automatic detection and extraction of 

Fig. 4  Distribution of causality among domains

Table 3  Bonferroni-corrected Chi-squared tests of independence from the domain. Cells prefixed with * indicate a category, where the distribu-
tion of the given domain differs significantly from the sample

Domain Causal Explicit Marked Single Cause Single Effect Event Chain Single Sentence Temporality Relationship

pc 3.8E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 6.3E-03 3.1E-03 3.1E-03
Aerospace *8.0E-05 1.5E-01 8.2E-03 9.8E-02 6.4E-03 7.2E-02 6.3E-01 *3.3E-10 3.1E-02
Agriculture *7.0E-04 (domain contained less than 100 causal sentences)
Astronomy *4.1E-08 6.2E-02 1.0E-02 8.9E-01 2.7E-01 1.1E-01 2.4E-01 *4.4E-05 3.0E-01
Automotive 2.9E-01 (domain contained less than 100 causal sentences)
Banking *1.9E-04 1.3E-01 5.3E-01 9.0E-02 2.8E-02 5.3E-01 2.6E-01 *7.8E-06 4.4E-01
Data Analytics *1.4E-05 3.4E-02 1.3E-02 2.3E-02 *3.7E-03 1.3E-01 3.9E-01 3.6E-01 5.9E-01
Digital Library 9.3E-01 (domain contained less than 100 causal sentences)
Digital Society 4.4E-03 (domain contained less than 100 causal sentences)
Health *9.4E-04 1.4E-02 5.7E-01 7.9E-02 6.8E-01 6.3E-01 7.7E-01 7.0E-02 1.8E-01
Infrastructure *2.1E-06 5.0E-01 3.2E-01 4.1E-01 1.6E-01 5.0E-01 6.8E-01 6.1E-01 *6.7E-05
Physics *2.1E-04 (domain contained less than 100 causal sentences)
Smart City *8.4E-07 5.9E-02 *2.0E-05 1.3E-02 3.5E-01 3.2E-01 *2.3E-03 *3.1E-05 3.9E-01
Sustainability *1.4E-14 *1.2E-04 *2.3E-04 8.7E-01 5.4E-01 1.4E-02 *5.7E-03 3.5E-01 1.9E-01
Telecomm 5.7E-01 2.2E-01 7.3E-01 5.2E-01 3.1E-01 1.8E-02 3.5E-02 1.0E-01 7.1E-01

2 More extensive tables reporting on the frequency and precision of 
cue phrases in eligible domains are included in the replication pack-
age.
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Table 4  Distribution and precision of cue phrases in eligible domains

(a) Relative frequency of cue phrases within one domain

Domain most frequent 2nd most frequent 3rd most frequent 4th most frequent 5th most frequent

Aerospace during (8.5%) when (8.4%) if (7.5%) in order to (3.7%) after (3.0%)
Astronomy for (10.2%) during (9.1%) allow (9.1%) in (5.7%) to (5.7%)
Banking if (11.2%) to ensure (8.8%) once (7.2%) allow (5.6%) through (4.8%)
Data Analytics if (10.7%) when (9.4%) where (7.9%) for (5.2%) during (4.2%)
Health when (11.5%) if (11.5%) during (10.5%) for (4.6%) after (3.8%)
Infrastructure where (16.5%) if (15.1%) to ensure (5.6%) for (5.3%) then (4.9%)
Smart City in order to (10.7%) when (7.4%) if (7.1%) therefore (4.9%) that (4.4%)
Sustainability therefore (8.6%) in order to (7.0%) if (5.9%) for (5.4%) where (4.3%)
Telecomm if (8.7%) during (8.0%) in order to (6.0%) when (5.3%) in case of (4.7%)

(b) Most precise cue phrases of each eligible domain

Domain most precise 2nd most precise 3rd most precise 4th most precise

Aerospace imposes (100.0%) as far as (100.0%) result from (100.0%) in this case (100.0%)
Agriculture since (100.0%) whose (100.0%) before (100.0%) when (100.0%)
Astronomy during (100.0%) in the event of (100.0%) so that (100.0%) attain (100.0%)
Automotive when (100.0%) in order to (100.0%) therefore (100.0%) whose (100.0%)
Banking in order to (100.0%) reduce (100.0%) will be required (100.0%) since (100.0%)
Data Analytics as long as (100.0%) increases (100.0%) unless (100.0%) so that (100.0%)
Digital Library only for (100.0%) cause (100.0%) because (100.0%) unless (100.0%)
Digital Society in order to (100.0%) if (100.0%) due to (100.0%) allows (100.0%)
Health allows (100.0%) so that (100.0%) in the event of (100.0%) as a result (100.0%)
Infrastructure lead to (100.0%) prevent (100.0%) whose (100.0%) until (100.0%)
Physics is needed (100.0%) after (100.0%) therefore (100.0%) when (100.0%)
Smart City result in (100.0%) to measure (100.0%) increase (100.0%) thereby (100.0%)
Sustainability will require (100.0%) enables (100.0%) ensures (100.0%) because (100.0%)
Telecomm allows (100.0%) enables (100.0%) during (100.0%) lead to (100.0%)

