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Background Requirements engineering and ver-
ification (REV) processes play essential roles in 
software product development. There are physical 
and non-physical distances between entities (ac-
tors, artifacts, and activities) in these processes. 
Current practices that reduce the distances, such 
as automated testing and alignment of document 
structure and tracing only partially close the above 
mentioned gap.

Objective The aim of this thesis is to investigate 
solutions w.r.t their ability to reduce the distanc-
es between requirements engineering and verifi-
cation. Two techniques that are explored in this 
thesis are automated testing (model-based testing, 
MBT) and alignment of document structure and 
tracing (traceability).

Method The research methods used in this thesis 
are systematic mapping study, software require-
ments mining, case study, literature survey, valida-
tion study, and design science.

Results MBT and traceability are effective in re-
ducing the distance between requirements and 
verification. However, both activities have some 
shortcoming that needs to be addressed when 
used for that purpose. Current MBT techniques in 
the context of software performance do not attain 

all the goals of MBT: 1) requirements validation, 2) 
checking the testability of requirements, and 3) the 
generation of an efficient test suite. These goals 
are essential to reduce the distance. We developed 
and assessed performance requirements verifica-
tion and test environment generation approach to 
tackle these shortcomings. Also, traceability be-
tween requirements and verification suffers from 
the low granularity of trace links and does not sup-
port the verification of all requirements. We pro-
pose the use of taxonomic trace links to trace and 
align the structure of requirements specifications 
and verification artifacts. The results from the val-
idation study show that the solution is feasible in 
practice. However, this comes with challenges that 
need to be addressed.

Conclusion MBT and improved traceability re-
duce multiple distances between actors, artifacts, 
and activities in the requirements engineering and 
verification process. MBT is most effective in re-
ducing the distances when the model used is built 
from the requirements. Traceability is essential in 
easing access to relevant information when need-
ed and should not be seen as an overhead. When 
creating trace links, we need to consider the dif-
ference in the abstraction, structure, and time be-
tween the linked artifacts.
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Abstract

Background Requirements engineering and verification (REV) processes play es-
sential roles in software product development. There are physical and non-physical
distances between entities (actors, artifacts, and activities) in these processes. Cur-
rent practices that reduce the distances, such as automated testing and alignment
of document structure and tracing only partially close the above mentioned gap.

Objective The aim of this thesis is to investigate solutions w.r.t their ability
to reduce the distances between requirements engineering and verification. Two
techniques that are explored in this thesis are automated testing (model-based
testing, MBT) and alignment of document structure and tracing (traceability).

Method The research methods used in this thesis are systematic mapping study,
software requirements mining, case study, literature survey, validation study, and
design science.

Results MBT and traceability are effective in reducing the distance between re-
quirements and verification. However, both activities have some shortcoming that
needs to be addressed when used for that purpose. Current MBT techniques in
the context of software performance do not attain all the goals of MBT: 1) require-
ments validation, 2) checking the testability of requirements, and 3) the generation
of an efficient test suite. These goals are essential to reduce the distance. We de-
veloped and assessed performance requirements verification and test environment
generation approach to tackle these shortcomings. Also, traceability between re-
quirements and verification suffers from the low granularity of trace links and does
not support the verification of all requirements. We propose the use of taxonomic
trace links to trace and align the structure of requirements specifications and ver-
ification artifacts. The results from the validation study show that the solution is
feasible in practice. However, this comes with challenges that need to be addressed.

Conclusion MBT and improved traceability reduce multiple distances between
actors, artifacts, and activities in the requirements engineering and verification
process. MBT is most effective in reducing the distances when the model used is
built from the requirements. Traceability is essential in easing access to relevant
information when needed and should not be seen as an overhead. When creating
trace links, we need to consider the difference in the abstraction, structure, and
time between the linked artifacts
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1

Introduction

1 Overview

Requirements engineering and verification (REV) play an essential role in software
development. Requirements Engineering (RE) specifies what the software should
do, and verification ensures that the software product is produced correctly. These
two processes are currently distant [2, 3, 4]. According to Bjarnason et al., distance
in software engineering (SE) ”is a difference in position or level between entities
that requires effort to traverse to accomplish a software development task” [3]. An
entity could be an actor, artifact, or activity. An example of the distance between
software engineering artifacts is the semantic differences between natural language
(NL) requirements and test cases, where these artifacts are created by different
individuals using different terminologies. These distances often contribute to com-
munication flaws [2] between different roles and increased time for conducting soft-
ware development activities [4]. Bjarnason et al. abstracted eight practices that
are commonly used to reduce the distances in software engineering projects [3].
These practices are implemented on people, artifacts, or other aspects. An ex-
ample is aligning document structure and tracing. In this practice, we establish
trace links between requirements documents and test cases with different struc-
tures, which could impact multiple distances [3]. By reducing the time and effort
required to access the relevant requirements to a specific test case, test engineers
improve their understanding of the terminology used by requirements engineers as
this information is easily accessible, thus reducing the semantic distance.

Two practices reported by Bjarnason et al. [3] are specifically relevant to re-
ducing the distances between REV. 1) Automated testing : as software is being
developed and changes are implemented due to added or changed requirements,
tests need to be updated continuously to ensure maximum test coverage and high
product quality. By using automated testing, we can get better test coverage [5]

11
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since tests can be generated using algorithms that generate tests of all possible
cases. Moreover, automated testing makes testing more efficient, and tests can be
run without human action. 2) Aligning document structure and tracing : eases the
execution and paves the way toward automation of other practices. Practitioners
are facing challenges when implementing these practices [6], and a limited number
of studies of aligning REV were published [7, 8].

In this thesis, we aim to investigate the use of automated testing and aligning
document structure and tracing to reduce the distance between requirements engi-
neering and verification in software and system engineering projects. In automated
tracing, we study model-based testing (MBT), a technique that automates testing
by generating test cases through modeling the system behavior [9, 10]. In aligning
document structure and tracing we investigate using trace links to connect arti-
facts. In this thesis, we use the name of the specific technique model-based testing
(MBT) and traceability to refer to these two practices. We argue that NL require-
ments written for software and system engineering projects are similar in their
nature, as they represent the customer desire in the form of sentences. Further-
more, automated techniques that extract information from artifacts are concerned
with language rather than the particular application domain [11].

By investigating the above practices, we understand how they reduce the dis-
tances between requirements engineering and verification. The remainder of the
thesis is organized as follows. We present background information on requirements
engineering, verification and distances in Section 2. Then we present the research
gaps that we identified and the methodologies used in our studies in Section 3.
Section 4 contains an overview of the studies included in this paper and the con-
tributions of the thesis. We present our conclusion and planned future work in
Section 5.

2 Background

2.1 Requirements Engineering

Requirements Engineering (RE) concerns the elicitation, identification, specifica-
tion, and maintenance of the customer needs. The output of this process is a set of
requirements documented in a textual or non-textual format (e.g., diagrams), and
referred to as requirements specification. Practitioners tend to give low priority to
requirements engineering [12]. We argue that this is because the value of require-
ments is not seen beyond telling the developer what is their list of tasks of the day.
Researchers and practitioners [12] sees that the requirements specifications should
not be neglected, and we should enable their use in the downstream project stages
(e.g., design and testing).

In this thesis, we investigate both software and system requirements, as they
are similar in terms of how they are documented. The majority of requirements are

12
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CHAPTER 1. INTRODUCTION

written in natural language (NL) in software [12, 13, 14] and system [14] projects.
Moreover, researchers have investigated and reported requirements challenges in
both disciplines in the same study [15, 6].

2.2 Verification

According to SWEDBok [16] and SEBOK [17], verification is the process of en-
suring the product is correctly developed. Verification activities are conducted
throughout the development life cycle, such as verification of requirements, design
models, and the end product. For example, in software engineering during veri-
fication of the source code through code reviews, the reviewer reads the code to
find defects [18]. A similar process exists in system engineering and is referred
to as inspection [17], where engineers examine objects of the system for visual or
dimensional irregularities.

In this thesis, we refer to the digital artifacts whose quality is ensured during
the verification process, as verification artifacts. In the previous example, the
verification artifact in code review is the source code and in model checking it is
the design model.

2.3 Digital Assets

According to Toygar et al. [19]., digital assets are defined as any digital file (textual,
images, audio, or video) stored on any electronic device (e.g., computer, mobile
phone, or cloud) with the right to own the file

In this thesis, we studied digital assets in the context of system projects, where
digital assets are mainly Computer-Aided Design models (CAD), Building Infor-
mation Models (BIM), and System Information Models (SIM) [20].

2.4 Distances

The theory of distances in software engineering was proposed by Bjarnason et
al. [3]. The theory gives an explanation for the causes of insufficient coordination
and communication in software projects, and states that distance is a variation in
a physical location, theoretical knowledge, or effort between entities in the software
development processes. An entity could be an actor, artifact, or activity. These
distances can be changed by implementing software development practices. There
are eight distances in software engineering that fall under three categories [3]:

1. Actors: the distances between individuals which include D1 geographical, D2
organizational, D3 psychological, and D4 cognitive distances.

2. Artifacts: the variation between artifacts content, i.e. D5 adherence, D6
semantic, and D8 navigational. These distances affect the content of artifacts.

13
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3. Activities: the variation in time between the execution of software activities
(D8 temporal).

These distances can be affected by introducing practices that are relevant to
actors, artifacts, or other practices. Karahappa et al. [8] extracted studies that
investigated the requirements engineering and software testing alignment practices
and mapped them into eight categories. The most frequently used practice is test
generation from requirements specification, followed by improved traceability, and
verification and validation in requirements engineering. In practice, MBT and
traceability are the most used activities to align requirements engineering, and
testing (RET) [6, 3].

3 Research Gaps and Methodology

The goal of this thesis is to investigate MBT and traceability w.r.t their ability to
reduce the distances between requirements engineering and verification. We have
identified the following research gaps in these areas (related to objectives indicated
by OB1, OB2, OB3 and OB4) :

Gap 1. MBT has been extensively researched in the context of functional testing.
Dias Neto et al. conducted two literature reviews [21, 9]. Utting et al. created
a taxonomy for MBT approaches [10]. These studies [9, 10] give a good overview
about the process and approaches, but they lack the detail about quality testing
(e.g., performance or security). Felderer et al. [22] investigated in more detail MBT
in the context of security testing. However, to the best of our knowledge model-
based testing in the context of software performance had not been reviewed. Thus,
we conducted the study in Chapter 2 to understand how automated testing can be
used to verify performance requirements. (Objective OB1).

Gap 2. Communication in software [23] and system [24] projects is a critical
success factor. Researchers have investigated communication challenges in soft-
ware [25] and system [26] projects. Also, many studies explored the challenges
associated with requirements allocation [27], verification and validation [28], and
system integration [29]. Thus, we identified the research gap concerning the inter
coordination and communication of these processes with a focus on requirements’
usage in subsequent stages of large infrastructure projects had not been investigated.
To address this gap we have conducted an exploratory case study (Chapter 3) to
explore the current state-of-practice in communication and coordination of require-
ments engineering and verification (Objective OB2).

Gap 3. The findings of the study reported in Chapter 3 revealed challenges as-
sociated with the requirements engineering and verification in system projects.

14
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In particular, traceability between artifacts produced during the project (require-
ments and design models) was inadequate. Moreover, during the verification pro-
cess, where requirements are needed to check the conforms of the produced digital
assets to these requirements, engineers could not benefit from the existing abstract
trace links. Hence, traceability of requirements to verification artifacts is still a
challenge in the context we have studied. We conducted the study in Chapter 4
to align requirements structure and trace them to verification artifacts (Objective
OB3).

In Table 1.1, we list the objectives and research questions of this thesis to fill
the identified research gaps.

Table 1.1: Research Questions

Objective Research Question

OB1: Understand how automated testing
can be used to verify performance require-
ments.

RQ1: How software performance require-
ments are verified using automated test-
ing?

OB2: Explore the current state-of-
practice in communication and coordina-
tion of requirements engineering and ver-
ification.

RQ2: What are the current requirements
engineering and verification challenges in
large system projects?

OB3: Align requirements structure and
trace them to verification artifacts.

RQ3: How can trace links be created be-
tween requirements and design models?

Figure 1.1 shows an overview of the studies conducted in this thesis and how
they are connected. Each chapter represents a study, and is illustrated using a
rectangle. The dotted rectangle refers to a practice to reduce the distance be-
tween requirements engineering and verification. The identified research gaps are
presented in ellipses.

3.1 Research Methodology

Systematic Mapping Study (SMS) is a research method that is effective in
getting an overview of the work done and identifying research gaps in a specific area.
We usually identify existing literature, extract data from the identified studies,
then map these studies based on the extracted data. Petersen et al. [30] propose
guidelines for conducting a systematic mapping study, and it involves five main
steps.

1. Study identification: two main methods are used to retrieve literature. a)
Database search [31]: a search string is developed using keywords that origin
from the research questions. b) Snowball sampling [32]: a set of key studies
in the research topic are identified by the researchers, then the studies are
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Context
Natural language requirements
Software projects 
System projects 

TraceabilityMBT

Contributes

Chapter 2 (RQ1)

Contribution: an approach to automate
NL requirements-based verification  

Contributes

Chapter 3 (RQ2)   

Contribution: challenges faced in
requirements engineering and
verification 

Contributes

Chapter 4 (RQ3)

Contribution: an approach to trace NL
requirements to verification artifacts 

Goal: Reducing the distance between requirements engineering and verification

Gap 1

Gap 2

Gap 3

Figure 1.1: Roadmap of the licentiate thesis
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CHAPTER 1. INTRODUCTION

collected using one or more iterations of forward and backward sampling
based on the references of the key studies.

2. Study selection: selection criteria need to be identified to include only the
studies that are relevant to the research topic. A set of inclusion and exclu-
sion rules are identified to make a decision about the selection of the studies
systematically. The researchers scan the identified studies, and make a deci-
sion using the selection criteria. A study may be excluded during later stages,
e.g., during data extraction.

3. Data extraction: a set of data attributes are extracted from the selected
studies. The selection of these attributes is guided by the research questions.

4. Data analysis: quantitative and qualitative results are synthesized, to answer
the research questions.

In Chapter 3, our objective is to understand how automated testing can be
used to verify performance requirements. None of the existing secondary studies
review model-based performance testing. Thus, we choose to conduct an SMS, a
good research method to get an overview of the work done in a research area, to
fill this research gap.

Software requirements mining is the process of extracting data, such as the
type of application (e.g., mobile or web) or requirement (e.g., FR or NFR) from
the software requirements specifications (SRS). SRS mining is similar to mining
software repositories (MSR) [33], where the source code in version control systems,
the requirements in bug tracking systems, and communication between engineers
are mined to extract (meta-)data.

Stol et al. [34] constructed a framework for software research that divides re-
search into eight types. They frame MSR as a sample study, which is a study type
that investigates the distribution of a population over a certain attribute [34]. The
studied population could be people, where a questionnaire is sent out to a sample,
or artifacts we extract data from (e.g., software repository mining).

In Chapter 2, one of the research questions asked which aspects of performance
requirements are used in MBT?. Answering this research question required explor-
ing the state-of-the-art and state-of-practice. We addressed the former by conduct-
ing an SMS and the latter by mining publicly available SRS documents1, i.e, we
conducted a sample study. Then, we developed an approach to verify performance
requirements and generate test environments addressing the limitations of existing
MBT approaches. Thereafter, we conducted another sample study on real project
requirements to demonstrate the applicability of our approach.

1A set of 77 software requirements specifications written for software and software-intensive
projects.
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Case Study is a research method to study a phenomenon in its natural set-
ting [34]. A case study could be exploratory to discover the unknown or explana-
tory to give a reasoning for the studied phenomenon. Runeson et al. [35] advocate
for an iterative process when conducting case studies. The data collection and
analysis method are tuned as we are conducting the case study. For example,
when conducting an exploratory study, the interview questions could be changed
if we found that the collected data does not provide information to answer our
research questions. The steps of the case study process are: 1) case study design,
2) preparation of data collection, 3) collecting evidence, 4) analysis of the collected
data, 5) reporting.

In our research, we conduct empirical studies to characterize and solve problems
that are relevant to the industry. We hypothesize that there are challenges related
to requirements traceability in the context of large system engineering projects.
Hence, our choice of case study as a research methodology in Chapter 3. We
conducted two case studies in infrastructure projects. The infrastructure domain
has a large set of well-defined requirements (i.e., regulations) that projects must
adhere to.

