
Vol.:(0123456789)

Software Quality Journal (2023) 31:1527–1559
https://doi.org/10.1007/s11219-023-09650-4

1 3

RESEARCH

Lessons learned from replicating a study
on information‑retrieval‑based test case prioritization

Nasir Mehmood Minhas1,2 · Mohsin Irshad3 · Kai Petersen1,4 · Jürgen Börstler1

Accepted: 9 September 2023 / Published online: 16 October 2023
© The Author(s) 2023

Abstract
Replication studies help solidify and extend knowledge by evaluating previous studies’
findings. Software engineering literature showed that too few replications are conducted
focusing on software artifacts without the involvement of humans. This study aims to
replicate an artifact-based study on software testing to address the gap related to replica-
tions. In this investigation, we focus on (i) providing a step-by-step guide of the replication,
reflecting on challenges when replicating artifact-based testing research and (ii) evaluating
the replicated study concerning the validity and robustness of the findings. We replicate a
test case prioritization technique proposed by Kwon et al. We replicated the original study
using six software programs, four from the original study and two additional software pro-
grams. We automated the steps of the original study using a Jupyter notebook to support
future replications. Various general factors facilitating replications are identified, such as
(1) the importance of documentation; (2) the need for assistance from the original authors;
(3) issues in the maintenance of open-source repositories (e.g., concerning needed soft-
ware dependencies, versioning); and (4) availability of scripts. We also noted observations
specific to the study and its context, such as insights from using different mutation tools
and strategies for mutant generation. We conclude that the study by Kwon et al. is par-
tially replicable for small software programs and could be automated to facilitate software
practitioners, given the availability of required information. However, it is hard to imple-
ment the technique for large software programs with the current guidelines. Based on les-
sons learned, we suggest that the authors of original studies need to publish their data and
experimental setup to support the external replications.

Keywords Replication · Regression testing · Technique · Test case prioritization ·
Information retrieval · SIR

1 Introduction

Replications help evaluate results, limitations, and validity of studies in different contexts
(Shull et al., 2008). They also help establish or expand the boundaries of a theory (Da Silva
et al., 2014; Shull et al., 2008).

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09650-4&domain=pdf

1528 Software Quality Journal (2023) 31:1527–1559

1 3

During the previous four decades, software engineering researchers have built new
knowledge and proposed new solutions, but many of these lack consolidation (Juristo &
Gómez, 2012; Krein & Knutson, 2010). Replication studies can help establish the solu-
tions and expand the knowledge (Shepperd et al., 2018). Software engineering research-
ers have been working on replication studies since the 1990s. Still, the number of repli-
cated studies is small in software engineering (Da Silva et al., 2014; de Magalhães et al.,
2015), most software engineering replication studies are conducted for experiments
involving human participants, and comparatively few replications exist for artifact-
based experiments (Da Silva et al., 2014). In the artifact-based software engineering
experiments, the majority of the authors use the artifacts from the software infrastruc-
ture repository (SIR) (Yoo & Harman, 2012). Do et al. (2005) introduced SIR in 2005 to
facilitate experimentation and evaluation of testing techniques (mainly regression test-
ing techniques) and to promote replication of experiments and aggregation of findings.

In this study, we focus on the possibility of replicating regression testing techniques.
Regression testing is a complex and costly activity. Practitioners face various challenges
while performing regression testing and are interested in techniques that can fulfill their
goals (Engström & Runeson, 2010; Minhas et al., 2020). Researchers have been pro-
posing different techniques to support regression testing practice, and some of them
are evaluating their techniques in an industry context. However, adopting these tech-
niques in practice is challenging because, in most cases, the results are inaccessible for
practitioners (Ali et al., 2019). Moreover, most regression testing techniques proposed
in research have been evaluated using open-source data sets (Yoo & Harman, 2012).
Adopting these techniques in practice is challenging because practitioners do not know
the context these techniques can fit. Replications of existing solutions for regression
testing can be helpful in this regard, provided data and automation scripts are available
for future replications.

Attempts have been made to replicate regression testing techniques. The majority of
these replications are done by the same group of authors who originally proposed the tech-
niques (Do & Rothermel, 2006; Do et al., 2004, 2010). There is a need for conducting more
independent replications in software engineering (Do et al., 2005). However, evidence of
independent replications in regression testing is low (Da Silva et al., 2014).

Overall, we would highlight the following research gaps concerning replications:

– Gap 1: A small portion of studies are replications, especially lack of replications in
specific subject areas: Software engineering is lacking in replication studies (Da Silva
et al., 2014). In particular, software testing as a subject area has been highlighted as
an area lacking replication studies (Da Silva et al., 2014). According to Da Silva et al.
(2014), the majority of replication studies focus on software construction and software
requirements.

– Gap 2: Lack of replication guidelines: Software engineering research lacks standardized
concepts, terminologies, and guidelines (de Magalhães et al., 2015; Krein & Knutson,
2010). There is a need to work on the guidelines and methodologies to support replicat-
ing the studies (de Magalhães et al., 2015).

– Gap 3: Lack of studies on artifact-based investigations: Only a few replicated studies
focused on artifact-based investigations (Da Silva et al., 2014). That is, the majority of
studies focused on experiments and case studies involving human subjects. Artifact-
based replications are of particular interest as they require building and running scripts
for data collection (e.g., solution implementation and logging) and simultaneously
compiling and running the software systems, which are the subject of study.

1529Software Quality Journal (2023) 31:1527–1559

1 3

Considering the gaps stated above, we formulate the following research aim:

To achieve our research aim, we present the results of our replication experiment in
which we evaluated an IR-based test case prioritization technique proposed by Kwon et al.
(2014). The authors introduced a linear regression model to prioritize the test cases tar-
geting infrequently tested code. The inputs for the model are calculated using term fre-
quency (TF), inverse document frequency (IDF), and code coverage information (Kwon
et al., 2014). TF and IDF are the weighing schemes used with information retrieval meth-
ods (Roelleke, 2013). The original study’s authors used open-source data sets (including
SIR artifacts) to evaluate the proposed technique. We attempted to evaluate the technique
using six software programs to see if the replication confirms the original study’s findings.
We used all four software programs from the original study and two new cases to test the
technique’s applicability to different software programs.

In the pursuit of our research aim, we achieved the following two objectives:

1. Objective 1: Studying the extent to which the technique is replicable. Studying the
extent to which the technique is replicable and documenting the detail of all steps will
help draw valuable lessons. Hence, contributing with guidance for future artifact-based
replications (Gap 2, Gap 3).

2. Objective 2: Evaluating the results of the original study (Kwon et al., 2014). Evaluating
the results through replication provides an assessment of the validity and robustness of the
original study’s results. Overall, we contribute to the generally limited number of replication
studies in general and replication studies focused on software testing in particular (Gap 1).

The organization of the rest of the paper is as follows: Sect. 2 briefly introduces the concepts
relevant to this study. Section 3 briefly discusses some replications carried out for test case
prioritization techniques. Along with the research questions and summary of the concepts
used in the original study, Sect. 4 describes the methodologies we have used to select the
original study and conduct the replication. Section 5 presents the findings of this study, and
Sect. 6 provides a discussion on the findings of the replication study. Threats to the validity
of the replication experiment are discussed in Sect. 7, and Sect. 8 concludes the study.

2 Background

This section provides a discussion on the topics related to our investigation.

2.1 Regression testing

Regression testing is a retest activity to ensure that system changes do not negatively affect
other parts of the system and that the unchanged parts are still working as before a change
(Minhas et al., 2020; Yoo & Harman, 2012). It is an essential but expensive and challenging
testing activity (Engström & Runeson, 2010). Various authors have highlighted that testing

1530 Software Quality Journal (2023) 31:1527–1559

1 3

consumes 50% of the project cost, and regression testing consumes 80% of the total testing
cost (Engström et al., 2010; Engström & Runeson, 2010; Harrold & Orso, 2008; Kazmi et al.,
2017). Research reports that regression testing may consume more than 33% of the cumula-
tive software cost (Khatibsyarbini et al., 2018). Regression testing aims to validate that modi-
fications have not affected the previously working code (Do et al., 2010; Minhas et al., 2020).

Systems and Software Engineering–Vocabulary (ISO/IEC/IEEE, 2017), defines regres-
sion testing as follows:

1. “Selective retesting of a system or component to verify that modifications have not
caused unintended effects and that the system or component still complies with its
specified requirements.”
2. “Testing required to determine that a change to a system component has not
adversely affected functionality, reliability or performance and has not introduced
additional defects.”

For larger systems, executing regression test suites in full is expensive (Minhas et al., 2020).
One of the suggested solutions is test case prioritization to cope with this. It helps to prioritize
and run the critical test cases early in the regression testing process. The goal of test case prior-
itization is to increase the test suite’s rate of fault detection (Elbaum et al., 2002).

A reasonable number of systematic literature reviews and mapping studies on various
aspects of regression testing provides evidence that regression testing is a well-researched
area (Ali et al., 2019; Bajaj & Sangwan, 2019; Catal, 2012; Catal & Mishra, 2013; Dahiya
& Solanki, 2018; Engström et al., 2010; Felderer & Fourneret, 2015; Kazmi et al., 2017;
Khatibsyarbini et al., 2018; Lima & Vergilio, 2020; Qiu et al., 2014; Rosero et al., 2016;
Singh et al., 2012; Yoo & Harman, 2012; Zarrad, 2015). Despite many regression test-
ing techniques proposed in the literature, adopting these techniques in the industry is low
(Ekelund & Engström, 2015; Engström & Runeson, 2010; Rainer et al., 2005; Rainer &
Beecham, 2008). The reasons are that the results of these techniques are not accessible
for practitioners due to the discrepancies in terminology between industry and academia
(Ali et al., 2019; Engström & Runeson, 2010; Minhas et al., 2017). There is a lack of
mechanisms to guide the practitioners in translating, analyzing, and comparing the regres-
sion testing techniques. Furthermore, various authors use controlled experiments for their
empirical investigations. In most cases, it is hard to assess that these experiments are
repeatable and could fit in an industrial setting (Ali et al., 2019). Replication of empiri-
cal studies could lead us to the desired solution, as it can help to confirm the validity and
adaptability of these experiments (Shull et al., 2008).

2.2 Replication

Replication is a means to validate experimental results and examine if the results are reproduc-
ible. It can also help to see if the results were produced by chance or if the results are the out-
come of any feigned act (Juristo & Gómez, 2012). An effectively conducted replication study
helps in solidifying and extending knowledge. In principle, replication provides a way forward
to create, evolve, break, and replace theoretical paradigms (Krein & Knutson, 2010; Shull
et al., 2008). Replication could be of two types (1) internal replication—a replication study
carried out by the authors of the original study themselves and (2) external replication—a rep-
lication study carried out by researchers other than the authors of the original study (Shepperd
et al., 2018; Krein & Knutson, 2010).