(c) Least precise cue phrases of each eligible domain

Domain least precise 2nd least precise 3rd least precise 4th least precise

Aerospace according to (14.3%) to get (20.0%) to mitigate (20.0%) based on (24.1%)
Agriculture on (26.1%) that (27.1%) at (28.2%) allows (33.3%)
Astronomy from (30.0%) by (31.0%) within (40.0%) where (50.0%)
Automotive which (10.0%) for (20.0%) on (24.2%) that (31.8%)
Banking which (21.4%) to provide (25.0%) create (28.6%) by (28.8%)
Data Analytics to meet (16.7%) imply (20.0%) following (20.4%) but (20.5%)
Digital Library allow (11.1%) for (27.6%) that (30.3%) with (31.8%)
Digital Society for (45.8%) for this reason (50.0%) where (62.5%) allow (100.0%)
Health in this (16.7%) around (20.0%) based on (22.2%) through (25.0%)
Infrastructure following (18.2%) to provide (25.0%) on (41.3%) in (42.8%)
Physics while (33.3%) from (34.8%) in this (42.9%) for (43.6%)
Smart City within (11.1%) to perform (15.4%) who (15.4%) where (15.8%)
Sustainability within (3.8%) with (13.7%) to provide (14.3%) while (14.3%)
Telecomm to provide (16.7%) which (19.4%) so that (20.0%) given (20.0%)
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causal requirements, but also an investigation of the impact 
causality in requirements artifacts has. The complexity of 
causal relations is confined since they usually consist of a 
single cause and effect relationship in all observed, eligi-
ble domains. However, for an approach that aims to extract 
the causal relationship to be applicable in practice, it needs 
to comprehend also more complex relations containing at 
least two to three and at best an arbitrary number of causes 
and effects. Understanding conjunctions, disjunctions, and 
negations is consequently imperative to fully capture the 
relationships between causes and effects and ensure the 
applicability of a detection and extraction approach. Two-
sentence causality and event chains occur only rarely. Thus, 
both aspects can initially be neglected in the development 
of the approaches and preserve coverage of more than 92 % 
of the analyzed sentences. The dominance of explicit over 
implicit causal relations in the observed sentences simplifies 
the detection and extraction of causality. The information 
about both causes and effects is embedded directly in the 
sentences so that an approach requires little or no implicit 
knowledge. The analysis of the precision values reveals that 
most of the used cue phrases are ambiguous. Consequently, 
automatic detection and extraction methods require a deep 
understanding of language as the presence of certain cue 
phrases is insufficient as an indicator for causality. Instead, a 
combination of the syntax and semantics of the sentence has 
to be considered to reliably detect causal relations.

3.6  Threats to validity

Internal Validity A threat to the internal validity is the anno-
tation process itself as any annotation task is subjective to a 
certain degree. This is especially relevant for more ambigu-
ous categories like Explicit  , as implicit causality is difficult 
to determine. Two mitigation strategies were performed to 
minimize the bias of the annotators: First, we conducted a 
workshop prior to the annotation process to ensure a com-
mon understanding of causality. Second, we assessed the 
inter-rater agreement by using multiple metrics (Cohen’s 
Kappa, Agreement Score, and Gwet’s AC1). However, it has 
to be noted that all categories except Causality  are depend-
ent on a sentence’s classification regarding that category, 
which may imply a confounding factor for the inter-rater 
agreement on the other categories. This manifests in the cal-
culation of the inter-rater agreement, where all categories 
except Causality  are calculated based on the 499 causal 
sentences. We argue, however, that the other categories are 
irrelevant for non-causal sentences as they only refer to the 
causal relation contained by a sentence, hence this confound-
ing factor is deemed minimal. Apart from that, the inter-rater 
agreement is not domain-specific, which implies that it is not 
possible to identify, whether certain domains caused more 

disagreement among the raters. We deem the general inter-
rater agreement reported in Table 1 sufficient but recom-
mend considering this aspect for replications and future 
studies intensifying the domain-dependent aspect of causal-
ity. Furthermore, restricting the manual detection of causal 
relations to a span of a maximum of two sentences poses 
also a threat to internal validity, as the potential existence of 
causal relations that are spread across more than two sen-
tences can neither be confirmed nor denied based on our 
investigation. We see this threat to be minimal as the rela-
tionship between one-sentence-causality and two-sentence-
causality allows for the assumption, that the further elements 
of a causal relation are spread apart, the more unlikely the 
existence of such a causal relation is. Extrapolating from the 
low number of sentences categorized as two-sentence-cau-
sality gives us reason to assume that disregarding causal 
relations spread across three sentences or more is negligible 
for this initial case study.

External Validity To achieve reasonable generalizability, 
we selected requirements documents from different domains 
and years. As Fig. 1 shows, our data set covers a variety 
of domains, but the distribution of the sentences is imbal-
anced. The domains aerospace, data analytics, and smart city 
account for a large share in the data set (9,724 sentences), 
while the other 15 domains are rather underrepresented. We 
mitigate this threat to validity by including a domain-specific 
investigation reported in the scope of RQ 6, which confirms 
that the occurrence of causality is to a large degree domain-
independent. Future studies should, however, expand to 
more documents emerging from underrepresented domains 
to allow a more general reflection upon different aspects of 
causality in requirements documents.

4  Approach: detecting causal requirements

This section presents the implementation of our causal clas-
sifier. To this end, we describe a variety of applied methods 
followed by a report of the results of our experiments, in 
which we compare the performance of the individual meth-
ods and draw a conclusion in regards to applicability.

4.1  Methods

Rule-based Approach Instead of using a random classifier as 
the baseline approach, we involve simple regex expressions 
for causality detection. We iterate through all sentences in 
the test set and check if one of the phrases listed in Table 2 
is contained. In the positive case, the sentence is classified 
as causal and vice versa. As discussed in Sect. 2, the clas-
sification of a sentence as causal based on the occurrence of 
a cue phrase—which the baseline approach represents—is 
reasonable to assume.
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Machine Learning-based Approach As a second 
approach, we investigate the use of supervised ML models 
that learn to predict causality based on the labeled data set. 
Specifically, we employ established binary classification 
algorithms: Naive Bayes (NB), Support Vector Machines 
(SVM), Random Forest (RF), Decision Tree (DT), Logistic 
Regression (LR), Ada Boost (AB), and K-Nearest Neigh-
bor (KNN). To determine the best hyperparameters for each 
binary classifier, we apply Grid Search, which fits the model 
on every possible combination of hyperparameters and 
selects the most performant. We use two different methods 
as word embeddings: Bag of Words (BoW) and Term Fre-
quency-Inverse Document Frequency (TF-IDF). In Table 5, 
we report the classification results of each algorithm as well 
as the best combination of hyperparameters.

