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E-MAIL: mahwish.anwar@bth.se, anton.borg@bth.se, lars.lundberg@bth.se 

Abstract: 
The power grid is a build-up of a mesh of thousands of 

sensors, embedded devices, and terminal units that communicate 
over different media. The heterogeneity of modern and legacy 
equipment calls for attention towards diverse network security 
measures. The critical infrastructure employs different secu-
rity measures to detect and prevent adversaries, e.g., through 
signature-based tools. These approaches lack the potential to 
identify unknown attacks. Machine learning has the prospective 
to address novel attack vectors. This paper systematically eval-
uates the effcacy of learning algorithms from different families 
for intrusion detection in IEC 60870-5-104 protocol. One-class 
SVM and k-Nearest Neighbour unsupervised learning models 
show small potential when being tested on the IEC 104 unseen 
dataset with Area Under the Curve score 0.64 and 0.59, in the 
same order; and Matthews Correlation Coeffcient value 0.3 
and 0.2, respectively. The experimental results suggest little 
feasibility of the evaluated unsupervised learning approaches 
for anomaly detection in IEC 104 communication and rec-
ommend coupling it with other anomaly detection techniques. 
Keywords: 

SCADA protocol; IEC 60870-5-104, Intrusion Detection; Unsu-
pervised Machine Learning, Friedman Test 

1. Introduction 

Supervisory Control and Data Acquisition (SCADA) sys-
tem have applications in various industries such as communica-
tion, transportation, power transmission, and distribution. The 
SCADA system consists of connected and distributed hardware 
and software components that allow the facility operator to su-
pervise and control processes, especially where human control 
is not feasible. In case of power distribution, the SCADA sub-
system performs continuous reading of data which is transmit-

ted from embedded sensors through the remote terminal units to 
the SCADA server. The operator takes control decisions based 
on the SCADA server’s aggregated data. Therefore, intrusion 
detection in the power distribution SCADA system is vital to 
secure operations and infrastructure [1]. 

Several countries have faced security breaches in the 
SCADA network, a few examples are the attacks on Ukrainian 
Power Grid, Davis-Besee Power Plant, and US Electricity Grid, 
resulting in power outages and equipment destruction [1]. To 
address this, network security techniques will be crucial to help 
detect anomalies or intrusions in the SCADA system [1]. 

Machine learning techniques for intrusion detection have 
been suggested [2][3]. This study presents a comparison of 
various unsupervised machine learning algorithms in terms of 
their detection capability of attacks on the IEC1 60870-5-104 
(or IEC 104) SCADA protocol. We utilise a dataset from the 
Austrian Power Grid’s test environment where port scan, vul-
nerability scan, and Denial of Service attacks are simulated on 
IEC 104 [4]. We evaluate a set of learning algorithms that fol-
low distinct mechanism to calculate point intrusions [3] (e.g. 
through neighbour-distancing [3], support vectors [5], isolation 
[6] and statistical profling [7]). Ultimately, we try to address 
the following question: Are the unsupervised machine learning 
algorithms able to identify attacks in IEC 104 protocol on the 
selected dataset? 

2. Background and Related Work 

Generally, the SCADA protocols, e.g., Modbus and IEC 
60870-5-104, suffer from the risk of attacks due to their unen-
crypted nature, lack of authentication, and integrity control [1]. 
These vulnerabilities in the communication protocols make the 
SCADA system an attractive target for the malicious eye, lead-

1International Electrotechnical Commission promotes worldwide elec-
trotechnical committees and standardises SCADA telecontrol transmission. 
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ing the attacker to control or halt the feld devices or opera-
tions within the system. Moreover, heterogeneous modern and 
legacy technologies in the SCADA network hinder the security 
enhancement of its protocols. A countermeasure against such 
adversaries is intrusion detection, and prevention systems [2]. 

There are different techniques to detect intrusions in the 
SCADA communication system; a) signature and specifcation-
based [8], b) anomaly-based [2]. For the signature and 
specifcation-based techniques, the detection system requires 
the knowledge of all possible attack signatures and normal 
system specifcations respectively, to match and alert misuse. 
These techniques result in less False Positives but are incapable 
of identifying novel attacks that are not specifed in the signa-
tures or that are outside of the normal identifed specifcations. 
The anomaly-based techniques detect the outliers or deviations 
from the ordinary data, this means it can recognise rare occur-
rences including potential unknown attacks [2]. 