1531Software Quality Journal (2023) 31:1527–1559

1 3

In software engineering research, internal replications are much higher than external replica-
tions (Bezerra et al., 2015; Da Silva et al., 2014). Da Silva et al. (2014) reported in their map-
ping study that out of 133 included replication studies, 55% of the studies are internal replica-
tions, 30% are external replications, and 15% are a mix of internal and external. Furthermore,
the results of 82% of the internal replications are confirmatory, and the results of 26% of external
replications conform to the original studies (Da Silva et al., 2014). From the empirical software
engineering perspective, Shull et al. (2008) classify replications as exact and conceptual replica-
tion. In an exact replication, the replicators closely follow the procedures of the original experi-
ment. In a conceptual replication, the research questions of the original study are evaluated using
a different experimental setup. Concerning exact replication, if the replicators keep the condi-
tions in the replication experiment the same as the actual experiment, it would be categorized as
exact dependent replication. If replicators deliberately change the underlying conditions of the
original experiment, it would be referred to as exact independent replication. Exact dependent
and exact independent replications could respectively be mapped to strict and differentiated repli-
cations. A strict replication compels the researchers to replicate a prior study as precisely as pos-
sible. In contrast, in a differentiated replication, researchers could intentionally alter the aspects
of a previous study to test the limits of the study’s conclusions. In most cases, strict replication is
used for both internal and external replications (Krein & Knutson, 2010).

2.3 Information retrieval

IR-based techniques are used to retrieve the user’s information needs from an unstructured
document collection. The information needs are represented as queries (Fang et al., 2004;
Yadla et al., 2005). An information retrieval (IR) system is categorized by its retrieval
model because its effectiveness and utility are based on the underlying retrieval model
(Amati, 2009). Therefore, a retrieval model is the core component of any IR system.

Amati (2009) defines the information retrieval model as follows:

 “A model of information retrieval (IR) selects and ranks the relevant documents
with respect to a user’s query. The texts of the documents and the queries are rep-
resented in the same way, so that document selection and ranking can be formalized
by a matching function that returns a retrieval status value (RSV) for each docu-
ment in the collection. Most of the IR systems represent document contents by a set of
descriptors, called terms, belonging to a vocabulary V.”

Some of the retrieval models are the vector space model (VSM), probabilistic relevance frame-
work (PRF), binary independence retrieval (BIR), best match version 25 (BM 25), and language
modeling (LM). VSM uses TF-IDF (term frequency and inverse document frequency) as a
weighing scheme, and it is among the popular models in information retrieval systems (Roelleke,
2013). For example, Pannu et al. (2014) compared different information retrieval models and
concluded that VSM was the most effective compared to boolean and probabilistic models.

Since the technique (Kwon et al., 2014) we are replicating in this study uses the con-
cepts of TF-IDF weighing scheme, we briefly present TF and IDF.

Term frequency (TF) and inverse document frequency (IDF) are statistics that indicate
the significance of each word in the document or query. TF represents how many times a
word appears in the document or query. IDF is an inverse of document frequency (DF).
The DF of a word indicates the number of documents in the collection containing the word.
Therefore, a high IDF score of any word means that the word is relatively unique, and it
appeared in fewer documents (Fang et al., 2004).

1532 Software Quality Journal (2023) 31:1527–1559

1 3

3 Related work

In this section, we have included only studies replicating the test case prioritization tech-
niques. Most of the replication studies on test case prioritization were conducted by the
same group of authors, who primarily re-validated/extended the results of their previously
conducted experiments (see Do et al., 2004, 2010; Do & Rothermel, 2006). Below we dis-
cuss studies that are closely related to our topic (i.e., test case prioritization).

Do et al. (2004) conducted a replication study to test the effectiveness of the test case prior-
itization techniques originally proposed for C programs on different Java programs using the
JUnit testing framework. The authors’ objective was to test whether the techniques proposed
for C programs could be generalized to other programming and testing paradigms. The authors
who conducted the replication study were part of the original studies, so by definition, it could
be referred to as an internal replication. However, concerning the implementation perspective,
the replication study would be considered differentiated replication.

Do and Rothermel (2006) conducted an internal replication study to replicate one of
their studies on test case prioritization. The original study used hand-seeded faults. In
the replication study, the authors conducted two experiments. In the first experiment, the
authors considered mutation faults. The goal was to assess whether prioritization results
obtained from hand-seeded faults differ from those obtained from mutation faults. The
authors used the same software programs and versions used in the original study. They also
replicated the experimental design according to the original study. To further strengthen
the findings, later in the second experiment, the authors replicated the first experiment with
two additional Java programs with different types of test suites.

Ouriques et al. (2018) conducted an internal replication study of their own experiment
concerning the test case prioritization techniques. The authors experimented with software
programs closer to the industrial context in the original study. The objective of the replica-
tion study was to repeat the conditions evaluated in the original study but with more tech-
niques and industrial systems as objects of study. Although the authors worked with the
test case prioritization techniques, they clearly stated that the methods examined in their
research use a straightforward operation of adding one test case at a time in the prioritized
set. They do not use any data from the test case execution history; hence, regression test
prioritization is not in the scope of their study.

Hasnain et al. (2019) conducted a replication study to investigate the regression analy-
sis for classification in test case prioritization. The authors’ objective was to replicate the
original study to confirm whether or not the regression model used in the original study
accurately produced the same results as the replicated study. Along with the program and
data set used in the original study, the authors also used an additional open-source Java-
based program to extend the original study’s findings. It is an external replication study as
all authors of the replication study differ from the original study. The authors of the repli-
cated study validated the original study’s results on an additional dataset other than the one
used in the original study, and the replication is not strict.

In the above discussion of related studies, we learned that most replication studies con-
ducted for test case prioritization are primarily internal replications. We could only find a
single external replication study (Hasnain et al., 2019). The authors of this study replicated
a classification-based test case prioritization using regression analysis. Our study is similar
to this study based on the following factors, (1) our study is an external replication and
(2) we also use four software artifacts from the original study and two additional artifacts.
In many ways, our study is unique; for example, (1) we are replicating a technique that

1533Software Quality Journal (2023) 31:1527–1559

1 3

focuses on less tested code, whereas Husnain et al. replicated a technique that is based on
fault classification and non-faulty modules, (2) we have provided a step by step guide to
support future replications, and (3) we provide automated scripts to execute the complete
replication study.

4 Methodology

We followed the guideline proposal for reporting the replication steps provided by Carver
(2010). It suggests reporting the following for a replication study:

1. Information about the original study (Sect. 4.2)
2. Information about the replication (Sect. 4.3.2)
3. Comparison of results to the original study (Sect. 5.2)
4. Drawing conclusions across studies (Sect. 8)

4.1 Research questions

In the presence of the constraint regarding experimental setup and data, we have to rely on the
information presented in the original study (see Sect. 4.2). We decided not to tweak the original
study’s approach, followed the steps proposed by the authors, and executed the technique on
one of the artifacts used by the authors. The differential aspects of the replication experiment
are the mutants and the automation of the major steps of the technique. According to the classi-
fication provided by Shull et al. (2008), our work can be classified as exact independent replica-
tion of the test case prioritization technique presented by Kwon et al. (2014).

To achieve the objectives of the study, we formulated the following two research questions:

 RQ1. To what degree is the study replication feasible, given the information provided?

RQ1.1 To what degree is the study replicable with the software programs used
in the original study?

RQ1.2 What is the possibility of replicating the study with the additional soft-
ware programs?

 The answer to RQ1 corresponds to Objective 1. While answering RQ1, the motive
was to see the possibility of replicating the technique presented in the original study
using different software programs.

 RQ2. Does the replication confirm the findings of the original study?
 The answer to RQ2 corresponds to Objective 2. The motive of RQ2 was to see if the

replication results conform to the original study’s findings. To ensure that there should
be no conscious deviation from the basic technique, we followed the steps and used
the tools mentioned in the original study. Finally, we evaluated the replication results
using the average percentage of fault detection (APFD) as suggested by the original
study’s authors.

1534 Software Quality Journal (2023) 31:1527–1559

1 3

4.2 Information about the original study

4.2.1 Selection of target study

Selecting a target study for replication is difficult and often prone to bias (Pittelkow et al.,
2021). For example, clinical psychology research reports that authors tend to choose targets
that are easy to set up and execute (Pittelkow et al., 2021). The selection of a target must be
purpose-based, either by following systematic criteria (see, e.g., Pittelkow et al., 2021) or
by other justifiable reasons.

Our selection of study to be replicated is based on the needs identified in our previous
studies (Ali et al., 2019; Minhas et al., 2017, 2020) and reported use of SIR systems for
replications (Singh et al., 2012; Yoo & Harman, 2012). In the mentioned studies, we found
that practitioners are looking for regression testing techniques that can fulfill their goals
(e.g., controlling fault slippage and increasing fault detection ratio) (Minhas et al., 2017,
2020). In search of techniques that can fulfill practitioners’ goals, Ali et al. (2019) con-
ducted a systematic literature review. However, no single technique is reported in Ali et al.
(2019) that works for controlling fault slippage. Based on practitioners’ needs, we defined
the following constraints for the target study.

– A test case prioritization technique that can control fault slippage and increase fault
detection ratio.

– A technique that has been evaluated using SIR artifacts.

The reasons for setting these constraints are that during our investigations (Minhas et al.,
2020), we identified that test case prioritization is among the primary challenges for practition-
ers. They are interested in finding techniques that can overcome their challenges and help them
follow their goals (see also Minhas et al., 2017). Increasing a test suite’s rate of fault detection
is a common goal of regression test prioritization techniques (Lima & Vergilio, 2020; Pan
et al., 2022), whereas controlling fault slippage is among the goals of the practitioners (Minhas
et al., 2017, 2020).

Our next constraint was to select a study where authors used the SIR systems to evaluate
their technique because SIR is the most used repository for regression testing techniques
(Yoo & Harman, 2012), and SIR aims to facilitate replication (Do et al., 2005). Singh et al.
(2012) reported that out of 65 papers selected for their systematic reviews on regression
test prioritization, 50% are using SIR systems. Yoo and Harman (2012) also reported that
most of the authors evaluate their techniques using SIR artifacts. They highlight that the
use of SIR systems allows replication studies.

The final constraint was to select a target study that uses IR methods for the prioritiza-
tion technique. Recent studies report that test case prioritization techniques based on IR
concepts could perform better than the traditional coverage-based regression test prioritiza-
tion techniques (Peng et al., 2020; Saha et al., 2015).

We searched Google Scholar with the keywords “regression testing,” “test case prior-
itization,” “information retrieval,” “IR,” “software infrastructure repository,” “SIR”. Our
searches returned 340 papers. After scanning the titles and abstracts, we learned that no
single technique explicitly states controlling fault slippage as its goal. However, the tech-
nique presented in Kwon et al. (2014) focused on less tested code, and the goal was to
increase the fault detection rate of coverage-based techniques using IR methods. Ignored or
less tested code could be among the causes of fault slippage. Therefore we considered the

1535Software Quality Journal (2023) 31:1527–1559

1 3

technique by Kwon et al. (2014) for further evaluation. We evaluated this technique using
the rigor criteria as suggested by Ivarsson and Gorschek (2011). The authors suggest evalu-
ating the rigor of empirical studies based on context, design, and validity threats.

