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1Abstract—Aviation reports indicate that between 1988 and 

2019 there were 292 human deaths and 327 injuries that had 

been reported from wildlife strikes with airplanes. To 

minimize these numbers, a new approach to airport Wildlife 

Hazard Management (WHM) is presented in the following 

article. The proposed solution is based on the data fusion of 

thermal and vision streams, which are used to improve the 

reliability and adaptability of the real-time WHM system. The 

system is designed to operate under all environmental 

conditions and provides advance information on the fauna 

presence on the airport runway. 

The proposed sensor fusion approach was designed and 

developed using user-driven design methodology. Moreover, 

the developed system has been validated in real-case scenarios 

and previously installed at an airport. Performed tests proved 

detection capabilities during day and night of dog-sized 

animals up to 300 meters. Moreover, by using machine 

learning algorithms during daylight, the system was able to 

classify person-sized objects with over 90 % efficiency up to 

300 meters and dog-sized objects up to 200 meters. The general 

accuracy of the threat level based on the three safety zones was 

94 %. 

 

 Index Terms—User-driven design; Image processing; 

Thermal sensors; Vision systems.  

I. INTRODUCTION 

Wildlife Hazard Management (WHM) is a key 

component of the maintenance service of every airport [1] 

[2]. Monitoring bird activity in the vicinity of a runway, as 

well as detection of mammals’ presence in the vast traffic 

area, are crucial for flight safety. Fauna-related accidents 

have caused not only damage but also deaths of both 

humans and animals. Even despite the decrease in flight 

traffic volume caused by the COVID-19 pandemic, more 

than 10,000 bird strikes were still observed just in the USA 
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in the past year [3]. Incidents that involved mammals could 

even reach 10 % of all recorded events [4]. From 1988 to 

2019, 292 human deaths and 327 injuries have been 

reported due to strikes by wildlife with airplanes, around the 

world [5].  

However, fatalities are not the only consequences of 

interactions between wildlife and airplanes. Between 1988 

and 2019, there were 271 civil aircraft destroyed or 

seriously damaged in total worldwide [5]. The last report 

shows that annual repair costs in the USA reached more 

than $200 million [6], and are predicted to reach more than 

$1.2 billion globally [7]. Therefore, in large and medium 

airports, Air Traffic Control (ATC) demands a systematic 

WHM [4].  

The results of long-term observations from WHM 

systems allow identification of hot spots of wildlife activity, 

which can help to determine and control the effective 

deterrent and scaring methods. The most widely applied 

WHM techniques are ornithological observations and radar 

systems [8], as well as cost-effective vision-based solutions 

[9], [10]. The latter ones are affordable for small- and 

medium-sized airports; however, they may have some 

environmental limitations, e.g., daylight conditions. 

One can state that there is a need for developing a more 

robust vision and AI-based real-time monitoring system for 

identification, classification, and localization of wildlife 

activities. Changing environmental and light conditions, a 

variety of species, and their distinctive movements make the 

development of such a WHM system a non-trivial task. A 

thermal imaging-based solution can overcome some of the 

environmental drawbacks by providing day and night 

monitoring. 

In the proposed solution, thermal and vision camera data 

fusion is used to improve the reliability and adaptability of 

the real-time wildlife monitoring system. User-Driven 

Design (UDD) methodology has been applied to determine 

the core functionalities and constraints that the system needs 

to satisfy to provide the marked tailored solutions for each 

individual medium- and small-sized airport. The unit has 

been designed to handle the large monitoring area for robust 
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operation in a radius of 300 m from the installation spot. 

The AI-based classification method is used to identify the 

threat level. System tests in real field installations have 

verified its capabilities in the detection, localization, and 

classification of birds and mammals. 

II. BACKGROUND AND RELATED WORKS 

To design an optimised solution of vision-based WHM, 

several issues needed to be considered in detail: the original 

problem, the most recent research in the field, related works, 

and, of course, the regulations.  