Leveraging machine learning anomaly detection for SCADA 
systems can be benefcial [1][2]. These techniques rely on the 
hypothesis that the anomaly or intrusion is rare and dissimilar 
from regular or majority data instances. To be able to distin-
guish the abnormal traffc from the normal or intrusion from 
the authorised instance requires adequate contextual knowledge 
and access to normal data [3]. Once the normal data is profled, 
it becomes easier to detect anomalies or intrusions. However, 
real-time critical SCADA applications, may not always be pos-
sible to have all likely normal data behaviour. Hence, another 
mechanism is required to separate the abnormal data from the 
normal. The realistic and widely applicable learning method 
is unsupervised where there is a lack of prior knowledge of 
the data [2][3], as it is impractical and costly to have access to 
correctly labelled data. Another reason is to distinguish novel 
points, i.e., to spot the unknown observations in the system. In 
either case, a supervised approach alone may not be a realistic 
choice to rely on, and instead, unsupervised learning becomes 
a natural selection. 

The IEC 104 protocol has been adopted within the Euro-
pean countries as SCADA transmission standard since the late 
1990s. IEC 104 enables the communication between the grid’s 
control station and substation. It transports IEC 101 (standard 
for basic telecontrol tasks) messages as application layer data 
over TCP, port 2404 [9]. A comprehensive description of the 
IEC 104 protocol stack and frame format for the OSI layers is 
presented in [9]. The protocol suffers from inherent security 
weaknesses, e.g., absence of authentication and integrity mea-
sures [1]. 

A comparison of supervised learning approaches for detect-
ing Man-in-the-middle attacks in the IEC 104 protocol was per-

formed by Hodo et al. [10], but the dataset is not accessible. A 
contrast of supervised, semi-supervised and unsupervised ma-
chine learning approaches for IEC 104 was presented by Egger 
et al. [4]. In [4] the supervised approaches showed negligi-
ble False Positives at the expense of not being able to detect 
new attacks. In comparison, the unsupervised approach with 
One-class Support Vector Machine demonstrated lower intru-
sion detection ability compared to supervised approach. Our 
work systematically investigates the validation and generalis-
ability of the selected algorithms (Section 3.2) for unsupervised 
anomaly detection in a public IEC 104 dataset. 

3. Research Method 

The study uses machine learning experiments to study the 
performance of the different intrusion detection learning algo-
rithms. The performance of each algorithm is empirically veri-
fed by applying them to the selected power grid’s dataset [4]. 

TABLE 1. IEC 104 features in the dataset: description of the protocol 
felds 

104apci apdulen: includes 4 bytes control information and variable 
length packets. 
x104apci rx: number of the last packet the sender received. 
x104apci tx: sequence number of the transmitted frame, increments by 
one for every frame which gets sent to a specifc IP address. 
x104asdu typeid: Type Identifcation numbers of IEC 104 packets (1 
to 255). 
x104asdu causetx: Cause of Transmission values (1 to 255). 
tcp srcport: TCP Source Port (2404) used by the client sending the 
TCP segment. 
tcp dstport: TCP Destination Port (2404) used by the client receiving 
the TCP packet. 
tcp len: Total length of the TCP segment, includes header and data. 
tcp hdr len: length of the TCP header (20 to 60 bytes) 
tcp window size value: TCP window size, indicates the bytes the re-
ceiving device can receive. A zero means receiving device is over-
whelmed. 
tcp pdu size: equals tcp-len, but the value can only be dissected when 
it is an IEC 104 packet. 
vlan id: frame’s LAN identity. 
ip len: length of the IP packet (IP header + user data). 
ip fags df: Don’t Fragment fag bit, to signal fragmentation is unper-
mitted. 
ip ttl: Time-to-live (1-255), indicating the network router to discard the 
packet after the specifed value is reached. 
frame len: Ethernet frame length with minimum value of 64 bytes. 