Deep Learning-based Approach With the rise of Deep 
Learning (DL), more and more researchers are using DL 
models for Natural Language Processing (NLP) tasks. In 
this context, the Bidirectional Encoder Representations 
from Transformers (BERT) model [8] is prominent and has 
already been used for question answering and named entity 
recognition. BERT is pre-trained on large corpora and can 
therefore easily be fine-tuned for any downstream task with-
out the need for much training data (Transfer Learning). In 
our paper, we make use of the fine-tuning mechanism of 
BERT and investigate to which extent it can be used for cau-
sality detection of requirement sentences. First, we tokenize 
each sentence. BERT requires input sequences with a fixed 
length (maximum 512 tokens). Therefore, for sentences that 
are shorter than this fixed length, padding tokens (PAD) are 
inserted to adjust all sentences to the same length. Other 
tokens, such as the classification (CLS) token, are also 
inserted in order to provide further information of the sen-
tence to the model. CLS is the first token in the sequence and 
represents the whole sentence (i.e., it is the pooled output 
of all tokens of a sentence). For our classification task, we 
mainly use this token because it stores the information of 
the whole sentence. We feed the pooled information into 
a single-layer feedforward neural network that uses a soft-
max layer, which calculates the probability that a sentence 
is causal or not. We tune BERT in three different ways and 
investigate their performance:

• ����
���� In the base variant, the sentences are tokenized 

as described above and put into the classifier. To choose 
a suitable fixed length for our input sequences, we ana-

lyzed the lengths of the sentences in our data set. Even 
with a fixed length of 128 tokens, we cover more than 97 
% of the sentences. Sentences containing more tokens are 
shortened accordingly. Since this is only a small amount, 
only a little information is lost. Thus, we chose a fixed 
length of 128 tokens instead of the maximum possible 
512 tokens to keep BERT’s computational requirements 
to a minimum.

• ����
��� Studies have shown that the performance of 

NLP models can be improved by providing explicit prior 
knowledge of syntactic information to the model [48]. 
Therefore, we enrich the input sequence with syntactic 
information and feed it into BERT. More specifically, 
we add the corresponding part-of-speech (POS) tag to 
each token by using the spaCy NLP library [27]. One 
way to encode the input sequence with the corresponding 
POS tags is to concatenate each token embedding with 
a hot encoded vector representing the POS tag. Since 
the BERT token embeddings are high-dimensional, 
the impact of a single added feature (i.e., the POS tag) 
would be low. Contrary, we hypothesize that the syntactic 
information has a higher impact if we annotate the input 
sentences directly with the POS tags and then put the 
annotated sentences into BERT. This way of creating lin-
guistically enriched input sequences has already proven 
to be promising during the development of the NLPL 
word embeddings [10]. Fig. 5 shows how we incorpo-
rated the POS tags into the input sequence. By extending 
the input sequence, the fixed length for the BERT model 
has to be adapted accordingly. After further analysis, a 
length of 384 tokens proved to be reasonable.

• ����
��� Similar to the previous fine-tuning approach, 

we follow the idea of enriching the input sequence by 
linguistic features. Instead of using the POS tags, we use 
the dependency (DEP) tags (see Fig. 5) of each token. 
Thus, we provide knowledge about the grammatical 
structure of the sentence to the classifier. We hypothesize 
that this knowledge has a positive effect on the model 
performance, as a causal relation is a specific grammati-
cal structure (e.g., it often contains an adverbial clause) 
and the classifier can learn causal specific patterns in the 
grammatical structure of the training instances. The fixed 
token length was also increased to 384 tokens.

Fig. 5  Input sequences used for 
our different BERT fine-tuning 
models. POS tags are marked 
blue, and DEP tags are marked 
orange

BertBase: If the process fails, an error message is shown.
BertPOS: If SCONJ the DET process NOUN fails VERB , PUNCT an DET er-
ror NOUN message NOUN is AUX shown VERB . PUNCT
BertDEP: If mark the det process nsubj fails advcl , punct an det error compound
message nsubjpass is auxpass shown ROOT . punct
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4.2  Evaluation procedure

Our labeled data set is imbalanced as only 28.1 % are posi-
tive samples. To avoid the class imbalance problem, we 
apply Random Under Sampling (see Fig. 6). We randomly 
select sentences from the majority class and exclude them 
from the data set until a balanced distribution is achieved. 
Our final data set consists of 8,430 sentences of which 4,215 
are causal and the other 4,215 are non-causal. We follow 
the idea of cross-validation and divide the data set into a 
training, validation, and test set. The training set is used for 
fitting the algorithm, while the validation set is used to tune 
its parameters. The test set is utilized for the evaluation of 
the algorithm based on real-world unseen data. We opt for 
10-fold cross-validation as a number of studies have shown 
that a model that has been trained this way demonstrates low 

bias and variance [29]. We use standard metrics for evalu-
ating our approaches: Accuracy, Precision, Recall, and F

1
 

score [29]. Since a single run of a k-fold cross-validation 
may result in a noisy estimate of model performance, we 
repeat the cross-validation procedure five times and average 
the scores from all repetitions (see Tab. 5). When interpret-
ing the metrics, it is important to consider which misclas-
sification (False Negative or False Positive) matters most, 
respectively, causes the highest costs. Since causality detec-
tion is supposed to be the first step toward automatic causal-
ity extraction, we favor Recall over Precision. A high Recall 
corresponds to a greater degree of automation of causality 
extraction because it is easier for users to discard False Posi-
tives than to manually detect False Negatives. Consequently, 
we seek high Recall to minimize the risk of missed causal 

