
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

An Ecosystem for Large-Scale
Reuse of Microservices in a
Cloud-Native Context
Muhammad Usman
Blekinge Institute of Technology, Sweden.

Deepika Badampudi
Blekinge Institute of Technology, Sweden.

Chris Smith
Ericsson AB

Himansu Nayak
Ericsson AB

Abstract—This article presents an ecosystem that Ericsson developed to systematically practice
large-scale reuse of microservices in a cloud-native context. We discuss how various ecosystem
aspects, such as its continuous delivery mechanism, marketplace, and automated checking of
design rules, facilitated the development and reuse of microservices across Ericsson. We also
share lessons learned while developing the ecosystem including the initiatives related to the
adoption of InnerSource practices for sustaining the ecosystem.

Introduction
The use of microservices in delivering

software-intensive products has been on the rise
during the last few years [1], [2]. Many com-
panies have shared their experiences of using
microservices to achieve benefits such as faster
delivery, scalability, and independent deployment
(cf. [3], [1], [2]). Microservices are used primarily
as a cloud-native architectural style, in combina-
tion with various DevOps practices (e.g., continu-
ous deployment) and container-based solutions, to
quickly deliver and scale software-intensive prod-
ucts (cf. [2], [3], [4]). In this article we share Eric-
sson’s journey of moving towards a cloud-native
approach of developing software applications -
focusing on how technology, practices, and teams
are combined in an ecosystem to collaboratively
develop common functions as microservices that
can be reused and integrated across all appli-

cations within Ericsson. We also share lessons
learned in developing the ecosystem, which is
referred to as Application Development Platform
- ADP ecosystem.

Overview of the ADP Ecosystem
Ericsson developed the ADP ecosystem to

support its transition to the cloud-native approach
of developing applications and services. Figure 1
provides an overview of the current state of the
ADP ecosystem. The ADP ecosystem provides
technical, process, and organizational support for
developing Cloud-Native Applications or Net-
work Functions (CNAs or CNFs) within Ericsson.
ADP is based on a modern architectural style -
microservices and containers. The ecosystem also
supports more large-scale reuse of microservices
across applications within Ericsson. Due to their
size, bounded context, and loose coupling, mi-

IEEE Software Published by the IEEE Computer Society © xx IEEE 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

Figure 1. Overview of the ADP Ecosystem

croservices are potentially a good unit of reuse
and can thus support large-scale reuse across the
entire organization [5].

The large-scale reuse of microservices across
Ericsson is not possible unless they are accessible
to everyone within the company. The ecosystem
developed a marketplace to increase the visibility
and knowledge about the microservices that are
available for reuse. Furthermore, the ecosystem
also provides process and onboarding support to
InnerSource (IS) ways of working in Ericsson’s
journey to collaboratively develop applications.

ADP microservices are frequently released
and assembled into different applications. In such
a scenario it becomes important that microser-
vices have consistent mechanisms for handling
issues such as configuration, integration, product
and artifact handling, and backward compatibility.
The ADP ecosystem has codified these consis-
tency requirements on microservices as design
rules.

The ecosystem provides CI/CD (Continuous
Integration and Delivery) pipelines that support
the development, integration, and delivery of mi-
croservices, and the assembly of those microser-
vices into applications, using Spinnaker1 as a
critical component to orchestrate these pipelines,
and helm 2 to perform deployment and upgrades.

The ecosystem was started in late 2017, and

1https://spinnaker.io/
2https://helm.sh/

the various aspects described here have emerged
during the following four years as the needs
became apparent. In Spring 2020, due to the
increase in the number of design rules, the need
for providing a clear milestone-driven pathway
for achieving maturity arose. In Autumn 2020, the
concept of the maturity staircase was established,
and design rules were connected with different
maturity levels. The connection of different de-
sign rules with varying maturity levels has made
it easy to understand and express in which order
design rules should be implemented by services to
achieve a certain level of maturity. It also clarified
what users could expect from a microservice at a
certain maturity level.

While research on open source software
ecosystems is extensive, we know little about
internal software ecosystems (ISECO). ISECOs
face additional challenges e.g., Siemens’s ISECO
report challenges such as guarantee of software
qualities across the ecosystem, and compliance
with cross-cutting regulations [6]. To address
ISECO challenges, the ADP ecosystem provides a
more holistic collaboration that is not limited to
providing a product/platform for reuse but also
supports the InnerSource way of collaborative
development of microservices, automated check-
ing of their compliance with design rules, and
their continuous integration into CNAs. In the
coming sections, we will elaborate on different
dimensions of the ADP ecosystem in detail.

