
MultiDimEr : A Multi-Dimensional bug analyzEr

Lakmal Silva
Blekinge Institute of Technology and

Ericsson AB

Sweden

lakmal.silva@bth.se

Michael Unterkalmsteiner
Blekinge Institute of Technology

Sweden

michael.unterkalmsteiner@bth.se

Krzysztof Wnuk
Blekinge Institute of Technology

Sweden

krzysztof.wnuk@bth.se

ABSTRACT

Background: Bugs and bug management consumes a significant

amount of time and effort from software development organiza-

tions. A reduction in bugs can significantly improve the capacity

for new feature development. Aims: We categorize and visualize

dimensions of bug reports to identify accruing technical debt. This

evidence can serve practitioners and decision makers not only as an

argumentative basis for steering improvement efforts, but also as a

starting point for root cause analysis, reducing overall bug inflow.

Method: We implemented a tool, MultiDimEr, that analyzes and

visualizes bug reports. The tool was implemented and evaluated

at Ericsson. Results: We present our preliminary findings using

the MultiDimEr for bug analysis, where we successfully identified

components generating most of the bugs and bug trends within

certain components. Conclusions: By analyzing the dimensions

provided by MultiDimEr, we show that classifying and visualiz-

ing bug reports in different dimensions can stimulate discussions

around bug hot spots as well as validating the accuracy of manually

entered bug report attributes used in technical debt measurements

such as fault slip through.

CCS CONCEPTS

• Software and its engineering→Maintaining software; Software

maintenance tools.

KEYWORDS

technical debt, bug analysis, bug visualization, tool support, soft-
ware maintenance, bug management
ACM Reference Format:
Lakmal Silva, Michael Unterkalmsteiner, and Krzysztof Wnuk. 2022. Multi-
DimEr : A Multi-Dimensional bug analyzEr. In International Conference on
Technical Debt (TechDebt ’22), May 16–18, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3524843.3528099

1 INTRODUCTION

Software maintenance and technical debt management is a costly
process [5], which is also evident from our experience of building
software products at Ericsson. Our agile teams spend between 20%
to 30% of their time on bug xing. Hence, bugs impact the feature
delivery plans as well as increase the maintenance costs. To further

TechDebt ’22, May 16–18, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9304-1/22/05.
https://doi.org/10.1145/3524843.3528099

minimize the bug inflow, Ericsson has the ambition to reduce the

number of faults slipping through to the customers by 50% by the

year 2022 in a cost-efficient manner.

A natural step to achieve this goal is to analyze historical bug re-

ports. Bug analysis has been a research area for several decades [10].

With the advancements in machine learning and natural language

processing techniques over the past decade, we see a significant

number of studies in areas such as bug report severity predic-

tion [14], bug report triage [14], bug report prioritization [13] and

duplicate bug report detection [7]. Even though these research

efforts focus on efficient management of the bugs, there are still

improvements required (e.g., classification accuracy, efficiency) on

these techniques for industry-wide adaptation [9].

We argue that it is beneficial to identify the technical as well

as process related reasons that cause bugs in the first place. To

achieve our goal of reducing defects, we investigate historical bug

reports to identify weak areas of a software system to take preven-

tive measures that reduce faults slipping to the customer. Staron

et al. suggested a method to quantify and visualize code stability

using heat maps [11]. Their study concluded that the visualization

method could effectively identify error-prone components and trig-

ger software quality improvements. Further, their study hinted at

adding multiple dimensions to the metrics as future work. We be-

lieve that such multi-dimensional views can stimulate improvement

discussions based on the identified trends in reported bugs. Our

study proposes a novel approach by introducing multidimensional

analysis into the bug analysis. The main contributions of this paper

are:

(a) A proposal of ten dimensions that characterise bug reports

which can be used to analyze trends.

(b) Lessons learned from building a bug analysis tool in an in-

dustrial setting.

(c) Early feedback from the users of the tool.

The remainder of the paper is structured as follows. Section 2

provides an overview of prior research on bug analysis and visual-

ization tools, while Section 3 describes the research design. Section 4

provides the concepts and motivations behind the tool MultiDimEr

and its implementation details. We present our preliminary find-

ings from an empirical analysis in Section 5 and conclude with an

outline for our future work in Section 6.