After considering all factors mentioned above and applying the rigor criteria, the study
presented in (Kwon et al., 2014) was used as a target for replication.

4.2.2 Describing the original study

Kwon et al. (2014) intended to improve the effectiveness of test case prioritization by
focusing on infrequently tested code. They argued that test case prioritization techniques
based on code coverage might lack fault detection capability. They suggested that using the
IR-based technique could help overcome the limitation of coverage-based test case prioriti-
zation techniques. Considering the frequency at which code elements have been tested, the
technique uses a linear regression model to determine the fault detection capability of the
test cases. Similarity score and code coverage information of test cases are used as input
for the linear regression model. Kwon et al. (2014) stated that the technique they proposed
is the first of its type that considers less tested code and uses TF-IDF in IR for test case pri-
oritization. The authors claimed that their approach is also first in using linear regression
to weigh the significance of each feature regarding fault-finding. They divided the process
into three phases, i.e., validation, training, and testing, and suggested using the previous
fault detection history or mutation faults as validation and training data.

To evaluate the proposed test case prioritization technique (IRCOV), Kwon et al. (2014)
used four open-source Java programs XML-Security (XSE), Commons-CLI (CCL), Com-
mons-Collections (CCN), and Joda-Time (JOD). Kwon et al. (2014) highlighted that the
fault information of the software programs was not sufficiently available, and they were
unable to evaluate their approach using available information. Therefore, the authors simu-
lated the faults using mutation. They used the mutation framework MAJOR (Just, 2014;
Just et al., 2011) to generate the mutants. To reduce the researcher’s bias and achieve relia-
ble results, they applied ten-fold validation and divided the mutation faults into ten subsets,
and assigned each subset to training, validation, and test data.

1536 Software Quality Journal (2023) 31:1527–1559

1 3

4.2.3 Concepts used in the original study

The original study (Kwon et al., 2014) makes use of IR concepts. It views a “document” as
a test case, “words” as elements covered (e.g., branches, lines, and methods), and “query”
as coverage elements in the updated files. TF and IDF scores of the covered elements deter-
mine their significance to a test case. The number of times a test case exercises a code
element is counted as a TF value. The document frequency (DF) represents the number of
test cases exercising an element. IDF is used to find the unique code elements as it is the
inverse of DF.

Since the focus of the proposed technique was on less-tested code, the IDF score has
more significance and is required to minimize the impact of TF. To minimize the impact of
TF score on the test case prioritization, they used Boolean values for TF (i.e., TF = 1 if a
test case covers the code element, TF = 0 otherwise). The IDF threshold is used to assign
an IDF score to a code element. Kwon et al. (2014) define the IDF threshold as:

“The maximum number of test cases considered when assigning an IDF score to a
code element.”

The IDF threshold is determined by the validation data consisting of faults and related test
cases from the previous test execution history or mutation faults.

Finally, the authors used the similarity score between a test case (document) and the
changed element (query) to indicate the test cases related to modifications. The similarity
score is measured using the sum of TF-IDF scores of common elements in the query.

4.2.4 Key findings of the original study

Using four open-source Java programs, the authors compared their technique with random
ordering and standard code-coverage-based methods (i.e., line, branch, and method cover-
age). They measured the effectiveness using Average Parentage of Fault Detection (APFD).

The authors concluded that their technique is more effective as it increased the fault
detection rate by 4.7% compared to random ordering and traditional code coverage-based
approaches.

4.3 Information about the replication

We first present contextual information, i.e., data availability (Sect. 4.3.1), and Sect. 4.3.2
presents how the replication steps were implemented.

4.3.1 Data availability

Kwon et al. (2014) did not provide details on the experimental setup and the raw data. Fur-
thermore, they did not publish the automation scripts and data in an open-source reposi-
tory. We contacted them and asked if they could share the experimental package with us.
One of them informed us that they had lost the data and did not have any backups related
to this study.

1537Software Quality Journal (2023) 31:1527–1559

1 3

4.3.2 Replication steps

We aimed to make an exact replication of the original study, and therefore we followed the
procedure strictly as presented in the original study (Kwon et al., 2014). The original study
IRCOV was built using line, branch, and method coverage. Therefore, we also used the
line, branch, and method coverage to replicate the IRCOV model. The sequence of events
starts with generating mutants, then partitioning them into training, validation, and test
data. Later, using validation data, IDF threshold is established, and using IDF threshold
and training data, IDF scores are established. In the next step, TF and IDF scores are used
to calculate similarity scores, whereas coverage is calculated using training data. Based on
coverage data and similarity scores, regression coefficients are measured, and finally, using
the regression model, the test schedule is decided. The detail of the steps followed in the
replication experiment is shown in Fig. 1.

Fig. 1 Steps followed to replicate
the original study

Using training data
calculate coverage of

each test case

Partition the mutants into
training, validation, and test
sets (10%, 10%, & 80%).

Generate mutants*
using tool

Set IDF threshold
using validation data

(mutation faults)

Using training data and IDF
threshold set IDF scores,

also set TF scores

Using TF-IDF scores
calculate similarity scores

Estimate the regression
coefficients

Assign predictor values (Coverage and
similarity scores) along with the coefficients

to the model to decide the test schedule

Run the scheduled test cases

10 Folds
completed? Stop

YesNo

* Mutants are required if
previous faults are not

available

Classes of the
programs to be

 tested
Start

1538 Software Quality Journal (2023) 31:1527–1559

1 3

Replication objects: We attempted to test the replication of the IRCOV with six soft-
ware programs, using four software programs from the original study and two additional
software programs. Table 1 presents the details of the software programs used in the rep-
lication of IRCOV. The software programs are Common CLI, XML Security, Commons-
Collections (CCN), Joda-Time (JOD), Commons-Email, and Log4j. We were able to
implement IRCOV with Commons-CLI, but due to various constraints discussed in Sect. 5,
we failed to replicate IRCOV with XML Security, Commons-Collections (CCN), Joda-
Time (JOD), Commons-Email, and Log4j.

Commons-CLI1 is a library providing an API parsing of command-line arguments.
XML-Security2 for Java is a component library implementing XML signature and encryp-
tion standards. Commons-Collections3 provides Java data structures. Joda-Time4 provides
a quality replacement for the Java date and time classes.

To see if the technique (IRCOV) is replicable with other software programs, we selected
Commons-Email and Log4j. Commons-Email5 is built on top of the JavaMail API, and
it aims to provide an API for sending emails. We selected Commons-Email because it
is commonly used in regression testing studies (see, e.g., Legunsen et al., 2016, 2017;
Zhang, 2018). Kwon et al. (2014) used two software programs from the Commons library
(i.e., Commons-CLI and Commons-Collection). It was interesting to see if IRCOV is repli-
cable for more programs from the Commons library.

Log4j6 is a Java-based logging utility. Log4j 2 was released in 2014 to overcome the
limitations of its predecessor version, Log4j 1. We obtained the software programs from
GitHub and used the test suites provided with the programs. We selected Log4j because
it is a larger program compared to the ones used in the original study (see Table 1). The
intention was to see if IRCOV could be scaled up for larger programs. Moreover, Log4j is a
program frequently used in regression testing experiments (see, e.g., Chen et al., 2018; Chi
et al., 2020; Yu et al., 2014).

Table 1 Software programs used in replication

Program Version LOC Test classes Used in Kwon
et al. (2014)

Repository

Commons-CLI 1.1, 1.2 13210 23 Yes SIR & GitHub
XML Security 2.2.3 21315 172 Yes SIR & GitHub
Commons-Collections v4.3 128907 490 Yes GitHub
Joda-Time v2.10.10 147025 240 Yes GitHub
Commons-Email fd6b6**c35a 83154 20 No GitHub
Log4j b956**8b969 169646 63 No SIR & GitHub

1 https:// commo ns. apache. org/ proper/ commo ns- cli/
2 http:// santu ario. apache. org/ javai ndex. html
3 https:// commo ns. apache. org/ proper/ Commo ns- Colle ctions/
4 https:// www. joda. org/ joda- time/
5 https:// commo ns. apache. org/ proper/ Commo ns- Email/
6 https:// loggi ng. apache. org/ log4j/2. x/

https://commons.apache.org/proper/commons-cli/
http://santuario.apache.org/javaindex.html
https://commons.apache.org/proper/Commons-Collections/
https://www.joda.org/joda-time/
https://commons.apache.org/proper/Commons-Email/
https://logging.apache.org/log4j/2.x/

1539Software Quality Journal (2023) 31:1527–1559

1 3

Mutant generation: The fault information of the software programs was not available,
and therefore we used mutation faults instead. In the original study, Kwon et al. (2014)
used mutation faults as well. For the mutation, we used MAJOR (a mutation tool) (Just,
2014; Just et al., 2011).

Partitioning mutants into training, validation, and test sets: As per the description in the
original study, we split the mutants into training, validation, and test sets (10%, 10%, and
80%, respectively). To split the data, we used an online random generator.7 We applied the
ten-fold validation technique to ensure the reliability of the results and avoid any bias. To
create ten folds of each data set (i.e., training, validation, and test sets), we wrote automa-
tion scripts (Minhas & Irshad, 2021).

IDF threshold: The purpose of setting up an IDF threshold is to ensure that prioritized
test cases should detect faults in less-tested code elements. The IDF threshold is decided
using validation data containing information on faults and test cases detecting the faults. To
calculate the IDF threshold, the authors of the original study (Kwon et al., 2014) suggested
using a ratio from 0.1 to 1.0 in Eq. (1).

We trained the regression model with each threshold using validation data and selected the
ratio that led to the minimum training error for the IDF threshold. Based on the minimum
training error, Table 2 presents the chosen values for the IDF threshold of all ten folds of
Commons-CLI. We assigned IDF values to only those code elements whose DF was not
above the IDF threshold.

Calculating TF and IDF score: As suggested in the original study (Kwon et al., 2014),
we use Boolean values for TF (i.e., TF = 1 if the test case covers the element, TF = 0 oth-
erwise). The purpose of fixing the TF values as 0 or 1 was to ensure that only test cases
would be prioritized that are targeting less tested code. The IDF score is more significant
in this regard. As suggested in the original study (Kwon et al., 2014), we used Eq. (2) to
calculate the IDF score.

Similarity score: The similarity score directly contributes to the IRCOV model, in the
regression model (see Eq. 4), x2 refers to the similarity score of each test case. We have
calculated the similarity scores using Eq. (3), as suggested in Kwon et al. (2014). In Eq.
(3), e refers to covered elements, q refers to changed elements, and t refers to a test case.
Whereas tf and idf are term frequency and inverse document frequency.

Since TF values are 1 or 0 (i.e., if a test case excises a code element, then TF is 1; other-
wise, it is 0), practically, similarity scores are the sum of IDF scores of the elements cov-
ered by a particular test case.

