
UNDERSTANDING AND IMPROVING
REGRESSION TESTING PRACTICE

Nasir Mehmood Minhas

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2022:07

Department of Software Engineering

Understanding and improving regression
testing practice

Nasir Mehmood Minhas

Blekinge Institute of Technology Doctoral Dissertation Series
No 2022:07

Understanding and improving regression
testing practice

Nasir Mehmood Minhas

Doctoral Dissertation in

Software Engineering

Department of Software Engineering

Blekinge Institute of Technology
SWEDEN

2022 Nasir Mehmood Minhas
Department of Software Engineering
Publisher: Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden
Printed by Exakta Group, Swede, 2022
ISBN: 978-91-7295-444-1
ISSN: 1653-2090
urn:nbn:se:bth-23634

Abstract

Background Regression testing is a complex and challenging activity and consumes
a significant portion of software maintenance costs. Researchers are proposing various
techniques to deal with the cost and complexity of regression testing. Yet, practitioners
face various challenges when planning and executing regression testing. One of the
main reasons is the disparity between research and practice perspectives on the goals
and challenges of regression testing. In addition, it is difficult for practitioners to find
techniques relevant to their context, needs, and goals because most proposed techniques
lack contextual information.

Objective This work aims to understand the challenges to regression testing practice
and find ways to improve it. To fulfil this aim, we have the following objectives: 1)
understanding the current state of regression testing practice, goals, and challenges, 2)
finding ways to utilize regression testing research in practice, and 3) providing support
in structuring and improving regression testing practice.

Method We have utilized various research methods, including literature reviews,
workshops, focus groups, case studies, surveys, and experiments, to conduct the studies
for this thesis.

Results Research and practice stress different goals, and both follow their priorities.
Researchers propose new regression testing techniques to increase the test suite’s fault
detection rate and maximise coverage. The practitioners consider test suite mainte-
nance, controlled fault slippage, and confidence their priority goals. The practitioners
rely on expert judgment instead of a well-defined regression testing process. They face
various challenges in regression testing, such as time to test, test suite maintenance,
lack of communication, lack of strategy, lack of assessment, and issues in test case
selection and prioritization.

We have proposed a GQM model representing research and practice perspectives
on regression testing goals. The proposed model can help reduce disparities in research
and practice perspectives and cope with the lack of assessment. We have created re-
gression testing taxonomies to guide practitioners in finding techniques suitable to their
product context, goals, and needs. Further, based on the experiences of replicating a
regression testing technique, we have provided guidelines for future replications and
adoption of regression testing techniques. Finally, we have designed regression testing
checklists to support practitioners in decision-making while planning and performing

v

regression testing. Practitioners who evaluated the checklists reported that the check-
lists covered essential aspects of regression testing and were useful and customizable
to their context.

Conclusions The thesis points out the gap in research and practice perspectives of
regression testing. The regression testing challenges identified in this thesis are the
evidence that either research does not consider these challenges or practitioners are
unaware of how to replicate the regression testing research into their context. The
GQM model presented in this thesis is a step toward reducing the research and practice
gap in regression testing. Furthermore, the taxonomies and the replication experiment
provide a way forward to adopting regression testing research. Finally, the checklists
proposed in this thesis could help improve communication and regression test strategy.
Moreover, the checklists will provide a basis for structuring and improving regression
testing practice.

vi

Acknowledgements
First, I would like to express my sincere gratitude to my supervisors, Professor Jürgen
Börstler and Professor Kai Petersen, for their support, guidance and feedback on my
work. I have learned a lot from their feedback and critique of my work. I acknowledge
their continuous support in the completion of my PhD thesis. Besides their participa-
tion and guidance for the thesis, they have been inspirational mentors.

I am thankful to all the practitioners who participated in my studies. Without their
collaboration, I would not have been able to complete this thesis. In particular, I am
thankful to Ola Söder from Axis Communications and Peter Visuri from Extrapreneur
(former Sony mobile communications), who remained committed from my first till my
last study. Special thanks to Dr. Mohsin Irshad from Ericsson, who provided delightful
times during and after work besides contributing to one of my crucial studies.