2 RELATEDWORK

D’Ambros et al. [3] proposed two visualizations of bug distribu-

tions (over system components and time) and bug life cycles. The

combination of graphical views as a means to detect and analyze

hidden patterns within bug reports was also suggested by Knab et

al. [8]. Their tool focuses on bug report attributes such as estimated

effort, actual effort, priority, and ownership.

66

International Conference on Technical Debt 2022

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

TechDebt ’22, May 16–18, 2022, Pittsburgh, PA, USA Silva et al.

With the tool BugMaps [6], Hora et al. extracted information

about bugs from bug tracking systems for visualization. The tool

provided a historical view and a snapshot view of the bugs by

linking them with source code classes.

Chang et al. proposed a defect prediction method [2] using as-

sociation mining techniques to automate root cause analysis to

prevent bugs.

To identify version-related bug patterns, Sun et al. introduced a

technique by finding similar bugs from bug repositories and com-

bining the bug pattern with a ranked code snippet [12].

Cervantes et al. introduced Archinaut [1], a tool that is geared

towards understanding software architecture and supporting archi-

tectural technical debt (ATD) management. The tool also provides

a visualization of the bug density on individual source code files.

MultiDimEr is different from these approaches as we employ

a multi-dimensional approach on the bug report data to obtain a

differentiated view of the product’s status and evolution. Our aim

is to identify bug reporting trends to steer improvements and take

preventive measures to minimize the accumulation of technical

debt. Classification and visualization of bug distribution over archi-

tectural components is one of the unique features of MultiDimEr.

3 RESEARCH DESIGN

The goal of our research is to evaluate the idea of analyzing his-

torical bug reports by visualizing their occurrence along various

dimensions (discussed in Section 4). We conjecture that this allows

us to identify trends, which can deliver insights on the root causes

for defect introduction. MultiDimEr is a prototype we built as a

base for this analytical work. We developed MultiDimEr in multiple

iterations, based on feedback from a bug management forum at Er-

icsson. We conducted analysis sessions together with practitioners,

aiming at answering the following research questions:

RQ1 What components within the system are causing the most

bugs?

RQ2 What trends can be observed from components generating

most of the bugs?

RQ3 To what extent can MultiDimEr be used to validate the ac-

curacy of fault slip through analysis?

RQ4 What are the lessons learned when implementing Multi-

DimEr in an industrial context?

RQ5 Howuseful isMultiDimEr from a technical debtmanagement

point of view?

RQ1 can be answered by studying the visualization provided by

MultiDimEr. To answer RQ2, MultiDimEr provides the list of bug

reports for the selected component along with crucial bug report

attributes. We conducted a pilot study to analyze and understand

how feasible it is to answer RQ1 and RQ2 with MultiDimEr. The

results are reported in Section 5. It should be noted that the analysis

process is currently ongoing at Ericsson; hence only the available

results at the time of writing this paper are presented.

4 MultiDimEr

This section provides the concepts behind the MultiDimEr and its

implementation. We emphasize on the visualization aspect since

it is a powerful way to convey the results. The main idea behind

MultiDimEr is to classify bugs based on different dimensions. We

considered how bug reports are distributed over: (1) architectural

components, (2) source code files, (3) action that has been taken

concerning a bug (answer code), (4) the bug reporting countries, (5)

customers, (6) bug detection phase, (7) customer-facing documents,

(8) software revisions, (9) bug severity, (10) bug report status.

The bug analysis is scheduled to run every 12 hours, providing

up to date analysis. We also implemented an on demand analysis

based on a selected release/releases within a certain time frame.

This is beneficial for the management since they are required to

report bug analysis on a monthly basis. Currently, this analysis

is performed manually, only focusing on customer bug reports.

The shorter feedback loops from MultiDimEr facilitates routine

bug analysis in the ten dimensions listed above, that significantly

improves the bug analysis and reporting process. The following

sub-sections describe the chosen dimensions and the motivations

behind the choices.