(1)IDF Threshold = no of test cases × ratio

(2)IDF = 1 + log

(

of test cases

of test cases covering the element

)

(3)Similarity Score(t, q) =
∑

e∈t∩q

tf − idfe,t

7 https:// appro sto. com/ random- line- picker/

https://approsto.com/random-line-picker/

1540 Software Quality Journal (2023) 31:1527–1559

1 3

Coverage information: The coverage measure is also used in the regression model. In
Eq. (4), x1 refers to the coverage size of each test case. To measure code size (line of code)
and coverage of each test case, we used JaCoCo8 (the same tool was used in the original
study (Kwon et al., 2014)).

IRCOV model: We used Eq. (4) for the linear regression model as suggested in the origi-
nal study (Kwon et al., 2014).

(4)y = �0 + �1x1 + �2x2

Table 2 Simulation parameters for Commons-CLI. (MC, method coverage; LC, line coverage; BC, branch
coverage)

Fold name Coverage type Training error IDF threshold �0 �1 �2

Fold1 MC 1.0694 7 −0.3478 0.0187 0.1426
LC 0.9770 2 0 0 0
BC 0.8876 2 0 0 0

Fold2 MC 0.3195 5 −0.7976 0.0323 −0.1472
LC 0.3533 6 −0.6084 0.0088 −0.1343
BC 0.3567 5 −0.3386 0.0178 −0.2095

Fold3 MC 0.6411 6 −0.0286 0.0008 0.0796
LC 0.6404 6 −0.0498 0.0004 0.0736
BC 0.6405 6 −0.0380 0.0008 0.0736

Fold4 MC 0.4783 6 −0.0687 0.0097 0.1677
LC 0.4551 6 −0.1086 0.0032 0.1365
BC 0.4947 6 0.1240 0.0045 0.1683

Fold5 MC 0.1838 5 0.0309 0.0068 0.0558
LC 0.1856 4 0.0859 0.0018 0.0612
BC 0.1876 4 0.1406 0.0038 0.0516

Fold6 MC 0.2247 2 −0.5284 0.0194 0.3548
LC 0.1795 2 −0.4869 0.0052 0.3470
BC 0.1549 2 −0.3978 0.0119 0.3149

Fold7 MC 0.1382 10 −0.1479 0.0115 −0.0141
LC 0.1364 10 −0.0833 0.0030 −0.0234
BC 0.1390 10 0.0028 0.0065 −0.0235

Fold8 MC 0.2020 6 0.4389 −0.0024 0.0839
LC 0.2046 6 0.3401 −0.0001 0.0715
BC 0.2046 6 0.3286 −0.00001 0.0694

Fold9 MC 0.1490 6 0.1652 −0.0032 0.1473
LC 0.1532 6 0.0540 −0.0002 0.1344
BC 0.1517 6 0.0862 −0.0012 0.1434

Fold10 MC 0.0339 10 −0.1253 0.0017 0.0267
LC 0.0339 10 −0.1127 0.0004 0.0261
BC 0.0343 10 −0.0920 0.0007 0.0278

8 https:// www. eclem ma. org/ jacoco/

https://www.eclemma.org/jacoco/

1541Software Quality Journal (2023) 31:1527–1559

1 3

In Eq. (4), x1 is the size of the coverage data for each test case, and x2 refers to the similar-
ity score of each test case. The value of y represents each test case’s fault detection capabil-
ity, which is proportional to the number of previous faults detected by the test case. In the
regression model, three coefficients need to be calculated (i.e., �0, �1, & �2). Here �0 repre-
sents the intersect, whereas, to calculate �1 and �2 Kwon et al. (2014) suggested using Eq.
(5), which uses y value and respective values of x1 and x2 . Here y could be calculated using
Eq. (6), whereas x1 and x2 respectively represent the size of coverage and similarity scores
of each test case.

Prioritization based on fault detection capability: After having the values of coefficients
and variables of regression model (i.e., �0, �1, �2, x1 , and x2), we determined the fault detec-
tion capability of each test case using the IRCOV model (see Eq. 4). Finally, we arranged
the test cases in descending order by their fault detection ability.

Evaluating the technique: After having a prioritized set of test cases, we ran them on the
50 faulty versions of each fold we created using the test data set of mutants. To evaluate the
results, we used the average percentage of fault detection (APFD) (see Eq. 7).

4.4 Analysis of the replication results

We implemented IRCOV for line, branch, and method coverage. As described above, we
calculated the APFD values for all coverage types for each fold and captured the intermedi-
ate results (see Table 2).

We translated the APFD values for Commons-CLI from the original study to compare
the replication and the original study results. Then we plotted the APFD values of the orig-
inal and replication study in the box plot, a statistical tool to visually summarize and com-
pare the results of two or more groups (Do et al., 2010; Williamson et al., 1989). Boxplots
of APFD values enabled us to compare the replication and original study results visually.

To triangulate our conclusions, we applied hypothesis testing. We used Wilcoxon
signed-rank test to compare the IRCOV original and IRCOV replication results. Also, the
original study Kwon et al. (2014) used Wilcoxon signed-rank test to compare the IRCOV
results with the baseline methods. Wilcoxon signed-rank test is suitable for paired samples
where data is the outcome of before and after treatment. It measures the difference between
the median values of paired samples (Gibbons, 1993). We were interested in measuring the
difference between the median APFD values of IRCOV original and IRCOV replication.
Therefore, the appropriate choice to test our results was Wilcoxon signed-rank test.

We tested the following hypothesis:

H0LC: There is no significant difference in the median APFD values of the original and
replication studies using line coverage.

(5)theta = (XTX)−1XT
y

(6)y =

n
∑

n=1

fi

log(ti) + 1

(7)APFD = 1 −
TF1 + TF2 + + TFN

nm
+

1

2n

1542 Software Quality Journal (2023) 31:1527–1559

1 3

H0BC: There is no significant difference in the median APFD values of the original and
replication studies using branch coverage.

H0MC: There is no significant difference in the median APFD values of the original and
replication studies using method coverage.

4.5 Automation of replication

The replication was implemented using Python scripts. They are available (Minhas & Irshad,
2021). Figure 2 presents the details of automation steps for the replication of IRCOV. The
original study’s authors proposed that ten-fold-based execution is needed (when historical data
is not available) to evaluate their original technique. Therefore, our implementation (fold_gen-
erator) (Minhas & Irshad, 2021) generates ten folds of the object program at the first stage.
Thereafter, it generates 50 faulty versions of each fold, whereas each version contains 5–15
mutants (faults). After generating the faulty versions, the script makes the corresponding
changes in the code. Finally, the tests are executed, and their results are extracted. Later, using
the test results, we calculated each fold’s APFD values.

Fig. 2 Steps to automate the replication of IRCOV

1543Software Quality Journal (2023) 31:1527–1559

1 3

5 Results

This section presents the findings from the replication. The results are organized according
to research questions listed in Sect. 4.

5.1 RQ1. The degree to which the replication is feasible to implement

The first goal was to replicate the IRCOV technique with the four software programs
described in the original study (Kwon et al., 2014) (RQ1.1) and with two additional soft-
ware programs (RQ1.2).

Concerning RQ1.1, out of four software programs used in the original study, we could
completely replicate the IRCOV technique with only Commons-CLI. Whereas, with the
other three software programs, (i) XML Security, (ii) Commons-Collections (CCN), and
(iii) Joda-Time (JOD), the replication was partially successful or unsuccessful. Concerning
RQ1.2, we could not successfully replicate the IRCOV with these additional software pro-
grams (i) Commons-Email and (ii) Log 4j. The details of completely successful, partially
successful, and unsuccessful cases are discussed in the subsequent paragraphs.

Successful replication implementation: We successfully replicated IRCOV with Com-
mons-CLI. After going through the steps presented in Sect. 4.3.2, for every fold, we were
able to calculate the respective coverage information and similarity score of each test case.
Table 2 presents the intermediate results for the replication of IRCOV with Commons-CLI.
These include training error, chosen value of IDF threshold, regression coefficient �0, cov-
erage weight �1, and weight for similarity score �2.

To evaluate the performance of IRCOV, we have calculated APFD values for all ten
folds of each coverage type (branch, line, and method) (see Table 3). The APFD value
ranges from 0.547 to 0.873 for branch coverage, whereas the average (median) APFD
value for branch coverage is 0.747. The APFD values for line coverage range from 0.609 to
0.873, and the average APFD value for line coverage is 0.809. Finally, the APFD value for
method coverage ranges from 0.549 to 0.864, and the average APFD for method coverage
is 0.772. These results show that the IRCOV model performed best for line coverage as the
mean APFD for line coverage is highest among the coverages.

Table 3 APFD values for all ten
folds of each coverage type

Folds Branch coverage Line coverage Method coverage

Fold 1 0.874 0.874 0.865
Fold 2 0.816 0.866 0.790
Fold 3 0.646 0.643 0.613
Fold 4 0.757 0.816 0.755
Fold 5 0.725 0.715 0.721
Fold 6 0.796 0.829 0.829
Fold 7 0.841 0.839 0.839
Fold 8 0.610 0.610 0.585
Fold 9 0.548 0.622 0.594
Fold 10 0.736 0.803 0.803

1544 Software Quality Journal (2023) 31:1527–1559

1 3

Partial or unsuccessful replication: Our first unsuccessful replication was concerning
XML Security. We did not find all the program versions used in the original study (Kwon
et al., 2014). Therefore, we decided to use the versions that have slightly similar major/
minor release versions. We downloaded available XML Security versions 1, 1.5, and
2.2.3. The first two downloaded versions (version 1 and version 1.5) were not compiling
due to the unavailability of various dependencies. The logs from the compilation failures
are placed in the folder “LogsXmlSecurit” available at Minhas and Irshad (2021).

We were able to compile the third XML Security version 2.2.3, but we could not
continue with it because this version contained several failing test cases (see Minhas &
Irshad, 2021). With already failing test cases, training the model correctly and getting the
appropriate list of prioritized test cases was difficult.

The second and third attempts were made on Commons-Collection and Joda-Time.
Compared to other projects used in the replication experiment, these projects contain more
test classes (see Table 1). The mutants were generated for each of these projects. Out of
50 faulty versions, the first faulty version of Commons-Collection (Fold1) took 40 min in
execution, and similarly, the first faulty version of Joda-Time (Fold1) took 36 min in execu-
tion. This was a limitation since, to train the model, we had to use ten folds, and for each
fold, we had to execute 50 faulty versions containing five to fifteen faults in each faulty
version. Our estimate shows that it would take 2000 min to train Commons-Collection and
1810 min to train Joda-Time. It would take 64 h (approx) before we get the final results of
these two programs – provided that the Internet connection remains stable and working.
We made several attempts to perform replications on these two projects (Joda-Time and
Common-Collection). However, technical limitations limit the number of times these pro-
jects could run or compile. These limitations were:

– Maven-based projects fetch the dependencies from the maven-repositories. These
projects were fetching huge amounts of data for each execution cycle. Our client was
banned for short duration by Maven repositories because of sending too many requests
in a short amount of time.

– Since these projects download libraries from the internet during each compile-run
cycle, the internet connections (at three different places) did not keep up with the
amount of data continuously requested by the client. A simple disconnection means that
the whole script will stop working.