3.1. IEC 104 Dataset 

The dataset comprises of IEC 104 network packet informa-
tion with 288277 normal and 10000 attack observations and 21 



features specifc to the protocol (Table 1). The packet traces 
have both categorical as well as continuous data. Since the pro-
tocol is application and organisation-specifc, it is possible the 
practitioners may choose a different set of values for certain 
features (e.g., Cause of Transmission - asduCause) or may not 
use the feature at all. The feature extraction is performed in 
[4] based on the association of the particular feature with the 
simulated attacks. If two features had near-perfect correlation, 
e.g., Ethernet frame length and total length of the IP packet, 
only one feature is kept. Median values substituted the missing 
numerical values. The missing categorical values were coded 
with mock binary values, e.g., for VLAN ID. 

3.2. Learning Algorithms 

The learning algorithms adopted for distinguishing the pos-
sible network intrusion attempts generally [3] and examined in 
this study are shown in Table 2. Each selected algorithm has a 
distinctive method to uncover anomalies. While the algorithms 
come with default values for each hyperparameter, they often 
require tuning to suit the specifc domain or dataset. Table 2 
shows the detection method of each algorithm and the hyper-
parameters tuned in this work. The implementation of the al-
gorithms is done using modules from the PyOD2 toolkit and 
scikit-learn3 library with Python 3.8.8. 

TABLE 2. Learning Algorithms and hyperparameters tuned in this study 

Algorithm - Hyperparameters 
Method 

Parameter Search space (default value) 
OCSVM -
kernel 
based 

gamma 

nu 

auto, 0.1, 0.01, 0.001, 1.0, 
∗10, 100 (auto) 
0.3, 0.5, *0.7 (0.5) 

iForest -
isolation 
model 

n estimators 

max features 

*50, 100, 200, 300, 400, 500, 
600, 700, 800, 900, 1000(100) 
0.2, 0.4, *0.6, 0.8 (1.0) 

HBOS -
histogram 
profling 

n bins 100, 125, 150, 200, 250, 
∗300, 350, 400, 500, 1000 
(10) 

KNN-
Distance 

n neighbours 
method 

5, 25, 45, 65, 85,*105 (5) 
largest, median, mean 

based 
* best Area Under the Curve Score mean value 

We make an effort to populate values for the hyperparame-
ter search space by making logical deductions and trying the 

2https://pyod.readthedocs.io/en/latest/ 
3https://scikit-learn.org/stable/ 

possible fts via the GridSearch 10x2 cross-validation method. 
Grid search tries all permutations of the parameters of interest 
and returns the best set of parameters. Since it is not feasible 
to evaluate all possible values for the hyperparameter, we rely 
on logical presumptions. For example, instead of providing a 
range of bin values to the HBOS grid search function, we com-
puted the n bin value using Rice rule [11], based on which we 
provided round-off multiples of hundred to the search space. 
This approach helped us to reduce the overall grid search time. 

One-class Support Vector Machines (OCSVM) constructs 
support vector classifer to separate the IEC 104 observations. 
To do this, it uses Radial Basis Kernel (rbf) to compute the re-
lationship between each pair of observations in 21 dimensions. 
As a result, the dimensions are transformed as if they were in a 
higher dimensional space. Thus, dissecting the data with suit-
able hyperplane. The kernel coeffcient (gamma) is responsi-
ble to infuence the separation of data points. A high gamma 
can lead to over-ftting and a gamma value too low may not 
model the complex training data well. Thus, an optimal value 
for gamma is crucial. Also, the nu parameter is important as it 
allows obtaining a direct lever on the fraction of misclassifca-
tions during the hyperplane formation [5]. By default, nu is set 
to 0.5 and kernel coeffcient to 1/f (where f is the number of 
features in the dataset). Using the default values for both hy-
perparameters [5] and that showed promising Area Under the 
Curve value in semi-supervised set-up we formed a geometric 
sequence of values for the grid search space. 