I thank my colleagues at SERL Sweden for providing a healthy and constructive en-
vironment. In particular, I would like to thank Dr. Mohammad Usman, Dr. Nauman
Ali, Dr. Ahmad Nauman Ghazi, Dr. Usman Nasir, and Umar Iftikhar for their pleasant
company inside and outside the campus. I always learned something from discussions
with Dr. Muhammad Usman and Dr. Nauman Ali. I am grateful to all those who con-
tributed to my research as co-authors.

I feel humbled while saying thanks to my parents, as my achievements are because of
their prayers, support, and sacrifices. I acknowledge the sacrifices and unconditional
support of my wife (Nayla) and my children. Without Nayla’s and my children’s sup-
port and love, I would not have completed this thesis. I must thank my brothers and
sisters, who always appreciated my achievements and encouraged me to do more.

Karlskrona, September 18, 2022

vii

viii

Publications
Papers included in this thesis

Chapter 2 (Study 1) Nasir Mehmood Minhas, Kai Petersen, Nauman Bin Ali, and
Krzysztof Wnuk. “Regression testing goals – view of practitioners and researchers”,
In 24th Asia-Pacific Software Engineering Conference Workshops (APSECW) EAST-
17, pp. 25–32. IEEE, 2017. https://doi.org/10.1109/APSECW.2017.23

Chapter 3 (Study 2) Nasir Mehmood Minhas, Thejendar Reddy Koppul, Kai Petersen,
and Jürgen Börstler. “Using goal–question–metric to compare research and practice
perspectives on regression testing”, J Softw Evol Proc 2022; e2506.
https://doi.org/10.1002/smr.2506

Chapter 4 (Study 3) Nasir Mehmood Minhas, Kai Petersen, Jürgen Börstler, and
Krzysztof Wnuk. “Regression testing for large-scale embedded software development
– Exploring the state of practice”, Information and Software Technology 120 (2020):
106254. https://doi.org/10.1016/j.infsof.2019.106254

Chapter 5 (Study 4) Nauman bin Ali, Emelie Engström, Masoumeh Taromirad, Mo-
hammad Reza Mousavi, Nasir Mehmood Minhas, Daniel Helgesson, Sebastian Kunze,
and Mahsa Varshosaz. “On the search for industry-relevant regression testing re-
search”, Empirical Software Engineering, 24.4 (2019): 2020-2055.
https://doi.org/10.1007/s10664-018-9670-1

Chapter 6 (Study 5) Nasir Mehmood Minhas, Mohsin Irshad, Kai Petersen, and Jür-
gen Börstler. “Lessons learned from replicating a study on information-retrieval based
test case prioritization”, Software Quality Journal 2022 (Submitted).

Chapter 7 (Study 6) Nasir Mehmood Minhas, Jürgen Börstler, and Kai Petersen.
“Checklists to support decision making in regression testing”, Journal of Systems and
Software 2022 (Submitted).

Papers that are related to but not included in this thesis

Paper 1 Nasir Mehmood Minhas, Sohaib Maqsood, Kai Petersen, and Aamer Nadeem.
“A Systematic mapping of test Case generation techniques using UML interaction dia-
gram”, Journal of Software: Evolution and Process 32.6 (2020): e2235.
https://doi.org/10.1002/smr.2235

ix

Paper 2. Hasan Javed, Nasir Mehmood Minhas, Ansar Abbas, and Farhad Muhammad
Riaz “Model Based Testing for Web Applications: A Literature Survey Presented”,
Journal of Software (JSW) 11.4 (2016):347–361.

Paper 3. Asad Masood Qazi, Adnan Rauf, and Nasir Mehmood Minhas “A System-
atic Review of Use Cases based Software Testing Techniques”, International Journal
of Software Engineering and Its Applications 10.11 (2016):337–360.

Other Papers not included in this thesis

Paper 1 Nasir Mehmood Minhas. “Authorship ethics: an overview of research on the
state of practice”, In 2021 IEEE/ACM 2nd International Workshop on Ethics in Soft-
ware Engineering Research and Practice (SEthics). IEEE, 2021.

Paper 2 Nasir Mehmood Minhas, Asif Majeed, Jürgen Börstler, and Tony Gorschek.
“SWVP-A Requirements Prioritization Technique for Global Software Development”,
In 2019 45th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 1-9. IEEE, 2019.