4.1 Bug distribution over architectural

components

MultiDimEr visualize the bug distribution per architectural compo-

nent over multiple releases, as shown in Figure 1. The architectural

components and their granularity were agreed upon with the Ar-

chitecture team of the product under investigation. They represent

logical functional blocks of the software architecture and are asso-

ciated with the source code repositories and folder structures that

are being used for bug report mapping as described in 4.10. The

x-axis of the heatmap represents different Architectural compo-

nents, while the y-axis represents the product releases from oldest

to the newest release. The darker the element, the higher the bug

density of a component. By visual inspection, we can see that cer-

tain components have an increasing bug density as the system

evolves. We plan to investigate this observation in a future study to

understand the reasons for the increased number of bugs in specific

components.

An analysis of the bug distribution within a single release helps

to narrow down components to be prioritized for further investiga-

tions.

Figure 1: Heat map of bug distribution over Architectural

components over releases

NOTE: The Product release names and the Architectural compo-

nent names have been removed due to confidentiality agreements.

4.2 Bug distribution over source code

Mapping bugs to source code can reveal hot spots within the source

code. The idea is similar to Archinaut’s [1] bug visualization. The

source code is visualized as an interactive collapsible tree with

accumulated bug counts on each branch as shown in Figure 2. The

graph starts with the product name (1). Clicking on the product level

67

MultiDimEr : A Multi-Dimensional bug analyzEr TechDebt ’22, May 16–18, 2022, Pittsburgh, PA, USA

expands the source code repositories (2) with the corresponding

bug counts (3) displayed on branches. Based on the repository bug

densities, users can traverse to the individual source files (4), which

shows the bug density on files (5). This allows to narrow down

error-prone files. In the future we plan to triangulate the error-

prone files detected by MultiDimEr with the reports from static

code analysis tools to identify relationships between bug densities

and coding violations.

Figure 2: Bug distribution over source code files

4.3 Bug distribution over answer codes

The bug management system contains an attribute called “answer

code”, filled by designers when answering a bug report. The answer

code indicates which actions will be taken on the bug. An answer

code belongs to one of one three categories, “Already Corrected”,

“Will be corrected”, or “No Action”. The answer code is a vital

attribute used in process measurements such as Fault Slip Through

(FST) [4]. This visualization helps to validating the correctness of

the manually entered attribute as we have shown in 5.

4.4 Bug distribution over bug reporting

countries

Ericsson is selling and supporting products in various countries

that require customization to local rules and regulations. We added

the distribution of bugs over bug originating countries to determine

whether there are bug reporting trends based on different regions.

A deeper analysis in this dimension could provide insights into

whether certain countries use a particular feature set or adaptations

that contribute to more bugs than other countries.

4.5 Bug distribution over customers

Customer satisfaction is at the core of a successful business. The

number of bugs reported by customers can be considered an indi-

cator of how the customers perceive the system. A visualization

of the bugs on specific customers provides a quick overview of

customer-specific issues so that the development units can further

analyze the error-prone components within a system.

4.6 Bug distribution over bug detection phase

The bug detection phase such as function testing, system testing,

integration testing and customer testing, is an important parameter

that is being used in FST analysis. The visualization of bug reports

distributed over different test phases allows us to validate if this

parameter has been set correctly by the bug reporters.

4.7 Bug distribution over customer-facing

documents

Customer-facing documents are part of the product and generate

bug reports when incorrect information has been detected. As there

are various documents, such as installation guides, configuration

guides, and interface documents, it is necessary to visualize the

bug distribution over different documents to prioritize document

improvements.

4.8 Bug distribution over severity

The classification of bugs based on severity alone is not that inter-

esting. However, combining it with other dimensions can provide

interesting and actionable insights. We plan to investigate different

bug dimension combinations in a future study, for instance:

(a) bug severity distribution per architecture components

(b) bug severity distribution on bug detection phase

4.9 Visualization

Except for the visualization of the dimensions described in Sec-

tions 4.1 and 4.2, the bug distributions are visualized as bar charts

to contrast frequencies of components of a selected dimension, as

illustrated in Figure 3. Different components within a chosen dimen-

sion are distributed over the x-axis in descending order, starting

with the component with the highest number of bugs, while the

y-axis shows the number of bugs. The plots are interactive, so it is

possible to see the bug list contributing to the bug count on differ-

ent plots by clicking on the bug counts. This approach facilitates

getting a differentiated view of the types of bugs within a specific

component.