Design Science is a research framework used to conduct and report research in
an iterative manner [36, 37]. Hevner [38] has depicted design science as an iterative
process which consist of relevance, rigor and design cycles. In the relevance cycle,
the environments in which the problem is prevalent are identified. During the rigor
cycle, the knowledge acquired during the research contributes to the strength of
evidence. In the design cycle, the idea is grounded, refined and verified.

In Chapter 4 we seek knowledge about the use of indirection in traceability, and
investigate the practical usage of taxonomic trace links. Thus, we chose to frame
our research as design science. In our study, we conducted one iteration and in the
future conduct more iterations to further refine and validate our solution

Validation Study is a study where intervention is applied to a problem to see
if the intervention is feasible in practice and understand the practical challenges.
The validation study should not be interpreted as a method that evaluates a so-
lution, but rather as a method to discover any major design shortcoming in the
intervention; these shortcoming are used to guide improvements to the solution.

In Chapter 4, we describe and further evolve the idea of taxonomic trace links
that builds upon existing work [39]. Before investing resources in developing a fully
working solution, we piloted the solution with practitioners on a set of general and
project-specific requirements from the infrastructure domain. We created trace
links from the requirements to design models and used these trace links to verify
the conformance of the design models to the traced requirements.
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3.2 Threats to validity

Threats to validity are present in research planning, execution, and reporting.
There are four main validity threats affecting a research method: construct, internal
and external validity, and reliability. We use the framework of Runeson et al. [40]
to discuss the validity of our research.

Construct Validity regards the degree the research is designed and executed to
avoid invalid results.

In the three studies (Chapters 2, 3, and 4), we have constructed research proto-
cols following guidelines for research in software engineering [31, 40, 30, 34], which
is rooted in the research questions for the corresponding study. Each protocol was
prepared in an iterative manner before and during the execution of the research
with input from at least two of the involved researchers.

In Chapter 2, some studies could be missed during the data collection of the
SMS. We validated the recall of our search string on a set of studies reported in two
top venues in the research area. The interview questions may not collect the re-
quired data to answer our research questions in Chapter 3. To mitigate this threat,
we adapted the research questions to each interviewee’s role. In Chapter 4, data
triangulation was implemented to retrieve studies in the literature review from two
sources. We used the studies from a systematic literature survey by Charalampi-
dou et al. [41] and used snowball sampling to retrieve more studies. Furthermore,
multiple researchers were involved in creating trace links in the validation study.

Internal Validity refers to the degree the research is designed and conducted
to prevent systematic errors by researchers.

During data extraction of the SMS and SRS mining (Chapter 2), there is a
significant researcher bias. We tried to mitigate this threat by involving two re-
searchers during the data extraction phase. In the case study (Chapter 3), the
semi-structured interview questions could have let the researchers ask questions
that would make the results biased. We involved multiple researchers in each in-
terview to mitigate this threat.

External Validity concerns with the representation and generalization of the
results to the defined population.

In Chapter 2, there are threats that could hinder the generalizability of the
study. First, in the SMS we could have missed some studies when we collected data
using database search. There are inherited threats as well from the study by Dias
Neto et al. [9] which we reused and extended the search string from. The borrowed
search string from their study may not have returned all papers investigating MBT.
We mitigated this threat by verifying the recall of the borrowed search string and
then adjusting it. Second, the SRS collection that we used for the sample study may
be outdated and does not include all domains of software and software-intensive
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products (e.g., mobile application and autonomous cars). The list of performance
aspects that we looked at is not exhaustive, but rather a representation of the most
used aspects.

In Chapter 3, we have conducted only two case studies. It can be argued that
the number of cases is not enough to generalize. However, it is possible to generalize
from a single case provided it is representative of the population, and the focus is
on analytical rather than statistical generalization [42]. We had two cases; each
case represents a large infrastructure project; one was in its final building stages,
while the other was in the first stages at the time of conducting our research.

The sampled requirements in the validation study of Chapter 4 introduce a
threat to the generalizability of the results to the software domain. The sample
is a set of 27 generic and project-specific requirements written in NL from an
infrastructure project. Although the majority of requirements are written using
NL in the system and software domain, some properties could be different for
the requirements from different domains (e.g., structure and terminology), thus
affecting the generalizability of the software domain. Another threat to the external
validity is that the verification process of requirements in the product could be
different between both domains.

Reliability regards how well the results are trusted. Another researcher should
be able to reach the same results and conclusion as the authors did.

We mitigated this threat in Chapter 2 by 1) publishing the instruments of the
SMS (study identifications and selection and data extraction and analysis), 2) we
published the selection criteria, coding mechanism, and SRS collection of the SRS
mining.

In Chapter 3, we present the protocol of our study and include the setup of our
studied cases, the clusters of the interview questions, the interview steps, and the
coding mechanism of the interview data.

In Chapter 4, we mitigated this threat by presenting the study selection and
data extraction steps of the literature survey. Furthermore, in the validation study,
we explain the properties of the sample requirements, the steps for conducting the
validation study, and the experience of the involved researchers and domain experts.

4 Contribution

In this section, we give an overview of the studies that we conducted in this thesis.
We start by presenting the contribution of each study. Then we synthesize the
results of these studies and show how they contribute to the goal of our research.

20



i
i

“output” — 2022/9/5 — 14:37 — page 21 — #25 i
i

i
i

i
i

CHAPTER 1. INTRODUCTION

4.1 An approach for performance requirements verification
and test environment generation

Model-based testing (MBT) was adopted by practitioners [43] and reviewed by
researchers [9]. However, the use of MBT to verify aspects of software quality had
not been researched extensively [10] and MBT to verify software performance had
never been reviewed to the best of our knowledge. Our aim in this study is to
look for MBT models that verify the most relevant (in academia and industry)
software performance aspects. We mapped the literature and mined performance
requirements in a collection of Software Requirements Specifications. We have
identified 77 primary studies from the literature and presented the results in three
maps based on performance aspects, testing level, model, research method, study
type, and contribution. We extracted 149 performance requirements and mapped
them based on the performance aspect that they specify and the application type.

We had two main observations from our results. First, in both literature and
practice, time-behavior was the most studied (in 62 papers) and specified (in 71
requirements) performance aspect compared to the other aspects. The other per-
formance aspects were studied and specified to a lesser extent. We argue that re-
quirements engineers and testers should pay more attention to other performance
aspects (resource utilization, capacity, speed/throughput, and efficiency) as they
have an impact on the performance perceived by the user of the software.

Second, although existing model-based performance testing techniques could
successfully (semi-)automate the generation of performance tests from a perfor-
mance model, these techniques miss out on the opportunities that MBT brings:
1) requirements validation, 2) check of the testability of requirements, and 3) the
generation of an efficient test suite. The shortcomings of these techniques signal a
need for a model that achieves these goals.

We developed PRO-TEST, Performance Requirements verificatiOn and Test
EnvironmentS generaTion to address shortcomings requirements validation and
requirements testability. PRO-TEST is an approach that verifies performance re-
quirements and generates test environments using the performance requirements
model. We depict our view of model-based performance testing in Figure 1.2.
The grey boxes show our modification to the MBT process presented by Utting et
al. [10]. The PRO-TEST process starts with performance requirements modeling
(step 1-2) and ends with the generation of test environments specifications (step 6-
1). The result of this process is 1) a more complete, quantifiable list of performance
requirements and 2) test environment specifications to build test environments to
run performance tests.
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Figure 1.2: MBT process in the context of software performance [44]

4.2 Challenges of Requirements Communication and Digital
Assets Verification in Infrastructure Projects

Researchers have explored the challenges in infrastructure projects [29, 28, 27].
These studies explored the challenges in individual stages (e.g., verification and
validation [28] or communication) of the project. However, to the best of our
knowledge, the inter coordination and communication of these processes with a
focus on requirements’ usage in subsequent stages of large infrastructure projects
had not been explored.

We conducted two case studies and interviewed ten practitioners with expertise
in requirements engineering, infrastructure design, and project management. We
asked questions about the following processes: requirements validation, require-
ments communication and digital assets verification. We chose to focus on these
process as they are the basis of communication between the customer and sup-
plier, especially when projects are outsourced where multiple connection points
exist between the client and the supplier.

We draw a per case process diagram for each of the mentioned processes and
identified 14 challenges, their causes, and consequences. We mapped these chal-
lenges to four main clusters: project management, common RE, requirements qual-
ity, and trace links. These results support our hypothesis that there are challenges
associated with traceability, which are: a) granularity of traces: existing trace links
connect requirements to digital assets on a high abstraction level. Although the
requirements can be specific, however, they are connected to the digital assets on
the model level rather than the objects. b) Verifying all requirements: verifying all
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relevant requirements in the design model is not feasible. The project has a long
list of requirements that are implemented in multiple places in a model, and the
process depends on the engineer’s experience to find the relevant requirements and
verify those requirements in the model.

4.3 Taxonomic Trace Links - Rethinking Traceability and its
Benefits

As seen in the interview study (Chapter 3), traceability is still a challenge in large
projects that must adhere to a large set of requirements. While the benefits of
traceability are recognized, the cost of establishing and maintaining traceability
seems to outweigh the expected benefits. In this study, we presented a traceability
approach, namely Taxonomic Trace Links (TTL), surveyed the requirements trace-
ability literature to show the novelty of our approach, and conducted a validation
study with practitioners to show the applicability of our approach in practice.

TTL is an approach that connects a source and target artifact through the use
of a third auxiliary artifact. An auxiliary artifact could be any knowledge structure
(e.g., ontology or concept map). In our approach, we use a taxonomy. We show
in Figure 1.3 traditional trace links and TTL. We argue that TTL addresses three
main issues in current traceability approaches.

1. Abstraction: traced source and target artifacts of different types could have
different abstraction levels, the third auxiliary artifact act as an adapter to
connect these two artifacts. E.g., product-level requirements usually specify
a certain functionality or feature, while tests that verify these requirements
could be written as a unit, integration, or system test.

2. Structure: artifacts used in the software development process have different
structures, apparent in outsourced projects where engineers in different orga-
nizations use different tools and techniques. A taxonomy acts as an interface
that the tools adhere to.

3. Time: creating a direct trace link between two artifacts requires the existence
of both of them. Introducing this indirection in the trace link through an
auxiliary artifact makes it possible to initiate trace link creation early in the
process. E.g., we can create trace links from the requirements to the auxiliary
artifact without having any code or test written.

We conducted a validation study where we identified three themes of lessons
learned related to requirements quality, taxonomy quality, and the alignment of
the requirements and taxonomy.

In our literature survey we extracted data about the auxiliary artifacts and
their usages in the traceability problem. We identified approximately 45 auxiliary
artifacts with 13 usages in the requirements traceability process. Five auxiliary
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Figure 1.3: Traditional vs. taxonomic trace links

artifacts (taxonomy, ontology, early aspects, code aspects, and quality types) were
used to classify the traced artifacts, similar to the usage of taxonomy in our ap-
proach.

Auxiliary artifacts have been researched to establish requirements traceability
through classification. However, the problems that taxonomic trace links solve
(abstraction, structure, and time) were not investigated by these techniques. They
use auxiliary artifacts to: 1) recover trace links late in the development process,
which may cause traceability not to be implemented [46]; 2) classify and trace
artifacts of the same type [47, 48, 49], which does not tackle the problems of the
different abstraction levels and structure of the traced artifacts; and 3) classify
artifacts based on quality aspects[50, 51], and consequently creates abstract trace
links.

4.4 Discussion

Model-Based Testing

MBT is used as a practice to close the gap between requirements engineering and
testing (verification and validation) [3]. However, this usage was not manifested
in the context of software performance, as we see from the results of (Chapter 2),
which could be due to the following:

1. Performance testing is inherently different from functional testing, and the
MBT process does not generalize to performance testing (and consequently
NFR) [10] without adaptation. As we depicted in Figure 1.2, performance
requirements modeling is different from functional requirements modeling, as
a functional requirement specifies a certain functionality that the software
should have, while a performance requirement specifies the desired quality
attribute of a function or the whole system.

2. In some cases, performance models in model-based performance testing tech-
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niques stem from the software design or code without considering the software
requirements. As a result, the generated tests verify that the software works
rather than the conformance of the software to the requirements.

We argue that PRO-TEST addresses these issues by modeling performance
requirements and generating test environment specifications from the produced
models. As we do not generate functional test cases, we rely on the integration of
PRO-TEST in existing test generation processes.

Traceability

In Chapter 4, we chose to find solutions to trace links challenges. Traceability,
as mentioned by Bjarnason et al. [3] reduces multiple distances between entities
in general and requirements engineering testing in particular. Furthermore, trace-
ability can be beneficial for change impact analysis. A product manager can make
an informed decision about how a change in requirements will propagate in the
software [52]. The challenges identified in Chapter 3, that are relevant to trace
links identified two challenges: a) granularity of traces: existing trace links con-
nect requirements to digital assets on a high abstraction level, and b) verifying all
requirements: verifying all relevant requirements in the design model is not feasible
as the process is time-consuming and depends on the engineer’s experience to find
the relevant requirements and verify those requirements in the model.

Implementing traceability in practice is challenging, as observed in several stud-
ies and summarized by Bouillon et al. [53]. One challenge is that the creator and
user of trace links are seldom the same [54, 53], which is a common disadvan-
tage [55] for both approaches of traceability; trace capture and trace recovery [45].
This conundrum motivated us to rethink how and, in particular, when trace links
should be created and how we can design a trace process that is beneficial for the
creators of trace links.

TTL (taxonomic trace links) introduce traceability between NL requirements
and verification artifacts (Chapter 4). The introduced traceability makes it possible
to retrieve the relevant requirements in a specific context during the verification
process, which in theory should support engineers with verifying all requirements.
Furthermore, using a hierarchical knowledge organisation structure, trace links
can be created on different abstraction levels. This addresses the problem of trace
granularity.

We saw from our validation study that it is possible to implement taxonomic
trace links in practice. We were able to classify and trace requirements during
the verification process. Establishing reliable traceability through classification is
dependent on the quality of the traced artifacts, the granularity and uniqueness of
the taxonomy, and the proper association of codes to the traced artifacts. We take
these lessons to understand what process aspects could be tuned to improve our
solution.
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Impact on Distances

In Table 1.2 we map the practices that we investigate (MBT and Traceability) to
the distances reported by Bjarnason [3]. The symbol (X) in the table means that
the practice addresses the corresponding distance.

D1: Geographical. None of the investigated practices has a direct impact on the
physical distances between requirements engineering and the verification process.
We see this issue as relevant to the global software engineering area [2].

D2: Organizational. Introducing traceability between requirements and verifi-
cation artifacts facilitates the discussion between engineers from the requirements
and verification department. For example, during the design phase of an infrastruc-
ture project, when a change in requirements is introduced, requirements engineers
from the client need to communicate with designers and quality engineers to assess
the impact of this change. Requirements traceability within requirements and be-
tween requirements and other artifacts ensures that engineers are on the same page
when communicating the impact of the change in their perspective department.

D3: Psychological. MBT and traceability impact psychological distances be-
tween requirements and test engineers, who have different perspectives on the soft-
ware product. Both practices connect artifacts from both processes as follows: 1)
MBT through the transformation of requirements into tests, this transformation
has the effect that tests are connected with requirements. 2) Traceability by in-
troducing trace links between artifacts from both processes. Thus, verifying all
relevant requirements becomes easier.

D4: Cognitive. Cognition is essential in software engineering activities [56],
where the tasks requires extensive knowledge and reasoning skills [56]. Humans
have different levels of cognitive skills. A verification engineer needs to discover
the errors in the product, while a requirements engineer needs to elicit stakeholders’
needs. Consequently, their knowledge is different. TTL connect requirements and
verification artifacts using domain-specific taxonomy, which harmonizes the domain
knowledge of the engineers.

In our previous example of a change in requirements, introducing TTL, which
have semantic information, can support change impact analysis. In the validation
study of Chapter 4, it was possible to retrieve a relevant list of requirements dur-
ing the verification process and check these requirements in the design models, and
our knowledge about the relevant requirements expanded. Verification engineers
can communicate and discuss the verification results, e.g., an abstract requirement
could not be verified, with the requirements engineers to understand the require-
ment better or negotiate it.
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D5: Adherence. With the incremental changes in the software product, the soft-
ware may become less adherent to the written documentation. This phenomenon is
known as entropy asset degradation [57, 58, 59]. In software, requirements specifi-
cations are the main source of documentation, and adherence of the software to this
documentation can be increased by continuous verification of this documentation
in the software product. MBT introduces automation in the verification process.
When a change in requirements is introduced, the requirements models are changed
as well to reflect the new state of the requirements. Then the automated gener-
ation of test cases or environments from these models is triggered. We were able
with PRO-TEST to automate the process of generating test environment specifica-
tions from the created performance requirements models. Furthermore, traceable
requirements reduce the verification time by easing access to relevant requirements
to verify the product and relevant tests that should be run.