Paper 3 Nayla Nasir, Nasir Mehmood Minhas. “Implementing Value Stream Mapping
in a Scrum-based project-An Experience Report”, QuASoQ 2018 (2018): 48.

Paper 4. Jefferson Seide Molléri, Nauman bin Ali, Kai Petersen, Nasir Mehmood
Minhas, and Panagiota Chatzipetrou “Teaching students critical appraisal of scientific
literature using checklists”, In Proceedings of the 3rd European Conference of Soft-
ware Engineering Education, Pages 08–17, 2018.

Paper 5. Javed Iqbal, Muzafar Khan, and Nasir Mehmood Minhas “Are project man-
agers informally following capability maturity model integration practices for project
management?”, Global Journal of Information Technology: Emerging Technologies
8.3 (2018): 86-94.

Paper 6. Ricardo Britto, Muhammad Usman, and Nasir Mehmood Minhas “A quasi-
experiment to evaluate the impact of mental fatigue on study selection process”, In
Proceedings of the 21st International Conference on Evaluation and Assessment in
Software Engineering, Pages 264–269, 2017.

x

Contribution statement

Nasir Mehmood Minhas is the lead author of studies 1, 2, 3, 5, and 6. He led the
design, execution, and reporting of these studies. The following paragraphs describe
the authors’ contribution to the studies included in the thesis.

Study 1. Nasir Mehmood Minhas: Conceptualization and design of the study, ac-
quisition, analysis and interpretation of data, and drafting and revising of the manuscript.
Kai Petersen: Conceptualization of the study, reviewing the design, acquisition of
data, reviewing the manuscript critically and editing it.
Nauman bin Ali: Conceptualization of the study, reviewing the design, acquisition of
data, reviewing the manuscript critically and editing parts of it.
Krzysztof Wnuk: Reviewing and editing the parts of the manuscript.

Study 2. Nasir Mehmood Minhas: Conceptualization and design of the study, ac-
quisition, analysis and interpretation of data, drafting of the manuscript, and revising
it.
Thjendar Reddy Koppula: Acquisition and interpretation of data, and writing the
parts of the initial draft of the manuscript.
Kai Petersen: Conceptualization of the study, reviewing the design, and reviewing the
manuscript critically and editing parts of it.
Jürgen Börstler: Reviewing the design, reviewing the manuscript critically and edit-
ing parts of it.

Study 3. Nasir Mehmood Minhas: Conceptualization and design of the study, ac-
quisition of data, analysis and interpretation of data, and drafting of the manuscript,
and revising it.
Kai Petersen: Conceptualization of the study, reviewing the design, acquisition of
data, and reviewing the manuscript critically and editing parts of it.
Jürgen Börstler: Reviewing the design, reviewing the manuscript critically and edit-
ing parts of it.
Krzysztof Wnuk: Reviewing and editing the parts of the manuscript.

Study 4. In study 4, Nauman bin Ali and Emelie Engström conceived, organized,
and led the study. The co-authors mainly contributed to the study execution process.

xi

Nasir Mehmood Minhas contributed to the following phases of research: Study de-
sign, data collection, data analysis, drafting the manuscript, and reviewing and revising
the manuscript.

Study 5. Nasir Mehmood Minhas: Conceptualization, design, and implementation
of the study; analysis and interpretation of the findings, drafting of the manuscript, and
revising it.
Mohsin Irshad: Implementation of the study, interpretation of the findings, reviewing
and editing manuscript.
Kai Petersen: Conceptualization of the study, reviewing the experiment design, re-
viewing the results, reviewing the manuscript critically and editing parts of it.
Jürgen Börstler: Conceptualization of the study, reviewing the experiment design,
reviewing the results, reviewing the manuscript critically and editing parts of it.