Fig. 6  Implementation and 
Evaluation Procedure of our 
Binary Classifier

Labeled Data Set 

1 2 3 4 k…

Training Set Test Set

Balanced Data Set 

Random Under
Sampling

Training folds Validation fold

DL
Approaches

ML
Approaches

Add POS and 
DEP tags Training

Trained Models

Rule-based
Approach

Tune Hyperparameters / 
Adjust Model Weights

4,215 causal
4,215 not causal

Evaluate
Generalization

Best Performing 
Model (CiRA)

4,215 causal
10,786 not causal

Table 5  Recall, Precision, F1 scores (per class) and Accuracy. We report the averaged scores over five repetitions. Best results for each metric are 
highlighted in bold 

Rule based Causal (Support: 435) Not Causal (Support: 
408)

Best hyperparameters Recall Precision F1 Recall Precision F1 Accuracy

0.65 0.66 0.66 0.65 0.63 0.64 0.65

ML based NB Alpha: 1, fit_prior: True, embed: BoW 0.71 0.7 0.71 0.68 0.69 0.69 0.7
SVM C: 50, gamma: 0.001, kernel: rbf, embed: BoW 0.68 0.8 0.73 0.82 0.71 0.76 0.75
RF Criterion: entropy, max_features: auto, n_estima-

tors: 500, embed: BoW
0.72 0.82 0.77 0.84 0.74 0.79 0.78

DT Criterion: gini, max_features: auto, splitter: ran-
dom, embed: TF-IDF

0.65 0.68 0.66 0.67 0.65 0.66 0.66

LR C: 1, solver: liblinear, embed: TF-IDF 0.71 0.78 0.74 0.79 0.72 0.75 0.75
AB Algorithm: SAMME.R, n_estimators: 200, 

embed: BoW
0.67 0.78 0.72 0.8 0.7 0.75 0.74

KNN Algorithm: ball_tree, n_neighbors: 20, weights: 
distance, embed: TF-IDF

0.61 0.68 0.64 0.7 0.63 0.66 0.65

DL based BERT
Base

batch_size: 16, learning_rate: 2e-05, weight_
decay: 0.01, optimizer: AdamW

0.83 0.80 0.82 0.78 0.82 0.80 0.81
BERT

POS
0.82 0.76 0.79 0.71 0.83 0.77 0.78

BERT
DEP

 (CiRA) 0.85 0.81 0.83 0.79 0.84 0.81 0.82
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sentences and acceptable Precision to ensure that users are 
not overwhelmed by False Positives.

4.3  Experimental results

Table 5 demonstrates the inability of the rule-based base-
line approach to distinguish between causal ( F

1
 score: 66%) 

and non-casual ( F
1
 score: 64%) sentences. This coincides 

with our observation from the first case study that classify-
ing sentences as causal or non-causal based on the occur-
rence of cue phrases is not suitable for causality detection. 
In comparison, most ML-based approaches (except KNN 
and DT) show a better performance. The best performance 
in this category is achieved by RF with an Accuracy of 
78% (gain of 13 % compared to baseline approach). The 
overall best classification results are achieved by our DL-
based approaches. All three variants were trained with the 
hyperparameters recommended by Devlin et al. [8]. Even 
the vanilla ����

����
 model shows a great performance in 

both classes ( F
1
 score ≥ 80 % for causal and non-causal). 

Interestingly, enriching the input sequences with syntactic 
information did not result in a significant performance boost. 
����

���
 even has a slightly worse Accuracy value of 78% 

(difference of 2% compared to ����
����

 ). An improvement 
of the performance can be observed in the case of ����

���
 , 

which has the best F
1
 score for both classes among all the 

other approaches and also achieves the highest Accuracy 
value of 82%. Compared to the rule-based and ML-based 
approaches, ����

���
 yields an average gain of 11.06% in 

macro-Recall and 11.43% in macro-Precision. Interesting is 
a comparison with ����

����
 . ����

���
 shows better values 

across all metrics, but the difference is only marginal. This 
indicates that ����

����
 already has a deep language under-

standing due to its extensive pre-training and therefore can 
be tuned well for causality detection without much further 
input. However, over all five runs, the use of the dependency 
tags shows a small but not negligible performance gain—
especially regarding our main decision criterion: the Recall 
value (85% for causal and 79% for non-causal). Therefore, 
we choose ����

���
 as our final approach (CiRA).

5  Case study 2: effects of causality

After discussing first empirical evidence on the extent and 
complexity to which causality is used in NL requirements in 
our first case study (C1) and constructing a reasonably effec-
tive approach for automatic causality detection (C2), we aim 
to corroborate the relevance of causality for requirements in 
a second case study (C3). Here, we investigate the impact 
of causal relations on the features of requirements, where 
we consider features to be observable attributes of individ-
ual requirements (e.g., their lead-time). This investigation 

emerges from an ongoing academia-industry collaboration 
in a larger context. Our exploratory case study has two goals: 
first, we aim to demonstrate an independent use case of the 
automatic causality detection approach. While automatic 
causality detection as presented in Sect. 4 can be used as a 
precursor to automatic causality extraction and therefore as 
one step in a pipeline toward automatic test case generation, 
we explore considering the occurrence of causality as an 
aspect of requirements quality and consequently automatic 
causality detection as a metric to estimate requirements 
quality. An effective tool-supported approach for detecting 
causality in NL requirements allows exploring the eligibility 
of causality as an aspect of requirements quality. Gather-
ing the first empirical evidence toward this is the second 
goal of this exploratory case study. First empirical evidence 
can be gathered by investigating the correlation between the 
occurrence of causality in requirements and features of these 
requirements.

5.1  Research questions

We are interested in the impact that the occurrence of causal 
relations in natural language requirements has on impor-
tant features of these requirements. Empirical evidence for 
an impact of causality on these features would allow the 
assumption that the use of causality in a NL requirement 
contributes to the requirement’s quality. While a definite 
connection cannot be determined based on a correlation 
analysis alone, this exploratory case study rather aims 
toward providing first insights into the feasibility of using 
causality as a quality aspect for requirements and opening up 
a more detailed discussion regarding specific features. We 
select the following features for our analysis:

• Lead-Time: the time from the inception until the comple-
tion of a requirement.