D6: Semantic. The taxonomic trace links (TTL) have the properties of a se-
mantic link, which is a trace link coupled with terminologies that adds meaning
to the link. Using taxonomy to classify traced artifacts unifies the terminology
used in the produced artifacts during the software development. Requirements
and test engineers could produce artifacts related to their processes while using
similar terminology to the one used in the taxonomy.

D7: Navigational. The navigation between artifacts without existing traces is
labor-intensive, and we risk not retrieving all documents in a specific context. The
creation of explicit trace links between requirements and verification artifacts makes
navigation between them easy, which otherwise could be difficult as we need to re-
engineer the process every time we need to find the requirements relevant to specific
test cases. The TTL approach has the advantage of creating trace links on different
abstraction levels, which makes tracing a high-level requirements to individual test
cases possible. A taxonomy is a set of classes organized in a hierarchy. A high level
requirement can be classified with a class A while a more concrete test cases could
be classified with the children classes A1 and A2. We can retrieve the relevant
test cases to the requirement by looking at the test cases with similar classification
A or child classes A1 or A2.

D8: Temporal. In software development, artifacts are created at different stages
and times. MBT can generate tests early, after the requirements are specified,
which brings the verification early, closer to the RE stage. One advantage of TTL
is that it reduces the time between, when the artifact is created, and when the
trace links are generated. Thus, supports the use of requirements in verification
earlier.

By generating tests early from the requirements (MBT) and connecting require-
ments to the tests (TTL), it becomes easier to use test-driven development (TDD).
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Table 1.2: Impact on the distances in software engineering

Distance MBT Traceability

D1: Geographical
D2: Organizational X
D3: Psychological X X
D4: Cognitive X
D5: Adherence X X
D6: Semantic X
D7: Navigational X
D8: Temporal X X

A common testing techniques used in agile development model, were tests are writ-
ten before the code and then the code is written in small increments until the tests
passes [60].

5 Conclusion and Future Work

Conclusion. We have investigated MBT and Traceability practices to reduce
the distance between requirements engineering and verification. We conducted
an SMS and mined SRS documents to automate the generation of test artifacts
from NL requirements by using a requirement model (Chapter 2). We explored the
challenges faced between the customer and supplier during the exchange of artifacts
in an infrastructure project through an interview study in two cases (Chapter 3).
We proposed the taxonomic trace links approach and studied the feasibility of
tracing and verifying project artifacts (NL requirements and design models), and
discussed the differences between our approach and other traceability approaches
by conducting a literature survey (Chapter 4).

MBT can be used to automate testing and reduce the distance between re-
quirements engineering and verification. However, not all MBT techniques has the
ability to reduce this distance effectively. MBT is most effective in reducing the
distances between requirements and verification when the model used is built from
the software requirements.

Traceability is essential in easing access to relevant information when needed
and should not be seen as an overhead. The benefits that traceability brings extend
beyond linking objects, as it opens new possibilities to support other activities in
software and system projects (e.g., requirements-based verification). In order to
increase the effectiveness of traceability in reducing the distance between require-
ments and verification, when creating trace links, we need to consider the difference
in the abstraction, structure, and time between the linked artifacts
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Future work. Our plan is to continue researching traceability between NL re-
quirements and verification artifacts. In particular, we aim to develop and assess
a solution that supports the (semi-)automated generation of taxonomic trace links
between requirements engineering artifacts and verification artifacts. The planned
studies are:

1. Develop a recommender system to classify requirements using domain-specific
taxonomies and conduct experiments to evaluate its performance. The core
research questions here is:

How does the taxonomic trace links recommender perform compared to other
trace links recommender systems?

2. Conduct experiments to evaluate the effect of taxonomy on the performance
of the recommender system. The core research question here is:

To what extent does the quality of the taxonomy used for classification affect
the performance of the recommender system?

3. Adapt taxonomic trace links recommender to classify other software artifacts
(e.g., test code), and evaluate the recommender performance by experiments.
The core research questions here are:

What properties from a test code are required to classify it using domain-
specific taxonomies?

How does the taxonomic trace links recommender perform compared to other
trace links recommender systems ?

4. Explore the practical use cases of taxonomic trace links in practices by con-
ducting a case study. One possible use case for taxonomic trace links is
requirements-based verification. The core research question here is:

How effective is the taxonomic trace link recommender in supporting requirements-
based verification in practice?

At the end, we expect to have a comprehensive solution to trace NL require-
ments to verification artifacts, potentially supporting practitioners to implement
traceability in their software projects with acceptable effort.
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An Approach for Performance Requirements
Verification and Test Environments Generation

Background: Model-Based Testing (MBT) is a method that supports the design
and execution of test cases by models that specify the intended behaviors of a sys-
tem under test. Motivation: While systematic literature reviews on MBT in general
exist, the state-of-the-art on modeling and testing performance requirements has
seen much less attention. Method: Therefore, we conducted a systematic mapping
study on model-based performance testing. Then, we studied natural language
software requirements specifications in order to understand which and how per-
formance requirements are typically specified. Since none of the identified MBT
techniques supported a major benefit of modeling, namely identifying faults in re-
quirements specifications, we developed the Performance Requirements verificatiOn
and Test EnvironmentS generaTion approach (PRO-TEST). Finally, we evaluated
PRO-TEST on 149 requirements specifications. Results: We found and analyzed 57
primary studies from the systematic mapping study, and extracted 50 performance
requirements models. However, those models don’t achieve the goals of MBT,
which are validating requirements, ensuring their testability, and generating the
minimum required test cases. We analyzed 77 Software Requirements Specification
(SRS) documents, extracted 149 performance requirements from those SRS, and il-
lustrate that with PRO-TEST we can model performance requirements, find issues
in those requirements and detect missing ones. We detected three not-quantifiable
requirements, 43 not-quantified requirements, and 180 underspecified parameters
in the 149 modeled performance requirements. Furthermore, we generated 96 test
environments from those models. Conclusion: By modeling performance require-
ments with PRO-TEST, we can identify issues in the requirements related to their
ambiguity, measurability, and completeness. Additionally, it allows to generate
parameters for test environments.
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1 Introduction

Performance aspects such as time behavior, capacity, or throughput, are essential
non-functional requirements (NFR) of software products. Performance testing is
the process of measuring the availability, response time, throughput, and resource
utilization of a software product [61]. The importance of software performance
and relation to functional requirements is acknowledged since the 1990s [62]. A
real-world example is HealthCare.gov, a ”health insurance exchange website” run
by the United States government, where on the launch day 99% of people who
wanted to get insurance failed to register [63]. Further investigations showed that
no adequate performance testing was performed [64].

Performance-related issues can have a large impact on cost, especially if those
issues are not treated early [65, 66, 67]. Another example of a software performance
issue was Pokemon Go [68], a mobile game that, after the initial roll-out, became
unusable in many countries. The large number of users caused server failures,
leading to a delayed roll-out of the game to reduce the load [68]. A potential reason
for such a failure is the different nature of performance requirements compared
to functional requirements, which makes it difficult for developers to translate
performance requirements into written code [69]. Therefore, performance testing
is necessary, since it can detect the causes of performance-related issues and verify
whether the software product meets the requirements or not [69].

Model-based testing (MBT) is a software testing approach that uses an ab-
straction of the system (or part thereof) to generate test cases [10]. According to
a software testing survey conducted in Canada [43], more than 35% of the respon-
dents use MBT approaches to generate test cases in their projects. This indicates
that MBT is prevalent in the industry. MBT forces testability into the product
design when creating the model. The model is created from the requirements and
describes the behavior of the system. Successfully modeled system requirements
indicate that those requirements are testable, complete, and can be validated since
they were formalized in an unambiguous manner [70].

Many studies explored the state-of-the-art of MBT [21, 9, 22, 71, 10, 72]. Utting
et al. [10, 72] created a taxonomy of existing MBT approaches and tools, and
Dias-Neto et al. [21, 9] systematically reviewed the literature of MBT in 2007 and
2010. These studies agreed that the existing MBT approaches focus on testing
the functional rather than the non-functional part (i.e., quality aspects) of the
system. Later, Häser et al. [71] reviewed the literature for model-based integration
testing for NFR, and Felderer et al. [22] model-based security testing. A look at
the state-of-the-art for model-based performance testing is missing.

In this paper, we study the current status of model-based performance test-
ing, and identify approaches that we can use to model different aspects of perfor-
mance requirements. Then, we propose the Performance Requirements verificatiOn
and Test EnvironmentS generaTion approach (PRO-TEST) which supports model-
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CHAPTER 2. PRO-TEST

based performance testing by checking the ambiguity, measurability, and complete-
ness of performance requirements, and generating test environments. Finally, we
evaluate PRO-TEST on real software requirements specifications.

The main contributions of this study are:

1. A categorization of MBT studies in the context of performance requirements,
based on the performance aspect, testing level, study type, research method,
model type, application type, and contribution.

2. A categorization of the Software Requirements Specifications (SRS) from a
public repository [73], based on the described application type and perfor-
mance requirements.

3. PRO-TEST, an approach to model performance requirements to verify them,
understand what should be tested, and generate test environments.

4. An evaluation of PRO-TEST, illustrating its benefits and drawbacks.

The remainder of this paper is organized as follows. Section 2 introduces the
concepts of software performance and model-based testing, and reviews related
work. Section 3 illustrates the design and methodology used in our research and
the validity threats. In Section 4 we present state-of-the-art and state-of-practice of
model-based performance testing. Section 5 presents PRO-TEST and the obtained
benefits but also the faced challenges when modeling performance requirements.
We discuss PRO-TEST in relation to literature in Section 6. Section 7 answers our
research questions. Finally, we conclude the paper in Section 8 with directions for
future work.

2 Background and related work

In this section, we briefly review aspects of software performance, model-based
testing, and related work.

2.1 Software performance

Software performance is considered in many software quality models [74, 75]. Syn-
thesizing these quality models, as shown in Table 2.1, the main aspects of soft-
ware performance are time behavior [76, 77, 78], capacity [78], resource utiliza-
tion [76, 77, 78], speed/throughput1 [77] and efficiency [79, 76, 80, 81]. Next, we
provide a definition of these software performance aspects.

1The meaning of the symbol ”/” is ”or”. We kept both words because they are both used
frequently in performance.
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Table 2.1: Quality models and their related performance aspects

Quality Model
Name

Performance Aspect

McCall’s Execution Efficiency, Storage Efficiency
Bohem’s Accountability, Device Efficiency, Accessibility
Dromey’s Internal Efficiency, Descriptive Efficiency
FURPS Speed, Efficiency, Availability, Accuracy, Throughput, Re-

sponse Time, Recovery Time, Resource Usage
ISO9126 Time Behavior, Resource Utilization, Efficiency Compliance
ISO25010 Time Behavior, Resource Utilization, Capacity

Time Behavior: the time required to perform specific tasks or complete re-
quests. It usually has multiple instances or values depending on different antic-
ipated capacities (i.e., the number of users). This aspect is included in all three
models (ISO9126, ISO25010, and FURPS) as time behavior or response time. It is
an explicit aspect, that is used by the users to infer software performance. It could
have a direct effect on the usability of the software.

Resource Utilization: the amount or percentage of the resources used to run
the software. The software should not always utilize all resources when running,
instead, it should be limited to a specific amount so that it has a margin for peak
times and new updates that would require more resources.

Capacity: the maximum capacity (in terms of requests, sessions, users, data,
etc.) that the system can handle without crashing. This aspect is crucial when
planning for the project in later stages, especially when considering scalability. If
not accounted for, it could result in an overload of the system, which would affect
the business operations and lead to extra charges. Capacity gives an insight into
the anticipated data size used by the software, which would affect the decision
regarding the required resources for the system to operate.

Speed/Throughput: the number of requests or processes per time unit that
the system can handle while still maintaining the time behavior requirements.

Efficiency: the relation between the output (i.e., time behavior, speed) and the
input (i.e., capacity, resource utilization). This is a relatively complex aspect since
it is affected by all other mentioned aspects of performance.
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2.2 Model-Based Testing

Model-based testing is a software testing technique that automates the process of
test case generation from a model that represents the system under test (SUT).
MBT consists of three main tasks [82]: designing a functional test model, deter-
mining test generation criteria, and generating the tests. The model could be an
end-to-end model, e.g., a business process or per function process model. Abstract
test cases are generated from a systems’ model by random generation, search-based
algorithms, model–checking, symbolic execution, theorem proving, or constraint
solving [10, 83]. Then a tool builds the test skeleton to test the software.

Model

Test Selection 
Criteria Requirements

2

1

Test Case 
Specification

3

4

Test Cases

4

Test Script

SUT

Adaptor + Env

5-1
Verdicts

5-2

Figure 2.1: MBT Process Diagram from Utting et al. [10]

Utting et al. [10] present five steps of the MBT process. We illustrate this
process in Figure 2.1. In Step 1, a test model is created from the requirements.
The model can be either created specifically for testing or reuse some parts of the
models used at the design phase. In the case of the latter, the test model should be
independent of the design model, so issues in the design phase do not appear in the
test model. A model should be verified with little effort to ensure the efficiency of
the MBT approach. In Step 2, test selection criteria are defined, which will set the
rules for the automatic generation of test cases. Examples of test selection criteria
are system functionality (requirements-based), the structure of the test model, or
properties of the environment. In Step 3, test case specifications are written as
a more formal representation of test case selection criteria. In Step 4, the test
specification is, with help of the model, transformed into concrete test cases. At
this stage, algorithms are used to select the minimum set of test cases that ensure
full test coverage. In Step 5, the tests are run on the SUT in a test environment.
First, test inputs are fed to the function under test (5-1), then the test verdicts are
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recorded by comparing the test results with the expected outcome (5-2).
There are many benefits associated with MBT. It has been shown to be ef-

fective in testing real-time adaptive systems [84], verifying the system behavior,
and identifying possible performance enhancements. Furthermore, the benefits of
MBT automation are generally more numerous the more testing the system re-
quires [85]. Another benefit is that MBT finds missing and unclear requirements
by modeling the systems’ requirements [86, 87]. Besides, MBT can make the re-
quirements more understandable for software engineers [69]. Since performance
requirements are often written at a high abstraction level, it may be difficult to
understand how they impact software design and code. This could be made easier
by modeling functional and non-functional requirements using the same model. A
UML activity diagram that models functional requirements could be annotated
with performance requirements [88]. We could see in the resulting model where
the performance requirements apply in the software.

2.3 Related work

There exist many studies that investigate MBT to test functional requirements,
while fewer studies focus on non-functional requirements. Utting et al. created
in 2006 [72] and 2012 [10] respectively a taxonomy for model-based testing to
categorize the existing approaches and tools, as well as to classify their usefulness.
Their study focused on functional requirements testing. In general, there is no
clear distinction between functional and non-functional requirements when MBT
is applied [89].

Although MBT for non-functional requirements is not explored extensively,
there are still some studies in this area. A systematic review (78 papers) of MBT
approaches by Dias-Neto et al. [21], published in 2007, was not limited to functional
requirements and explores the non-functional aspects considered by the models.
Some limitations of using MBT for non-functional requirements were pointed out
by the study. The irregular behavior of software users makes it hard to create a
behavioral model of non-functional requirements. Another challenge is the limited
support for non-functional aspects in the existing MBT approaches; NFRs like
usability, reliability, and security were not supported. Moreover, the majority of
MBT approaches proposed by research are never used in industry [21].

Dias-Neto’s original study was renewed in 2010 [9] (including 219 papers), with
a focus on the techniques used for modeling, coverage, and the challenges of MBT.
This study introduces selection criteria for MBT approaches based on their char-
acteristics. The use of MBT techniques was still difficult, as observed in their
previous study in 2007. Apparently, NFRs (usability, reliability, and security) that
were not possible to test with MBT (according to the 2007 review [21]), started to
get some attention in research. The difference between these studies [21, 9] and the
systematic mapping study presented in Section 4 is that ours has a more narrow
focus on model-based performance testing.
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In 2014, Häser et al. [71] conducted a systematic literature review of model-
based integration testing. They asked in their research questions about the software
paradigms, assessment type, and which NFR can be tested with MBT approaches.
However, they did not ask whether the MBT approach tests different aspects of an
NFR (i.e., what aspects of performance were tested using these MBT approaches?),
and they scoped their research to integration testing. Their findings indicate a lack
of research in model-based integration testing for NFR.