Study 6. Nasir Mehmood Minhas: Conceptualization and design of the study, ac-
quisition of data, analysis and interpretation of data, and drafting of the manuscript.
Jürgen Börstler: Conceptualization of the study, reviewing the design, reviewing the
manuscript critically and editing parts of it.
Kai Petersen: Conceptualization of the study, reviewing the design, reviewing the
manuscript critically and editing parts of it.

xii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Background . 3

1.2.1 Regression testing . 4
1.2.2 Regression testing in practice 5
1.2.3 Goal question metric (GQM) approach 5
1.2.4 Replication . 6
1.2.5 Checklists . 7
1.2.6 Industry academia collaboration 8

1.3 Research gaps and contributions . 8
1.4 Research questions . 10
1.5 Research methods . 12

1.5.1 Empirical methods . 12
1.5.2 Systematic literature review 17

1.6 Threats to validity . 18
1.7 Summary of studies included in the thesis 20

1.7.1 Regression testing goals - view of practitioners and researchers 20
1.7.2 Using goal-question-metric (GQM) to compare research and

practice perspectives on regression testing 21
1.7.3 Regression testing for large-scale embedded software develop-

ment . 21
1.7.4 On the search for industry-relevant regression testing research 22
1.7.5 Lessons learned from replicating a study on information-retrieval

based test case prioritization 23
1.7.6 Checklists to support decision making in regression testing . . 24

1.8 Discussion . 24
1.8.1 Regression testing state of practice 25

xiii

Contents

1.8.2 Supporting the adoption of regression testing research in practice 26
1.8.3 Providing support to improve regression testing practice . . . 27

1.9 Conclusions and future work . 28
1.10 References . 29

2 Regression testing goals - views of practitioners and researchers 35
2.1 Introduction . 35
2.2 Related work . 37
2.3 Methodology . 37

2.3.1 Planning the research. 38
2.3.2 Designing the focus groups. 38
2.3.3 Conducting the focus group session. 39
2.3.4 Analyzing the data and reporting the results. 40

2.4 Threats to validity . 41
2.5 Results and analysis . 42

2.5.1 Defining regression testing. 42
2.5.2 GQM activity. 44

2.6 Conclusions . 52
2.7 References . 53

3 Using goal-question-metric to compare research and practice perspectives
on regression testing 57
3.1 Introduction . 57
3.2 Related work . 60
3.3 Methodology . 64

3.3.1 Literature review . 65
3.3.2 Survey . 68
3.3.3 Threats to validity . 72

3.4 Results and analysis . 74
3.4.1 Literature review . 74
3.4.2 Survey . 78
3.4.3 Using GQM to integrate research and practice perspectives . . 91

3.5 Discussion . 93
3.6 Summary and conclusions . 97
3.7 References . 99

Appendix A Interview guide 107

xiv

Contents

4 Regression testing for large-scale embedded software development – ex-
ploring the state of practice 111
4.1 Introduction . 111
4.2 Related work . 112
4.3 Methodology . 120

4.3.1 Research questions . 120
4.3.2 Case companies . 120
4.3.3 Data collection . 122
4.3.4 Interpreting, analyzing and validating interview transcripts . . 124

4.4 Threats to validity . 126
4.5 Results and discussion . 127

4.5.1 The Practitioners' perceptions of regression testing (RQ1) . . 127
4.5.2 Regression testing practices (RQ2) 128
4.5.3 Suggested improvements for regression testing (RQ3) 136
4.5.4 Goals and criteria for successful regression testing (RQ4) . . . 138

4.6 Summary and conclusions . 140
4.7 References . 143

Appendix B Interview guide 147

5 On the search for industry-relevant regression testing research 151
5.1 Introduction . 151
5.2 Related work . 153

5.2.1 Evaluation of the industry relevance of research 153
5.2.2 Reviews of regression testing research 154

5.3 Research questions . 156
5.4 Method . 156

5.4.1 Practitioners' involvement 157
5.4.2 Need for a literature review 159
5.4.3 Pilot study . 159
5.4.4 Search strategy . 160
5.4.5 Selection of papers to include in the review 161
5.4.6 Taxonomy extension . 163
5.4.7 Taxonomy evaluation . 164
5.4.8 Mapping of techniques to taxonomy 165

5.5 Limitations . 165
5.5.1 Coverage of regression testing techniques: 165
5.5.2 Confidence in taxonomy building process and outcome 166
5.5.3 Accuracy of the mapping of techniques and challenges 167

xv

Contents

5.6 RQ1 – Regression testing problem description 167
5.6.1 Investigated context factors 168
5.6.2 Desired effects . 171

5.7 RQ2 – Regression testing solution description in terms of utilised in-
formation sources . 173
5.7.1 Requirements . 175
5.7.2 Design artefacts . 175
5.7.3 Source code . 176
5.7.4 Intermediate and binary code 176
5.7.5 Issues . 177
5.7.6 Test cases . 177
5.7.7 Test executions . 177
5.7.8 Test reports . 178