• Consolidated state: the type of final state in which the 
requirement ends in.

• Volatility: number of state changes which the requirement 
undergoes.

The selection of attributes is inspired by research with com-
parable objectives, which used lead-time and the result-
ing consolidated state [41] as well as the volatility [51] of 
requirements as dependent variables to estimate the impact 
of requirements attributes on the downstream develop-
ment process. A data set eligible for this evaluation needs 
to provide information in form of a state log, where each 
entry in the log documents the author, timestamp, and state 
code. The state codes represent the different states which a 
requirement traverses during its life cycle from its inception 
to its completion. The lead-time consequently constitutes 
the time delta between the first and the last state log entry. 
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The consolidated state is the final state of the state log. The 
volatility denotes the number of entries in the state log, as 
it directly correlates with the number of additional develop-
ment cycles the requirement has to traverse (e.g., by being 
pushed back to earlier states when repeating one develop-
ment cycle). We want to investigate whether a statistically 
significant difference can be determined in the distribution 
of lead-time, consolidated state, and volatility between 
requirements that use causal relations versus requirements 
that do not. To this extent, we aim at providing answers to 
the following research questions (RQ):

• RQ 7: Does the use of causality in an NL requirement 
correlate with its lead-time?

• RQ 8: Does the use of causality in an NL requirement 
correlate with its consolidated state?

• RQ 9: Does the use of causality in an NL requirement 
correlate with its volatility?

These attributes have been chosen as an eligible represen-
tation of the requirements’ comprehensibility and degree 
of ambiguity. As elaborated in earlier sections, we hypoth-
esize that the clear semantic structure of a causal relation 
promotes comprehensibility and mitigates the ambiguity 
of requirements. This would result in shorter lead times, a 
greater likelihood of a successful outcome, and less volatil-
ity, as the requirement has to undergo fewer iterations in the 
development life-cycle.

5.2  Study design

Study Objects The study is performed on a data set for an 
industrial, proprietary project. The owning, multi-national 
case company develops and globally distributes software-
intensive products for a B2C market. The number of engi-
neers involved with the product line of the data set in ques-
tion varied from 1000 to 4000 worldwide. The original 
data set, pre-processed by Olsson et al. [41], contains 4446 
requirements collected in 20163. The data set has been cho-
sen because it contains the aforementioned features nec-
essary for the evaluation, other than the data sets used for 
the first case study: most of the requirements in the data 
set contain a state log documenting the requirement’s life 
cycle from its inception as a New Feature (NF) to its final 
state as either Execution completed (EC) or Discarded (D). 
The newly created requirements undergo the initial triage 
in a state called M0. Next, upon considered viable and suf-
ficiently justified, the requirement candidates are prioritized 

in a project prioritization state (similar to backlog prioriti-
zation), called M1. Finally, the prioritized requirements are 
hand-shaken with the developer teams in a state called M2 
[18]. When a requirement is unclear at the M2 state, it is 
pushed back to M1 for re-prioritization. Similarly, a require-
ment is pushed back to M0 when questions and uncertain-
ties arise during requirements prioritization. These backward 
transitions unusually increase the lead-time. The features 
relevant for this study are described in Table 6. Further 
attributes were generated based on the existing features:

• Sentences: The number of sentences occurring in the 
Description field is counted via sentence tokenization.

• Causal Relations: The number of causal sentences in the 
Description field is counted by applying the CiRA-tool 
presented in Sect. 4 to each sentence.

• Lead-Time: The lead-time is calculated as the time frame 
between the first and the last entry of the state log.

• Volatility: Number of decisions counted as the number 
of entries in the state log

The data set of 4446 requirements was further pre-processed 
to serve the application in this second case study. Three addi-
tional filters have been applied: (1) requirements, for which 
the state log did not exist, were discarded. (2) Requirements 
with a state log authored by exactly one, specific individual, 
were discarded. The entries to these state logs were due to 
database migrations and do not contain actual information 
on the requirements life cycle. (3) Requirements with only 
one entry in the state log were discarded. These require-
ments do not allow calculating a meaningful lead-time. In 
total, 815 requirements were discarded due to the pre-pro-
cessing, leaving 3631 requirements for the analysis. Table 7 
lists further details on the filtering process.

Data Analysis The research questions can be translated 
into statistically verifiable (i.e., refutable) hypotheses. We 
therefore formulate the following null hypotheses:

• �
��

 : Requirements containing different amounts of cau-
sality have the same distribution of lead-time.

Table 6  Features of the data set

Feature Description Datatype

ID Unique identifier of the require-
ment

Numeric

Description Textual description containing a 
varying amount of NL sentences

Text

State log History of state changes Categorical list
Date of creation Inception date of the requirement Date

3 The proprietary data set cannot be disclosed at the time of submis-
sion as it contains critical company information.
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• �
��

 : Requirements containing different amounts of cau-
sality have the same distribution of consolidated states.

• �
��

 : Requirements containing different amounts of cau-
sality have the same distribution of volatility.

In all hypotheses, the input variable contained amounts of 
causality is tested on two levels of granularity: (G1) binary 
(containing at least one causal sentence vs. containing no 
causal sentence) and (G2) in batches (ranges of number of 
causal sentences). Furthermore, granularity G1 is extended 
to the third level of granularity (G3) where the data set is 
split into three subsets containing requirements of different 
sentence sizes. The distribution of causal sentences accord-
ing to the different levels of granularity is given in Tables 8 
and 9. Where the binary granularity G1 serves to investigate 
the general effect of causality and the batch granularity G2 
refines this relation, the extended granularity G3 normal-
izes the effect according to requirement size. All hypotheses 
are reported using descriptive statistics and evaluated using 
inferential statistics. The hypothesis of independence is cal-
culated using the Mann–Whitney U test on the binary level 
of granularity (G1 and G3) for the interval scale variable of 
lead-time and volatility, and using the Chi-square test for the 

categorical variable of consolidated state. For batch granu-
larity G2, the Kruskal–Wallis test is used [19]. All statistical 
tests of independence are evaluated with a significance level 
� = 0.05 . Where a statistical tests suggest to reject the null 
hypothesis of independence, the effect size of the correla-
tion is quantified using Cohen’s d for binary granularities 
G1 and G3 [47] and Eta-squared for batch granularity G2 
[7]. These measures allow categorizing the magnitude of the 
correlation effect.