MultiDimEr also provides hyperlinks to access the raw bug re-

port from the bug management system. This was added to improve

the user experience and find additional details that might have not

yet been incorporated into MultiDimEr.

Figure 3: Visualization of bug distribution over a selected

dimensions

4.10 Implementation

This section provides an overview and the development journey

of the MultiDimEr tool. The system constitutes of a back-end and

a front-end, packaged as Docker1 containers and deployed into

a Kubernetes2 container orchestration system. The back-end was

implemented using Django3, a Python web framework, and the

Python data analysis and manipulation tool Pandas4, while the

front end was implemented using the Angular web framework5.

The back-end exposes a set of REpresentational State Transfer

(REST) Application Programming Interfaces (APIs) for triggering

1https://www.docker.com/
2https://kubernetes.io/
3https://www.djangoproject.com/
4https://pandas.pydata.org/
5https://angular.io/

68

TechDebt ’22, May 16–18, 2022, Pittsburgh, PA, USA Silva et al.

configuration updates, starting the bug analysis process, and re-

trieving processed data. The front-end consumes these interfaces

to implement an interactive Graphical user interface (GUI).

Figure 4: MultiDimEr Architecture

Figure 4 depicts the high-level architecture of MultiDimEr. The

bug report analysis process is started from the GUI or the REST

API by providing the product number(s) and the time frame for bug

report collection. The “bug report fetcher” module uses this infor-

mation and configured credentials to retrieve the selected product’s

bug reports within the chosen time frame. Once the data is retrieved,

the “data cleaner” module processes the answer section of the bug

report to extract commitids/changeids. Identifier extraction was a

challenging task as the developers used different ways to represent

the Ids. We used a regular expression matching mechanism with

different patterns to extract the identifiers.

Once the identifiers have been extracted, they are sent over to

the “source code data fetcher” module. This module uses credentials

and the Gerrit identifiers from the configuration file to query for

commit details (the repository name, changed file set) over the

Gerrit REST API. In the “data analyzer” module, data collected from

the previous modules are processed, consolidated, and written to a

comma-separated values (CSV) file, that can be further processed

by tools other than the MultiDimEr if necessary.

One of the “data analyzer” modules’ essential tasks is to map

bug reports to the architecture components. Bug report mapping

to architecture components is performed based on two dictionaries

and the Gerrit system’s information. One dictionary maps the git

repository name to an architecture component. The second dictio-

nary maps file paths of a given commitid/changid to an architecture

component. It was necessary to create these two types of dictionar-

ies since the source code management repositories have evolved

from a monolithic source repository to modular repositories dur-

ing the effort of decomposing the monolithic software system into

modules/microservices.

5 RESULTS

In this section, we report our findings and answer the research

questions.

RQ1: What components within the system are generating the most

number of bugs? Most bugs resulted in updates to customer-facing

documents, followed by platform (functionality associated with

installation and upgrades) related bugs.

RQ2: What trends can be observed from components generating

most of the bugs? The visualization of bug distribution over customer-

facing documents facilitated identifying trends in document defects

that can be used to in improvement strategies:

(1) Lack of attention on the impact of customer-facing docu-

ments when updating functionality.

(2) Lack of focus on the knowledge of the end-users. Documents

were written by the developers without considering the end-

users’ technical background.

(3) Incorrect commands were present in the documents due to

lack of document verification.

An investigation into an asynchronous interface component

revealed bug trends due to poor handling of message queues, noti-

fications and robustness. A study has been started to rework this

component to improve its robustness.

Bug distribution over customer view revealed that around 83%

of the bugs were detected internally, which indicates good testing

processes already in place. We are currently investigating the bug

trends within the 17% of actual customer bugs.