5.8 RQ3 – Mapping of current research 178
5.8.1 Addressed context factors 178
5.8.2 Desired effects . 180
5.8.3 Information sources . 180

5.9 Suggestions for practitioners . 180
5.10 Recommendations for researchers 181
5.11 Conclusion . 183
5.12 References . 185

6 Lessons learned from replicating a study on information-retrieval based
test case prioritization 195
6.1 Introduction . 195
6.2 Background . 198

6.2.1 Regression testing . 198
6.2.2 Replication . 199
6.2.3 Information retrieval . 199

6.3 Related work . 200
6.4 Methodology . 202

6.4.1 Research questions . 202
6.4.2 Information about the original study 203
6.4.3 Information about the replication 206
6.4.4 Analysis of the replication results 211
6.4.5 Automation of replication 211
6.4.6 Threats to validity . 213

6.5 Results . 214
6.5.1 RQ1. Degree to which the replication is feasible to implement. 214

xvi

Contents

6.5.2 RQ2. Comparison of the results to the original study. 218
6.6 Discussion . 220

6.6.1 Lessons learned of replicating artefact-based studies in soft-
ware testing . 220

6.6.2 General lessons learned for artefact-based replications 224
6.7 Conclusions . 226
6.8 References . 227

7 Checklists to support decision making in regression testing 233
7.1 Introduction . 233
7.2 Background and related work . 234

7.2.1 Significance of checklists . 234
7.2.2 Use of checklists in software engineering 235
7.2.3 Summary . 237

7.3 Methodology . 237
7.3.1 Research approach . 238
7.3.2 Selection of participants . 238
7.3.3 Study participants . 239
7.3.4 Data collection . 239
7.3.5 Data analysis . 242

7.4 Validity threats . 245
7.5 Results . 246

7.5.1 State of regression testing practice in companies 246
7.5.2 Regression testing activities (RQ1) 247
7.5.3 Practitioners’ opinion on prospective regression testing check-

lists (RQ2) . 249
7.5.4 Checklists evaluation (RQ3) 255

7.6 Discussion . 255
7.6.1 Regression testing activities 256
7.6.2 Checklists creation and evolution 257
7.6.3 Checklists evaluation . 258
7.6.4 Implications . 258

7.7 Conclusion . 260
7.8 References . 261

Appendix C 265
C.1 State of regression testing practice in the case companies 265
C.2 Introductory workshop . 270
C.3 Interview guide . 272

xvii

Contents

C.4 Checklist evolution . 273
C.5 Checklist evaluation . 274

xviii

List of Figures

1.1 Thesis overview: research questions, chapters, and contributions (C1 –
C6) . 14

2.1 GQM representation . 44
2.2 Goal-question-measure mapping . 49

3.1 Role and testing experience of the survey respondents 87
3.2 Software development domains on which survey respondents are work-

ing . 88
3.3 Regression testing goals – questionnaire results 88
3.4 A GQM based model of regression testing goals, information needs,

and metrics. 92

4.1 Mind-map used for data management and classification. 123
4.2 Regression testing process in the case companies 129
4.3 Relationship between RT challenges. 135

5.1 A description of the flow of activities including alternately review-
ing the literature and interacting with practitioners from the research
project EASE. 158

6.1 Steps followed to replicate the original study 207
6.2 Steps to automate the replication of IRCOV 212
6.3 APFD boxplots for IRCOV Original vs IRCOV replication IRCBO=