Furthermore, parsing and analyzing the data of many test classes is also time-consuming.
Due to these technical and resource limitations, we abandoned the replications for these
two projects. Furthermore, parsing and analyzing the data of many test classes is also time-
consuming. Due to these technical and resource limitations, we abandoned the replications
for these two projects. We have further discussed these issues in Sect. 6.

The fourth unsuccessful replication attempt was executed on Commons-Email. This
time the replication was unsuccessful because of faulty mutants generated by the mutant
software. For instance, it suggested replacing variable names with ‘null’ (see Listing 1 &
2). The actual code was this.name = null; while after mutant injection, the code turned to
this.null = null.

Another type of faulty instance was when MAJOR suggested modifying a line in the
code that resulted in Java compilation errors (such as “unreachable statement”). There were
several such faulty mutants that made the program fail to compile, and hence no further
processing was possible. The detail of all faulty mutants is available in the folder “Com-
monsEmail” at Minhas and Irshad (2021).

1545Software Quality Journal (2023) 31:1527–1559

1 3

We also made unsuccessful attempts to change the mutant generator to rectify this prob-
lem. However, each mutant generator presented a new set of problems. The lessons learned
from the usage of different mutant generators are described in the next section.

The fifth replication attempt was executed on Log4j. We followed all the steps (using
our automated scripts) proposed by the authors of the original study. We successfully gen-
erated the mutants for this program. However, the replication was stopped at the point when
the steps to train the model failed. The proposed approach in the original study is based on
the coverage information of each code class and test class. This time the low coverage of
the test cases caused the issue. During the training of the model, we realized that because
of the low coverage of the test cases, we were unable to calculate the values of regression
coefficients, and as a result, we could not generate the prioritized set of test cases. We
developed a Jupyter notebook to describe each step of this partially successful replication
(see Minhas & Irshad, 2021). Compared to the other software programs selected in this
study, with 169646 LOC, Log4j is a large program. Thus, a lot of time was needed to train
the model for Log4j. For all ten folds, with 50 faulty versions of each fold and with five to
fifteen faults in each faulty version, it required approximately 60 h to train the model.

six

5.2 RQ2. Comparison of the results to the original study

We could replicate IRCOV with only one program (Commons-CLI) out of six selected pro-
grams. Therefore results presented for RQ2 may be considered partial as these are based on
the outcome of a single execution of IRCOV.

Listing 1 Faulty mutant generated by the tool

Listing 2 Code generated after
the insertion of faulty mutant

1546 Software Quality Journal (2023) 31:1527–1559

1 3

For comparison purposes, we relied on what has been reported by the authors of the
original study, as that was the only source to reach and reconstruct the results. Figure 3
presents the APFD boxplots of the original and replication study for Commons-CLI. Box-
plots with blue patterns represent the original study results, and boxplots with gray patterns
represent the replication study results. We can see that in all cases, the APFD values of the
original study are slightly better compared to the values of the replication. We applied sta-
tistical tests to detect whether the results of the replication and the original study differed.

We applied Wilcoxon singed-rank test to compare the replication results for branch, line,
and method coverage of Commons-CLI with the original study’s results. The results are sig-
nificant if the p-value is less than the level of significance (Du Prel et al., 2009). The difference
between the two implementations would be significant if the p-value is less than 0.05.

Table 4 presents the results of the statistical test. The p-value for branch coverage is
0.475, which is greater than 0.05 (significance level). Therefore, we can not reject the null
hypothesis. That means we can not show a significant difference in the APFD values for
branch coverage of Commons-CLI between the replication and the original study.

Similarly, the p-value for line coverage is 0.415, greater than the set significance level.
Based on the statistical results, we can not reject the null hypothesis. This implies that we

Fig. 3 APFD Boxplots for IRCOV Original vs IRCOV Replication (IRCBO= IRCOV Branch cover-
age original, IRCBR= IRCOV Branch Coverage Replication. IRCLO= IRCOV Line coverage original,
IRCLR= IRCOV Line coverage replication. IRCMO= IRCOV Method coverage original, IRCMR=IRCOV
Method coverage replication

1547Software Quality Journal (2023) 31:1527–1559

1 3

can not show a significant difference in the APFD values for the line coverage of Com-
mons-CLI between the replication and the original study.

Finally, the p-value for method coverage is 0.103. Based on this result, we can not reject
the null hypothesis. Therefore no significant difference in the APFD values for the method
coverage of Commons-CLI between the replication and the original study.

From the t-test results, we can conclude that for all three coverage types (branch, line,
and method), we did not find any significant difference between the replication and the
original study. Therefore, we can state that the replication experiment did not deviate from
the original result to the degree that would lead to the test detecting a significant difference.

6 Discussion

6.1 Lessons learned of replicating artifact‑based studies in software testing

We replicated the study presented in Kwon et al. (2014) to promote artifact-based replica-
tion studies in software engineering, validating the correctness of the original study and
exploring the possibilities of adopting regression testing research in the industry.

Overall, it is essential to capture and document assumptions and constraints concerning
the techniques to be replicated, as well as the conditions for running replication. We high-
light several factors of relevance that were observed.

Conditions concerning System under Test (SuT) complexity: From the replication
results, we learned that the technique (IRCOV) presented in (Kwon et al., 2014) is rep-
licable for small and medium software programs provided the availability of context
information, as it was demonstrated by replication Commons-CLI. However, we could
not demonstrate the replication of IRCOV with other small and medium programs (e.g.,
XML Security) because of the availability of context information. Similarly, we faced

Table 4 Statistical results of
replication compared to the
original study for Commons-CLI

Coverage � p-value 95% Conf. Int.

Branch 0.05 0.475 0.646–0.816
Line 0.05 0.415 0.668–0.845
Method 0.05 0.103 0.652–0.827

1548 Software Quality Journal (2023) 31:1527–1559

1 3

issues while replicating IRCOV with comparatively large software programs having more
test classes (e.g., Commons-Collection and Joda-Time). Furthermore, we did not replicate
IRCOV on any other industry-strength software. The industry-strength software may be
written in different languages, frameworks, and coding conventions (e.g., size of class,
number of classes). The technique may produce different results if different types of pro-
gramming languages are used. Furthermore, industry-strength software is continuously
changing due to maintenance needs. This will result in running the approach each time a
change is introduced. In short, further evaluation is required before claiming the generaliz-
ability of IRCOV concerning systems under test.

Based on our experiences during the replication of IRCOV, we can say that with its current
guidelines, the technique is challenging to implement with large software programs because
it requires significant effort to train the model. The restriction of 10-folds, 50 faulty versions
for every fold, and 5 to 15 faults in every faulty version would require a substantial effort.
For example, while attempting to replicate the original study with Commons-Collection and
Joda-Time, we estimated it would take approximately 64 h to train the model for each soft-
ware program. This limitation can be managed by reducing the number of faulty versions for
each fold, but this may degrade the accuracy and increase the training error.

Conditions concerning the characteristics of the test suite: Test cases available with Log4j
have low coverage, limiting the chance of correctly training the model and generating a rea-
sonable prioritization order of the test cases. Coverage is one of the primary inputs required
for the test case prioritization using the IRCOV model. Another problem we encountered was
the presence of already failing test cases in one of the versions of XML Security. Test cases
are used to calculate the coverage score and similarity scores of the project. If a handful of
test cases fail (as in XML Security version 2.2.3), wrong coverage information and similarity
scores are calculated. This results in the wrong prioritization of test cases as well as faulty
training of the model (which is used to identify prioritized test cases). Another drawback with
failing test cases concerns the use of mutations. If tests are already failing and when mutants
are introduced, then the effectiveness is unreliable as tests are already failing because of other
issues. Further conditions may be of relevance in studies focusing on different aspects of soft-
ware testing. Here, we will highlight how important it is to look for these conditions and
document them. This is also relevant for practice, as it demonstrates under which conditions a
technique may or may not be successful.

Availability of experimental data for artifact-based test replications: One of the con-
straints regarding the replicability of the IRCOV technique is the availability of experimen-
tal data. For example, the authors of the original study (Kwon et al., 2014) stated that they
used in-house built tools to conduct the experiment, but they did not provide any source of
these tools and also did not include details of the automation tools. Therefore, setting up
the environment to replicate IRCOV with the first program took a significant effort. There
are various limitations concerning the data sets and tools required to work with the recom-
mended steps. Regarding data sets, we have recorded the findings in Sect. 5. These include
the compatibility of SIR artifacts. For example, we faced difficulties working with XML
Security version 1 because of various dependencies. While working with version 2.2.3 of
XML Security, we encountered errors in the version. Therefore, we could not collect the
coverage information. Ultimately, we were unable to replicate the technique with any of the
versions of XML Security.

Reflections on mutant generators: In the absence of failure data, the authors of the origi-
nal study suggested using mutation faults, and they used the MAJOR mutation tool to gen-
erate the mutants. In one of our cases (Commons-Email), the mutation tool generated inap-
propriate mutants that led to the build failure. Therefore, no further progress was possible

1549Software Quality Journal (2023) 31:1527–1559

1 3

with this case. One option could be removing the faulty mutants and including only the
correct ones. In our opinion, removing faulty mutants may bring different results from the
original study, thus limiting the validity of replication.

To overcome the difficulty with the replication Commons-Email, we tried different
open-source mutation generators available. Each presented various benefits and chal-
lenges documented in Table 5. After trying out different mutation tools, we learned
that among the available options, MAJOR is an appropriate tool for Java programs, as
it generates the mutants dynamically.

Reflections on the requirements of the experimental setup: We faced limitations
while attempting the replication of the technique with larger software programs. The
time required to train the model with larger programs was longer. We do not know
whether the original authors experienced similar problems since the original study did
not discuss similar issues. We suggest that original studies explicitly report any special
experimental setup requirements (e.g., hardware, software, etc.). This will help repli-
cators (researchers and practitioners) to replicate/adapt the studies to a new context.
Further, collaboration between the original authors and replicators may help resolve
such issues. However, as mentioned in the earlier sections, we could not establish an
effective collaboration with the authors of the original study.

Reflections on the IRCOV technique: Besides the limitations highlighted earlier,
based on the replication results of Commons-CLI, we can state that the IRCOV tech-
nique can be replicated for smaller software programs provided the availability of
required information. Though we could not replicate the technique on all the selected
programs, the replication results of Commons-CLI showed that the original authors’
claim about the performance of the IRCOV was verifiable. The IRCOV can be a val-
uable technique from an industry perspective because it focuses on prioritizing test
cases and detecting faults in less-tested code while taking coverage of test cases into
account during the prioritization process. Besides increasing the test suite’s rate of
fault detection, it can help the practitioners work with one of their goals (e.g., con-
trolled fault slippage). However, the technique needs to be modified to decrease the
time required for programs with many test classes. Looking at regression testing in
practice, the practitioners recognize and measure the coverage metric (Minhas et al.,
2020). Failure history is the only information that companies need to maintain. In the
presence of actual failure data, we do not need to use the mutants to train the IRCOV
model extensively, and we can reduce the number of faulty versions for each fold and
the number of folds.