Isolation Forest (iForest) algorithm is an isolation-based 
methodology specifc to our objective. It isolates anomalous 
observations by randomly selecting a feature and then arbitrar-
ily selecting a split value between the chosen feature’s maxi-
mum and minimum values. The resulting structure appears like 
a tree where the number of splits that isolate the observation is 
equivalent to the path length from the root to the terminating 
tree node. The shorter path lengths indicate possible anomalies 
[6]. The number of base decision trees n estimators are 100. 
Mostly all features contribute to forming the forest, which is 
why our search space for max features is skewed to the maxi-
mum range. 

Histogram Based Outlier Detection (HBOS) is a statistical 
technique that captures the behaviours of data points using his-
tograms. Initially, it builds the model from the features in the 
training data. The next step checks if test occurrence lies in any 
bins of the histogram, in which case the occurrence is classifed 
as normal. Otherwise, it gets labelled as a potential anomaly 
[7]. Dynamic bin-width is suitable [7] because in intrusion de-
tection scenarios, often the features have different distributions 
and data with intervals within the range of observations. Us-
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ing a fxed bin width may result in poor estimations as some 
bins may contain most of the data [7]. The current HBOS im-
plementation supports fxed bin width. The optimal number 
of bins n bins should be selected for the given context. The 
height of the bin signifes a density estimation. The histograms 
are normalised with a maximum height of 1.0 to ensure equal 
weight for each feature. 

k-Nearest Neighbour (KNN) is a proximity-based learning 
approach where the distance between the observation and its 
group of neighbours helps classify the observation [3]. The pa-
rameter n neighbour denotes the number of the k neighbours 
that form the group or neighbourhood. Another parameter that 
requires attention is how to compute the distance between ob-
servation and the k neighbours. The algorithm has 3 methods; 
mean, median and largest. In the case of mean, mean distance 
between the observation and all its k neighbours is computed as 
anomaly score. If largest is selected, it means the observation 
will get the anomaly score of the kth neighbour that is farthest 
from the observation. We tune these parameters in our experi-
ments. The distance metric between the observation and its kth 
or k nearest neighbours is measured by Minkowski distance. 

3.3. Experiment Design 

The dataset is resampled 10 times before splitting into two 
subsets: model-tune subset (60%) and test subset (40%). The 
contamination ratio is maintained to ensure that both subsets 
retain the representativeness of the attack data. The model-tune 
subset is further divided into two sets - model subset (50%) to 
model the structure of available or historic data and tune subset 
(10%) to tune the hyperparameters. The test subset remains 
entirely unknown to the algorithms, the purpose of which is to 
test the unbiased detection performance of the proposed models 
on IEC 104 data [12]. 

The experiment has two stages. The frst stage evaluates the 
performance of each learning algorithm on the model subset 
[12]. The 10x2 cross-validation is used to ft the model subset 
to each algorithm with both default and tuned hyperparameter 
values. This methodology is common to validate the proposed 
model in machine learning. The objective is to randomly divide 
the model subset into 2 equal folds retaining the outlier ratio. 
The model is ftted and validated 2 times for 10 iterations. In 
each iteration, one-fold acts as a train set and the other as a 
validation set. The model’s overall performance is calculated 
as the mean of Area Under the Curve for both folds. 

To measure how well our produced models perform on the 
unseen data, we execute the second stage [12]. In the second 
stage, we use the fnal cross-validated model for each algorithm 

(from stage 1) to predict anomalies in the independent test sub-
set. Initially, we execute the algorithms with default model 
parameters on the test subset. Later, we take the fnal cross-
validated models of each algorithm with tuned parameters and 
validate them on the same locked-out test subset to contrast 
each model’s default and tuned parameter setting. 

The contamination is fxed to 0.03, which was the approxi-
mate outlier factor in the dataset (≈ 10000/298278), and a ran-
dom state is maintained for reproducibility of results. The data 
was standardised to scale the features and to preserve the out-
liers in the subsets. 

Each anomaly detection algorithm yields a particular data 
point as normal or anomalous based on how it makes the detec-
tion. Due to the available labels, the result of the fnal models 
produced by each algorithm is compared and presented with a 
confusion matrix and other evaluation metrics. 

To compare the performance of multiple algorithms on a 
dataset, Demsar suggests Friedman test [13], which also forms 
the basis for our statistical comparison. The null hypothesis of 
the test is that all the algorithms perform equally on the dataset. 
The null hypothesis is rejected if there is a signifcant difference 
between all algorithms’ average rank and the mean rank. 