A. Regulations and Problem Origin 

There are civilian [11] and military [12] regulations that 

are dedicated directly to the WMH. There are also several 

international annual events organized to update the WHM 

guidelines [13]. Recent data shows that there were around 

50,000 bird strikes annually around the world, but only 5 % 

of them damaged aircraft structures [14]. However, the 

problem of mammal strikes has also increased and could 

even reach 10 % of all strikes worldwide. Nevertheless, 

compared to bird strikes, terrestrial strikes are several times 

more damaging to aircraft [4]. 

There are a number of regulations concerning nature and 

wildlife protection that aim to minimise the negative 

impacts of anthropogenic changes. Currently, WHM is 

regulated by the European Union Aviation Safety Agency 

(EASA) [1] and the International Civil Aviation 

Organization (ICAO) [2]. Each country may have local 

agencies responsible for the implementation of the 

regulation, e.g., the Polish Civil Aviation Authority [15] or 

the Swedish Civil Aviation Administration (Luftfartsverket) 

[16]. 

The risk of wildlife strike in general could be minimized 

in two ways, by reducing the presence of wildlife in the 

airport vicinity or by the introduction of new technologies 

for the management and monitoring of hazard. Monitoring 

systems can be used to gather and process long-term 

observation in a systematic way. Particularly, larger species 

and species of concern like large and flocking birds (such as 

many species of gulls, raptors, or geese) and larger 

terrestrial mammals (such as roe deer or wild boar) must be 

recorded every time they approach the aerodrome. It is 

important to determine their location in the predetermined 

zone. The core monitoring activity is at an altitude of up to 

500 ft AGL where most of the wildlife strikes occur. 

B. Methods and Technologies in Use 

There are different methods and technologies used to 

monitor and deter wildlife on aerodromes that are approved 

by international regulations [11]. The solutions include 

detection and classification methods. 

1. Detection methods 

The most popular wildlife monitoring methods are based 

on GPS and radio-based sensors. In [17], the authors 

propose the use of GPS and 433 MHz radio transmitters 

embedded in collars. Their solution is dedicated to 

monitoring wild lynxes and canines. For the detection of 

large birds, Kölzsch et al. [18] analyse the use of neckbands 

and backpack GPS. They found that both methods are safe 

for birds; however, the best location for the sensors depends 

on the behaviour of the bird. Moreover, they discovered that 

long-necked animals such as geese are easily able to destroy 

backpack tags. These methods share the common drawback 

that the animals must first be captured, which is likely to be 

stressful for them. Furthermore, they are limited only to 

animals that can be tagged. 

The non-invasive radar- and vision-based solutions are 

used for comprehensive wildlife monitoring. The authors of 

[19] use the mm-wave frequency band to detect birds at a 

distance of 25 m from the wind turbine. The most 

sophisticated radars are capable of detecting birds at a 

distance of up to 10 km [20] in any weather and light 

conditions [21], [22]. They are able to estimate the position 

and velocity of the bird, and even movement [23] of each 

flying object [24]. 

To detect terrestrial animals, camera traps are widely 

used. Those solutions mainly rely on Passive Infrared 

Sensors (PIR), triggered when the difference in heat 

between an object and the background occurs [25]. 

However, with an ambient temperature above 31 ˚C, the PIR 

camera trap is unreliable as the temperature difference 

between the animal and the background can be too small. 

Despite the drawbacks of the PIR solution, Carswell, Rea, 

Searing, and Hesse [26] use it for long-term observations to 

estimate the risk of strike. The camera traps collected data 

between January 2012 and December 2018, which helped to 

estimate the seasons with the highest activity of coyotes at 

Prince George International Airport. Gradolewski et al. [9], 

[10] proposed the stereovision-based real-time bird 

detection system for wind farms and airports. The 

verification tests proved that the system could detect 

medium-sized flying birds with a wingspan of about 1.5 m 

up to a distance of 300 m from the system, with detection 

efficiency of at least 92 %.  

More advanced but also more expensive solutions are 

thermal imaging-based sensors. Oishi, Oguma, Tamura, 

Nakamura, and Matsunaga [27] propose a system for 

automated detection of wild animals using a series of 

thermal images for detection of moving sika deers. They 

conclude that the accuracy of their method of approximately 

77.3 % is many times greater than the human vision 

inspection and detection of 29.3 % accuracy.  