Pursuing the first research question (RQ1) provided us with a deeper insight into the
various aspects and challenges of external replication. The lessons learned in this pur-
suit are interesting and provide recommendations in the context of replication studies
in software engineering. The existing literature revealed that the trend of replication
studies in software engineering is not encouraging (Da Silva et al., 2014). The studies
report that internal replications are much higher than external replications (Bezerra
et al., 2015; Da Silva et al., 2014). While searching the related work, we observed
that external replications in the software testing domain are few compared to internal
replications. There could be several reasons for the overall lower number of replica-
tion studies in software engineering, but we can reflect on our experiences concerning
external replications as we have undergone an external replication experiment.

One issue we would like to highlight is the substantial effort needed to implement
the replication. Replication effort can be substantially reduced with more detailed
documentation of the original studies, the availability of appropriate system versions

1550 Software Quality Journal (2023) 31:1527–1559

1 3

Ta
bl

e
5

 C
om

pa
ris

on
 o

f m
ut

an
t g

en
er

at
or

s

a ht
tp

s:
// m

ut
at

 io
n-

 te
sti

 ng
. o

rg
/

b ht
tp

s:
// c

s. g
m

u.
 ed

u/
 off

ut
t/ m

uj
av

a/
c ht

tp
://

 je
ste

r. s
ou

rc
 ef

or
ge

. n
et

/
d ht

tp
://

 ju
m

bl
e.

 so
ur

c e
fo

rg
e.

 ne
t/

e ht
tp

s:
// p

ite
st.

 or
g/

N
o

M
ut

at
io

n
to

ol
B

en
efi

ts
C

ha
lle

ng
es

1
M

aj
or

a
(i)

 E
as

y
to

 u
se

. (
ii)

 M
os

t c
om

m
on

ly
 u

se
d

m
ut

an
t g

en
er

at
or

(i)
 F

au
lty

 m
ut

an
t g

en
er

at
ed

. (
ii)

 N
ee

ds
 u

pg
ra

de
 to

 la
te

st
Ja

va
 v

er
si

on
s.

(ii
i)

D
oc

um
en

ta
tio

n
ne

ed
s i

m
pr

ov
em

en
t

2
μ

Ja
va

b
(i)

 ID
E

pl
ug

in
 av

ai
la

bl
e.

 (i
i)

U
se

r d
ec

id
es

 w
ha

t t
yp

es
 o

f m
ut

an
ts

 c
an

 b
e

ge
ne

ra
te

d
(i)

 E
xp

or
tin

g
m

ut
an

ts
 se

pa
ra

te
ly

 is
 n

ot
 su

pp
or

te
d.

 (i
i)

D
oe

s n
ot

 su
pp

or
t l

at
-

es
t J

av
a

ve
rs

io
ns

 (i
ii)

 G
U

I o
fte

n
cr

as
he

s w
hi

le
 g

en
er

at
in

g
m

ut
an

ts
3

Je
ste

rc
Tw

o
ty

pe
s o

f J
es

te
r v

er
si

on
s,

a
co

m
pl

et
e

ve
rs

io
n

an
d

a
si

m
pl

e
ve

rs
io

n
La

te
st

up
da

te
 w

as
 m

or
e

th
an

 1
0

ye
ar

s a
go

. W
e

w
er

e
un

ab
le

 to
 g

en
er

at
e

m
ut

at
io

ns
 o

r s
ta

rt
th

e
pr

og
ra

m
 d

es
pi

te
 fo

llo
w

in
g

al
l s

te
ps

4
Ju

m
bl

ed
(i)

 S
up

po
rt

re
ce

nt
 Ja

va
 v

er
si

on
s.

(ii
) I

nt
eg

ra
tio

n
w

ith
 ID

E
Su

pp
or

te
d

U
na

bl
e

to
 g

en
er

at
e

m
ut

an
ts

 d
es

pi
te

 th
e

fo
llo

w
in

g
ex

am
pl

es
. T

he
 la

te
st

up
da

te
 w

as
 6

 y
ea

rs
 a

go
5

PI
Td

Th
e

m
os

t r
ec

en
t a

nd
 c

om
pl

et
e

m
ut

an
t g

en
er

at
or

. M
ut

an
ts

 a
re

 g
en

er
at

ed
,

an
d

te
sts

 a
re

 e
xe

cu
te

d.
 A

 re
po

rt
is

 g
en

er
at

ed
 fo

r t
he

 u
se

r
(i)

 U
na

bl
e

to
 e

xp
or

t t
he

 m
ut

an
ts

. (
ii)

 L
ac

k
of

 d
iv

er
si

ty
 in

 th
e

m
ut

an
ts

. (
iii

)
Ea

ch
 e

xe
cu

tio
n

pr
od

uc
ed

 e
xa

ct
 sa

m
e

m
ut

an
ts

https://mutation-testing.org/
https://cs.gmu.edu/offutt/mujava/
http://jester.sourceforge.net/
http://jumble.sourceforge.net/
https://pitest.org/

1551Software Quality Journal (2023) 31:1527–1559

1 3

and their dependencies, and the knowledge about prerequisites and assumptions. Better
documentation and awareness of conditions may facilitate a higher number of replica-
tions in the future.

6.2 General lessons learned for artifact‑based replications

Table 6 provides an overview of the challenges we encountered during the replications.
It lists the possible impact of each challenge on the results of replication, and the table
also presents a list of recommendations for researchers. The following provides a brief
discussion of the lessons learned in this study.

Documenting the original experiment: The authors of the original studies need to main-
tain and provide comprehensive documentation concerning the actual experiment. The
availability of such documents will help the independent replicators understand the origi-
nal study’s context. In the absence of such documentation, the replicators need to invest
more effort to understand the original study’s context. In this regard, we suggest using
open-source repositories to store and publish the documentation. The documentation may
contain the detail of the experimental setup, including the tools used to aid the original
experiment, automation scripts (if used/developed), and the internal and final results of the
study. Furthermore, the authors can also include detail about any special requirements or
considerations that need to be fulfilled for the successful execution of the experiment.

Collaboration with the original authors: Because of page limits posed by the jour-
nals and conferences, every aspect of the study can not be reported in the research paper.
Sometimes, the replicators need assistance from the original authors regarding any
missing aspect of the study. Therefore, it is essential that in case of any such query from
the replicators, the original study’s authors should be able to assist them. Such coopera-
tion can promote replication studies in software engineering. In our opinion, lack of col-
laboration is one reason for fewer replication studies in software engineering. However,
it is important to still conduct the replications as independently as possible due to pos-
sible biases (i.e., avoiding turning an external replication into an internal one).

Maintaining open-source repositories: Open-source repositories (one example being
SIR) provide an excellent opportunity for researchers to use the data sets while conduct-
ing software engineering experiments. A large number of researchers have benefited from
these data sets. We learned that some of the data sets available in repositories are outdated
and need to be maintained. Such data sets are not helpful, and studies conducted using
these data sets would be complex to adopt/replicate. It is, therefore, essential that authors
explicitly state the versions they used in their own studies. In addition, we recommend that
authors of original studies as well as replications ensure that the dependencies or external
libraries are stored to facilitate the replications of the system under test.

Tools compatibility: In many cases, the authors need to use open-source tools to
assist in the execution of their experiment. Such tools need to be well-maintained and
updated. In case of compatibility issues, these tools can hinder the replication process.
For example, the study we replicated uses a mutation tool (MAJOR). Although it is one
of the best available options, the tool generated inappropriate mutants for one of our
cases due to some compatibility issues. Ultimately, after a significant effort, we had to
abandon the replication process for that case. Here, we also would like to highlight that
one should document the versions of the tools and libraries used (also including scripts
written by the researchers - e.g., in Python).

1552 Software Quality Journal (2023) 31:1527–1559

1 3

Ta
bl

e
6

 R
ec

om
m

en
da

tio
ns

 d
ra

w
n

fro
m

 th
e

ch
al

le
ng

es
/le

ss
on

s l
ea

rn
ed

C
ha

lle
ng

e
Im

pa
ct

Re
co

m
m

en
da

tio
n

D
oc

um
en

ta
tio

n
of

 th
e

or
ig

in
al

 e
xp

er
im

en
ta

l s
et

up
Re

pl
ic

at
or

s h
av

e
to

 in
ve

st
ad

di
tio

na
l e

ffo
rt

to
 u

nd
er

st
an

d
th

e
co

nt
ex

t o
f t

he
 st

ud
y

O
rig

in
al

 a
ut

ho
rs

 n
ee

d
to

 m
ai

nt
ai

n/
pu

bl
is

h
a

co
m

pr
eh

en
-

si
ve

 d
oc

um
en

ta
tio

n
of

 e
xp

er
im

en
ta

l s
et

up
C

ol
la

bo
ra

tio
n

w
ith

 th
e

au
th

or
s o

f o
rig

in
al

 st
ud

ie
s

A
bs

en
ce

 o
f e

xp
er

im
en

ta
l d

at
a

an
d

su
pp

or
t f

ro
m

 o
rig

in
al

au

th
or

s c
an

 c
om

pl
ic

at
e

th
e

re
pl

ic
at

io
n

pr
oc

es
s

In
 th

e
ev

en
t o

f a
 re

qu
es

t f
ro

m
 th

e
re

pl
ic

at
or

s,
th

e
au

th
or

s
of

 th
e

or
ig

in
al

 st
ud

y
pr

ov
id

e
as

si
st

an
ce

 in
 th

e
fo

rm
 o

f
es

se
nt

ia
l i

nf
or

m
at

io
n

re
ga

rd
in

g
th

e
or

ig
in

al
 e

xp
er

im
en

t
Is

su
es

 w
ith

 th
e

op
en

-s
ou

rc
e

da
ta

 se
t

Re
pl

ic
at

io
n

ex
pe

rim
en

ts
 m

ay
 fa

il
du

e
to

 th
es

e
is

su
es

O
pe

n-
so

ur
ce

 re
po

si
to

rie
s n

ee
d

to
 b

e
m

ai
nt

ai
ne

d
an

d
up

to

 d
at

e
Th

e
sy

ste
m

 u
nd

er
 T

es
t (

Su
T)

 a
nd

 to
ol

s c
om

pa
tib

ili
ty

is

su
es

A
ny

 c
om

pa
tib

ili
ty

 is
su

e
of

 th
e

to
ol

s r
eq

ui
re

d
to

 re
pl

ic
at

e
th

e
or

ig
in

al
 e

xp
er

im
en

t c
an

 c
re

at
e

a
bo

ttl
en

ec
k

fo
r t

he

re
pl

ic
at

io
n

Su
ch

 to
ol

s (
e.

g.
, M

ut
at

io
n

to
ol

s i
n

ou
r c

as
e)

 n
ee

d
to

 b
e

m
ai

nt
ai

ne
d

to
 m

ak
e

th
em

 c
om

pa
tib

le
 w

ith
 n

ew
 d

ev
el

-
op

m
en

t f
ra

m
ew

or
ks

. T
he

 sa
m

e
ap

pl
ie

s t
o

th
e

sy
ste

m

un
de

r t
es

t

1553Software Quality Journal (2023) 31:1527–1559

1 3

Documenting successes and failures in replications: Besides the significance of doc-
umenting every aspect of the original experiment, recording every single event of repli-
cation (success & failure) is critical for promoting future replications and industry adop-
tions of research. We recommend storing the replication setups and data in open-source
repositories and providing the relevant links in the published versions of the articles.