IRCOV branch coverage original, IRCBR= IRCOV branch coverage
replication IRCLO= IRCOV line coverage original, IRCLR= IRCOV
line coverage replication IRCMO= IRCOV method coverage original,
IRCMR=IRCOV method coverage replication 219

xix

List of Figures

7.1 Overview of the approach used to design and evolve the regression
testing (RT) checklists. 238

7.2 Data analysis steps. 243
7.3 Mapping regression testing activities to checklist items 245
7.4 Evaluation feedback from the participants on the final version of re-

gression testing checklists. 256

xx

List of Tables

1.1 Research questions and thesis chapters 11
1.2 Research methods and thesis chapters 13
1.3 Mapping of regression testing techniques for embedded systems in tax-

onomies . 27

2.1 Focus group participants . 39
2.2 GQM-Template for evaluation of regression testing 40
2.3 Defining regression testing . 42
2.4 Regression testing goals . 46
2.5 Allocated priorities to the goals . 47
2.6 G5. Questions (Information needs) 48
2.7 Measures . 49
2.8 Measures found in literature . 51

3.1 A summary of how our current study extends our previous work [4] . 59
3.2 Research questions . 64
3.3 Snowball iterations . 66
3.4 Inclusion and exclusion criteria . 67
3.5 Data extraction form . 67
3.6 GQM mapping of regression testing goals, information needs, and met-

rics – Literature . 75
3.7 Interview participants . 79
3.8 Regression testing goals – interviews results I-1 to I-11 are the practi-

tioners' IDs and (✓) means that the goal was defined by the respective
practitioners. 81

3.9 Literature metrics of regression testing, recognized by the interview
participants . 86

xxi

List of Tables

3.10 GQM mapping of goals, information needs, and metrics – Survey . . 90

4.1 Summary of related work. The first column indicates the subsection in
Section 4.2 (GTP: General Testing Practices, TMT: Testing Methods
and Tools, AT: Automated Testing, RT: Regression Testing). 117

4.2 Literature findings on RT state of practice 119
4.3 Overview of interviewees. 121
4.4 Analysis procedure adopted for step 2 and step 3. 125
4.5 The practitioners' definitions of regression testing, as response to inter-

view question “What is regression testing for you?”. 128
4.6 Regression testing practices. 130
4.7 Test selection and prioritization criteria. 132
4.8 Information sources utilized for test selection and prioritization. . . . 132
4.9 Regression testing challenges. 134
4.10 Identified improvements. 137
4.11 Regression testing success goals. 138
4.12 Regression testing success criteria. 139

5.1 Systematic literature studies used as start-set for snowball sampling . 160
5.2 The list of papers included in this study 163
5.3 Data extraction form . 164
5.4 A taxonomy of context, effect and information factors addressed in the

included papers and considered relevant by our industry partners . . . 169
5.5 Mapping of techniques to the taxonomy 179

6.1 Software programs used in replication 208
6.2 Simulation parameters for Commons-CLI. (MC = Method coverage,

LC = Line coverage, & BC = Branch coverage) 215
6.3 APFD values for all ten folds of each coverage type 218
6.4 Statistical results of replication compared to the original study for

Commons-CLI. 219
6.5 Comparison of mutant generators . 222
6.6 Recommendations drawn from the challenges/lessons learned 224

7.1 List of practitioners who participated in checklist design and evolution. 240
7.2 Contextual information of the companies represented by the partici-

pants (size classification: “small < 50, large > 250” [39]). 241
7.3 Structure of transcription sheet – RT (regression testing). 244

xxii

List of Tables

7.4 Activities considered essential for regression testing (RT) in the com-
panies. 248

7.5 Types of regression testing (RT) checklists suggested by participants. . 250
7.6 Checklist to assess the readiness of testers to be filled by test team

members (CL1 – V1.0). 251
7.7 Checklist to determine the team 's readiness to be filled by test manger

(CL2 – V1.0). 252
7.8 Checklist to determine exit criteria of regression testing to be filled by

test manager together with team members (CL3 – V1.0). 252
7.9 Evolution of checklist to know the readiness of testers to be filled by

test team members (CL1 – V1.1). 253
7.10 Evolution of checklist to know the readiness of test team to be filled by

test manager (CL2 – V1.1). 254
7.11 Evolution of checklist to determine exit criteria of regression testing