RQ3: To what extent can MultiDimEr be used to validate the ac-

curacy of fault slip through analysis? MultiDimEr detected that a

significant number of bugs were answered with codes belonging to

the answer code group “Already Corrected”. From our experience,

it was very unlikely that such a large number of bugs have been

detected and fixed before a bug report has been created. The root

cause was the developers were using incorrect answer codes when

answering the bug reports. Further analysis also showed that most

of the developers that used the incorrect codes were newcomers to

the organization. This was a significant finding as the FST analysis

was providing inaccurate results due to the incorrect code usage. A

sensible improvement is to update the training material related to

reporting bug reports and possibly improve the bug report tooling

such that manual mis-classification errors occur less frequently.

RQ4: What are the lessons learned when implementing MultiDimEr

in an industrial context? We observed that the source code had been

moved around into different repositories over the years, without

any documented references to such restructurings. However, Mul-

tiDimEr detected this anomaly as it did not manage to get data for

some of the extracted commit identifiers. Therefore, we recommend

to document the major source code structural changes such as de-

composing repositories, moving and renaming of repositories, to

trace such significant changes. This simplifies tool development re-

lated to data extraction from source code repositories over a longer

period of time.

Compared to mapping bugs directly to source code files, as sug-

gested by Archinaut [1], our approach was to map bug reports to

architecturally significant functional components, a higher abstrac-

tion level than the source code. This helped us to group sufficient

amounts of bugs to identify bug trends. It is recommended to use

release agnostic names when analyzing bug distributions over mul-

tiple releases as the actual components names may change during

system evolution.

69

MultiDimEr : A Multi-Dimensional bug analyzEr TechDebt ’22, May 16–18, 2022, Pittsburgh, PA, USA

The implementation became more complex as we had to pro-

cess free text to find git changeids and commitids from the bug

reports. It is worthwhile enforcing a separate attribute for the com-

mitid/changeid when answering bug reports. That could signifi-

cantly simplify tool development.

RQ5: How useful is MultiDimEr from a technical debt management

point of view? To answer RQ5, we interviewed two practitioners

that are actively using MultiDimEr for bug analysis. Summarizing

their feedback:

• The visualization is simple, which makes users to clearly see

the bug distributions in different dimensions.

• The bug distribution over architecture components clearly

visualize the problematic areas within the system, which

were unknown without MultiDimEr, and provides a starting

point to understand weak areas within the system.

• Bug report mapping from source code to architecture com-

ponents is appreciated, since we do not need to change the

current ways of working in the bug management forum or

in development teams.

• The system improvements suggested by testing teams never

get prioritized by the product owners over new feature im-

plementation. MultiDimEr analysis provides evidence for

motivating why improvements should be prioritized in error-

prone areas.

• Bug distribution over customers helps us to understand the

features they use, what features are of low quality, if the

bug reports originating from the base features or customer

specific adaptations, and if all customers are experiencing

issues with similar areas.

• Different dimensions provided byMultiDimEr make it usable

by multiple groups such as testers, developers, architects,

support personnel, and customer units. For instance, bug

distribution is interesting for architects to understand im-

provement areas and the component responsible teams can

use it for refactoring initiatives and improvements.

• MultiDimEr provides aggregated information compared to

the current approach of using different tools to collect data

and manual analysis. Due to the amount of time required for

manual analysis, it is often omitted.

• FST analysis is conducted to improve test processes. How-

ever, the FST is seldom performed as the analysis needs to be

carried out manually, consuming a lot of time. MultiDimEr

provides us the opportunity to carry out FST analysis more

efficiently and more frequently.

• The CSV file based result output provides more opportunities

for us to combine additional dimensions/filters that are not

yet implemented in the GUI.

• The number of sentences present in the bug report observa-

tions and answer sections gives an indication of how well

the bugs have been described and how well the developers

documented fixing it.

6 CONCLUSION AND FUTUREWORK

This study presented MultiDimEr, an analysis and visualization tool

to classify bug reports in different dimensions.We piloted the tool in

an industrial context at Ericsson, trying to identify bug trends and

allow root cause analysis. Since this is an ongoing process, so far

we analyzed three dimensions out of the ten dimensions provided

by MultiDimEr, the bug distribution over architectural components

within a single release, customer facing documents and the answer

codes. From the architectural component dimension, we discovered

that customer-facing documents generated most of the bug reports

within the investigated product release.