In 2016, Felderer et al. [22] presented a taxonomy and systematic classification
of model-based security testing. They extended the study of Dias-Neto et al. [9]
while focusing on security requirements. Woodside et al. [69] described the domain
of software performance engineering (SPE). They did a survey of current work on
a sample of papers in SPE and pictured the future of SPE. They collected some
models and methods which are used for performance and listed many benefits of
modeling performance. The focus of that study is to provide a look at the future
of model-based performance testing. In contrast, our study focuses on identifying
current techniques that can be used in practice.

Motivated by this research gap, the lack of systematic reviews in MBT of per-
formance requirements, the limited support for NFR in general, and performance
in particular in existing techniques, we focus our research on finding and studying
different performance requirements models, for the purpose of using them in MBT.

3 Research methodology

To achieve our research aim defined in Section 1, we have identified the following
four objectives.

• O1 Identify which aspects of performance are important and can be modeled.

• O2 Identify modeling techniques and methods that suit performance require-
ments.

• O3 Identify a modeling approach that can validate performance requirements,
ensure that those requirements are testable, and support the generation of
test cases, all three of which are key aspects of MBT.

• O4 Evaluate the identified modeling approach on a set of requirements spec-
ifications.

In alignment with those objectives, we define our research questions in Table 2.2.
Figure 2.2 shows the steps of our research in alignment with the research ques-

tions. First, we start with a systematic mapping study (SMS). The mapping study
is an appropriate method for gaining an overview of a particular research area. We
explored which performance aspects were studied and modeled using MBT (RQ1,1,
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Table 2.2: Research Questions

Number Research Question Purpose Objective

RQ1 Which aspects of performance
requirements are used in MBT?

There are many performance aspects,
e.g., time, speed, and capacity, as ex-
plained in Section 2.1. Those aspects
may have different ways of modeling
and testing.

O1

RQ1.1 Which aspects of performance
requirements have been stud-
ied?

Explore the studied aspects of perfor-
mance requirements in MBT.

O1

RQ1.2 Which aspects of performance
requirements can be modeled?

Explore the usage of MBT to model dif-
ferent aspects of performance require-
ments.

O1

RQ1.3 Which aspects of performance
requirements are used in real-
life projects?

Explore the performance aspects that
are specified and relevant in real-life
projects.

O1

RQ2 How to implement MBT on per-
formance requirements aspects?

Explore the different MBT approaches
that support the modeling of perfor-
mance requirements to understand the
current state of the art of MBT for per-
formance requirements.

O2, O3

RQ2.1 What type of models can be
used to model performance re-
quirements aspects?

There are many models used in MBT.
However, that does not mean all of
them could be used to model all aspects
of performance requirements.

O2

RQ2.2 Which performance require-
ments models achieve the goals
of MBT?

Find models that achieve MBT goals,
which are validating requirements, en-
suring their testability and generating
the minimum required test cases.

O3

RQ3 To what extend is the identified
approach effective at modeling
performance requirements writ-
ten for real-life projects?

Evaluate the modeling approach that
we identified in the previous step,
to ensure its applicability on real-life
projects with different aspects of per-
formance requirements.

O4

RQ1.2), and what models exist to model performance requirements (RQ2.1). Sec-
ond, we conducted a sample study on real-project requirements, for the purpose of
finding out the relevance of performance aspects in practice (RQ1.3). Based on the
results from the SMS and software requirement mining, we developed PRO-TEST
(RQ2.2). Finally, we conducted a sample study, to evaluate PRO-TEST (RQ3).
We focus our study on the domain of software-intensive systems.

A Systematic Literature Review (SLR) and an SMS are research methodologies
that systemically survey the literature but differ in their aim, execution, and out-
come [90, 91]. An SLR aims to aggregate data from the literature and has specific
research questions for that purpose, while an SMS aims to explore trends and iden-
tify gaps in research. In terms of execution, an SLR requires a quality assessment
to be conducted on the extracted papers, while it is not the case for an SMS. The
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Systematic Mapping 
Study 

 (RQ1.1, RQ1.2, RQ2.1

Software Requirements 
Mining (Sample Study)

(RQ1.3)

PRO-TEST Development 
(RQ2.2)

PRO-TEST Evaluation 
(Sample Study) 

(RQ3)

Figure 2.2: Research Methodologies

output of an SLR is a synthesis of the reviewed studies, while an SMS classifies a
set of papers based on different dimensions.

A sample study is a form of research done on a sample of the population for
generalization [34]. The data could be collected using interviews, questionnaires,
metric reports, or available for access online, e.g., in a software repository. One
of the research methods associated with sample studies is software repository min-
ing [34]. Software repository mining research usually uses open-source software
repositories. There is no human to collect data from, i.e., no interviews or ques-
tionnaires are involved.

The purpose of evaluating PRO-TEST is to validate that it works in practice,
i.e., it can model the performance requirements and generate test environments.
Similar to the software requirements mining approach described in Section 3.2, we
conduct again a sample study, i.e., we use an openly accessible resource for software
requirements specifications.

3.1 Systematic mapping study

We developed the SMS protocol based on the SLR conducted by Dias Neto et.
al. [9], following the guidelines by Petersen et al. [91]. There were two reasons for
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choosing this study by Dias-Neto. First, the research group has conducted two
SLRs [21, 9] on MBT using the same protocol. This provides some evidence for
the repeatability of their study. Second, there was enough information presented
about the search keywords and procedure, making it easier to adapt and extend the
protocol. The choice of reusing and extending an existing protocol has however also
disadvantages. The study of performance requirements concerns research beyond
MBT, such as requirements engineering and software testing in general, software
performance engineering and agile software development. Hence, we emphasize
that our review covers the area of performance requirements within the scope of
MBT only.

Study identification

Choosing the search strategy: We used keyword search in digital databases
similar to the search method used by Dias Neto et al. 2010 [9]. They used six
databases for their search. Two of the databases (i.e., Compendex IE and IN-
SPEC) we did not have access to. Therefore we ran the search on the other four
databases (SCOPUS, ACM, IEEE Xplore, and Web of Science). We searched the
title, keywords, and abstract of the paper on SCOPUS, WoS, and ACM, while we
searched the full text of IEEE (due to a limitation of the database).

Developing the search: We took the search string used by Dias Neto et al. [9]
and extended it to fit the purpose of our research. The keywords we added are
related to performance. We extracted those keywords from the quality models for
software performance discussed in Section 2.1. Table 2.3 shows the borrowed search
string and the extension with performance-related keywords.

Evaluating the search string: We evaluated the quality of the search string
to mitigate the risk of missing key papers. We did that in two steps:

• We ran Dias Neto et al. [9] search string on the selected databases and ran-
domly checked whether the returned research papers were presented by Dias
Neto et al. in their study [9].

• To validate the whole search string including the extension, we reviewed
the papers published at the International Conference On Software Testing
Verification And Validation (ICST) over the period 2014-2018. We read the
title and abstract to see if the topic is related to model-based performance
testing. We collected the papers related to our topic and looked for them in
our search results. We found three papers in the ICST conference proceedings
that were not returned by our search string. After further analysis of the
search string, we removed a part of Dias Neto et al. search string (approach
OR method OR methodology OR technique) and adjusted our extension to
ensure those papers are included.
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Table 2.3: Search strings used in the SMS

Description Keywords

Borrowed search
string from Dias
Neto et al.

((”model based test”) OR (”model based testing”) OR (”model
driven test”) OR (”model driven testing”) OR (”specification based
test”) OR (”specification based testing”) OR (”specification driven
test”) OR (”specification driven testing”) OR (”use case based test”)
OR (”use case based testing”) OR (”use case driven test”) OR (”use
case driven testing”) OR (”uml based test”) OR (”uml based test-
ing”) OR (”uml driven test”) OR (”uml driven testing”) OR (”re-
quirement based test”) OR (”requirement based testing”) OR (”re-
quirement driven test”) OR (”requirement driven testing”) OR (”fi-
nite state machine based test”) OR (”finite state machine based
testing”) OR (”finite state machine driven test”) OR (”finite state
machine driven testing”)) AND (software)

Extension AND (performance OR efficiency OR capacity OR load OR speed
OR responsiveness OR stability OR timing OR (”time behaviour”)
OR (”time behavior”) OR (”response time”) OR (”response-time”)
OR (”resource utilization”) OR (”resources utilization”) OR (”re-
source consumption”) OR (”resources consumption”) OR thruput
OR throughput OR spike OR stress OR volume OR size OR scala-
bility OR peak OR (”wait time”) OR latency OR delay OR workload
OR (”concurrent users”) OR (”concurrent requests”))

Selection criteria

We developed the following inclusion and exclusion criteria.

Inclusion:

1. The publication is available in full text.

2. The publication language is English.

3. The date of the publication is within the range of August 2009 (the date
when Dias Neto et al. [9] conducted their search) and February 2019 (when
we conducted our search).

4. The publication proposes and/or evaluates model-based performance testing
techniques.

Exclusion:

1. The publication presents secondary studies, i.e., SMS, SLR, literature survey.

2. The publication is not related to the topic model-based performance testing.

3. Duplicated publications that refer to the same study.
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4. The publication is about model-based mutation testing

5. Proceeding, table of content, book, tutorial, demo, editorial

After careful analysis of the model-based mutation testing approach, we have
decided to exclude it. Although it uses MBT as a basis, it is concerned with
introducing faults during the test to find issues in the system rather than the
modeling and test case generation.

Quality assessment

No detailed quality assessment was conducted. Since the goal of our SMS was to
find a method that we can use, there was no need to evaluate the quality of each
paper selected for our research.

Data extraction

We extracted the following data from our and Dias-Neto et el.’s [9] primary studies
(after we applied our inclusion/exclusion criteria).

Performance aspect: We extracted data related to the five performance as-
pects discussed in Section 2.1, i.e., time behavior, resource utilization, capacity,
throughput, and efficiency. We added a ”not specified” category for those papers
that do not mention or focus on a specific aspect of performance. This classification
supports answering RQ1, RQ1.1, and RQ1.2.

Testing level: Testing can be conducted on five different levels [92]: acceptance,
system, integration, module, and unit level. This classification supports answering
RQ2 and determines on which level performance testing is conducted.

Study type: We used Stol et al. [34] to classify study types in software engineer-
ing: field study, field experiment, experimental simulation, laboratory experiment,
judgment study, sample studies, formal theory, and computer simulation. This
classification helps us to understand how mature the studied MBT techniques are,
i.e., whether they are empirically studied and adopted by industry or initial pro-
posals that require more empirical evidence. This is an additional criterion for
choosing the model and answering RQ2, RQ2.1, and RQ2.2.

Research method: The research method differs from the study type. A research
method defines the set of rules and practices to follow, having a specific goal in
mind, i.e., answering a set of research questions. The study type is a grouping of
different research methods based on their ”metaphor, purpose and goals” [34]. In
software engineering research, many research methods can be associated to study
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types [34]. Some of those methods are case study, experiment, survey, and concept
development. Since there is no complete list of those research methods, we kept
this classification dynamic and extracted the options directly from the research
papers. This classification helps to distinguish between papers that present a new
approach or theory to others that empirically evaluate existing approaches.

Model type: We classified each paper based on the approach used to model
performance requirements. The classification is based on the essence of the model,
i.e., some models were novel while others were extensions of previous models. For
example, Maâlej et al. [93] present timed-automata, while Abbors et al. [94] present
a probabilistic extension of timed-automata. This helps to determine the frequency
of the models used for performance requirements and answer RQ2.1. We did not
have predetermined options for this classification, since one of our research objec-
tives was to identify all possible modeling approaches.

Application type: We classify the type of the application (e.g., web application,
mobile, desktop) to understand where model-based performance testing is used or
studied. This is also a dynamic classification with no predetermined options.

Contribution: This classification assigns papers into categories based on their
contribution to the field (e.g., tool, method, evaluation). With this classification,
we can understand the maturity of the models.

Data analysis

We use the frequency of the extracted data, discussed in the previous section, to
analyze the state-of-art in model-based performance testing.

Also, to identify a model that can achieve the MBT’s goals, we examined the
following aspects of the identified MBT techniques:

• reported benefits of modeling performance requirements

• modeled performance aspects

• type and strength of evaluation of the proposed method

3.2 Software requirements mining

The research questions RQ1 and RQ1.3 in Table 2.2 were answered by conducting
software requirements mining. Ferrari et al. [73] published a data set [95] that
contains a collection of software requirements specifications gathered from various
industries and applications. There are 77 SRSs in total in the collection from which
we constructed a subset as described next.
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Selection criteria

Inclusion: the SRS and the individual requirements that are classified and shown
in our results have the following properties.

• SRS: have at least one performance requirement.

• Requirement: fits in one of the descriptions for performance aspects in Sec-
tion 2.1.

Exclusion: the SRS and the individual requirements that we excluded from our
classification and the results have the following properties.

• SRS: without any performance requirements or not written for a software
product.

• Requirement: does not fit in any of the performance aspects descriptions.

Coding

Since the data in the SRS documents is of qualitative nature, we used coding to ef-
ficiently identify and extract relevant information. The codes we created are based
on having three dimensions (performance aspect, application type, and quantifia-
bility) that we describe next.

Performance aspect: We extract five performance aspects, i.e., time behavior,
resource utilization, capacity, speed/throughput, efficiency, and a general option for
the performance requirements that did not fit in any of the five aspects’ descrip-
tions. We apply this classification to each performance requirement and provide
thereby data to answer RQ1.3.

Application type: Similar to the SMS, we extract the type of application spec-
ified in the SRS, e.g., web application, mobile application, embedded system, etc.
This allows us to evaluate whether the SRS data set is a good presentation of the
population (i.e., software products).

Requirements quantifiability: Testability is one of the major criteria in re-
quirements verification and validation [79]. The requirement ”must be specific,
unambiguous, and quantitative wherever possible” such that a developer can write
software code that satisfies the requirements. The performance requirement should
be quantitative and quantified to be testable. We evaluated each requirement by
looking for numerical values.
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3.3 Evaluating PRO-TEST

We evaluated PRO-TEST on a set of realistic software requirements specifications
(SRS) containing performance requirements. The evaluation was done by model-
ing the performance requirements and assessing the quantifiability and degree of
quantification of the specified requirements, and identifying the possible missing
requirements.

3.4 Threats to validity

In the SMS there were threats related to the data extraction methods. 1) We may
have missed some papers because two databases used by Dias Neto et al. [9] we
did not have access to. To keep this to a minimum we made sure that we use the
SCOPUS database, which includes publications from different technical publishers.
2) We may have excluded papers by our search string. We extended the search
string from Dias Neto et al. [9] study with words related to performance. This
could lead to fewer results if some keywords are missing from the search string. We
tried to include as many keywords as possible and used performance checklists to
make sure this threat is kept to a minimum. 3) Another type of threat is related to
the human factor; we could have interpreted the data in the wrong way or placed a
paper in the wrong classification. We addressed this threat by having the selection
and classification done by two researchers independently and the results were then
compared. When conflicts were discovered the corresponding paper was discussed
by both researchers and if still no consensus could be achieved, a third researcher
was consulted.

In software requirements mining, the human factor also introduces threats to
validity. First, we could have coded some requirements wrongly or missed out on
some performance requirements from the SRS documents. We mitigated this threat
by having two researchers involved in coding. The researchers coded a sample of
seven SRS documents independently and compared the results. When conflicts
were discovered, the corresponding requirement was discussed by both researchers.
Then we divided the work equally between the two researchers. When no consensus
could be achieved by the two researchers a third researcher was consulted. Second,
the sample size may not be enough for generalization since the SRS collection had 77
documents that might not cover all application types or represent the population,
i.e., software products.

Finally, in the implementation of PRO-TEST, the small sample size is not
enough to generalize the competence of the approach. Only 34 SRS documents
of the SRS collection had performance requirements, which might lead to threes
issues: 1) The sample we chose might be small to represent the population, i.e.,
software products. 2) The SRS collection from Ferrari et al.’s study [73] might
not be a good representation for the population as well. 3) The most recent SRS
document goes back to 2010, which could be considered old. A validation of the
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model on more recent SRS documents is required.

4 Model-based performance testing

This section reports on the results from the SMS on model-based performance
testing (Section 4.1) and on the prevalence of performance requirements in a pub-
licly available repository of software requirements specifications (Section 4.2). We
discuss our findings in Section 4.3.