2. Identification and classification methods 

Identification of detected animals in the case of radio and 

GPS tags is straightforward. Each animal is equipped with a 

unique tag [17], whereas the classification of detected 

animals in a vision and radar-based solution is a more 

complex task. In [28], the authors propose an automated 

mammal classification based on visual images and SSD-

Mobile Net based on AI. They achieved 98.7 % detection 

and classification accuracy. 

In [29], a deep learning-based object detection is 

proposed with the aid of aerial photographs collected by an 

Unmanned Aerial Vehicle (UAV). Aerial photos of birds in 

various habitats like lakes or farmland were fed to Faster 

Region-based Convolutional Neural Network (R-CNN), 

Region-based Fully Convolutional Network (R-FCN), 

Single Shot MultiBox Detector (SSD), Retinanet, and You 

Only Look Once (YOLO) methods. Their performance in 
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terms of computing speed and average precision was tested 

and the results show that the YOLO model is the fastest 

while Faster R-CNN is the most accurate. 

In [9] and [10], the authors use the background 

subtraction algorithm to extract moving objects from the 

video frames and CNN to distinguish bird-like objects from 

other sky artifacts such as clouds, snow, and rain. The 

presented test results prove that the system classifies small 

objects (wingspan bellow 0.7 m) within a range of 100 m 

with an efficiency of 94 %, medium (wingspan in between 

0.7 m and 1.5 m) up to a range of 250 m with an efficiency 

of 93 %, and large (wingspan above the 1.5 m) up to a 

300 m range with detection efficiency of almost 93 %. 

III. PROBLEM STATEMENT, OBJECTIVES, AND MAIN 

CONTRIBUTIONS 

A survey of related works shows that the mutual 

coexistence of wildlife and technology is the cornerstone of 

sustainable development of modern air transport. However, 

the unwanted crossover between the two leads not only to 

accidents and damage, but also to fatalities for both sides. 

Therefore, there is an urgent need for the development of 

WHM systems that operate under all environmental 

conditions and provide advance information on the presence 

of fauna on the runway of the airport. The main technical 

challenges of the design are the demand for high reliability 

of object detection and identification, along with the wide 

monitoring area and changeable environmental conditions.  

The main objective of this paper is to discover the 

optimal design of a comprehensive safety system for reliable 

and cost-effective real-time monitoring of the critical 

infrastructure in an airport. The system needs to ensure high 

reliability in detection, identification, and threat 

classification without compromising purchase, installation, 

and maintenance costs. The solution should comply with 

international and local safety and environmental regulations. 

The general aim of system development is to increase 

passenger safety and to preserve wildlife. The main desired 

functionalities are related to three issues: runway 

monitoring, threat and data management, and 

communication and interfacing. 

The combination of thermal and vision cameras has been 

applied for the acquisition of target detection data. The 

sensor fusion approach is used to provide 24/7 monitoring 

capabilities. The motion detection and machine learning 

algorithm YOLO v3 are used for object identification and 

threat classification. The proposed scanning and tracking 

procedures allow for the ground monitoring of the airport 

runway within a radius of 300 m from the unit with a 

detection accuracy of 92 %. 

The system has been designed based on User-Driven 

Design (UDD) methodology and implemented using the 

rapid prototyping tools of Raspberry PI and Jetson Nano. 

The system has been validated and tested in the field and 

verified by experts in environmental security.  

IV. SYSTEM DESIGN 

The Wildlife Hazard Management System at Airport 

(WHMSA) is designed based on the UDD methodology 

presented in [30] and [31]. According to this approach, at 

each stage of design and prototyping, airport stakeholders 

and authorities, such as ornithologists and aviation law 

experts, must be involved. Moreover, designers, as well as 

future users such as falconers, airport security and safety 

staff, pilots, maintenance service workers, and 

environmental workers, actively participate in the process. 

Table I summarises expected functionalities and related 

constraints together with possible technologies and 

algorithms meeting the requirements. 

TABLE I. DESIRED FUNCTIONALITIES AND RELATED CONSTRAINTS ALONG WITH APPLIED TECHNOLOGIES AND ALGORITHMS. 