The answer code dimension revealed that a significant num-

ber of bug reports were not answered with correct codes. Since

the answer codes are used for evaluating the process efficiencies,

incorrect values mislead the evaluations. We plan to study the impli-

cations of the implemented actions based on our analysis to reduce

document-related bugs in the coming months. Additionally, we

plan to examine the reasons for bug distribution variations over

architectural components as the system evolves, how to combine

dimensions provided by MultiDimEr, and how different stakehold-

ers such as software architects, developers, and testers can utilize

insights from MultiDimEr for improvements.

REFERENCES
[1] Humberto Cervantes and Rick Kazman. 2020. Software archinaut: a tool to

understand architecture, identify technical debt hotspots and manage evolution.
In Proceedings of the 3rd International Conference on Technical Debt. 115–119.

[2] Ching-Pao Chang, Chih-Ping Chu, and Yu-Fang Yeh. 2009. Integrating in-process
software defect prediction with association mining to discover defect pattern.
Information and software technology 51, 2 (2009), 375–384.

[3] Marco D’Ambros, Michele Lanza, and Martin Pinzger. 2007. " A Bug’s Life"
Visualizing a Bug Database. In 2007 4th IEEE InternationalWorkshop on Visualizing
Software for Understanding and Analysis. IEEE, 113–120.

[4] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. 2006. Faults-slip-through—a
concept for measuring the efficiency of the test process. Software Process: Im-
provement and Practice 11, 1 (2006), 47–59.

[5] Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. 2013. Which factors
affect software projects maintenance cost more? Acta Informatica Medica 21, 1
(2013), 63.

[6] Andre Hora, Nicolas Anquetil, Stephane Ducasse, Muhammad Bhatti, Cesar
Couto, Marco Tulio Valente, and Julio Martins. 2012. Bug maps: A tool for the
visual exploration and analysis of bugs. In 2012 16th European Conference on
Software Maintenance and Reengineering. IEEE, 523–526.

[7] Chen Jingliang, Ming Zhe, and Su Jun. 2016. A data-driven approach based on
LDA for identifying duplicate bug report. In 2016 IEEE 8th International Conference
on Intelligent Systems (IS). IEEE, 686–691.

[8] Patrick Knab, Beat Fluri, Harald C Gall, and Martin Pinzger. 2009. Interactive
views for analyzing problem reports. In 2009 IEEE International Conference on
Software Maintenance. IEEE, 527–530.

[9] Dong-Gun Lee and Yeong-Seok Seo. 2019. Systematic Review of Bug Report
Processing Techniques to Improve Software Management Performance. JIPS 15,
4 (2019), 967–985.

[10] SP Rhodes and LS Dickert. 1982. Automated Repair Service Bureau: The trouble
report evaluation and analysis tool. Bell System Technical Journal 61, 6 (1982),
1153–1164.

[11] Miroslaw Staron, Jörgen Hansson, Robert Feldt, Anders Henriksson, Wilhelm
Meding, Sven Nilsson, and Christoffer Höglund. 2013. Measuring and visualizing
code stability–a case study at three companies. In 2013 Joint Conference of the
23rd International Workshop on Software Measurement and the 8th International
Conference on Software Process and Product Measurement. IEEE, 191–200.

[12] Xiaobing Sun, Wei Zhou, Bin Li, Zhen Ni, and Jinting Lu. 2019. Bug localization
for version issues with defect patterns. IEEE Access 7 (2019), 18811–18820.

[13] Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib
Shah. 2017. A survey on bug prioritization. Artificial Intelligence Review 47, 2
(2017), 145–180.

[14] Geunseok Yang, Tao Zhang, and Byungjeong Lee. 2014. Towards semi-automatic
bug triage and severity prediction based on topic model and multi-feature of bug
reports. In 2014 IEEE 38th Annual Computer Software and Applications Conference.
IEEE, 97–106.

70