2 IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

Architectural Framework
The architectural framework in the ADP

ecosystem centers around the concept of mi-
croservices and containers. It builds on the
ecosystem of open source projects from the Cloud
Native Computing Foundation (CNCF)3.

The architectural framework consists of the
following three key components:
1) Container Orchestration: The ecosystem
selected Kubernetes as the container orchestrator
and Helm as the packaging and deployment
mechanism. The Kubernetes APIs form the
portability interface, allowing ADP microservices
and applications to use any Kubernetes-certified
cloud-platform. CNCF provides the support
to software and cloud vendors to certify their
offerings and also maintains an inventory of
Kubernetes-certified offerings (For more details,
see [7]).

2) Microservices for reuse across
applications: The ecosystem provides various
microservices corresponding to different
functional areas such as security, data, network,
management, monitoring, and messaging. These
services are mostly based on open source
projects, and their configuration and life cycle
management is adapted to fit them in the
ADP ecosystem. In some areas, their reuse is
mandatory to promote consistent user experience
and a common way to serve Ericsson customers.
The Ericsson teams working with microservices
that are based on CNCF projects are also active
in the corresponding communities of these
open source projects, contributing bug fixes
and features where appropriate. Ericsson also
contributes to the Kubernetes project. Thus, the
larger open source ecosystem (e.g., CNCF open
source projects) and ADP ecosystem both learn
and benefit from each other.

3) Ecosystem Support Services and Tools:
A large number of individuals and teams from
different units across Ericsson participate in the
ADP ecosystem, for example to integrate, reuse
and contribute to microservices. In such a sce-
nario, it becomes necessary to establish some
ground rules to avoid inconsistent behaviours and

3https://www.cncf.io/

enable automated mechanisms. The ecosystem
developed common principles and design rules
that need to be followed by all services par-
ticipating in the ADP ecosystem. The design
rules are formulated to ensure consistency across
microservices, for example, how to ensure that
logs and metrics are consistently structured, how
to annotate kubernetes resources, how to name
and version images, or how to ensure a consistent
security posture across multiple microservices.

The ecosystem developed a family of design
rule checkers, which automatically check the
compliance of microservices towards these
design rules. The developers can integrate design
rule checkers into their CI pipeline and the
checkers will inform them if they are violating
any design rules. These checkers have brought
in the much needed automation to the otherwise
complex and time consuming compliance testing
process.

ADP Marketplace
The ADP marketplace is an intranet website

developed by Ericsson. The marketplace indexes
all microservices that are open for use and contri-
butions. In addition, there are a series of hands-on
tutorials and guides attached to the marketplace
which guide users on how to use and contribute
to microservices, and microservice chassis that
developers can use as a starting point for new
microservices. As shown in Figure 2, it is possible
to view all the microservices and apply filters
to search for specific microservices based on
their category, area, reusability level, and matu-
rity. Other companies have implemented similar
portals for publishing their IS projects [8]. SAP4,
for example, also has a similar portal5 where IS
projects are shared for reuse and contributions.
The ADP marketplace provides various filters for
displaying and grouping the microservices, which
are discussed below:

• Microservice category - Ericsson categorises
microservices as follows:
Generic Services and Reusable Services - Both
Generic and Reusable Services are expected to
be reused in multiple applications and across

4https://www.sap.com/index.html
5https://sap.github.io/project-portal-for-innersource

xx xx 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

Figure 2. Microservices Marketplace

multiple domains within Ericsson. However,
they are funded differently. Generic Services
are developed and maintained by dedicated
central teams. However, there is no such cen-
tral funding for the Reusable Services. They
are developed, contributed, and maintained by
application development teams right across Er-
icsson. Both types of services are open for IS
contributions; however, Reusable Services rely
more heavily on the IS community model.
Domain specific services - They are specific to
application teams within the same domain.
Application specific services - They are spe-
cific to an application.

• Reusability level - It indicates to what extend
a service is fit for reuse at a given point. The
different levels are:
Level 0 - ‘None’: Not evaluated for reuse.
Level 1 - ‘Candidate’: Potentially reusable and
verified to be consistent with ADP architec-
tural principles.
Level 2 - ‘Open for reuse’: Ready to accept
contributions and to be included in application
assemblies.
Level 3 - ‘Reused’: Effectively used by more
than one application.