Functionalities 
Particular Constraints Technologies and Algorithms Used 

General Itemized 

Runway 

monitoring 

Mammal and bird 

detection 

Expected detection range 300 m 

Vision, Thermovision, Motion detection, 

Machine learning, Distributed computing, 

Sensor fusion 

Detection reliability ≥ 90 %, 

Real-time (latency ≤ 15 s), 

Computation rate > 20 FPS, 

False positive rate < 10 %, 

Day and night operation 

Minimal expected height/length/weight 0.3 m/0.5 m/8 kg 

Humidity ≥ 90 % 

Background temperature < -25 °C, +35 °C > 

Daylight object 

classification 

(optional) 

Small or Big category 

Mammal/birds or other 

Reliability ≥ 80 % 

Threat and data 

management 

Threat level 

classification 
On runway (High)/close to runway (Medium)/other part of airport (Low) 

Machine learning, Audio, Distributed 

computing, Sensor fusion 

Information 

management 

Automatic (system) 

Semi-automatic (system confirmed by human) 

Manual (Human) 

Deterrent method 

Siren (Frequencies, power) 

Bang 

Falcon 

Suspension of reaction 

Communication 

and interfacing 

Reporting 

Automate and periodic reporting (monthly, quarterly, annually), compliant 

with the ICAO and the EASA 

Edge/Chrome/Mozilla/Safari, MySQL, 

ReactJS, Ethernet, Wi-Fi, IoT 

Manual reporting of eyewitness observations 

Archiving 

Up to two years 

Photo and video data 

High level of security 

Connection 
Ping < 100 ms 

Dropped signal rate < 2 per day 
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The system should operate 24/7 in the temperature range 

between -20 ˚C and 35 ˚C, and with a humidity of up to 

90 %. 

As the goal of the designed system is to increase safety at 

airports, the requested detection reliability of all intrusions 

in a 300 m radius from the system is as high as 90 %. To 

ensure the time required for the action of the ground control, 

the warning information should be given in less than 15 

seconds. The desired minimal sizes of detected animals are a 

height of 0.3 m, a width of 0.5 m, and a weight of 8 kg, 

which corresponds to the size of a medium-sized fox. 

Optionally, classification of detected objects as “animals” 

or “others” is included. Moreover, the system should 

distinguish between two size categories of animals with a 

reliability of at least 80 %. 

Furthermore, the designed system is expected to support 

threat level and data management. The system should assess 

whether the detected animal is on the runway, close to it, or 

heading away from the runway. This should correspond to 

the high, medium, and low threat levels, respectively. Based 

on the assessed threat level, the system must react 

automatically, e.g., using sirens to deter an animal from 

approaching the runway, semi-automatically, e.g., 

suggesting the use of a loud bang or a falcon to deter the 

animal, or to leave the decision to a human expert. 

The system should periodically report the registered 

detections, along with the possibility of including 

eyewitness observations. All data including photos and 

videos would be stored for at least two years. The stored 

data should be easily available through a secure web 

application. 

V. SYSTEM MODELLING 

A block diagram showing the data flow of the decision-

making process is presented in Fig. 1. Since the constraint 

of the desired system was to ensure the day and night 

operation of WHM, a thermal camera is used 24/7 as the 

main sensor of the system. However, during the day, the 

decision-making process is additionally supported by the 

vision camera providing reliable data for Object 

classification. 

To ensure desired detection capabilities, a long-focus lens 

has been applied to adequately magnify objects in the image 

plane, which, however, compromises the Field of View 

(FoV) of the camera. The smaller FoV is compensated by 

using an increased number of units and by a Positioning unit 

which rotates the cameras towards a particular zone. This 

makes for a cost-effective solution. 

The object detection algorithms applied to both vision 

and thermal images are congruous and are based on motion 

detection using Background removal. At each position, the 

cameras acquire N frames, which are averaged and 

considered as a background. Then, the (N + 1) frame is 

compared with the background and used to detect moving or 

new objects in the framed zone. Objects larger than the 

given threshold are cropped from the image and considered 

as potential threats, and subjected to further analysis. The 

detection process is repeated within a given time T until the 

next camera position. 

 
Fig. 1.  Block diagram of the airport WHMS. 