3.4. Evaluation Metrics 

To measure the performance of the anomaly detection learn-
ing approaches, specifcally, in the critical electricity SCADA 
sector the number of detected anomalies is appropriate, such 
that the False Negative Rate (FNR) is close to zero, which 
means the smaller number of missed attacks the better the 
model is performing. Often the False Positive Rate (FPR) is 
high because of the hundreds of IEC 104 packets are being ex-
changed in the SCADA network on a daily basis of which a 
large percentage is presumably the expected traffc. 

FNR = F N/(TP + FN) (1) 

FPR = FP/(FP + TN) (2) 

We calculate FNR (1), FPR (2) along with F1 score (3), 
Matthews Correlation Coeffcient (MCC) (4) , and Area Un-
der Receiver Operating Characteristic Curve (AUC) to depict 
the correctness of the learning approaches. 

F1 = 2 ∗ TP/(2 ∗ TP + FP + FN) (3) 

The F1 score delivers knowledge about the relation of preci-
sion and recall. Both precision and recall describe the relation 
of all True Positive (TP) groupings to all that have been clas-
sifed as positive, correspondingly to all the positive events. A 
good F1 value equals to one, and a value closer to zero denotes 



TABLE 3. Performance summary of fnal default unsupervised anomaly detection models on IEC 104 test subset 

Algorithm TPR FPR AUC F1 MCC Acc FNR 
OCSVM 0.01 0.03 0.49 0.02 −0.01 0.94 0.98 
iForest 0.04 0.02 0.51 0.05 0.02 0.94 0.95 
HBOS 0.01 0.03 0.49 0.01 −0.02 0.94 0.99 
KNN 0.10 0.03 0.54 0.10 0.07 0.94 0.89 

TABLE 4. Performance summary of fnal tuned unsupervised anomaly detection models on IEC 104 test subset 

Algorithm TPR FPR AUC F1 MCC Acc FNR 
OCSVM 0.30 0.01 0.64 0.32 0.30 0.96 0.69 
iForest 0.03 0.03 0.50 0.04 0.01 0.94 0.96 
HBOS 0.04 0.02 0.51 0.05 0.02 0.94 0.95 
KNN 0.21 0.02 0.59 0.23 0.20 0.95 0.78 

worst precision or recall. We will report the F1 score for the 
attack class since we are more inclined towards revealing intru-
sions. 

TP ∗ TN − FP ∗ FN 
MCC = p

(TP + FP )(TP + FN ) ∗ (TN + FP )(TN + FN) 
(4) 

F1 does not take True Negatives (TN) into account as it gives 
equal importance to precision and recall, which might be a 
problem if the dataset is imbalanced, like in our study. Hence, 
we also evaluate Matthews Correlation Coeffcient (MCC). The 
dataset has a majority of normal observations. In the critical in-
frastructure context, the detection of the minority class is more 
important, and therefore, its prediction is more sensitive to er-
rors as compared to the normal class. We assess the learning 
approaches by considering these imbalances which can hamper 
the prediction of the minority class (attacks in this case). MCC 
generates a high score if the model correctly classifes most of 
the positive data observations and the majority of negative data 
observations. It ranges between -1 (worst) and +1 (best) [14]. 

The area under the ROC curve or AUC score is an established 
and common metric to analyse the behaviour of the learning 
algorithms. It reports a trade-off between benefts (True Posi-
tives) and costs (False Positives) [15]. AUC score can be be-
tween 1 (best) and 0 (worst). 

4. Results 

Our empirical evaluation of the fnal cross-validated unsu-
pervised learning models on the IEC 104 test subset, in the light 
of the chosen metrics, can be viewed from Tables 3 and 4. 

First, we compute the confusion matrix on the test subset for 
each model. The matrix summarises both the count of the cor-
rect and incorrect estimates. It gives insight into two types of 

errors – False Positive (FP) and False Negative (FN). OCSVM 
learning algorithm provided a comparatively lower FNR af-
ter hyperparameter tuning, followed by KNN. Both partitioned 
20 − 30% attacks that constituted the test dataset. Optimised 
iForest and HBOS performed poorly with TPR of less than 0.1. 
To view the FPR against TPR, we refer to the AUC scores. The 
AUC score of tuned OCSVM is highest (0.64), followed by the 
tuned KNN (0.59) on the reserved test subset. 