Automation of replication: A key lesson learned during the replication of the origi-
nal study is that the documentation of the setup and execution of replication could be
automated with the help of modern tools and programming languages. This automa-
tion will help in reproducing the original results and analysis for researchers reviewing
or producing the results from the studies. We have provided programming scripts that
describe and document all the steps (and the consequences of these steps).

7 Threats to validity

7.1 Internal validity

Internal validity refers to the analysis of causal relations of independent and dependent
variables. In our case, we have to see if the different conditions affect the performance
of IRCOV. IRCOV depends upon two inputs, coverage of each test case and a similarity
score calculated based on TF-IDF. We used the test cases available within the software
programs. Therefore, we do not have any control over the coverage of these test cases.
However, the choices of mutants can impact the similarity score. To avoid any bias, we
generated the mutants using a tool and used a random generator to select the mutants
for different faulty versions of the software programs. Furthermore, we trained IRCOV
sufficiently before applying it to test data by following the ten-fold validation rule. Since
we measured the performance of IRCOV using the APFD measure, the results of the
successful case were not significantly different from the original study’s results. There-
fore, we can argue that our treatment did not affect the outcome of IRCOV. Hence mini-
mizing the threats to internal validity.

7.2 Construct validity

Construct validity is concerned with the underlying operational measures of the study.
Since it is a replication study and we followed the philosophy of exact replication (Shull
et al., 2008) if the original study suffers from any aspects of construct validity, the rep-
lication may do so. For instance, the use of mutation faults could be a potential threat to
the construct validity because of the following two reasons:

– Mutation faults may not be representative of real faults.
– Possible researchers’ bias concerning the nature of mutation faults.

Concerning the first reason, the use of mutation faults to replace the real faults is an
established practice, and researchers claim that mutation faults produce reliable results
and hence can replace the real faults (Andrews et al., 2005; Do & Rothermel, 2006). We
used an automated mutation tool to generate the mutants to avoid bias. Also, to select

1554 Software Quality Journal (2023) 31:1527–1559

1 3

the mutants for validation, training, and test set, we used an automated random selector.
Hence no human intervention was made during the whole process. Furthermore, we dis-
cussed the strengths and weaknesses of different tools.

7.3 External validity

External validity is the ability to “generalize the results of an experiment to industrial
practice” (Wohlin et al., 2012). The software programs used in the replication study
are small and medium-sized Java programs. Therefore, we can not claim the generaliz-
ability of results to large-scale industrial projects. The results produced in replication
for one program (Commons-CLI) conform with the original study’s results. However,
we could not demonstrate the use of the technique for the other programs used in the
original study and on the additional software programs. Therefore, there is a possibility
of threats to the external validity of the replication study.

8 Conclusions and future work

This study reports the results of a replication experiment to evaluate a test case prioriti-
zation technique using information retrieval (IR) concepts proposed initially by Kwon
et al. We attempted to replicate the original study using six Java programs: Commons-
CLI, XML Security, Commons-Collection, Joda-Time, Commons-Email, and Log4j. In
the first research question (RQ1), the aim was to see if the technique is replicable, and in
the second research question (RQ2), we aimed to see if the replication results conform
to the ones presented in the original study.

We have faced various challenges while pursuing RQ1. These challenges are related to the
availability of the original experimental setup, collaboration with the original authors, system
under test, test suites, and compatibility of support tools. We were able to replicate the tech-
nique only with Commons-CLI, which is a smaller program. Based on our experience, we can
conclude that the technique is replicable for small software programs (such as Commons-CLI)
subject to the availability of required information. However, it is hard to implement the tech-
nique with larger software programs because it requires a substantial effort to implement it for
a larger program. Concerning RQ1, the important concluding point is that it is not feasible to
externally replicate an experiment when context information and relevant data are not avail-
able. Furthermore, without the support of the original authors, it becomes a challenging task.

To verify the original study’s results (RQ2), since we could replicate IRCOV with
only one program, Commons-ClI, we compared the replication results for Commons-
CLI with those presented in the original study. These results validated the original
study’s findings as the statistical test confirms no significant difference between the
APFD values of the replication and the actual experiment. However, we may say that
there are limitations in our results being partially conformed with the original study
because we could not replicate the technique with all selected artifacts due to missing
dependencies, broken test suites, and other reasons highlighted earlier.

The technique can be helpful in the industrial context as it prioritizes the test cases that
target the less tested code. It can help the practitioners to control fault slippage. However,
it needs some improvements in training and validation aspects to scale the technique to the

1555Software Quality Journal (2023) 31:1527–1559

1 3

industry context. To support the future replications/adoption of IRCOV, we have automated
the IRCOV steps using Python (Jupyter notebook). Lessons learned during the IRCOV rep-
lication are essential for the original authors for reporting and documenting the experimental
setup. Similarly, for replicators (researchers and practitioners), these lessons are essential to
learning about the requirements to replicate a technique in a new environment.

We plan to work with more artifacts with actual faults to test the technique’s (IRCOV)
effectiveness in the future, and we plan to see the possibilities of scaling it up for larger
projects. In addition to that, we want to evaluate our proposed guidelines (under lessons
learned) using different studies from industrial contexts.

Author contributions Nasir Mehmood Minhas and Kia Petersen conceived the idea of the study, while
Nasir Mehmood Minhas and Mohsin Irshad carried out the replication experiment. Kia Petersen and Jür-
gen Börstler reviewed the implementation steps and challenged the implementation wherever necessary. In
Short, all authors have contributed to different phases of this study, i.e., the conception of the idea, imple-
mentation, and manuscript writing. All authors read and approved the final manuscript, and they stand
accountable for all aspects of this work’s originality and integrity.

Funding Open access funding provided by Blekinge Institute of Technology. This work has in parts been
supported by ELLIIT: the Swedish Strategic Research Area in IT and Mobile Communications.

Data availability The datasets and automated scripts generated during the current study are available in the
Mendeley Data repository and can be accessed using the link given in (Minhas & Irshad, 2021).

Declarations

Competing interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ali, N. B., Engström, E., Taromirad, M., Mousavi, M. R., Minhas, N. M., Helgesson, D., Kunze, S., & Varshosaz,
M. (2019). On the search for industry-relevant regression testing research. Empirical Software Engineering,
1–36.

Amati, G. (2009). Information retrieval models. Springer, New York, NY. pp. 1523–1528. https:// doi. org/
10. 1007/ 978-1- 4614- 8265-9_ 916

Andrews, J. H., Briand, L. C., & Labiche, Y. (2005). Is mutation an appropriate tool for testing experiments?
In: Proceedings of the 27th International Conference on Software Engineering, pp. 402–411.

Bajaj, A., & Sangwan, O. P. (2019). A systematic literature review of test case prioritization using genetic
algorithms. IEEE Access, 7, 126355–126375.

Bezerra, R. M., da Silva, F. Q., Santana, A. M., Magalhaes, C. V., & Santos, R. E. (2015). Replication of empiri-
cal studies in software engineering: An update of a systematic mapping study. In: 2015 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM), IEEE. pp. 1–4.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4614-8265-9_916
https://doi.org/10.1007/978-1-4614-8265-9_916

1556 Software Quality Journal (2023) 31:1527–1559

1 3

Carver, J. C. (2010).Towards reporting guidelines for experimental replications: A proposal. In: 1st Interna-
tional Workshop on Replication in Empirical Software Engineering, Citeseer, vol 1. pp. 1–4.

Catal, C. (2012). On the application of genetic algorithms for test case prioritization: A systematic litera-
ture review. In: Proceedings of the 2nd International Workshop on Evidential Assessment of Software
Technologies, ACM. pp. 9–14.

Catal, C., & Mishra, D. (2013). Test case prioritization: A systematic mapping study. Software Quality
Journal, 21(3), 445–478.

Chen, Z., Guo, H. F., & Song, M. (2018). Improving regression test efficiency with an awareness of refactor-
ing changes. Information and Software Technology, 103, 174–187.

Chi, J., Qu, Y., Zheng, Q., Yang, Z., Jin, W., Cui, D., & Liu, T. (2020). Relation-based test case prioritiza-
tion for regression testing. Journal of Systems and Software, 163, 110539.

Da Silva, F. Q., Suassuna, M., França, A. C. C., Grubb, A. M., Gouveia, T. B., Monteiro, C. V., & dos Santos, I.
E. (2014). Replication of empirical studies in software engineering research: A systematic mapping study.
Empirical Software Engineering, 19(3), 501–557.

Dahiya, O., & Solanki, K. (2018). A systematic literature study of regression test case prioritization
approaches. International Journal of Engineering & Technology, 7(4), 2184–2191.

de Magalhães, C. V., da Silva, F. Q., Santos, R. E., & Suassuna, M. (2015). Investigations about replication
of empirical studies in software engineering: A systematic mapping study. Information and Software
Technology, 64, 76–101.

Do, H., Rothermel, G., & Kinneer, A. (2004). Empirical studies of test case prioritization in a Junit test-
ing environment. In: 15th International Symposium on Software Reliability Engineering, IEEE. pp.
113–124.

Do, H., Elbaum, S., & Rothermel, G. (2005). Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical Software Engineering, 10(4), 405–435.

Do, H., Mirarab, S., Tahvildari, L., & Rothermel, G. (2010). The effects of time constraints on test case
prioritization: A series of controlled experiments. IEEE Transactions on Software Engineering, 36(5),
593–617.

Do, H., & Rothermel, G. (2006). On the use of mutation faults in empirical assessments of test case prioriti-
zation techniques. IEEE Transactions on Software Engineering, 32(9), 733–752.

Du Prel, J. B., Hommel, G., Röhrig, B., & Blettner, M. (2009). Confidence interval or p-value?: Part 4 of a
series on evaluation of scientific publications. Deutsches Ärzteblatt International, 106(19), 335.

Ekelund, E. D., & Engström, E. (2015). Efficient regression testing based on test history: An industrial eval-
uation. In: Proceedings of IEEE International Conference on Software Maintenance and Evolution,
ICSME. pp. 449–457.

Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: A family of empirical
studies. IEEE Transactions on Software Engineering, 28(2), 159–182.

Engström, E., & Runeson, P. (2010). A qualitative survey of regression testing practices. In: Proceedings of
the 11th International Conference on Product-Focused Software Process Improvement PROFES. pp.
3–16.

Engström, E., Runeson, P., & Skoglund, M. (2010). A systematic review on regression test selection tech-
niques. Information & Software Technology, 52(1), 14–30.

Fang, H., Tao, T., & Zhai, C. (2004). A formal study of information retrieval heuristics. In: Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. pp. 49–56.

Felderer, M., & Fourneret, E. (2015). A systematic classification of security regression testing approaches.
International Journal on Software Tools for Technology Transfer, 17(3), 305–319.