5.3  Study results

All study results are reported in Table 10 and explained in 
further detail in the following Sections.

Correlation between causality and lead-time Fig. 7a dis-
plays the distribution of lead-time in the two binary groups 
in the form of violin plots and indicates that the lead-time 
of requirements containing at least one causal sentence is 
on average lower than the lead-time of requirements without 
any causality. The Mann–Whitney U test of independence 
yields a p-value of 0.00038 far below the significance level 
� = 0.05 , rejecting the null hypothesis of similar distribution 
and corroborating the found difference. Cohen’s d quantify-
ing the effect size yields 0.0514, which categorizes the effect 
size of the correlation as small. For granularity G2, only 
batches containing more than 10 sentences were included, 
which leads to discarding all batches containing more than 
12 causal sentences due to statistical insignificance. The 
results of evaluating H

10
 on a finer level of granularity G2 

shows that the increased usage of causal sentences has a 
positive effect on reducing the average lead-time up until 
the point of using 10 or more causal sentences as shown 
in Fig. 7b. The Kruskal–Wallis test of independence sug-
gests to reject the null hypothesis of similar distribution with 
a p-value of 0.0082, but the Eta-squared value of 0.0010 
categorizes the correlation as negligible [7]. Evaluating the 
difference in distribution on granularity G3 reveals that the 
size of the requirement is a contributing factor to the cor-
relation between the occurrence of causality and the lead-
time: while the use of causality in small requirements has 
a negative effect on the lead-time, the opposite is observ-
able for medium and large requirements, as illustrated in 
Fig. 8. The null hypothesis of independence is accepted for 
small requirements with p = 0.34 and rejected for medium 
and large requirements with p = 0.0008 and p = 0.008 , 
respectively. The effect sizes are 0.12 and 0.15 based on the 
Cohen’s d measure.

Correlation between causality and consolidated state 
The data set uses 20 categories for the variable consoli-
dated state, of which most represent intermediate states. 
The data set of 3442 requirements is filtered for all require-
ments in final states, which are execution completed (EC) 

Table 7  Pre-processing steps

ID Filter Removed Remaining

1 Missing consolidated state log 176 4270
2 Specific, invalid author 185 4085
3 Singular state log entry 454 3631

Total 815 3631

Table 8  Distribution of 
sentences according to 
granularity G1 and G2

ncausal nreq

Non-causal [0] 1000
Causal [1, 3] 2059

[4, 6] 457
[7, 9] 96
[10, 12] 15
[13, 15] 2
[16, 18] 1
[19, 21] 1

Total [0, 21] 3631

Table 9  Distribution of sentences according to granularity G1 and G3

n
sentences

[1, 3] [4, 7] [8, max] [1,max]

Causal 542 933 1156 2631
Non-causal 514 331 175 1000
Total 1056 1244 1331 3631
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and discarded (D), respectively, positive and negative final 
state. Only the 1157 requirements in these two final states 
(EC: 591, D: 566) were considered for this evaluation. 
Fig. 9a illustrates the distribution of consolidated states on 
binary granularity G1. The Chi-square test of independ-
ence yields a p-value of 0.85 and does therefore not allow 
to reject the null hypothesis. Increasing the granularity to 
batches as displayed in Fig. 9b suggests a positive trend in 
the correlation between the occurrence of causality and a 
successful consolidated state, but the Kruskal–Wallis test 
does not allow to reject the null hypothesis of similar dis-
tribution with a p-value of 0.067. At granularity G3, the 
consolidated states of requirements of different sizes cor-
relate negatively with the occurrence of causality for small 
and medium requirements with only a slight positive cor-
relation for large requirements, as seen in Fig. 10. The null 
hypothesis of independence can, however, not be rejected 
with p-values of 0.14, 0.15, and 0.77.

Correlation between causality and volatility Fig. 11a 
displays the distribution of the volatility metric in the two 
binary groups as violin plots. Overall, a slight correlation 
between the occurrence of causality and the volatility of 
a requirement can be observed, which is corroborated by 
the rejected test of independence with a p-value of 0.01 
and an effect size of 0.07. Investigating this effect at batch 
granularity G2 in Fig. 11b, however, reveals that this posi-
tive correlation is constrained to requirements with a low 
occurrence of causal sentences, where requirements with 

many causal sentences show a trade-off of higher average 
volatility despite a smaller overall range of volatility values. 
The Kruskal–Wallis test of independence does not allow 
to reject the null-hypothesis of similar distribution with a 
p-value of 0.086. Investigating the correlation at granularity 
G3 as displayed in Fig. 12, this trade-off is again visible and 
emphasizes the positive correlation between the occurrence 
of causality and the volatility of requirements for medium-
sized requirements. This is confirmed by the independence 
tests, where the null hypothesis can be rejected for medium 
requirements with a p-value of 0.001 and effect size of 0.18, 
but not for small or large requirements with p-values of 0.22 
and 0.13, respectively.

5.4  Implications

Impact of causality The results of the second case study 
show an already existing positive correlation between the 
occurrence of causal relations and the features of require-
ments artifacts. These results motivate further, in-depth 
investigations corroborating the relationship between the 
occurrence of causality and features of these requirements, 
suggesting the feasibility of considering causality as an 
aspect of requirements quality. Both the direct insights and 
the consequent hypothesis for future research are discussed 
in more detail in the following paragraphs.