MCC is symmetric, meaning it gives equal importance to 
both actual and predicted classes by considering all 4 possible 
outcomes (FN, FP, TP, TN). Analysing the MCC of the models 
on the test subset (with tuned setting), we fnd OCSVM gives 
the best MCC of 0.3 followed by KNN model with MCC of 
0.23, indicating average classifcation. HBOS and iForest mod-
els show a poor correlation between both normal and anoma-
lous classes. 

TABLE 5. Confusion matrices for default and tuned fnal OCSVM 
anomaly detection models on the test subset 

Final True Label Predicted Label 
Model 

Normal Attack 
Default Normal 111655 3657 

Attack 3927 73 
Tuned Normal 113041 2271 

Attack 2791 1209 

One-class Support Vector Machines. The confusion matrix 
of OCSVM on the test IEC 104 dataset with both default hyper-
parameter values and tuned is tabulated in Table 5. The tuned 
fnal model detected 30% attacks while with the default set-
ting less than 2% attacks were picked. The MCC improved by 
31% from −0.01 to 0.3 after tuning hyperparameters. The rbf 
kernel coeffcient of 10 enables modeling of smoother bound-
ary around the regular-normal observations, thereby allowing 
support-vectors to segregate the anomalies to some extent and 



reducing the FPR. 
Isolation Forest. Upon tuning the algorithm hyperparame-

ters, an increase in the FPR was observed (see Table 6). The 
detected attacks (or TPR) in both models remained poor for the 
selected IEC 104 features. 

TABLE 6. Confusion matrices for default and tuned fnal iForest anomaly 
detection models on the test subset 

Final 
Model 

True Label Predicted Label 

Normal Attack 
Default Normal 112406 2906 

Attack 3811 189 
Tuned Normal 111741 3571 

Attack 3847 153 

Histogram-based Outlier Score. The optimised setting of the 
algorithm detected a few more attacks with TPR 0.04 from 0.01 
(Table 7). Unlike the tuned iForest model, the tuned HBOS 
model showed less false positives rate. 

TABLE 7. Confusion matrices for default and tuned fnal HBOS anomaly 
detection models on the test subset 

Final True Label Predicted Label 
Model 

Normal Attack 
Default Normal 111618 3694 

Attack 3961 39 
Tuned Normal 112454 2858 

Attack 3816 184 

k-Nearest Neighbour. It is seen from the confusion matrix 
(Table 8) that KNN performed poorly to separate the attacks 
in the given IEC 104 dataset with the default hyperparameter 
value (k=5). Upon searching for optimal value for k or neigh-
bours through the cross-validation grid search, we got 60. By 
increasing k to 60, FPR is reduced slightly, and a double num-
ber of attacks are picked. Even though the performance of KNN 
showed positive behaviour, the FNR is still on the higher side 
(79%). 

TABLE 8. Confusion matrices for default and tuned fnal KNN anomaly 
detection models on the test subset 

Final True Label Predicted Label 
Model 

Normal Attack 
Default Normal 111673 3639 

Attack 3592 408 
Tuned Normal 112782 2530 

Attack 3157 843 

For statistical comparison of models (with tuned hyperpa-

rameter values) and to identify the most suitable algorithm for 
IEC 104 intrusion detection in power grid domain, we per-
formed Friedman signifcance test [13]. We generate AUC 
scores for the model subset using 10x2 cross-validations (stage 
1) for the simple reason that every instance participates in one 
test-fold and receives an AUC score from the corresponding 
model. Eventually, we consider the mean of the folds to pro-
duce a single AUC value for each iteration. Table 9 demon-
strates our analysis with signifcance level 0.05. The critical 
value suggests that we reject the null hypothesis that all selected 
algorithms perform equally on the dataset. The Friedman test 
on average AUC scores reveals that the Isolation Forest and 
OCSVM models seem more appropriate than other candidates, 
with average rank 1 and 2 in the SCADA IEC 104 intrusion 
detection context. 