Based on the angular position of the Positioning unit and 

the position of the detected object in the images, the Threat 

classification algorithm assesses the threat level. There are 

three defined hazardous zones: on the runway, close to the 

runway, and other parts of the airport (see Fig. 2). These 

zones correspond to high, medium, and low threat levels, 

respectively. 

 
Fig. 2.  Block diagram of the Airport WHMS. 

During daylight, Threat classification is additionally 

supported by the vision system, which allows object 

classification. Information from Threat classification and 

optional Object classification is applied to the Decision 

making algorithm, which activates the deterrence system 

and/or sends the notification to the operator. In the case of a 

low threat level, when an object is detected at a further 

distance from the runway, the system works autonomously. 

While for medium threat level, when the object is located in 

close proximity to the runway, the system sends a 

notification about possible danger and waits for permission 
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from the Human expert for autonomous reaction or inaction, 

since sometimes it is better to perform no action rather than 

scare the animals directly towards the plane engine. 

However, when the object is located directly on the runway, 

an alert notification is sent and the final decision is made by 

a human. 

VI. PROTOTYPING 

The prototype of the system presented in Fig. 3 was 

installed and tested in a controlled environment and then 

placed and optimised at an airport in Northern Poland. The 

modular parts of the system are interconnected using 

Ethernet supplied with safe voltage power (24 V DC). The 

two main components of the system, Data acquisition and 

Data processing, are described in the following subsections. 

 
Fig. 3.  Prototype of the system composed of thermal and vision sensors and 

positioning unit. 

A. Data Acquisition 

The selected vision camera is based on a Sony IMX477R 

sensor that provides the 12 Mpx image stream with a 

frequency of 30 Frames per Second (FPS).  

The camera is equipped with a 12 mm focal length lens 

providing 29.4 ˚ × 22.2 ˚ FoV. The thermal camera applies 

an uncooled microbolometer sensor streaming images with a 

resolution of 384 px × 288 px at a frequency of 30 FPS. 

The camera is equipped with a 35 mm focal length lens 

providing 10.5 ˚ × 7.9 ˚ FoV. Both cameras are installed on 

the AXIS T99A11 Positioning Unit [32] enabling the 

desired coverage of 360 ˚ of the observation area around the 

installation spot with a speed of 0.67 rad/s and a ground-to-

sky view of 0.75 rad/s with a speed of 0.33 rad/s. 

During the scanning of the monitoring area, due to 

differences in FoV, the positioning unit rotates with an 

angle step 10.3 ˚ so that the frames of the neighbouring 

thermal camera overlap by 0.1 ˚. The system scans one spot 

for a T = 0.5 s and provides 15 images from each camera 

and then moves to the next spot. Therefore, to cover 360 ˚ 

of the monitoring area, 35 horizontal scans are required. To 

cover required 23 ˚ in the vertical direction, there are three 

vertical levels of ground-to-sky observation rows (see Fig. 

4). Therefore, the system scans the entire runway area in a 

time of 52 s.  

The data from the vision and thermal cameras are 

streamed using the safe Ethernet connection and processed 

by the on-the-board computational unit quipped with an 

ARM v8.2 processor with 8 GB RAM and 384 CUDA cores 

and 48 Tensor cores for the AI-based object classification. 

The SSD hard drive of 2 TB is used as a storage box for the 

database. 

The panoramic views of both cameras, as well as an 

example of captured and cropped frames, are shown in Fig. 

4. One can notice differences in the brightness of the rows 

but also between neighbour frames of vision and thermal 

images forming a panorama photo. For a vision camera, 

they are especially visible between the second and third 

rows, and they result from differences in the light intensity 

during recording. 

 
Fig. 4.  Example of bird detection and scanning procedure in both vision and thermal images. 
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In the case of the thermal camera, differences in 

brightness are caused by the built-in camera automatic 

scaling to the average background temperature. 

B. Data Processing 

Since thermal and vision cameras are characterised by 

different FoVs and resolutions, it is necessary to fit the 

cropped images with detected objects. The vision camera, 

which is installed above the thermal camera, has higher 

resolution and wider FoV the initially cropped images must 

be downsampled. The fitting of the images is made 

manually once, using the Transformation by handle tool in 

the GIMP software, as illustrated in Fig. 5.  