4.1 State of the art

Figure 2.3: Papers mapping between a) performance aspect and testing level b)
performance aspect and model

We identified 57 primary studies through our database search and extracted 20
from Dias-Neto’s study (see Appendix 12). A paper could be mapped to more than
one value in each classification, which depends on the content of the paper. The
choice of these maps was driven by our research questions. We show in Figure 2.5
and Figure 2.3 the relation of the performance aspect with all other research area
classifications. Moreover, a typical SMS should classify papers in both 1) the
research area and 2) the research type [30], hence our choice of Figure 2.4.

2Additional materials including the list of primary studies, the mapping of papers to each
classification, grouping of the models, data from Dias Neto’s study [9], the SRS collection, ex-
tracted performance requirements, the modeling of those requirements using PRO-TEST and the
excluded performance requirements are available online [96].
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In Figure 2.3 the y-axis represents the performance aspects, while the x-axis in
Figure 2.3 (a) represents the testing level and in Figure 2.3 (b) the model types.
The ”Not mentioned” option in the performance aspects, represents the papers
that did not mention or focus on any aspect. We categorized the extracted models
based on the essence of the model.

Figure 2.4: Papers mapping between a) research method and study type b) research
method and contribution

In Figure 2.4 the y-axis represents the research method while the x-axis in
Figure 2.4 (a) represents the study type and in Figure 2.4 (b) the contribution of
the paper. The study type is based on the classification in Section 3.1.

In Figure 2.5, the y-axis represents the performance aspect while the x-axis
represents the application type (grouped). We grouped the applications based on
the category, purpose, and platform, e.g., web application, mobile, and embedded
system.

Figure 2.6 represents the number of publications related to the topic model-
based performance testing. The Figures 2.3, 2.4, 2.5 and 2.6 are based on the
results of Dias Neto et al. [9] (for the period 1990-2009) and our research (for the
period 2009-2019). We combined the results from the two mentioned studies and
present the combined results in these figures.

4.2 Performance requirements in SRS documents

The SRS collection contained 77 SRS documents; 34 documents contained at least
one performance requirement, and 43 documents specified no performance require-

47



CHAPTER 2. PRO-TEST

Application Type

P
e
rf

o
rm

a
n
c
e
 A

s
p
e
c
t

Figure 2.5: Papers mapping between performance aspect and application type

ments.
Figure 2.7 shows the mapping of the extracted performance requirements from

the SRS collection. The mapping has two dimensions, representing the performance
aspect that the requirement belongs to and the application type specified in the
SRS document.

To extract the performance requirements we applied the coding described in
Section 3.2. The total number of quantifiable performance requirements was 149.
However, only 106 requirements were actually quantified, thus could be modeled
and tested. Figure 2.8 shows the number of extracted performance requirements
per performance aspect and the quantified requirements per aspect.

4.3 Discussion

Research on model-based performance testing has gained momentum over the past
30 years (Figure 2.6).

Performance aspects were studied to a different extent. By far the most preva-
lent performance aspect in studies in the context of MBT is time behavior with 66
instances3 in terms of both testing level and model used (Figure 2.3). Resource uti-
lization, capacity, and speed/throughput were in close range with a median value
of 10 instances in terms of both testing level and model used. Efficiency was the
least studied performance aspect in the context of MBT, where it only appeared
in one instance in terms of testing level and one in terms of the model used.

We observe a similar trend analysing the requirements specifications. Time-
behavior was the most common performance aspect (Figure 2.7). Out of the 149

3We mean by instance how many times it appeared per category rather than per paper
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extracted performance requirements, time behavior was specified in (71) require-
ments (e.g., The system shall be able to search for a specified product in less than 1
second.4), followed by capacity (38) (e.g., The system must handle at least 100 con-
current users and their operations5), speed/throughput (18) (e.g., The system shall
be able to retrieve 200 products per second.6), efficiency (13) (e.g., Management –
all management software functions shall take optimal advantage of all language,
compiler and system features and resources to reduce overheads to the minimum
practical level.7) and resource utilization (9) (e.g., The FTSS software and the Vx-
Works operating system, together shall [SRS193] utilize no more than 3 megabytes
of ROM.8).

We can see from Figure 2.7 that most of the SRS documents with perfor-
mance requirements were written for web applications, followed by real-time and
embedded systems. There was a diversity in terms of performance aspects in the
specified requirements for web applications, whereas for real-time systems and em-
bedded systems the specified requirements were mostly related to time behavior.
A similar observation can be made by looking at Figure 2.5 where web application
and embedded system appeared in 22 instances each and real-time systems in 19

40000-gamma (the id of the SRS)
52008-fiber
60000-gamma
72002-evla back
82000-nasa
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Figure 2.7: Mapping of extracted requirements between performance aspect and
application type

instances. The importance of performance in web application, embedded systems
and real-time system is not surprising. In a web application a large number of
application users are distributed and use different communication media to access
the application. Embedded and real-time systems are crucial to perform optimally,
since a safety hazard could arise if performance is not addressed. For instance,
in self-driving cars the time behavior for reading the value of a sensor is crucial
and needs to be specified explicitly, allowing the product to be tested against that
specification.

In both the identified primary studies and the reviewed SRSs, time behavior was
the most common performance aspect. Nonetheless, the other performance aspects
are also relevant, since they appeared in a median of 10 instances each (except effi-
ciency) and specified in 78 requirements combined. That said, we should consider
all the performance aspects when modeling performance requirements. Efficiency
was the least studied (found in one paper [97]), and the least quantified in (3)
requirements (Figure 2.8). However, efficiency was specified in (13) requirements,
from which we conclude that efficiency is difficult to document and quantify. We
found few examples of quantified efficiency requirements: 1) The external server
data store containing RLCS status for use by external systems shall be updated once
per minute9, and 2) The system must accomplish 90% for transactions in less than

92004-rlcs
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Figure 2.8: The frequency of total and quantified performance requirements per
performance aspect

1 second.10. The examples show that it is possible to quantify efficiency. In the
first requirement ”only once every minute” and in the second ”90%...less than 1
second”. Both combine two performance aspects, i.e., capacity and time behavior.

Looking at testing levels, performance testing research seems to focus on system
level testing (Figure 2.3). This observation coincides with the notion that software
performance is not associated with a single function, but rather associated with
the overall system and influenced by its structure. This is also shown in the per-
formance requirements models used in MBT. The purpose of those models is to
verify the overall system behavior, e.g., timed-automata [98, 93, 99] and behavior
models [84, 100].

We extracted 50 performance requirements models and categorized them into
11 main categories (Figure 2.3) 11. All 11 categories had models which were used
to model time behavior requirements. The purpose of those models is to verify if
the written requirements are met. This is accomplished by comparing the testing
results with the corresponding performance requirements.

102008-viper
11The clustering of those 50 models into 11 clusters is available online [96].
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The most studied models were timed-automata and UML-related diagrams.
Timed-automata were used to model and analyze the time behavior by measuring
time differences between different states, which can model and verify time behavior
aspects of software performance. However, timed-automata models have two main
drawbacks. First, the models do not make the factors influencing performance
explicit, which is needed to generate better test cases for performance require-
ments. Second, timed-automata can only model time behavior and are unable to
cover other performance aspects [101], and are therefore only adequate when time
behavior is the only performance aspect that needs to be tested. As we can see
from our analysis of SRSs, time behavior is seldom the only performance require-
ment. UML-based models use an annotation approach to make the performance
requirements more intuitive and the system behavior more understandable [84].
UML-based models solely document performance requirements, and are not used
for test case generation of performance requirements. In many cases where UML
is used, the performance requirements (e.g., time behavior, or capacity) is set on
the model as annotation, which is later used during the test generation to add an
extra assert to check this requirement. This model annotation is beneficial to ver-
ify the performance constraints of a functional requirement in a test-environment
(machine resources and test data).

The models and frameworks that we extracted during the SMS were mostly
newly developed with little to no validation [102, 103, 104, 105] as seen in Fig-
ure 2.4 (a). Although 31 case studies exist that validate those models (e.g., timed-
automata), researchers still develop new performance requirements models and
testing frameworks (Figure 2.4 (b)). The reasons for developing those models and
frameworks are various:

1. Model-based performance testing in a specific field has not been done before,
e.g., robotics [84], self-adaptive systems [106] and cloud API [107], has not
been studied for a specific performance aspect, e.g., resource utilization [100,
108, 105] or time behavior [109], or has not been proposed in a particular
development stage, e.g., early before a prototype is created [110], or late
during run-time [111].

2. Issues associated with human factors where it is difficult to understand the
model [112, 113], it takes extra effort to create the model [94, 114], or the
current approaches are prone to human error [115].

3. The lack of automation in the current MBT approaches [116, 117, 118, 119]

4. Others reasons, e.g., using petri nets to model time behavior aspects [120].

A majority of the analyzed papers (46) suggest a new concept or framework for
MBT, using formal theory research (Figure 2.4). This set is followed by 41 papers
conducting field studies and field experiments that aim at validating the new model
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presented in the same paper. This focus on theoretical work and studies in a relative
controlled environment is another indication that the models are not validated
under realistic conditions, as also observed by Prenninger et al. in their review of
eight case studies on MBT [121]. A similar observation can be made by looking at
the contribution of theses papers in Figure 2.4 (b) where most papers introduced
new ideas and methods rather than evaluating pre-existing models. It would be
crucial to evaluate those models, as the lack of evaluation of MBT techniques poses
a risk factor of using those techniques in industry practice. This factor influences
the techniques’ reliability, and evaluated techniques would positively affect their
adoption in future software projects [9].

4.4 Implications of the SMS on performance requirements
in MBT

We gained useful insights on performance requirements modeling in the context
of MBT by conducting the SMS. First, performance requirements that were not
studied before, (e.g., resources and speed/throughput), gained interest in recent
years, as seen in Figure 2.6. This is an indication that more research is required
in these aspects. Second, some performance attributes (e.g., time behavior) were
used as test verdicts [115], while others (e.g., capacity) were used as a foundation
to the test environments [122]. Third, performance requirements could be modeled
separately from functional requirements, and test environments could be generated
from the model [123].

However, we argue that the performance requirements models found by our SMS
(Figure 2.3), do not satisfy all goals of MBT simultaneously, i.e., support require-
ments validation, ensure requirements testability, and support test case generation.
Therefore, we developed PRO-TEST to aid the model-based performance testing
process, which we introduce next.

5 PRO-TEST

In this section, we introduce and evaluate the Performance Requirements Verifica-
tiOn and Test EnvironentS generaTion approach (PRO-TEST). PRO-TEST aims
at checking the completeness and correctness of performance requirements and at
generating the parameters of test environments.

Figure 2.9 illustrates the MBT process in the context of performance testing.
The figure is a modified version of Utting et al.’s [10] MBT process diagram that
we introduced in Section 2.2. The modified process steps are shown with dot-
ted arrows, and the modified/added artifacts are filled in grey color. We made
three modifications to the diagram. First, we split the step of requirements mod-
eling into two sub-steps: functional modeling (1-1) where a model is created from
the functional requirements, and performance requirements modeling (1-2) where
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performance requirements are modeled. Second, we added an iterative process be-
tween the requirements and the created models (functional and performance). This
change underlines how MBT supports requirements validation (an MBT goal). The
modeling stage should detect requirements issues and changes should be made to
the requirements to fix these issues. Third, we added a new Step 5, in which test
environments are generated from the performance requirements model. The soft-
ware performance is thereby directly related to the test environment. Setting up a
test environment requires specifying setup parameters (e.g., capacity of users) and
metrics parameters (e.g., response time). These parameters are derived from the
performance requirements models.

In summary, PRO-TEST consists of 1) performance requirements modeling and
2) test environment generation. These activities correspond respectively to step 1-2
and step 5 in Figure 2.9. The approach is not meant to be used as standalone but
rather accompanied by any MBT approach that generates functional test cases,
which results in functional test cases mapped to test environments that test the
performance of the SUT.

We illustrate PRO-TEST’s core concepts in Section 5.1 and explain the steps
and guidelines for creating the performance requirements model in Section 5.2.
Additionally, we explain the steps of generating test environments in Section 5.3,
illustrate its application on an example in Section 5.4, and apply PRO-TEST on
a set of 149 performance requirements in Section 5.5, discussing the strengths and
weaknesses of the approach.

5.1 PRO-TEST approach development and description

We intend to propose a modeling approach that addresses the limitations of current
model-based performance testing. Specifically, the modeling of the five performance
aspects in Section 2.1 to verify the requirements while generating test environments.
Looking at the existing approaches that we identified in our SMS, we found that
performance requirements affect test environments. Therefore, instead of creating
an approach that models both performance and functional requirements, we chose
to develop an approach that focuses on modeling performance requirements and
generating test environments. This approach can be accompanied by existing well-
established MBT approaches that already handle functional modeling and testing.
By focusing on performance requirements, we increase the chance of our approach
being used by practitioners who are already using existing MBT for functional
testing, without the need to replace their existing tools but add to what they
already use.

The development of PRO-TEST was inspired by two related principles. First,
the experiment principle that illustrates the relationship between dependent and
independent variables [124]. Second, cause-effect graphs (CEGs) [125] that can be
used to model the relationships between causes and effects.

We analyzed the different performance aspects while having the cause-effect
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Figure 2.9: MBT Process in the context of performance testing

concept in mind. The main insight we had is that one set of performance require-
ments (capacity, resource constraints) can influence another set (time behavior,
throughput, efficiency). This concept is shown in a taxonomy tree (Figure 2.10)
that classifies the aspects in independent and dependent performance parameters.
The independent parameters consist of capacity (e.g., the maximum number of
users), and resource constraint (e.g., storage size), which represent constraints on
the software. The dependent parameters consist of time behavior (e.g., response
time), throughput/speed (e.g., requests per time unit), and efficiency (e.g., re-
sponse time in regards to memory size), and are measurements of the software
performance. The manipulation of the independent parameters causes changes in
the dependent parameters. For example, if we require the system to use fewer re-
sources (all other things being equal), it would lead to a higher response time, lower
throughput, or efficiency. The purpose of this taxonomy tree is to identify which
performance requirements are the influencing factors and which ones are impacted,
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Figure 2.10: Performance Parameters Taxonomy

as this is important to distinguish when modeling testable system requirements.
The taxonomy tree is by no means exhaustive, but rather a classification of the
most common (studied and specified) performance requirements.

In the previous paragraph, we used the term resource ”constraints” instead of
”utilization” in order to emphasize the interpretation of the parameters as an inde-
pendent parameter. Looking at our results from the SRS analysis, we found that
the specified resource utilization requirements could be both a dependent variable
that we measure when we run the tests or an independent variable that affects the
dependent variables when constructing and running the tests. For example, if we
take the requirement ”The FTSS software and the VxWorks operating system, to-
gether shall [SRS193] utilize no more than 3 megabytes of ROM.” 12, there are two
methods to test it. Firstly, we run the tests, measure the utilized ROM, and make
sure the software does not utilize more than 3 megabytes. Alternatively, we set up
a test environment with 3 megabytes of ROM as a constraint, run the tests, and if
the tests run completely, then the software satisfies this requirement. We chose to
apply the second method (hence the use of terminology resource constraints) since

122000-nasa
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it works better when the specified requirement affects our decision when setting
up the test environment. For instance, to test the requirement ”GParted is not
a resource hog and will run on almost every computer” 13, we can’t run the tests
and measure the utilized resources (even if this requirement is to be quantified).
Instead we need to define a set of representative computers and run the tests on
them.

Object
Independent 
parameter 

(input)

Dependent 
parameter 
(output)

Figure 2.11: Performance requirements model

Figure 2.11 presents the main components of a performance requirements model.
The model consists of three main parts:

1. The object element referring to the SUT or part of it, i.e., a function that
has the performance requirements associated with it.

2. The independent parameters which act as inputs. They affect the test envi-
ronment where the test runs and affect the test data.

3. The dependent parameters which act as outputs. They are the metrics or
results of running the tests, used to compare the test results with the written
performance requirements.

Performance requirements are modeled with PRO-TEST using the taxonomy
tree that acts as a guide when extracting, categorizing, and finding missing perfor-
mance requirements.

5.2 Performance requirements model

There are three steps that should be followed when modeling the performance
requirements of the software.

• Step 1: Define the objects. Look up the object that the performance require-
ments on hand applies to. The objects could be the system, specific functions,
or a collection of functions.

• Step 2: Define the independent and dependent parameters. Extract the per-
formance parameters from the requirements, and code them with the appro-
priate performance aspect using the taxonomy tree. Then add those param-
eters to the corresponding model.