• Microservice maturity - It indicates the
commercial readiness of a microservice, and
which design rules need to be implemented to

meet each level. The different levels are:
Level 0 - ‘Idea/PoC’: Proof of concept and
experimental stage.
Level 1 - ‘Development started’: Development
ongoing with intention to reach higher
maturity levels.
Level 2 - ‘Ready for integration’: Can coexist
with other ADP services and has a CI pipeline
that can be connected to an application staging
environment.
Level 3 - ‘Ready for non-commercial use’:
Limited release for use in demos or testing at
customer site.
Level 4 - ‘Ready for commercial use’: Telco-
grade ready and can be used in commercial
deployments.

For each microservice, the marketplace
provides the following information: the
overview, documentation, compliance (met/not-
met/exempted), helm charts to install the
microservice, link to the source code repositories,
team owning the microservice, discussions
related to the microservice, and finally, list of
contributors for the microservice. In addition,
the marketplace appreciates the top contributors
to encourage more contributions.

Over 250 microservices have been made avail-

4 IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

able on the marketplace for potential reuse and
collaboration by January, 2022. These include
both functional and infrastructure-related services
(e.g., Metrics). 70 of these 250 have reached the
highest level of maturity, i.e., they are ready for
commercial use and are being reused by multiple
applications.

Continuous Integration and Delivery
(CI/CD)

The ADP CI/CD strives to enable Ericsson-
wide reuse of services developed by any unit.
If an application development unit finds a mi-
croservice in the ADP marketplace that satisfies
one of their needs, they can integrate it to try it
out. However, a one-shot integration is of course
not acceptable - and so to enable this kind of
reuse, it must be possible to connect on to the
CI/CD pipeline of the reused microservice too
in order to receive and integrate new versions
of the microservice as and when they become
available. It is important to note that the con-
tinuous integration and release of microservices
is decoupled from the continuous assembly and
release of applications. When a new version of a
microservice is released, it is pushed immediately
to the staging environment of those applications
that have integrated it to test if it should be
included in the applications baseline in place of
the previous version.

There is no central service governance pol-
icy that applications must follow. However, the
applications are aware of: 1) the benefits of
switching to the latest microservice versions - i.e.,
updates and corrections are delivered in the latest
versions, and 2) the risks of staying with the older
versions - i.e., older versions are more likely to
result in several vulnerabilities in security scans
that are mandatory before release.

ADP CI/CD uses Spinnaker pipelines to con-
nect the individual microservices with the staging
environments of different applications (see Figure
3). The ADP development environment provides
Spinnaker pipelines as a service. An applica-
tion may consume one or more microservices
from elsewhere. Each connection point (arrows in
Figure 3) - between the individual microservice
and the staging environment of an application
- represents one reuse instance. There are more
than 600 such connection points, demonstrating

a large-scale reuse of microservices by applica-
tions. Some microservices are only used in one
or two applications, but the most reused ones are
currently included in as many as 46 applications.
It includes both functional and infrastructure ser-
vices.

The use of software flow principles, spinnaker
and its interfaces are mandated. However, the
teams still have a high degree of freedom behind
these mandated interfaces to use the most appro-
priate CI technology in their pipelines. Despite
this autonomy, the ecosystem encourages teams to
share their experiences of using particular CI/CD
technologies to facilitate community-based imple-
mentations.

ADP Program
There is a central organization - ADP Pro-

gram, which is responsible for sustaining the
ecosystem. The ADP Program includes an archi-
tecture team that drives and governs principles,
design rules, and guidelines related to microser-
vice architecture and cloud-native approach, en-
abling alignment in how microservices are devel-
oped and maintained. The governance body is an
architecture council where ADP architects meet
with applications’ architects to agree on archi-
tecture direction and any further improvements
related to principles, design rules, and guidelines.
The ADP Program also includes the development
teams (over 100 developers in teams of varying
sizes) that own the development and maintenance
of over 50 Generic Services that are heavily
reused across Ericsson.