(RT) to be filled by test manager together with team members (CL3 –
V1.1). 254

7.12 Regression testing activities identified from selected studies 257

C.1 State of regression testing (RT) in the case companies. 267
C.2 Regression testing activities considered essential in the case compa-

nies. 269

xxiii

Chapter 1

Introduction

1.1 Overview

Software testing is a complex and costly activity and consumes up to 50% of the total
software development cost [1, 3, 4, 7]. The most challenging activity for large-scale
software development with continuous integration and delivery is regression testing,
which consumes a significant share of the total testing cost [1, 17, 28, 31]. Regression
testing is performed after changes in the system or between release cycles. The goal
is to provide confidence that changes have not impacted the unchanged parts of the
system negatively [2, 32]. Various approaches are used to perform regression testing,
including running all test cases (retest-all), running a selected set of test cases (test case
selection), and running test cases in order of priority (test case prioritization) [2]. It is
possible to adopt a retest-all approach for smaller projects, where test suites have fewer
test cases. Contrarily, in large-scale software development with continuous integration
and delivery, it is costly to opt for the retest-all approach because test suites are large
and can consist of thousands of test cases [7]. Test case selection and prioritization
techniques attempt to cope with the larger test suites. The primary purpose of these
techniques is to reduce the execution cost of regression testing [55]. However, select-
ing suitable test cases or choosing an appropriate order is a complex decision-making
problem.

Many regression testing techniques have been proposed in research, but a few have
been adopted in industry [2, 17]. The lack of evaluation of the proposed techniques in
industrial context is one of the reasons [5]. Researchers' primary challenge is proposing
regression testing techniques that can overcome challenges, fulfil practitioners' goals,

1

Chapter 1. Introduction

and fit in an industry context [1]. The primary step in this regard is to understand the
regression testing practice and identify the regression testing challenges that practition-
ers face. We need to introduce regression testing research to industry practitioners. In
this regard, we can work on possible alternatives, such as identifying regression testing
techniques capable of coping with practitioners' challenges and relevant to an industry
context, finding ways to evaluate and adopt regression testing techniques in the industry
and supporting practitioners in planning to perform regression testing.

We initiated this work as a part of an industry-academia collaboration (IAC) project
EASE1 aiming to reduce the industry-academia gap in software testing. Together with
testing practitioners from the platform of EASE, we identified software testing chal-
lenges in the large-scale development companies operating in communication, surveil-
lance, and embedded software systems. The identified challenges were mainly related
to regression testing. We have conducted two studies to understand regression testing
practice, challenges, and goals. The results of the first study are based on a focus group
of practitioners and researchers, and the second study presents the results of a multi-
case study with two large companies. Later, we compared the research and practice
perspectives of regression testing using the results of a literature review and a survey.
We introduced a GQM (goal-question-metric) model by integrating the literature and
survey findings to map the regression testing goals, information needs, and measures.
We also have created a three-facet taxonomy using the results of a systematic literature
review to facilitate practitioners finding regression testing research relevant to their
needs. The goal was to enable the practitioners to determine which regression testing
techniques could be applicable in a given industrial context and to learn the cost im-
plication of adopting these techniques. To further support the adoption of regression
testing research, we have conducted a replication experiment to replicate a test case
prioritization technique. In this thesis, we have reported the lessons learned during
the replication experiment, which have implications for research and practice. Practi-
tioners can use these lessons to replicate regression testing techniques in their product
contexts. Researchers can use them to report required aspects when publishing new or
replicated regression testing techniques.

Lastly, with the input of 25 senior testing practitioners from 12 companies, we de-
veloped regression testing checklists to help streamline regression testing activities and
improve regression testing processes. The participating practitioners evaluated these
checklists and reported that the checklists cover essential aspects of regression testing.
Furthermore, they reported that checklists are useful and customizable according to
their product context. The contributions of the studies included in this thesis are:

1EASE – the Industrial Excellence Centre for Embedded Applications Software Engineering http://
ease.cs.lth.se/about/

2

• Identification of regression testing goals.

• Mapping research and practice perspectives of regression testing using a goal-
question-metric model.

• Understanding regression testing practice and identifying challenges.

• Taxonomies to facilitate practitioners finding regression testing techniques rele-
vant to the industrial context.

• Based on the results of a replication experiment, a step-wise guideline to support
future replication and adoption of regression testing techniques.

• Regression testing checklists to support practitioners in decision making and
streamlining regression testing practice.