Answer to RQ 7: The use of causality correlates slightly 
with smaller lead-times of requirements and therefore 

Table 10  P- and Cohen’s 
d value for evaluating the 
respective null-hypothesis with 
the given granularity. Cells 
prefixed with * indicate where 
the null-hypothesis has been 
rejected (given significance 
level � = 0.05)

Hypothesis Measure G1 G2 G3

[1, 3] [4, 7] [8, max]

�
��

p value *0.0004 *0.0082 0.3434 *0.0008 *0.0084
Effect size 0.0514 0.0010 − 0.1181 0.1496

�
��

p value 0.8497 0.0668 0.1368 0.1456 0.7661
Effect size − − − − −

�
��

p value *0.0105 0.0856 0.2184 *0.0011 0.1261
Effect size 0.0742 − − 0.1843 −

Fig. 7  Distribution of lead-time 
( H

1
0

)

(a) Binary granularity G1
(b) Batch granularity G2
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suggests considering causality as an impact factor when esti-
mating the life-cycle of a requirement. A consequent hypoth-
esis of this correlation is that the strict semantic structure 
of the relation causes an effect on the comprehensibility of 
a requirement, which makes it easier to translate into down-
stream artifacts like code or test cases.

Answer to RQ 8: The use of causality does not corre-
late with the consolidated state of requirements. It is safe to 

assume that the occurrence of causality does not impact the 
life-cycle of requirements regarding its consolidated state 
statistically significant in comparison with other factors.

Answer to RQ 9: The use of causality correlates slightly 
with smaller volatility of requirements. Comparably to RQ 
7, the hypothesis that the semantic structure of the relation 
causes an effect on the understandability of a requirement, 
which in turn requires fewer decisions due to being less 

(a) Small requirements (b) Medium requirements (c) Large requirements

Fig. 8  Distribution of lead-time for binary granularity split by the size of requirements ( H
1
0

)

Fig. 9  Distribution of filtered 
consolidated states ( H

2
0

)

(a) Binary granularity G1
(b) Batch granularity G2

(a) Small requirements (b) Medium requirements (c) large requirements

Fig. 10  Distribution of filtered consolidated for binary granularity split by the size of requirements ( H
2
0

)
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ambiguous, can be derived from the correlation analysis. 
We conclude that the relationship between the use of cau-
sality in NL requirements and lead-time as well as the vola-
tility of requirements is worth for further, more thorough 
investigation: the slight correlation supports the feasibility 
of considering causality as an aspect of requirements quality.

Applicability of automatic causality detection The initial, 
exploratory investigation of this phenomenon demonstrates a 
possible use case of automatic causality detection as part of a 
quality metric. The small extent of the correlations and their 
low effect size according to the applied measures emphasize 
that the occurrence of causality is definitely not the only or 
most impactful, but certainly a considerable factor for the 
features of requirements. Considering the detection of cau-
sality with the approach presented in this research endeavor 
as a complement to other requirements quality frameworks 
such as for example requirements smells [12] might ben-
efit the reliability of these quality metrics by taking positive 
effects on requirements into account. Future studies need to 
investigate this claim in further detail.

5.5  Threats to validity

External validity The generalizability of results cannot be 
claimed based on the exploratory case study on one data 
set. Further data sets are necessary to be investigated and 
compared to compensate for context factors like the size 
and domain of the company, the utilized development pro-
cess, techniques employed in the requirements engineering 
phase, as well as applied technologies. However, the ana-
lyzed data-set represents five years of product development 
(between 2010 and 2015) with 41 products and 36 software 
releases. Therefore, the heterogeneity of authors and editors 
of requirements is high.

Internal validity To ensure that the correlation between 
the occurrence of causality and the lead-time of require-
ments is indeed causal and not confounded, further qualita-
tive analysis beyond the data recorded in the respective data 
set must be performed. The impact of causality on compre-
hensibility in contrast to other factors of ambiguity has to be 
addressed in future studies of qualitative nature. Apart from 

Fig. 11  Distribution of volatility 
( H

3
0

)

(a) Binary granularity G1 (b) Batch granularity G2

Fig. 12  Distribution of volatility 
for binary granularity split by 
the size of requirements ( H

3
0

)

(a) Small requirements (b) Medium requirements (c) large requirements
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that, another possible threat to validity is that the analyzed 
data could contain incorrect information, caused for example 
by a lack of diligence when providing certain information 
for a requirement. Since this data set is based on real project 
data and has been fostered over the course of five years in 
an industrial setting, the threat is considered low, but still 
worth mentioning.

6  Related work

6.1  Application of causality detection

As indicated in Sect. 2, many disciplines have already dealt 
with the notion of causality and explored use cases for its 
application. One of the earliest applications of causality 
detection includes the utilization of causality for question 
answering. Girju et al. [21] propose an approach using lex-
ico-syntactic patterns within one sentence or two adjacent 
sentences, where the patterns consist of two noun phrases 
(NP) connected with a causative verb (VP) in the following 
structure:

The patterns were built by traversing WordNet concepts for 
noun phrases that are connected by a cause-to-relationship, 
which is explicitly annotated in the WordNet corpus. Subse-
quently, from a large NL corpus, all verbs connecting these 
causally related noun phrase pairs were extracted as causa-
tion-verbs. Based on this information and further semantic 
features from WordNet, the lexico-syntactic patterns detect-
ing causal relations were created. Chang et al. [5] expand 
on this concept by taking into account conceptual pair 
probability and cue phrase probability as additional indi-
cators for the classification of a causal relation. The focus 
on extracting causal relationships to automatically answer 
why-questions is expanded to the inter-sentential level by 
Pechsiri et al. [42], who utilize the coexistence of causative 
and effective verbs as indicators for causal relationships. 
Other early approaches are rooted in the medical domain, 
where relationships between symptoms and diseases are 
commonly expressed in natural language sentences utiliz-
ing causality: Khoo et al. [30] extract causal knowledge from 
a medical database using graphical patterns. The roles and 
attributes of a causal situation are structured in a three-layer 
template, which constitutes the framework for manually elic-
ited patterns. More recent approaches like the one proposed 
by Doan et al. [9] utilize POS tags and dependency parse 
trees to identify causal relations based on a manually gener-
ated set of patterns from a large data set of tweets. In the 
field of economics, causality detection has been applied to 
improve the reasoning about market-related relationships. 