 
Fig. 5.  An illustration of images from thermal and vision cameras from the same shot spot. 

The resulting transformation matrix is later used for 

automatic fitting of both images. In Fig. 6, the fusion of the 

combined vision and thermal sensors is presented. 

 
Fig. 6.  An example of input and output images from fitting FoV process of 

both thermal and vision cameras. 

Detailed processing flow applied to both thermal and 

vision images is illustrated in Fig. 7. The detection 

algorithms of both cameras are based on motion detection 

using a Gaussian Mixture-based Background/Foreground 

Segmentation Algorithm introduced in [33] and adopted to 

the security systems in [34]. Vision images are used here for 

object classification to minimize false actions during the 

day. 

 
Fig. 7.  Data processing flow of the system. 

In the advance daylight scenario, the information as from 

the basic night scenario is supplemented by the data from 

the vision camera via the Object classification algorithm. 

There are three implemented and evaluated classifiers: 

Yolo-v3 [35], GoogLeNet [36], and Bioseco BPS for birds 

[9]. The classification of the detected objects makes the 

Threat classification more precise and reliable.  
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The Threat classification assesses the threat level with 

respect to zones defined by the airport authorities. If the 

Object classification identifies a mammal or bird in the 

monitoring area, then the threat level increases. Using the 

LTE connection, the notification about threat level is sent to 

the Human expert. At the same time, the event data 

composed of the raw images and video, as well as 

miniatures and object position, are stored in the database for 

possible scrutiny. 

VII. VALIDATION AND VERIFICATION 

Due to the airport safety policy, the validation of the 

proposed solution was performed in an environment that 

simulates the airport runway. The tests included three case 

scenarios.  

In the first validation scenario, we determine the 

efficiency of the thermal system for detection of a human or 

small and medium-sized mammal in dark conditions. The 

man of 120 kg weight and 189 cm tall and a dog of 50 cm 

long and 30 cm tall with a weight of 8 kg were walking at 

given distances, starting from 25 m from the sensor up to 

350 m with the 25 m gradient. The system detection 

efficiencies has been manually estimated based on the 

observed numbers of true and false notifications. The 

thermal vision system detection rate, calculated as a ratio of 

the number of frames with true detection to the total number 

of frames when the objects were in the observation area, is 

presented in Fig. 8. 

 
Fig. 8.  Detection rate for person and dog of the thermal vision system with 

respect to distance. 

The results show that the system can detect small animals 

up to 300 m with a rate of 92 % and humans up to 325 m 

with a rate of 92 %, which meets the desired requirements 

(see Table I). There were also a small number of non-crucial 

singular false positive detections, which however did not 

exceed 7 % of all frames.  

The Threat classification algorithm in dark conditions 

was verified for three safety zones: the first at a distance of 

1 m and 100 m, the second at a distance of 101 m and 

200 m, and the third at a distance of 201 m and 300 m from 

the reference point assigned to the installation spot. Based 

on the angular position of the Positioning unit and the 

location of the detected object in the images, the threat level 

is classified. The average accuracy of the Threat 

classification is 94 % and varied from 88 % in the most 

remote zone to 100 % in the closest zone. 

The second scenario evaluated the system efficiency 

under good visibility conditions. Examples of cropped 

frames with detected objects at different distances from the 

system are presented in Table II. As one can see, the small 

dog could be recognized in the thermal and vision images 

even at 200 m. At 300 m, the images are blurred, and the 

number of pixels is too small to classify the object. 

However, the presence of an object could still be noticed. 

The human silhouette is well recognisable in both thermal 

and vision images up to 300 m. 

The efficiency of Object classification applied for a 

human and a dog is presented in two columns of Table II. 

YOLO-v3 [35] correctly classifies the human with an 

efficiency of 90 % up to 200 m, but it totally fails in the 

recognition of the dog. The GoogLeNet [37] meets the 

desired requirements in recognition of the human within the 

whole monitoring area. However, the system is only capable 

of recognizing the dog with acceptable efficiency up to a 

distance of 100 m. 