TABLE 9. Results of the tuned unsupervised anomaly detection models 
measured using AUC on the validation set and the corresponding Fried-
man test outcome 

Algorithm Avg. Rank Avg. AUC (St.Dev.) 
OCSVM 2 0.59 (0.00003) 
iForest 1 0.65 (0.002) 
HBOS 4 0.56 (0.00006) 
KNN 3 0.58 (0.0008) 

Friedman statistic = 30.03 p = 1.38 × 10−6 . 

5. Discussion 

The statistical comparison of learning models reveals that 
the iForest model for the given features has an average trade-
off between the cost and beneft in the validation phase. The 
model, however, downgraded in performance on the unseen test 
dataset. Possible reasons for the iForest’s deteriorated perfor-
mance can be the presence of categorical features, high dimen-
sions in the dataset [6], and also due to its non-deterministic 
mechanism to form trees. However, this non-generalisability 
of iForest model should be analysed further. 

On the other hand, OCSVM and KNN models maintained 
their validation performance on the unseen data. The valida-
tion results of both models showed that OCSVM had a higher 
mean AUC score than KNN for anomaly detection in IEC 104 
dataset. Additionally, both the algorithms demonstrated stable 
performance with negligible standard deviation. The behaviour 
of both learning algorithms explain that kernel function and 
distance-based anomaly detection approach are more suitable 
for the given IEC 104 dataset. 

We observe that the performance of OCSVM and KNN 
slightly improved after the tuning of hyperparameters. Both 



partitioned some attacks but missed over 50% attack observa-
tions in the high dimensional test subset. Note, the tuning sub-
set comprised 17296 observations of which 600 represented at-
tacks of all 4 types. Due to severe class imbalance in all the sub-
sets, the majority of non-anomalous observations skewed the 
model’s classifcation ability (as seen from the high accuracy 
values). This may have impacted other explored learning ap-
proaches as well. In SCADA protocol intrusion detection, the 
rare class is crucial and is often in severe minority. Focusing on 
methods to address this inherent challenge in the SCADA com-
munication intrusion detection may beneft the unsupervised 
anomaly detection, e.g., by augmenting the attack observations. 

We notice that relaxing the contamination value for OCSVM 
enabled detection of all the available attacks in the test subset at 
the cost of doubling the current FPR. This behavior of OCSVM 
highlights that by increasing the margin for misclassifcation, a 
better hyperplane is created, thus, giving better separation of 
both classes. It also highlights that data points in both classes 
come from overlapping Gaussian distributions. It would be in-
teresting to consider classifers that can separate data points 
sharing almost overlapping normal distributions. 

6. Conclusions and Future Work 

The SCADA system in power grids necessitates using a com-
bination of security measures to combat the attacks. This study 
explored anomaly detection for a standard SCADA protocol -
IEC 104, by implementing different families of unsupervised 
machine learning algorithms. We performed systematic model 
validations with both default and tuned parameters. To realise 
the true potential of the learning algorithms for SCADA com-
munication, we tuned the hyperparameters using 6% of the la-
belled data from the dataset. We describe the research design 
for reproducibility, followed by a discussion to facilitate the 
critical evaluation of the work. 

The empirical analysis revealed a couple of candidates - One-
class SVM and k-Nearest Neighbour models that provide some 
hope for unsupervised anomaly detection in IEC 104 communi-
cation. However, both the anomaly detection models misinter-
preted many routine observations and missed majority attacks. 
Unsupervised machine learning models could potentially help 
the SCADA operator to detect attack occurrences but needs to 
be complemented with other approaches. The results of this 
study indicate that the method isn’t alone feasible. 

An interesting future work is to evaluate the produced mod-
els after under-sampling or over-sampling of the classes to 
reduce ftting bias. Also, exploring the better generalisable 
models and learning algorithms for other SCADA protocols, 

such as IEC 61850, may be valuable. The current work high-
lights applicability of common machine learning approaches 
for anomaly detection in SCADA IEC 104 communication. 
Another direction could be to explore data mining techniques 
for intrusion detection. 
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