132010-gparted
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• Step 3: Compare the model with the taxonomy tree. Take the created perfor-
mance requirements model and compare it with the taxonomy tree. Look for
any possible missing parameters. If some parameters are missing, look for
the possibility of merging models with the same object. If there are still some
missing parameters, then there is a problem with the requirements. Check
with requirements engineers or customers to negotiate the requirements. Oth-
erwise, the model is complete and the specified requirements are quantified
and can be tested. When the modeling is done, the next step is to design the
test suite.

When using PRO-TEST with performance requirements, one should take into
consideration the following guidelines which help to model the requirements.

• Guideline 1: Verify the completeness of the requirements. Check the relation
between different requirements. There should be a correspondent indepen-
dent input for each dependent output. Having one without the other would
result in ambiguous requirements, which would reflect an incomplete perfor-
mance requirements model.

• Guideline 2: Verify feasibility. The requirement should fit with one of the
performance aspects’ definitions in Section 2.1.

• Guideline 3: Verify quantifiability. Each requirement should have a quantity
that describes the target level of performance, and an object that specifies
where the target level applies (system, a specific function, or a collection of
functions).

• Guideline 4: Specific condition. Check if the requirements apply in specific
circumstances or scenarios. The performance requirements might have the
same objects but under different conditions, i.e., peak time. In this case,
one should make a different model for each of those conditions, because each
condition has different parameters that apply to the test environment and
different measurement levels.

• Guideline 5: Mandatory performance aspects. To generate meaningful test
environments, each model requires the following performance aspects to be
specified: 1) capacity and resource constraints to help set up the test envi-
ronment, and 2) time behavior or throughput which acts as the metric to
measure when running a test.

While these suggestions stem from our experience of modeling nearly 150 per-
formance requirements from 34 SRS documents, they are not exhaustive and should
not be considered as rules.
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5.3 Generating Test Environments

One of the goals of PRO-TEST is to generate test environments, which aids the
verification of performance requirements in the SUT. As seen in Figure 2.9, the
generated test environments are required to run performance test and affect the
outcome of performance tests.

Using the created performance requirements models, we generate parameters
for the test environments. These parameters are divided into two groups: con-
straints and metrics. The constraints parameters are required to set up the test
environments and stem from the independent parameters in the taxonomy in Fig-
ure 2.10. The metrics parameters are indicators for the success or failure of the
test cases run in the test environment, and stem from the dependent parameters
in the taxonomy in Figure 2.10.

1 Create constraintsList

2 Create metricsList

3 Add resource constraints to constraintsList

4 Add capacity to constraintsList

5 Add time behavior to metricsList

6 Add speed/throughput to metricsList

7 Add efficiency to metricsList

8

9 Create environmentsList

10 CALL testEnvGenerator with constraintsList and metricsList

11 Add the generated environment to the environmentsList

12 FOR each constraint in constraintsList

13 CALL testEnvGenerator with constraint and metricsList

14 Add the generated environment to environmentsList

15 END FOR

16

17 CALL mapTestCasesToEnvironments with environmentsList

Listing 2.1: Test Environment Generation Algorithm

We show in Listing 2.1 the algorithm to generate the test environments that will
be used to run the test cases. The algorithm consists of three main steps. 1) Create
two lists of parameters, constraintsList and metricsList, and add the parameters
from the created performance requirements models to the corresponding list based
on the classification in the taxonomy tree. 2) Create an environmentsList, one
for each parameter in the constraintsList with all parameters in the metricsList,
and an environment where all parameters in constraintsList and metricsList are
included. 3) Map the test cases to the created environments in environmentsList.
The test cases mapped to the test environments are those that verify the object
(e.g., function) to which the performance requirements refer.

To automatically generate test environments from the created performance re-
quirements model, we implemented a Python script 14. The script takes as input
the list of performance requirements models (in CSV format) created by the tester.

14The test generation script is available online [96]
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The output of the script is a list of test environments (in JSON format). Each test
environment consists of a list of constraints to construct the test environment and
object-metric pairs that indicate what functions should be tested and measured in
this environment. We chose JSON as output format since it is a widely used in
practice. Generating test environments in this format makes it fairly easy to adapt
to different testing tools.

5.4 Example of PRO-TEST

To illustrate PRO-TEST, we present an example, following the three steps de-
scribed in Section 5.2 for creating the performance requirements model. Then,
we generate parameters for test environments following the test environment gen-
eration presented in Section 5.3. We extracted performance requirements for a
telescope control software shown in Table 2.4.

Status display 
update

Command 
response

Request for 
status info

User interface

Software

Figure 2.12: PRO-TEST Example — Step 1
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Table 2.4: Example Performance Requirements for PRO-TEST Approach Demon-
stration

No. Performance Requirements Performance Aspect

PR1 The Gemini software should have no hard restrictions on the number
of simultaneous users, but should allow for policy decisions that
do restrict the amount of simultaneous access.

Capacity

PR2 Every command must be accepted/rejected within 2 sec and before

the corresponding action occurs. (This is different than the ACK-
/NAK response of the communications protocol - here, the target
system must have examined the command and verified its validity.)

Time Behavior

PR3 Status display update must be within 4 sec at the local stations

(certain functions, such as telescope position, may have tighter con-
straints). Remote station update response is given in the Require-
ments for Remote Operations section.

Time Behavior

PR4 Requests of subsystems for status information must be answered
within 5 sec and be possible in maintenance level operation.

Time Behavior

PR5 Requirements for response times within the user interfaces are given
in the User Interface requirements section.

Time Behavior

PR6 The user interface should rather be seen as a package to be callable
from a large number of stations, depending on where a user is.

Capacity

PR7 The user interface should also be network transparent so that it
does not matter where it is being run.

Resource Constraints

PR8 As a conclusion, the Gemini 8m Telescopes control software shall
allow simultaneous operation of up to six active control nodes
and up to two more monitoring nodes (one local and one remote)
without appreciable degradation of performance.

Capacity

PR9 In practice the operation and facilities foreseen so far for the Gem-
ini 8m Telescopes will limit this number to a maximum in the or-
der of three active nodes, but the Gemini 8m Telescopes computers
and software shall be capable of coping with the load of 10 active
nodes, should the case arise.

Capacity

PR10 All software bugs should be logged and then fixed as soon as possible
after detection. The goal is to have restart conditions occur only on
hardware failure. Fault recovery, exception handling, fail-safe checks,
etc. should be used to improve reliability.

Availability

The requirements in this table were extracted from the SRS document 1995-gemini

Performance requirements model

Step 1: Define the objects. We defined five objects from the requirements:
command response, status display update, request for status info, user interface and
software. Then we created five models, one for each object as shown in Figure 2.12.

Step 2: Define the independent and dependent parameters. We extracted
the performance parameters (10 active nodes, large number of stations, simultane-
ous users, 6 active control nodes & 2 monitoring nodes, ≤ 2 sec, ≤ 4 sec, ≤ 5 sec
and network) from the requirements, and coded them with the related performance
aspects as per the taxonomy tree. We present the associated performance aspect
in the last column of Table 2.4. Then we added those parameters as independent
and dependent parameters in the model as shown in Figure 2.13. At this stage we
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identified four issues in the requirements:

1. PR10 is an availability requirement, which is not to be found in our taxonomy
tree (guideline 2), hence we exclude PR10. 2) PR5 indicates that there should
be a time behavior requirement for the user interface. However, we examined
the SRS document and we did not find any time behavior requirements for
the user interface. Hence, PR5 can not be modeled and it indicates a missing
requirement.

2. PR1 (simultaneous users), PR6 (large number of stations), and PR7 (net-
work) are not quantified (guideline 3).

3. PR6 is ambiguous as ”without appreciable degradation of performance” is
not unclear.

4. PR8 and PR9 are conflicting requirements. PR8 specifies a capacity of 8
nodes (6 active plus 2 monitoring), however, PR9 specifies a capacity of 10
active nodes.

Step 3: Compare the model with the taxonomy tree. We compared the
created model with the taxonomy tree to identify any possible missing parameters.
We put the possible missing requirements on each corresponding model as seen in
Figure 2.14. Resource constraints parameters are missing from the models and the
specified requirements for the software since there were no requirements indicating
resource constraints. Another issue is that the requirement PR5 (large number
of stations) applies to other parts of the system as well (missing requirement).
Moreover, there are no performance requirements from the dependent parameters
(time behavior, speed/throughput, or efficiency) that apply to the software or the
user interface.

At this point of the analysis, the identified issues should be discussed with
the requirements engineers or customers to negotiate the requirements and fix the
issues: asking for 1) the missing requirements, 2) quantify PR1, PR6, and PR7, 3)
clarify or reformulate the existing requirement PR8 into two requirements, one that
specifies the capacity for the software, and the other that specifies the dependent
parameter e.g., time behavior, and 4) resolve the conflict in the requirements PR8
and PR9.

Test environments generation

We generate test environments parameters following the test environment gen-
eration algorithm presented in Listing 2.1. We feed each model in Figure 2.14
(constraints and metrics) to the algorithm as input, and as output we get a set of
environments (one per constraint and one with all constraints). This makes debug-
ging easier, as the tester can identify the troublesome performance constraint(s)
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Status display 
update

Command 
response

Request for 
status info

User interface

Software

10 active nodes

6 active control nodes 
+ 2 monitoring nodes

? network

<= 2 sec

<= 4 sec

<= 5 sec

?

? 

? simultaneous users

10 active nodes

? simultaneous users

10 active nodes

? simultaneous users

? simultaneous users
? large number of stations

10 active nodes

? simultaneous users

6 active control nodes 
+ 2 monitoring nodes

10 active nodes

6 active control nodes 
+ 2 monitoring nodes

6 active control nodes 
+ 2 monitoring nodes

6 active control nodes 
+ 2 monitoring nodes

Figure 2.13: PRO-TEST Example — Step 2

just by looking at the constraint(s) used to construct the test environments in
which the failed test was run.

We used our test environment generations script to automatically generate test
environments from the created models. In Figure 2.15, we show the structure of
the generated file. The root node of the file contains an array of generated test
environments. Each test environment consists of a list of constraints and a list of
object-metric pairs. A constraint presented using a description and an att class
(the performance aspect). An object-metric pair consists of the object to be tested
(e.g., a function), and the metric to be measured. A metric is presented using a
description and att class. Errors in the modeled performance requirements will be
shown in errors.

The results of generating test environments can be found in Table 2.5. The
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Status display 
update

Command 
response

Request for 
status info

User interface

Software

10 active nodes

6 active control nodes 
+ 2 monitoring nodes

? large number of stations

<= 2 sec

<= 4 sec

<= 5 sec

?

? 

? simultaneous users

10 active nodes

? simultaneous users

10 active nodes

? simultaneous users

10 active nodes

? simultaneous users

10 active nodes
? simultaneous users

6 active control nodes 
+ 2 monitoring nodes

6 active control nodes 
+ 2 monitoring nodes

6 active control nodes 
+ 2 monitoring nodes

6 active control nodes 
+ 2 monitoring nodes

resource constraints?

resource constraints?

resource constraints?

network
resource constraints?

resource constraints?

Figure 2.14: PRO-TEST Example — Step 3

rows 1-4 can be used to construct test environments. This is not possible for the
remaining rows (5-8), as they are missing constraints and/or metrics. For instance,
the question mark in row 5 for the constraint simultaneous users is an indication of
a missing quantity of simultaneous users. As we mentioned earlier in this section
the requirements should be negotiated with the customer, so we can fill the gaps
in our tests.
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test environment

constraints

0

description

att class

1

description

att class

...

object metric pairs

0

object

metric

description

att class

1

object

metric

description

att class

...

errors

Figure 2.15: Test environment JSON file structure

5.5 Sample study - model evaluation

We applied PRO-TEST on 34 SRS documents from the SRS collection. We ex-
tracted in total 149 performance requirements from the SRS documents, i.e., re-
quirements that fit the definition of performance aspects in Section 2.1.

We extracted the performance requirements from the SRS collection and applied
PRO-TEST by modeling the requirements as explained in Section 5.2. We did not
generate test environments from the created performance relational models, since
test environments generation would be more meaningful if used with another MBT
approach to generate test cases from functional requirements. This is outside the
scope of this paper.

In Table 2.6 we present two types of defects found by PRO-TEST. The first
defect is related to quantifiability. We found that 106 out of 149 requirements
were quantified, while the remaining 43 were quantifiable but were not actually
quantified (e.g., ”The product will reside on the Internet so more than one user
can access the product and download its content for use on their computer.”15).

The second type of defect is related to under-specified or missing requirements.
We found a total of 180 missing parameters in the analyzed requirements. The
majority of them (100) were related to resource constraints, followed by capacity
(39), time behavior (22), and throughput/speed (19). No missing parameters for
efficiency requirements were detected. As defined in Section 2.1, efficiency is a

152001-space fraction
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Table 2.5: PRO-TEST Example - Test Environments Summary

Id Constraints Object (Measure)

1 10 nodes Command Response (≤ 2 sec), status display update (≤ 4
sec), request for status info (≤ 5 sec), software

2 100 simultaneous users Command Response (≤ 2 sec), status display update (≤ 4
sec), request for status info (≤ 5 sec), software

3 10 nodes, 100 simultaneous
users

Command Response (≤ 2 sec), status display update (≤ 4
sec), request for status info (≤ 5 sec), software

4 10 nodes User interface
5 ? simultaneous users User interface
6 ? network User interface
7 ? number of stations User interface
8 10 nodes, ? simultaneous

users, ? network, ? number
of stations

User interface

Table 2.6: PRO-TEST evaluation results

Defect Quantity

Not-quantified Requirements 43
Under-specified Parameters 180
Under-specified Resource constraints 100
Under-specified Capacity 39
Under-specified Time-behavior 22
Under-specified throughput 19
Under-specified Efficiency 0

combination of more than one parameter. Hence, to some extent, the existence
of those parameters (e.g., time behavior and resources constraints) eliminates the
need for efficiency requirements.

In the included SRS documents there were 204 performance requirements, cate-
gorized by the original author of the SRS; We identified and categorized 132 of those
requirements, while we could not fit 67 requirements to any of the performance as-
pects definitions in Section 2.1. For example, ”Assuming submitted statistics for
jobs are accurate, the Libra scheduler will ensure that all jobs are completed with a
10% error allowance.”16. Other requirements were hard to understand how they
fit in performance requirements, e.g., ”The database retrieval and update response
time shall not impact any other performance requirements such as the GUI response
time or monitoring and control responses.”17. This requirement mentions response
time, but it does not clearly state where does it apply or what the target level of
performance is. There were some requirements that were more difficult to identify,

162001-libra
172004-rlcs
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e.g., ”The HATS-GUI shall allow a user to request transformations while HATS-
SML is performing transformations or parsing.” 18. It could be argued that this
requirement is an efficiency requirement. But reading it carefully we concluded
that this is not a performance requirement, but rather a usability requirement
that demands parallel processing or multitasking. According to Ho et al. [126],
a performance requirement can be categorized into four levels (0 to 3). These
levels show the maturity, suitability, and validation of performance requirements.
Based on their definition, this requirement is classified as level 0 (lowest), which is
descriptive and can only be evaluated qualitatively. The requirements in this para-
graph were extracted from 2001-libra, an SRS for economy-driven cluster scheduler
for high-performance clusters, 2004-rlcs, an SRS for an interstate reversible lane
control system, and 2001-hats, a high assurance transformation system. Relying
solely on a qualitative evaluation of performance in these systems leads potentially
to unsatisfied customers.

Out of the 149 requirements, 43 were not quantified. Those requirements fall
into two categories. (1) Requirements with minor issues, i.e., just missing the
numerical value. For example ”The tools shall be able to scale to process large
collections using distributed processing and data transport.”19. This is a capacity
requirement, that applies to the whole tool (object). However, the size of the
collection is not defined; it could be 100 or 100,000. Since the requirement does
not specify a range, we do not know how to test it. (2) Requirements with major
issues. For example ”Loading speed: The data system shall load as quickly as
comparable productivity tools on whatever environment it is running in.”20. This
requirement refers to efficiency in an ambiguous manner: ”as quick as possible”
and ”on whatever environment”. No test could be written to verify if the system
satisfies this requirement.

Performance aspects were not considered equally by the requirements engineers
when writing the SRS documents, which shows the lack of knowledge in the inter-
dependency relation between different aspects as shown by PRO-TEST. 100 out
of 109 created models had missing requirements in resource constraints. It could
be argued that resource constraints are not a part of performance requirements.
However, it does affect software performance, and there were some SRS documents
that specified resource constraints properly e.g., ”The Framework Shell SHOULD
NOT utilize more than 40 megabytes of RAM.”21.