Gibbons, J. D. (1993). Location tests for single and paired samples (sign test and Wilcoxon signed rank test).
Harrold, M. J., & Orso, A. (2008). Retesting software during development and maintenance. In: Proceed-

ings of the Frontiers of Software Maintenance Conference. pp. 99–108.
Hasnain, M., Ghani, I., Pasha, M. F., Malik, I. H., & Malik, S. (2019). Investigating the regression analysis

results for classification in test case prioritization: A replicated study. International Journal of Internet,
Broadcasting and Communication, 11(2), 1–10.

ISO/IEC/IEEE. (2017). International standard - systems and software engineering–vocabulary. ISO/IEC/
IEEE 24765:2017(E). pp. 1–541. https:// doi. org/ 10. 1109/ IEEES TD. 2017. 80167 12

Ivarsson, M., & Gorschek, T. (2011). A method for evaluating rigor and industrial relevance of technology
evaluations. Empirical Software Engineering, 16(3), 365–395.

Juristo, N., & Gómez, O. S. (2012). Replication of software engineering experiments. Springer Berlin Hei-
delberg. pp. 60–88. https:// doi. org/ 10. 1007/ 978-3- 642- 25231-0_2

Just, R. (2014). The major mutation framework: Efficient and scalable mutation analysis for java. In: Pro-
ceedings of the 2014 International Symposium on Software Testing and Analysis. pp. 433–436.

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1007/978-3-642-25231-0_2

1557Software Quality Journal (2023) 31:1527–1559

1 3

Just, R., Schweiggert, F., & Kapfhammer, G. M. (2011). Major: An efficient and extensible tool for mutation
analysis in a java compiler. In: 2011 26th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2011), IEEE. pp. 612–615.

Kazmi, R., Jawawi, D. N. A., Mohamad, R., & Ghani, I. (2017). Effective regression test case selection: A
systematic literature review. ACM Computing Surveys,50(2), 29:1–29:32.

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., & Tumeng, R. (2018). Test case prioritization approaches in
regression testing: A systematic literature review. Information and Software Technology, 93, 74–93.

Krein, J. L., & Knutson, C. D. (2010). A case for replication: Synthesizing research methodologies in soft-
ware engineering. In: RESER2010: Proceedings of the 1st International Workshop on Replication in
Empirical Software Engineering Research, Citeseer. pp. 1–10.

Kwon, J. H., Ko, I. Y., Rothermel, G., & Staats, M. (2014). Test case prioritization based on information
retrieval concepts. In: 2014 21st Asia-Pacific Software Engineering Conference, IEEE, vol 1. pp. 19–26.

Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., & Marinov, D. (2016). An extensive study of static
regression test selection in modern software evolution. In: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. pp. 583–594.

Legunsen, O., Shi, A., & Marinov, D. (2017). Starts: Static regression test selection. In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE. pp. 949–954.

Lima, J. A. P., & Vergilio, S. R. (2020). Test case prioritization in continuous integration environments: A sys-
tematic mapping study. Information and Software Technology, 121, 106268.

Minhas, N. M., & Irshad, M. (2021). Data set used in the replication of an IR based test case prioritization tech-
niques (IRCOV). https:// data. mende ley. com/ drafts/ ccnzp xng54, https:// doi. org/ 10. 17632/ ccnzp xng54.1

Minhas, N. M., Petersen, K., Ali, N., & Wnuk, K. (2017). Regression testing goals-view of practitioners and
researchers. In: 24th Asia-Pacific Software Engineering Conference Workshops (APSECW), IEEE. pp.
25–32.

Minhas, N. M., Petersen, K., Börstler, J., & Wnuk, K. (2020). Regression testing for large-scale embedded soft-
ware development - Exploring the state of practice. Information and Software Technology, 120, 106254.
https:// doi. org/ 10. 1016/j. infsof. 2019. 106254

Ouriques, J. F. S., Cartaxo, E. G., & Machado, P. D. (2018). Test case prioritization techniques for model-based
testing: A replicated study. Software Quality Journal, 26(4), 1451–1482.

Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case selection and prioritization using
machine learning: A systematic literature review. Empirical Software Engineering, 27(2), 1–43.

Pannu, M., James, A., & Bird, R. (2014). A comparison of information retrieval models. In: Proceedings of the
Western Canadian Conference on Computing Education. pp. 1–6.

Peng, Q., Shi, A., & Zhang, L. (2020). Empirically revisiting and enhancing IR-based test-case prioritization.
In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
pp. 324–336.

Pittelkow, M. M., Hoekstra, R., Karsten, J., & van Ravenzwaaij, D. (2021). Replication target selection in clinical
psychology: A bayesian and qualitative reevaluation. Clinical Psychology: Science and Practice, 28(2), 210.

Qiu, D., Li, B., Ji, S., & Leung, H. K. N. (2014). Regression testing of web service: A systematic mapping
study. ACM Computing Surveys,47(2), 21:1-21:46.

Rainer, A., & Beecham, S. (2008). A follow-up empirical evaluation of evidence based software engineering by
undergraduate students. In: Proceedings of the 12th International Conference on Evaluation and Assess-
ment in Software Engineering. pp. 78–87.

Rainer, A., Jagielska, D., & Hall, T. (2005). Software engineering practice versus evidence-based software engi-
neering research. In: Proceedings of the ACM Workshop on Realising Evidence-based Software Engineer-
ing (REBSE ’05). pp. 1–5. https:// doi. org/ 10. 1145/ 10829 83. 10831 77

Roelleke, T. (2013). Information retrieval models: Foundations and relationships. Synthesis Lectures on Infor-
mation Concepts, Retrieval, and Services, 5(3), 1–163.

Rosero, R. H., Gómez, O. S., & Rafael, G. D. R. (2016). 15 years of software regression testing techniques - A
survey. International Journal of Software Engineering and Knowledge Engineering, 26(5), 675–690.

Saha, R. K., Zhang, L., Khurshid, S., & Perry, D. E. (2015). An information retrieval approach for regression
test prioritization based on program changes. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, IEEE, vol 1. pp. 268–279.

Shepperd, M., Ajienka, N., & Counsell, S. (2018). The role and value of replication in empirical software engi-
neering results. Information and Software Technology, 99, 120–132.

Shull, F. J., Carver, J. C., Vegas, S., & Juristo, N. (2008). The role of replications in empirical software engi-
neering. Empirical Software Engineering, 13(2), 211–218.

Singh, Y., Kaur, A., Suri, B., & Singhal, S. (2012). Systematic literature review on regression test prioritization
techniques. Informatica (Slovenia), 36(4), 379–408.

https://data.mendeley.com/drafts/ccnzpxng54
https://doi.org/10.17632/ccnzpxng54.1
https://doi.org/10.1016/j.infsof.2019.106254
https://doi.org/10.1145/1082983.1083177

1558 Software Quality Journal (2023) 31:1527–1559

1 3

Williamson, D. F., Parker, R. A., & Kendrick, J. S. (1989). The box plot: A simple visual method to interpret
data. Annals of internal medicine, 110(11), 916–921.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in soft-
ware engineering. Springer Science & Business Media.

Yadla, S., Hayes, J. H., & Dekhtyar, A. (2005). Tracing requirements to defect reports: An application of infor-
mation retrieval techniques. Innovations in Systems and Software Engineering, 1(2), 116–124.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioritization: A survey. Soft-
ware Testing, Verification and Reliability, 22(2), 67–120.

Yu, T., Srisa-an, W., & Rothermel, G. (2014). Simrt: An automated framework to support regression testing
for data races. In: Proceedings of the 36th International Conference on Software Engineering. pp. 48–59.

Zarrad, A. (2015). A systematic review on regression testing for web-based applications. JSW, 10(8), 971–990.
Zhang, L. (2018). Hybrid regression test selection. In: 2018 IEEE/ACM 40th International Conference on Soft-

ware Engineering (ICSE), IEEE. pp. 199–209.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Nasir Mehmood Minhas is a Postdoctoral researcher at the School of
Innovation, Design, and Engineering at Mäalrdalen University. He
completed his Ph.D. in software engineering from Blekinge Institute
of Technology (BTH), Sweden. He has been working on Regression
Testing for Embedded Systems in close cooperation with the industry.
Nasir has been working in academia since 2000 and has served vari-
ous institutions. His research interests are software testing, require-
ment engineering, and software process.

Mohsin Irshad is a software engineer at Ericsson, Sweden, and he
received his Ph.D. from Blekinge Institute of Technology (BTH),
Sweden, in 2021. Mohsin has a proven track record in the software
industry with 10+ years of experience working with different tele-
communication vendors. His research interests are in software devel-
opment, software testing, machine learning, and evidence-based Soft-
ware Engineering.

1559Software Quality Journal (2023) 31:1527–1559

1 3

Kai Petersen is a professor of software engineering at Blekinge Insti-
tute of Technology (BTH), Sweden, and University of Applied Sci-
ences Flensburg, Germany. He received his Ph.D. from BTH in 2010.
His research interests are Agile Software Development, Software
Testing, Evidence-Based Software Engineering, and Software Meas-
urement. His research has been conducted in close collaboration with
companies and with an empirical focus.

Jürgen Börstler is a professor of software engineering and Deputy
Head of the Department of Software Engineering at Blekinge Institute
of Technology (BTH), Sweden. He received his Ph.D. from Aachen
University of Technology (RWTH), Germany in 1993. His research
interests are in software process improvement, software quality and
measurement, software readability and comprehension, and computer
science education.

Authors and Affiliations

Nasir Mehmood Minhas1,2 · Mohsin Irshad3 · Kai Petersen1,4 · Jürgen Börstler1

 * Nasir Mehmood Minhas
 nasir.mehmood.minhas@bth.se; nasir.mehmood.minhas@mdu.se

 Mohsin Irshad
 mohsin.irshad@ericsson.com

 Kai Petersen
 kai.petersen@bth.se

 Jürgen Börstler
 jurgen.borstler@bth.se

1 Blekinge Institute of Technology, Karlskrona, Sweden
2 Mäalrdalen University, Västerås, Sweden
3 Ericsson Sweden AB, Karlskrona, Sweden
4 University of Applied Sciences Flensburg, Flensburg, Germany

	Lessons learned from replicating a study on information-retrieval-based test case prioritization
	Abstract
	1 Introduction
	2 Background
	2.1 Regression testing
	2.2 Replication
	2.3 Information retrieval

	3 Related work
	4 Methodology
	4.1 Research questions
	4.2 Information about the original study
	4.2.1 Selection of target study
	4.2.2 Describing the original study
	4.2.3 Concepts used in the original study
	4.2.4 Key findings of the original study

	4.3 Information about the replication
	4.3.1 Data availability
	4.3.2 Replication steps

	4.4 Analysis of the replication results
	4.5 Automation of replication

	5 Results
	5.1 RQ1. The degree to which the replication is feasible to implement
	5.2 RQ2. Comparison of the results to the original study

	6 Discussion
	6.1 Lessons learned of replicating artifact-based studies in software testing
	6.2 General lessons learned for artifact-based replications

	7 Threats to validity
	7.1 Internal validity
	7.2 Construct validity
	7.3 External validity

	8 Conclusions and future work
	References