(4)< NP
1
verbNP

2
>

Early approaches include Chan et al. [4] utilizing a hierarchy 
of manually generated semantic, sentence, and consequence 
and reason templates. Other approaches like proposed by 
Inui et al. [28], which also extract causal relations from 
newspapers, base their causality detection algorithm on 
the occurrence of cue phrases. The typology defined in the 
course of this research classifies causal relations with respect 
to their arguments’ volitionality, where the volitionality of 
an event distinguishes an action from a state of affairs. The 
resulting binary combinations of events of different volition-
ality constitute the four relationships cause, effect, precond, 
and means. Recent work by Xu et al. [56] acknowledges the 
lack of focus regarding labeling and extraction methods in 
the area of causality extraction and contributes by summa-
rizing and evaluating existing causality data sets. Further 
applications of causality detection include extrapolating 
causal relations based on semantic relations between nouns 
[26], effectively increasing the domain of reasoning based 
on causal relationships.

6.2  Causality in requirements engineering

To the best of our knowledge, we are the first to focus on 
causality from the perspective of Requirements Engineer-
ing. In our previously published papers, we motivated why 
the RE community should engage with causality [15] and 
provide empirical evidence for the relevance of causality in 
requirement documents as well as further insights into its 
form and complexity [14]. The latter work is extended in the 
manuscript at hand with an additional, exploratory investi-
gation of the implications of the use of causality in require-
ments artifacts. Detecting causality in natural language has 
been investigated by several studies which usually belong to 
one of two categories according to Asghar et al. [1]: early 
approaches [30, 55] use handcrafted, lexico-syntactic pat-
terns to identify causal sentences. These approaches are 
highly dependent on the manually created patterns and 
show weak performance, inhibiting an effective applica-
tion in practice as shown in our comparison of algorithms 
in Sect. 4. Opposed to pattern-matching are feature-based 
classification methods: recent papers apply neural networks 
and exploit—similarly to our approach—the Transfer Learn-
ing capability of BERT [31]. However, we see a number 
of problems with these papers regarding the realization of 
our described RE use cases: First, neither the code nor a 
demonstration is published, making it difficult to reproduce 
the results and test the performance on data from the RE 
domain. Second, they train and evaluate their approaches 
on strongly unbalanced data sets with causal to non-causal 
ratios of 1:2 and 1:3, but only report the macro-Recall and 
macro-Precision values and not the metrics per class. Thus, 
it is not clear whether the classifier has a bias toward the 
majority class or not.
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7  Conclusions and future work

The behavior of systems is often specified in terms of 
causal relations in natural language requirements. Effi-
ciently extracting this causal information would allow for 
effective support of downstream activities that rely on such 
causal relations, such as the tool-supported derivation of 
test cases and further activities that need to reason about 
requirement dependencies [15]. However, contemporary 
methods still fail to extract causality with reasonable per-
formance [1]. Therefore, we have argued for the need for 
a novel method for causality extraction and closed this gap 
with the contributions in this manuscript. We understand 
causality extraction as a two-step problem: First, we need 
to detect if requirements have causal properties. Second, we 
need to comprehend and extract their causal relations. At 
present, however, we lack knowledge about the form and 
complexity of causality in requirements, which is needed to 
develop suitable approaches for these two problems. In this 
manuscript, we reported on how we addressed this research 
gap by contributing: (C 1) an exploratory case study with 
14,983 sentences from 53 requirements documents originat-
ing from 18 different domains. We found that causality is a 
widely used linguistic pattern to describe system function-
alities and that it mainly occurs in explicit, marked form. 
(C 2) CiRA as an approach for the automatic detection of 
causality in requirements documents. This constitutes the 
first step toward causality extraction from NL requirements. 
We empirically evaluate our approach and achieve a macro-
F
1
 score of 82 % on real-world data. (C 3) A demonstration 

of a possible use case of the automatic causality detection 
approach in a correlation analysis between the occurrence of 
causality and the life-cycle features of a requirement. (C 4) 
Finally, by following the open science norms and principles 

established in the empirical software engineering research 
community [38], we have further disclosed our entire source 
code, tool, and annotated data set within the limitations of 
existing non-disclosure agreements in order to actively sup-
port the research community working on same or similar 
problems and further facilitate independent replications.

Two further research directions are, in our opinion, worth 
being mentioned here: First, extending the first case study 
and analyzing the sentences from the requirements docu-
ments in a more granular way by categorizing them—e.g., 
in functional and non-functional requirements—would 
enrich our current insight into causality in requirements 
documents in general with further insights into causality 
in specific requirement categories. This includes investi-
gating the particularities of specific domains, for example 
to explain the difference in cue phrase precision. Second, 
tackling the second of the two earlier mentioned sub-prob-
lems—the actual extraction of causal relations from causal 
sentences—will provide the necessary foundation to enable 
the various use cases. We are currently enhancing our pre-
vious approaches [16, 17] with the insights gained from 
this study and cordially invite the RE community to join 
the endeavor. Building on the second case study presented 
in Sect. 5, future studies may continue exploring the rela-
tionship between the occurrence of causality and features of 
requirements. Extending the automatic causality detection 
approach beyond the current intra-sentential limitations may 
for example enable to investigate the relationship between 
requirements’ dependencies and features of requirements.

Appendix A Detailed distribution of labels

See Table 11
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