We generated 96 test environments from the performance requirements models
that we created from the SRS collection. All of the generated test environments
had missing or unquantified requirements.

Bondi [127] suggested that a performance requirement should have nine charac-
teristics: unambiguous, measurable, verifiable, complete, correct, mathematically

182001-hats
192009- warc III
202006-stewards
212005-znix
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consistent, testable, traceable, and can be linked to business and engineering needs.
Our study corroborates that PRO-TEST supports a subset of these characteristics:
it helps engineers in verifying performance characteristics as it makes lack of infor-
mation explicit (completeness and quantifiability), it detects unclear information
(ambiguity), and associates performance requirements to test environments.

6 Discussion

In this section, we discuss the different aspects of PRO-TEST. We compare the
performance taxonomy and the performance aspect inter-dependency relation with
those from the literature, list the limitations of the approach, discuss how the
approach differs from other MBT approaches, show our observations regarding
performance requirements, and finally we discuss PRO-TEST with performance
prediction.

6.1 Previous performance aspect classifications

As we saw from our SMS and SRS analysis results, five performance aspects were
studied and used in practice. Thus, testers should consider these aspects when
testing software performance. Eckhardt et al. [128] specify a template to write
performance requirements. They considered three aspects of performance require-
ments, namely time behavior, throughput and capacity. In addition, they specified
performance context (e.g., platform, measurement location and load) as part of
each requirement. However, they do not consider resource constraints, but rather
the platform (hardware) under which the requirement applies. It is seldom the case
that specifying hardware requirements is enough to test system performance and
ensure the desired time behavior, throughput and efficiency. For instance, smart-
phone applications, vehicles software, cloud services, and desktop applications, all
share resources with other applications running on the same platform. In this
case, performance testing verdicts are more reliable when we specify the available
resources for the system rather than the platform it runs on. Nixon et al. [129]
categorized performance requirements into time (response time, throughput and
management time) and space (main memory, secondary storage). They did not
account for capacity which we consider in our taxonomy tree.

6.2 Performance aspects inter-dependency

The dependency relation between the five performance aspects as far as we know
was not observed before. Cai et al. [130] considered two aspects of performance,
time and space, and called the relation between these aspects side-effects. They
did not define clearly the nature of the effect, nor considered the other performance
aspects. Eckhardt et al. [128] proposed that each specified performance requirement
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should have platform and load in the same requirement, since these aspects affect
all other performance aspects. They do not consider the case when platform and
load requirements are specified in separate requirements, which can be the case as
we saw in our SRS analysis results.

6.3 PRO-TEST benefits

Using PRO-TEST to model performance requirements and generate test environ-
ments has the following benefits:

1. It helps software engineers to understand the requirements better. When the
performance requirements are visualized and by using the taxonomy tree, it
becomes easier to find the relation between the requirements and how they
relate to functional requirements

2. It acts as a validation tool for the requirements. By modeling the performance
requirements, we can find out 1) if there are issues with some requirements,
which can not be modeled, and 2) if other requirements are missing.

3. It informs software testers in what environments the tests should be run.
This saves time and resources as it allows testers design efficient test suites.

6.4 PRO-TEST limitations

There are some limitation of using this modeling approach to model performance
requirements. First, the taxonomy tree is rather abstract. By using the taxon-
omy, we can identify that capacity requirements are missing, however, currently it
provides no support or details about what is missing, e.g., data, users, requests.
These could be specified in more detail in further nodes of the taxonomy. Second,
the approach is prone to human error. Since the extraction and coding of the pa-
rameters is done manually, the process depends on the engineers’ interpretation of
the requirements. This could be avoided by automating the process using natu-
ral language processing. Fourth, a lack of inspection of the requirements’ quality.
As argued by Bondi [127] a good performance requirement should specify to what
degree a requirement should be met, i.e., we should specify if the requirement ap-
plies all the time or a specific amount of the time (99% of the time). Using the
PRO-TEST we do not detect those quality aspects of the requirements.

The main limitation of our approach of test environments generation, is that
it can be difficult for a tester to debug the failed performance test. PRO-TEST
generates one test environment per constraint, in addition to a test environment
that aggregates all constraints. If performance tests fail in the test environment
that aggregates all the constraints, then it is difficult to identify which interaction
of the test constrains is the cause of the failure.
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6.5 Observations on dependent and independent parameters

The dependent parameters (time behavior, throughput, efficiency) were more often
specified than independent parameters (capacity, resource constraints) in perfor-
mance requirements. This is clear from the results, where out of the 180 under-
specified requirements 139 missing requirements were under the category of inde-
pendent parameters (i.e., capacity and resource constraints). There could be many
reasons for this outcome. First, it is possible that some requirements engineers or
customers have a misconception when it comes to some performance aspects. Re-
source constraints could be thought of as part of hardware specifications. Second,
it may be more difficult to specify those parameters during the initial stage of a
software development cycle. If no prior experience exists it is difficult to asses how
much resources are utilized or capacity required, i.e., no clear estimation existed
about capacity. This increases the risk of scalability issues appearing later. Sim-
ilar to what happened at the PokemonGo launch [68], as the developers did not
expect the big surge in the number of users. Third, resource constraints was left
out intentionally. Today hardware virtualization is used extensively in deployed
applications, it is very flexible and affordable to invest in higher specs hardware
than more efficient software.

6.6 Performance prediction

Performance prediction is an approach to ensure the performance of the system
by simulating the system behavior. Similar to MBT, performance prediction can
use models to illustrate the system behavior [131, 69]. Performance prediction is
used to validate the system performance early before building the system (e.g.,
in a simulated environment) [131]. In contrast, PRO-TEST verifies performance
requirements through modeling and generates test environments for performance
testing.

Performance prediction is useful in systems with hardware components, where
we want to understand the effect of the components used on the system perfor-
mance. At the same time, the PRO-TEST and model-based performance testing
approaches are appropriate to generate means of testing the software before de-
ployment.

7 Answering the research questions

We answer now our four main research questions.

RQ1 Which aspects of performance requirements are used in MBT?

All performance aspects presented in Section 2.1 were used in MBT but to
different extents. Time behavior was the most studied by researchers and specified
by practitioners in the SRSs. Capacity, throughput, and resource constraints were
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studied and specified but to a lesser extent compared to time behavior. Efficiency
was the least studied aspect with one paper and was only quantified in about 3 out
of the 13 written efficiency requirements. We found many models that can be used
to model those aspects. We can see in Figure 2.3, many of the models were used
to model more than one performance aspect.

RQ2 How to implement MBT on performance requirements aspects?
We found 50 models in the literature to model software performance require-

ments, and grouped them into 11 clusters (Figure 2.3). The purpose of those
models is to document and visualize performance requirements. Those models do
not satisfy the goals of MBT, which are 1) validate the specified requirements,
2) better understand those requirements, and 3) generate a suitable test suite.
Hence, we developed PRO-TEST that consists of a model and a taxonomy tree for
performance aspects, which verifies performance requirements and generate test
environments. The performance requirements model with the taxonomy tree is not
just a modeling approach for performance requirements. It is also a concept that
identifies the relationship between different performance aspects.

RQ3 To what extend is the identified approach effective at modeling performance
requirements written for real-life projects?

The results from PRO-TEST evaluation indicate that the developed approach
can be used to model requirements from real-life projects. We applied PRO-TEST
to performance requirements from 34 SRS documents. The approach could de-
tect issues related to ambiguity, quantifiability and completeness of performance
requirements. We could also understand the interrelation between those require-
ments. However, there are some limitations to PRO-TEST. 1) The taxonomy tree
is not detailed enough, e.g., we do not know which type of capacity is missing
(users, data size). 2) manually modeling the requirements is prone to human er-
rors. Those limitations should be addressed to achieve the maximum benefits of
MBT.

8 Conclusions and future work

In this study, we illustrated how PRO-TEST can improve the understanding of per-
formance requirements and support the identification of requirement defects. We
conducted a systematic mapping study in the context of model-based performance
testing and studied a repository of publicly available software requirements. We
found from our SMS that researchers studied and modeled all performance aspects.
However, there was a need to develop an approach to verify performance require-
ments that takes into consideration the goals of MBT. We developed PRO-TEST
and showed by our evaluative study that it can be used to verify performance
requirements and generate test environments. The benefits of PRO-TEST adds
value to MBT. It helps software engineers to understand the requirements better,
validate them, and generate test environments semi-automatically. In addition to
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the performance relational model, we developed the taxonomy tree, which shows
the cause-effect relation between different performance aspects.

Future work concerns more in-depth validation of PRO-TEST, finding solutions
for the limitations of the approach, extending PRO-TEST to existing diagrams, and
other non-functional requirements. We have identified the following possible direc-
tions for future work, which would be of benefit to researchers who are interested
in this area.

1. Apply the proposed modeling technique on a larger set of well-built SRS with
relatively completed performance requirements and to enhance PRO-TEST
further.

2. Investigate the possibility of implementing the relational modeling concept
in other non-functional requirements, e.g., security.

3. Integrate PRO-TEST with MBT approaches that generate functional test
cases, and evaluate the effectiveness of test environment generation.

4. Extend the taxonomy tree by finding the possible sub-categories for the per-
formance aspects.

5. Automate the process of creating the model from natural language require-
ments to avoid human errors.

Finally, we hope that this list of future work inspires researchers to do more
research in the area of model-based performance testing and performance require-
ments veri.
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Appendix

1 Included Papers in the SMS (Chapter 2)

Table A.1: Included papers in the SMS

No. Title Author Year

S1 Model-based performance testing in the cloud using the
mbpet tool

Abbors et al. 2013

S2 Approaching performance testing from a model-based test-
ing perspective

Abbors et al. 2010

S3 Model-based testing of a real-time adaptive motion plan-
ning system

Abdelgawad et al. 2017

S4 GeTeX: A Tool for Testing Real-Time Embedded Systems
Using CAN Applications

AbouTrab et al. 2011

S5 Test generation for performance evaluation of mobile mul-
timedia streaming applications

Al-tekreeti et al. 2018

S6 Dtron: a tool for distributed model-based testing of time
critical applications

Anier et al. 2017

S7 Canopus: A Domain-Specific Language for Modeling Per-
formance Testing

Bernardino et al. 2016

S8 Online model-based testing under uncertaint Camilli et al. 2018
S9 Event-based runtime verification of temporal properties us-

ing time basic Petri nets
Camilli et al. 2017

S10 Abstracting timing information in UML state charts via
temporal ordering and LOTOS

Chimisliu et al. 2011

S11 Generation of scripts for performance testing based on
UML models

Da Silveira et al. 2011

S12 Timed testing under partial observability David et al. 2009
S13 Model-Based Test Suite Generation for Function Block Di-

agrams Using the UPPAAL Model Checker
Enoiu et al. 2013

S14 Iterative test suites refinement for elastic computing sys-
tems

Gambi et al. 2013
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S15 Fast model-based test case classification for performance
analysis of multimedia mpsoc platforms

Gangadharan et al. 2009

S16 Fault-driven stress testing of distributed real-time software
based on uml models

Garousi 2011

S17 Automated Steering of Model-Based Test Oracles to Admit
Real Program Behaviors

Gay et al. 2011

S18 Model-driven testing approach for embedded systems
specifics verification based on UML model transformation

Grigorjevs 2011

S19 Usage profile and platform independent automated valida-
tion of service behavior specifications

Groenda 2010

S20 A model-based testing technique for component-based
real-time embedded systems

Guan et al. 2015

S21 Validating Timed Component Contracts Guilly et al. 2015
S22 Towards effective and scalable testing for complex high-

speed railway signal software
Hu et al. 2017

S23 Experiences of Applying UML/MARTE on Three Indus-
trial Projects

Iqbal et al. 2012

S24 Environment modeling and simulation for automated test-
ing of soft real-time embedded software

Iqbal et al. 2015

S25 Applicability of an integrated model-based testing ap-
proach for rtes

Iyenghar et al. 2011

S26 Model-Driven Method for Performance Testing Javed et al. 2018
S27 Experience Report: Evaluating fault detection effective-

ness and resource efficiency of the architecture quality as-
surance framework and tool

Johnsen et al. 2017

S28 Interaction-based runtime verification for systems of sys-
tems integration

Krüger et al. 2010

S29 Quality Assurance for Component-based Systems in Em-
bedded Environments

Li et al. 2018

S30 Timed moore automata: test data generation and model
checking

Löding et al. 2010

S31 Minimum/maximum delay testing of product lines with
unbounded parametric real-time constraints.

Luthmann et al. 2019

S32 Modeling and testing product lines with unbounded para-
metric real-time constraints

Luthmann et al. 2017

S33 Automated significant load testing for ws-bpel composi-
tions

Maâlej et al. 2013

S34 Conformance testing for quality assurance of clustering ar-
chitectures

Maâlej et al. 2013

S35 Model-based conformance testing of ws-bpel compositions Maâlej et al. 2012
S36 Towards an industrial strength process for timed testing Mitsching et al. 2009
S37 Comparative analysis for software testing: Mobile applica-

tions versus web applications
Muhamad et al. 2016

S38 Test Selection for Data-Flow Reactive Systems Based on
Observations

Nguena-Timo et al. 2011

S39 PLeTsPerf - A Model-Based Performance Testing Tool Rodrigues et al. 2015
S40 Evaluating capture and replay and model-based perfor-

mance testing tools: an empirical comparison
Rodrigues et al. 2014

S41 Extending UML testing profile towards non-functional test
modeling

Rodrigues et al. 2014

S42 An experience report on an industrial case-study about
timed model-based testing with UPPAAL-TRON

Rütz et al. 2011

S43 Testing of timing properties in real-time systems: Verifying
clock constraints

Saadatmand et al. 2013
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S44 On Combining Model-Based Analysis and Testing Saadatmand et al. 2013
S45 Functionality, performance, and compatibility testing: A

model based approach
Saqib et al. 2018

S46 Checking response-time properties of web-service applica-
tions under stochastic user profiles

Schumi et al. 2017

S47 Analyzing a wind turbine system: From simulation to for-
mal verification

Seceleanu et al. 2017

S48 Introduction of time and timing variability in usage model
based testing

Siegl et al. 2010

S49 Partitioning the requirements of embedded systems by
input/output dependency analysis for compositional cre-
ation of parallel test models

Siegl et al. 2015

S50 Multi-fragment Markov model guided online test genera-
tion for MPSoC

Vain et al. 2017

S51 Provably Correct Test Development for Timed Systems Vain et al. 2014
S52 System Testing of Timing Requirements Based on Use

Cases and Timed Automata
Wang et al. 2017

S53 A model-based framework for cloud api testing Wang et al. 2017
S54 Towards an integrated approach for validating qualities of

self-adaptive systems
Weyns 2012

S55 Vision paper: Towards model-based energy testing Wilke et al. 2011
S56 System Modules Interaction Based Stress Testing Model Yang et al. 2010
S57 A methodology of model-based testing for aadl flow latency

in cps
Zhu et al. 2011

Table A.2: Extracted Papers from Dias-Neto 2010

No. Title Author Year

S58 Specification-based testing for real-time reactive systems Alagar et al. 2000
S59 Designing fault injection experiments using state-based model

to test a space software
Ambrosio et al. 2007

S60 Generating test suites for software load testing Avritzer et al. 1994
S61 Specification-based testing for real-time avionic systems Biberstein et

al.
1999

S62 On the correctness of upper layers of automotive systems Botaschanjan
et al.

2008

S63 Distributed software testing with specification Chang et al. 1990
S64 Traffic-aware stress testing of distributed systems based on

UML models
Garousi et al. 2006

S65 Testing from a stochastic timed system with a fault model Hierons et al. 2009
S66 Automatic timed test case generation for Web services compo-

sition
Lallali et al. 2008

S67 Regression testing of classes based on TCOZ specification Liang 2005
S68 Generating test cases for real-time systems from logic specifi-

cations
Mandrioli et al. 1995

S69 Derivation of tests from timed specifications according to dif-
ferent coverage criteria

Merayo et al. 2008

S70 T-UPPAAL: online model-based testing of real-time systems Mikucionis et
al.

2004

S71 Generating functional test cases in-the-large for time-critical
systems from logic-based specifications

Morasca et al. 1996
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S72 Mutation-based Testing Criteria for Timeliness Nilson et al. 2004
S73 Model-based testing in evolutionary software development Pretschner et

al.
2001

S74 Specification-based test oracles for reactive systems Richardson et
al.

1992

S75 Model-based testing of object-oriented systems Rumpe 2003
S76 Aiding modular design and verification of safety-critical time-

triggered systems by use of executable formal specifications
Sakurai et al. 2008

S77 An evaluation of a model-based testing method for information
systems

Santos-Neto et
al.