TABLE II. THE THERMAL AND VISION IMAGES OF THE 

RECORDED OBJECTS DETERMINED BY THE DETECTION 

ALGORITHM. 

Distance 

[m] 

Person Dog 

Vision Thermo Vision Thermo 

50 

  

 

 

100 

 
 

 

 

150 

  

 

 

200 

  

 

 

250 

  

 

 

300 

 
 

 

 

 

The third scenario verifies the performance of the system 

in situ. The system was placed near the airport runway, 

optimized, and tested for 39 days between December 2021 

and January 2022. The bird detection efficiency of the 

proposed solution was verified using the Bioseco Bird 

Protection System (BPS) [9], [10] as a reference. During the 

test, there were no mammals observations reported by the 

system or by airport staff. However, in total, 61 bird 

observations were reported by the BPS system. Each 

observation was also detected by the tested system. The 

object classification efficiency of the three algorithms 

tested: YOLO-v3 [35], GoogLeNet [37] classifiers, and the 
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Bioseco BPS method [9] are presented in Table III.  

TABLE III. THE OBJECT CLASSIFICATION ACCURACY OF THE 

SYSTEM CALCULATED FOR YOLO-v3 [35] AND GoogLeNet [37] 

CLASSIFIERS IN THE CASE OF MAMMALS AND BIOSECO BPS 

NEURAL NETWORK [9] IN A CASE OF BIRDS. 

Distance 

[m] 
Classifier 

Classification accuracy* [%] 

Person Dog Bird 

50 

YOLO-v3 100 0 70 

GoogLeNet 100 94 100 

Bioseco BPS N.A. N.A. 100 

100 

YOLO-v3 100 0 0 

GoogLeNet 100 83 92 

Bioseco BPS N.A. N.A. 100 

150 

YOLO-v3 98 0 0 

GoogLeNet 100 72 85 

Bioseco BPS N.A. N.A. 100 

200 

YOLO-v3 90 0 0 

GoogLeNet 100 55 68 

Bioseco BPS N.A. N.A. 100 

250 

YOLO-v3 46 0 0 

GoogLeNet 96 0 43 

Bioseco BPS N.A. N.A. 100 

300 

YOLO-v3 41 0 0 

Google Cloud 92 0 25 

Bioseco BPS N.A. N.A. 100 
*Note: Human/animal related classes are considered as correct. 

 

Yolo-v3 fails to recognize birds, whereas GoogLeNet can 

detect birds with the desired efficiency in a range of up to 

150 m. However, the Bioseco BPS classifier performed with 

a 100 % efficiency in a range of up to 300 m. 

VIII. CONCLUSIONS 

The tests confirm that the presented airport security 

solution performs the functionalities required by the 

Wildlife Hazard Management within the desired constraints. 

The applied User-Driven Design methodology provided a 

market-tailored solution affordable for medium and small 

size airports.  

By combining thermal and vision images, the system 

ensures risk mitigation at airports during the day and at 

night. 

The system has been designed, modelled, simulated, 

prototyped, and then validated. The prototype was installed 

and validated in an operational environment and verified at 

the medium-sized airport in Northern Poland.  

The validation tests prove that the system attains a 92 % 

detection efficiency of small animals, like a dog at a 

distance of up to 300 m and a 92 % efficiency of large 

objects like humans at a distance of up to 325 m. 

During daylight conditions and by applying state-of-the-

art GoogLeNet cloud, the system classifies the detected 

large objects as human with an efficiency of 92 % at 300 m. 

Small objects like a dog are classified up to 200 m with an 

efficiency of at least 55 %. By means of the Bioseco BPS 

classifier, the system identifies birds at a distance of up to 

300 m with 100 % accuracy. 

The accuracy of threat level classification based on the 

three safety zones varies from 88 % in the furthest low 

threat zone up to 100 % in the closest dangerous zone. 

The future development solution is to interconnect a 

network of sensors that covers the entire runway. Moreover, 

it is planned to test the latest machine learning classifiers 

such as YOLO-v4, YOLO-v5, and Haar cascade. The 

authors are going to adapt a Bioseco CNN classifier for 

thermal images allowing recognition of small and medium 

size mammals and birds.  
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