The ADP Program includes a unit (ADP An-
chor Unit), which is tasked with devising and
evolving the structures and policies of the ecosys-
tem. The Unit also works to make it easier to
create, release and reuse microservices – the unit
can be compared to the role that CNCF takes in
the open source Cloud Native community. Over
100 practitioners, independent of the development
teams working on the centrally funded Generic
Services, perform these anchoring activities. The
name Anchor was given because this unit “an-
chors” the ecosystem into the company structure
– wherein individual services, applications and
tools are developed, owned, and contributed by
many different organisations across Ericsson. To
keep track of the progress, the ADP Anchor Unit

xx xx 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

Figure 3. Spinnaker Pipelines

collects several metrics such as number of IS con-
tributions made by different units, status of design
rules fulfillment by each ADP microservice and
pass/fail rate of each microservice’s integration
into different user applications.

Adopting InnerSource (IS) to sustain
the ADP Ecosystem

The IS contributions are critical to sustain
the ADP ecosystem, otherwise it could become
a bottleneck wherein the service users are only
demanding new features resulting in unmanage-
able backlogs to be handled by the central teams
as experienced in other similar contexts [9], [10].

Taking inspiration from InnerSource Com-
mons [8], the ADP ecosystem has defined IS roles
and principles to support IS collaboration model
within Ericsson.

IS Roles
The ADP services are handled as IS projects.

Each IS project needs to have the following roles:
Guardians who, being the technical owners of
the service, are responsible for providing con-
tribution guidelines, participate in the relevant
discussion forums, review and approve feature
requests and contributions. The guardian is nor-
mally part of the development unit that created the
ADP service and the corresponding IS project.
Trusted Committers [8] who are more experi-

enced and frequent contributors that have the re-
quired knowledge to guide new contributors, par-
ticipate in discussion forums and review process
for discussing contribution requests. The recogni-
tion of active contributors as trusted committers
is pivotal in creating a sustainable community for
an ADP service.
Product Owner (PO) who are responsible for
maintaining the product backlog, prioritizing fea-
tures for the upcoming releases and collaborat-
ing with other stakeholders, in particular with
guardians to discuss how upcoming contributions
fit to the ADP service roadmap.

IS Principles
To enable IS contributions to ADP services,

the ADP Program has defined some basic princi-
ples:
- The source code of the ADP services shall be
visible through the ADP marketplace, but as a
quality control mechanism, patches can only be
integrated by the relevant guardians or trusted
committers after review.
- The backlog of ADP services shall be open to all
so that potential contributors are informed about
the planned features in the future releases.
- The guardian and trusted committers of each
ADP service shall create and moderate a forum
to discuss bugs, new feature requests and contri-
butions.

6 IEEE Software



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

- Before an ADP microservice is included in a
shipped product, its legal analysis is performed
to ensure compliance with trading regulations
and the license requirements of any open source
software included.

The ADP Program provides further guidance
in the form of examples, templates, FAQs and
tutorials.

IS Ownership Models
The IS ownership models can broadly be clas-

sified into central versus distributed models. In
the central model, both the product and technical
ownership is with one organizational unit. In
the distributed model, the product ownership still
rests with one organizational unit, while the tech-
nical ownership is shared across multiple units.
As the community around the IS project grows, it
becomes possible to assign the trusted committer
role to a few contributors from other organiza-
tional units. The trusted committer could then
share the technical ownership of the IS project.
The distributed model is particularly important
for Reusable Services in the ADP ecosystem to
foster a sustainable community of trusted com-
mitters that can manage the IS project even when
the original guardians are not available.

Lessons learned
With the help of an exploratory case study (the

complete case study, with methodological details
and other findings, to be published separately),
we identified the following lessons learned by
Ericsson in developing the ADP ecosystem:
IS contributions prevent ADP ecosystem from
becoming a bottleneck - It is important for the
teams creating Generic and Reusable Services to
be open to receiving contributions. In addition, it
is also important to provide automated tools and
software development kits that make it easier to
contribute.
Tool support for checking the DRs - The
ecosystem developed a family of checkers to
automatically check the conformance of the DRs.
The developers only need to integrate the relevant
checker in their CI pipeline and let the checker
detect the compliance issues, if any. Most devel-
opers appreciate the checkers as they allow them
to quickly verify their code - to see if they have
done a good job of conformance to the DRs.