2008
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[18] Mika V. Mäntylä and Casper Lassenius. What types of defects are really
discovered in code reviews? IEEE Transactions on Software Engineering,
35(3):430–448, 2009. Conference Name: IEEE Transactions on Software En-
gineering.

[19] Alp Toygar. A new asset type: Digital assets. Journal of International
Technology and Information Management, 22(4):9, 2013.

[20] Peter E. D. Love, Jingyang Zhou, Jane Matthews, and Harbin Luo. Systems
information modelling: Enabling digital asset management. Advances in
Engineering Software, 102:155–165, 2016.

[21] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.
Travassos. A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical assess-
ment of software engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE) 2007, WEASELTech ’07, pages 31–36. Association for
Computing Machinery, 2007.

[22] Michael Felderer, Philipp Zech, Ruth Breu, Matthias Büchler, and Alexan-
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[127] André B. Bondi. Best practices for writing and managing performance re-
quirements: a tutorial. In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, ICPE ’12, pages 1–8. Association
for Computing Machinery, 2012.

[128] Jonas Eckhardt, Andreas Vogelsang, Henning Femmer, and Philipp Mager.
Challenging incompleteness of performance requirements by sentence pat-
terns. In 2016 IEEE 24th International Requirements Engineering Confer-
ence (RE), pages 46–55, 2016. ISSN: 2332-6441.

[129] B.A. Nixon. Management of performance requirements for information sys-
tems. IEEE Transactions on Software Engineering, 26(12):1122–1146, 2000.
Conference Name: IEEE Transactions on Software Engineering.

[130] Zhiming Cai and Eric Yu. Addressing performance requirements using a
goal and scenario-oriented approach. In Anne Banks Pidduck, M. Tamer
Ozsu, John Mylopoulos, and Carson C. Woo, editors, Advanced Information
Systems Engineering, Lecture Notes in Computer Science, pages 706–710.
Springer, 2002.

147



i
i

“output” — 2022/9/5 — 14:37 — page 148 — #152 i
i

i
i

i
i

BIBLIOGRAPHY

[131] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based perfor-
mance prediction in software development: a survey. IEEE Transactions on
Software Engineering, 30(5):295–310, 2004. Conference Name: IEEE Trans-
actions on Software Engineering.

[132] Mike Robinson and Liam Bannon. Questioning representations. In Liam
Bannon, Mike Robinson, and Kjeld Schmidt, editors, Proceedings of the
Second European Conference on Computer-Supported Cooperative Work EC-
SCW ’91, pages 219–233. Springer Netherlands, 1991.

[133] Amer Al-Rawas and Steve Easterbrook. COMMUNICATION PROB-
LEMS IN REQUIREMENTS ENGINEERING: A FIELD STUDY. In First
Westminster Conference on Professional Awareness in Software Engineer-
ing,Royal Society, page 12, 1996.

[134] Alistair A R Cockburn. Characterizing people as nonlinear, firstorder com-
ponents in software development. In The 4th International MultiConference
on Systems, Cybernetics and Informatics, page 12, 1999.

[135] G. Melnik and F. Maurer. Direct verbal communication as a catalyst of agile
knowledge sharing. In Agile Development Conference, pages 21–31, 2004.

[136] INCOSE and Wiley. INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities. JohnWiley & Sons, Incorporated,
New York, 2015.

[137] A. Terry Bahill and Steven J. Henderson. Requirements de-
velopment, verification, and validation exhibited in famous
failures. Systems Engineering, 8(1):1–14, 2005. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.20017.

[138] Office of Electricity. August 2003 blackout. https://www.

energy.gov/oe/services/electricity-policy-coordination-and-

implementation/august-2003-blackout, 2003. Accessed: 2021-03-11.

[139] Summaira Malik, Muhammad Taqi, José Moleiro Martins, Mário Nuno Mata,
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Beecham. Tools used in global software engineering: A systematic mapping
review. Information and Software Technology, 54(7):663–685, 2012.

[219] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel.
Data scientists in software teams: State of the art and challenges. IEEE
Transactions on Software Engineering, 44(11):1024–1038, 2017.
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[229] Diego Dermeval, Jéssyka Vilela, Ig Ibert Bittencourt, Jaelson Castro, Seiji
Isotani, Patrick Brito, and Alan Silva. Applications of ontologies in require-
ments engineering: a systematic review of the literature. Requirements En-
gineering, 21(4):405–437, 2016.

[230] Lars Marius Garshol. Metadata? thesauri? taxonomies? topic maps! making
sense of it all. Journal of Information Science, 30(4):378–391, 2004.

[231] Jun Lin, Chan Chou Lin, Jane Cleland-Huang, Raffaella Settimi, Joseph
Amaya, Grace Bedford, Brian Berenbach, Oussama Ben Khadra, Chuan
Duan, and Xuchang Zou. Poirot: A Distributed Tool Supporting Enterprise-
Wide Automated Traceability. In 14th IEEE International Requirements
Engineering Conference (RE’06), pages 363–364, September 2006. ISSN:
2332-6441.

[232] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In 25th International Confer-
ence on Software Engineering, 2003. Proceedings., pages 125–135, May 2003.
ISSN: 0270-5257.

[233] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact
management system with traceability recovery features. In 20th IEEE In-
ternational Conference on Software Maintenance, 2004. Proceedings., pages
306–315, September 2004. ISSN: 1063-6773.

[234] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS Re-Trace: a
traceability recovery tool. In Ninth European Conference on Software Main-
tenance and Reengineering, pages 32–41, March 2005. ISSN: 1534-5351.

[235] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Improving after-the-fact trac-
ing and mapping: supporting software quality predictions. IEEE Software,
22(6):30–37, November 2005. Conference Name: IEEE Software.

[236] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can Information
Retrieval Techniques Effectively Support Traceability Link Recovery? In
14th IEEE International Conference on Program Comprehension (ICPC’06),
pages 307–316, June 2006. ISSN: 1092-8138.

157



i
i

“output” — 2022/9/5 — 14:37 — page 158 — #162 i
i

i
i

i
i

BIBLIOGRAPHY

[237] M. Lormans and A. van Deursen. Can LSI help reconstructing requirements
traceability in design and test? In Conference on Software Maintenance and
Reengineering (CSMR’06), pages 10 pp.–56, March 2006. ISSN: 1534-5351.

[238] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta. Improving Compre-
hensibility of Source Code via Traceability Information: a Controlled Exper-
iment. In 14th IEEE International Conference on Program Comprehension
(ICPC’06), pages 317–326, June 2006. ISSN: 1092-8138.

[239] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. Fea-
ture location via information retrieval based filtering of a single scenario ex-
ecution trace. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ASE ’07, pages 234–243, New
York, NY, USA, November 2007. Association for Computing Machinery.

[240] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora.
Recovering traceability links in software artifact management systems using
information retrieval methods. ACM Transactions on Software Engineering
and Methodology, 16(4):13–es, September 2007.

[241] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. Assessing IR-based
traceability recovery tools through controlled experiments. Empirical Soft-
ware Engineering, 14(1):57–92, February 2009.

[242] Collin McMillan, Denys Poshyvanyk, and Meghan Revelle. Combining tex-
tual and structural analysis of software artifacts for traceability link recovery.
In 2009 ICSE Workshop on Traceability in Emerging Forms of Software En-
gineering, pages 41–48, May 2009. ISSN: 2157-2194.

[243] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella. On the role of the nouns in IR-based traceability
recovery. In 2009 IEEE 17th International Conference on Program Compre-
hension, pages 148–157, May 2009. ISSN: 1092-8138.

[244] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. The role of the
coverage analysis during IR-based traceability recovery: A controlled exper-
iment. In 2009 IEEE International Conference on Software Maintenance,
pages 371–380, September 2009. ISSN: 1063-6773.

[245] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,
and Sebastiano Panichella. Traceability Recovery Using Numerical Analysis.
In 2009 16th Working Conference on Reverse Engineering, pages 195–204,
October 2009. ISSN: 2375-5369.

[246] Nouh Alhindawi, Omar Meqdadi, Brian Bartman, and Jonathan I. Maletic.
A tracelab-based solution for identifying traceability links using LSI. In 2013

158



i
i

“output” — 2022/9/5 — 14:37 — page 159 — #163 i
i

i
i

i
i

BIBLIOGRAPHY

7th International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE), pages 79–82, San Francisco, CA, USA, May 2013.
IEEE.

[247] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale
Panichella, and Sebastiano Panichella. Applying a smoothing filter to im-
prove IR-based traceability recovery processes: An empirical investigation.
Information and Software Technology, 55(4):741–754, April 2013.

[248] Tathagata Dasgupta, Mark Grechanik, Evan Moritz, Bogdan Dit, and Denys
Poshyvanyk. Enhancing Software Traceability by Automatically Expanding
Corpora with Relevant Documentation. In 2013 IEEE International Con-
ference on Software Maintenance, pages 320–329, September 2013. ISSN:
1063-6773.

[249] Sugandha Lohar, Sorawit Amornborvornwong, Andrea Zisman, and Jane
Cleland-Huang. Improving trace accuracy through data-driven configuration
and composition of tracing features. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages
378–388, New York, NY, USA, August 2013. Association for Computing Ma-
chinery.

[250] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto, Annibale Panichella,
Fabio Ricci, and Genoveffa Tortora. The role of artefact corpus in LSI-based
traceability recovery. In 2013 7th International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE), pages 83–89, May 2013.
ISSN: 2157-2194.

[251] Patrick Rempel, Patrick Mäder, and Tobias Kuschke. Towards feature-aware
retrieval of refinement traces. In 2013 7th International Workshop on Trace-
ability in Emerging Forms of Software Engineering (TEFSE), pages 100–104,
May 2013. ISSN: 2157-2194.

[252] Diana Diaz, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Silvia Taka-
hashi, and Andrea De Lucia. Using code ownership to improve IR-based
Traceability Link Recovery. In 2013 21st International Conference on Pro-
gram Comprehension (ICPC), pages 123–132, May 2013. ISSN: 1092-8138.

[253] Gabriele Bavota, Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora.
Enhancing software artefact traceability recovery processes with link count
information. Information and Software Technology, 56(2):163–182, February
2014.

[254] Anas Mahmoud and Nan Niu. On the role of semantics in automated require-
ments tracing. Requirements Engineering, 20(3):281–300, September 2015.

159



i
i

“output” — 2022/9/5 — 14:37 — page 160 — #164 i
i

i
i

i
i

BIBLIOGRAPHY

[255] Giuliano Antoniol, Gerardo Canfora, A. Lucia, and G. Casazza. Information
Retrieval Models for Recovering Traceability Links between Code and Docu-
mentation. Software Maintenance, IEEE International Conference on, 0:40,
January 2000.

[256] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. IEEE Transactions
on Software Engineering, 28(10):970–983, October 2002. Conference Name:
IEEE Transactions on Software Engineering.

[257] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and
C. DePalma. Supporting software evolution through dynamically retriev-
ing traces to UML artifacts. In Proceedings. 7th International Workshop on
Principles of Software Evolution, 2004., pages 49–54, September 2004. ISSN:
1550-4077.

[258] Chuan Duan and Jane Cleland-Huang. Clustering support for automated
tracing. In Proceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering, ASE ’07, pages 244–253, New
York, NY, USA, November 2007. Association for Computing Machinery.

[259] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, E. Ash-
lee Holbrook, Sravanthi Vadlamudi, and Alain April. REquirements TRacing
On target (RETRO): improving software maintenance through traceability
recovery. Innovations in Systems and Software Engineering, 3(3):193–202,
September 2007.

[260] Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia.
On integrating orthogonal information retrieval methods to improve trace-
ability recovery. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM), pages 133–142, September 2011. ISSN: 1063-6773.

[261] Anas Mahmoud and Nan Niu. Source code indexing for automated tracing.
In Proceedings of the 6th International Workshop on Traceability in Emerging
Forms of Software Engineering, TEFSE ’11, pages 3–9, New York, NY, USA,
May 2011. Association for Computing Machinery.

[262] Sandeep Pandanaboyana, Shreeram Sridharan, Jesse Yannelli, and Jane Huff-
man Hayes. REquirements TRacing on target (RETRO) enhanced with an
automated thesaurus builder: An empirical study. In 2013 7th Interna-
tional Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE), pages 61–67, 2013. ISSN: 2157-2194.

[263] Annibale Panichella, Collin McMillan, Evan Moritz, Davide Palmieri, Rocco
Oliveto, Denys Poshyvanyk, and Andrea De Lucia. When and How Us-
ing Structural Information to Improve IR-Based Traceability Recovery. In

160



i
i

“output” — 2022/9/5 — 14:37 — page 161 — #165 i
i

i
i

i
i

BIBLIOGRAPHY

2013 17th European Conference on Software Maintenance and Reengineering,
pages 199–208, March 2013. ISSN: 1534-5351.

[264] Anas Mahmoud and Nan Niu. Supporting requirements to code traceability
through refactoring. Requirements Engineering, 19(3):309–329, September
2014.

[265] Jin Guo, Natawut Monaikul, Cody Plepel, and Jane Cleland-Huang. To-
wards an intelligent domain-specific traceability solution. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engi-
neering, pages 755–766, Vasteras Sweden, September 2014. ACM.

[266] Annibale Panichella, Andrea De Lucia, and Andy Zaidman. Adaptive User
Feedback for IR-Based Traceability Recovery. In 2015 IEEE/ACM 8th In-
ternational Symposium on Software and Systems Traceability, pages 15–21,
May 2015. ISSN: 2157-2194.

[267] Yonghee Shin, Jane Huffman Hayes, and Jane Cleland-Huang. Guidelines
for Benchmarking Automated Software Traceability Techniques. In 2015
IEEE/ACM 8th International Symposium on Software and Systems Trace-
ability, pages 61–67, May 2015. ISSN: 2157-2194.

[268] Mona Rahimi, William Goss, and Jane Cleland-Huang. Evolving
Requirements-to-Code Trace Links across Versions of a Software System. In
2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 99–109, October 2016.

[269] Jin Guo, Marek Gibiec, and Jane Cleland-Huang. Tackling the term-
mismatch problem in automated trace retrieval. Empirical Software Engi-
neering, 22(3):1103–1142, June 2017.

[270] Bangchao Wang, Rong Peng, Zhuo Wang, Xiaomin Wang, and Yuanbang Li.
An Automated Hybrid Approach for Generating Requirements Trace Links.
International Journal of Software Engineering and Knowledge Engineering,
30(07):1005–1048, July 2020.
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Background Requirements engineering and ver-
ification (REV) processes play essential roles in 
software product development. There are physical 
and non-physical distances between entities (ac-
tors, artifacts, and activities) in these processes. 
Current practices that reduce the distances, such 
as automated testing and alignment of document 
structure and tracing only partially close the above 
mentioned gap.

Objective The aim of this thesis is to investigate 
solutions w.r.t their ability to reduce the distanc-
es between requirements engineering and verifi-
cation. Two techniques that are explored in this 
thesis are automated testing (model-based testing, 
MBT) and alignment of document structure and 
tracing (traceability).

Method The research methods used in this thesis 
are systematic mapping study, software require-
ments mining, case study, literature survey, valida-
tion study, and design science.

Results MBT and traceability are effective in re-
ducing the distance between requirements and 
verification. However, both activities have some 
shortcoming that needs to be addressed when 
used for that purpose. Current MBT techniques in 
the context of software performance do not attain 

all the goals of MBT: 1) requirements validation, 2) 
checking the testability of requirements, and 3) the 
generation of an efficient test suite. These goals 
are essential to reduce the distance. We developed 
and assessed performance requirements verifica-
tion and test environment generation approach to 
tackle these shortcomings. Also, traceability be-
tween requirements and verification suffers from 
the low granularity of trace links and does not sup-
port the verification of all requirements. We pro-
pose the use of taxonomic trace links to trace and 
align the structure of requirements specifications 
and verification artifacts. The results from the val-
idation study show that the solution is feasible in 
practice. However, this comes with challenges that 
need to be addressed.

Conclusion MBT and improved traceability re-
duce multiple distances between actors, artifacts, 
and activities in the requirements engineering and 
verification process. MBT is most effective in re-
ducing the distances when the model used is built 
from the requirements. Traceability is essential in 
easing access to relevant information when need-
ed and should not be seen as an overhead. When 
creating trace links, we need to consider the dif-
ference in the abstraction, structure, and time be-
tween the linked artifacts.
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