Open and proactive communication: synchro-
nizing contributions - It is important for the IS
contributors to discuss their contribution plan and
make adjustments to align with the purpose and
architecture of the service before working on the
contribution.
Widespread reuse - The widespread reuse of
microservices across Ericsson has been made pos-
sible by establishing a CI/CD strategy that allows
a relatively quick “plug and play” of microser-
vices and applications assembly pipelines. The
key has been to keep the microservices’ lifecycle
and pipelines independent from the assembled
applications’ lifecycle and their pipelines.

Future Work
We aim to improve IS contributions by inves-

tigating a sample of recently completed contri-
butions for identifying the practices that worked
well (or otherwise), bottlenecks, and potential im-
provements in the existing IS contribution prac-
tices and guidelines.

ACKNOWLEDGMENT
This work was supported by the Knowledge

Foundation through the OSIR project (reference
number 20190081) at Blekinge Institute of Tech-
nology (BTH), Sweden.

REFERENCES
1. J. Soldani, D.A. Tamburri, and WJ. Van Den Heuvel,

”The pains and gains of microservices: A systematic grey

literature review”, J. of Syst. and Softw., vol. 146, pp.

215–232, 2018.

2. A. Balalaie, A. Heydarnoori and P. Jamshidi, ”Microser-

vices architecture enables devOps: migration to a cloud-

native architecture”, IEEE Softw., vol. 33, no. 3, pp. 42–

52, 2016.

3. P. Jamshidi, Pooyan, C. Pahl, N.C. Mendonça, J. Lewis,

and S. Tilkov, ”Microservices: The Journey So Far and

Challenges Ahead”, IEEE Softw., vol. 35, no. 3, pp. 24–

35, 2018.

4. T. Mauro, ”Adopting microservices at Netflix: lessons

for architectural design”, Accessed: Nov. 11, 2021.

[Online]. Available: https://www.nginx.com/blog/

microservices-at-netflix-architectural-best-practices,

2015.

5. R. Capilla, B. Gallina, C. Cetina, and J. Favaro, ”Opportu-

nities for software reuse in an uncertain world: From past

xx xx 7

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2022.3167447, IEEE Software

to emerging trends”, J. of Softw.: Evolution and Process,

vol. 31, no. 8, pp. e2217, 2019.

6. KB. Schultis, C. Elsner, and D. Lohmann, ”Architecture

challenges for internal software ecosystems: a large-

scale industry case study”, Proc. of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, pp. 542–552, 2014.

7. Cloud Native Foundation, Software Conformance

(Certified Kubernetes). Accessed: Nov. 10, 2021.

[Online]. Available: https://www.cncf.io/certification/

software-conformance/

8. InnerSource Commons, InnerSource Patterns. [On-

line]. Available: https://patterns.innersourcecommons.

org/p/innersource-portal

9. D. Riehle, M. Capraro, D. Kips, and L. Horn, ”Inner source

in platform-based product engineering”, IEEE Trans. on

Software Eng., vol. 42, no. 12, pp. 1162–1177, 2016.

10. D. Cooper, and K. Jan-Stol, Adopting InnerSource Prin-

ciples and Case Studies, O’Reilly, pp. 103–117, 2018.

Muhammad Usman is an assistant
professor at BTH, Sweden. He received his PhD in
software engineering from BTH in 2018. His research
interests include empirical software engineering, soft-
ware process improvement, and software reuse. Con-
tact him at muhammad.usman@bth.se

Deepika Badampudi is an assis-
tant professor at BTH, Sweden. She received her
PhD in software engineering from BTH in 2018. Her
research interests include empirical software engi-
neering, software process improvement, and software
reuse. Contact her at deepika.badampudi@bth.se

Chris Smith works at Ericsson,

where he leads the ecosystem aspects of Eric-
sson cloud-native journey (ADP Anchor). He has
worked in the telecom industry for 28 years with
platforms for Telecom applications – and has a BEng
from the University of Birmingham. Contact him at
chris.smith@ericsson.com

Himansu Nayak works at Erics-
son, where he leads the InnerSource contribution
aspects of Ericsson Cloud Native Journey (ADP).
He has been working in the telecommunication in-
dustry for 17 years. He holds a Bachelor of En-
gineering degree in Electronics and Telecommuni-
cation from Utkal University, India. Contact him at
himansu.nayak@ericsson.com

8 IEEE Software

https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/
https://patterns.innersourcecommons.org/p/innersource-portal
https://patterns.innersourcecommons.org/p/innersource-portal