The rest of this chapter is organized as follows: Section 1.2 presents a brief descrip-
tion of the concepts used in the thesis. Research gaps and contributions of this work
are discussed in Section 1.3, whereas Section 1.4 describes the research questions that
have been investigated in this work. Section 1.5 provides a brief discussion of the
methods used in the studies of this thesis. Threats to the validity of studies included
in this thesis are discussed in Section 1.6, and summaries of the included studies are
presented in Section 1.7. Section 1.8 provides a brief discussion on the findings of this
thesis, and Section 1.9 concludes the chapter and discusses future work.

While the remainder of the thesis is organized as follows: Chapter 2 presents the
results of a focus-group-based study on regression testing goals. Based on the literature
and survey findings, Chapter 3 provides a goal-question-metric mapping of regression
testing goals to compare the regression testing research and practice. As a result of
a multi-case study, Chapter 4 presents the state of regression testing practice and its
challenges. Chapter 5 proposes a three-facet taxonomy of regression testing to sup-
port industry adoption of regression testing research. Chapter 6 presents the results
of a replication experiment conducted to replicate a test case prioritization technique.
Finally, Chapter 7 proposes regression testing checklists to structure and improve re-
gression testing practice.

1.2 Background
This section presents a brief description of the basic concepts that have been used in
this thesis.

3

Chapter 1. Introduction

1.2.1 Regression testing

Regression testing is applied to a system under test after any change, including a defect
fix or adding a new feature. The IEEE Systems and Software Engineering Vocabulary
defines regression testing as:

“The selective retesting of a system or component to verify that modifications have
not caused unintended effects and that the system or component still complies with its
specified requirements” [6].

The goals of regression testing are to find defects and to obtain confidence about the
quality of the systems under test. Running all test cases in the regression suite (retest
all) or running a subset of test cases in the regression suite (selective regression testing)
are the two alternatives for regression testing. Selective regression testing (SRT) is used
instead of re-test all when test suites are significantly large. SRT refers to running re-
gression testing with a smaller scope, where the critical concern in this regard is the size
of the test suite [7]. Practitioners prefer to run regression tests with a selected scope.
The primary challenge for a testing practitioner is to determine the scope of regression
testing (i.e. which tests to include in the regression test suite) [1, 7]. Techniques used
for SRT are test case selection, prioritization, and test suite minimization [2, 8].

Test case selection Researchers use the terms test case selection or regression test
selection interchangeably. The concept refers to selecting a subset of test cases from
existing test suites to test the modified parts of the system under test (SUT). Test case
selection techniques are modification aware, as only those test cases are selected which
are relevant to the modified parts of the SUT [2, 20].

Test case prioritization Test case prioritization refers to the reordering of test cases
in an existing test suite, to ensure to run the most critical test cases at priority. The goal
of test case prioritization is to maximize the fault detection rate. Test case prioritization
does not involve any procedure to select a test case; it only reorders the test cases on
the basis of some predefined criteria [2, 27].

Test case minimization For large-scale systems, test suites can be very large, and
grow further when the software undergoes changes. New test cases can be added for
new or updated features. Continuously growing test suites can contain redundant and
obsolete test cases. A test case becomes obsolete, if the requirement associated to it is
removed or updated during the changes in the software. Adding of new test cases can

4

cause some existing test cases to become redundant given that new test cases satisfy
the same testing requirements. Removal of redundant test cases does not effect the
testing coverage [30]. The presence of redundant and obsolete test cases in a test
suite increases the costs for test execution. Such test cases need to be identified and
eliminated. Test case minimization techniques are meant to reduce the size of the test
suites by eliminating redundant and/or obsolete test cases [2, 19].

1.2.2 Regression testing in practice
There is a gap between research and practice on regression testing. Researchers are
focusing on proposing new regression testing techniques. In contrast, the practitioners
are not using these techniques. Instead, they rely on their expertise and experience [1].
In order to tailor regression testing research to industry needs, it is important to know
the industry practices related to regression testing. A few authors have investigated
the state of regression testing in practice. However, the investigations are limited to
a specific aspect of regression testing. For instance, Parsons et al. [58] conducted a
survey-based study to investigate the adoption of regression testing strategies in agile
development. Similarly, Juergens et al. [59] carried out an industry case study high-
lighting the challenges concerning test case selection techniques when applied in man-
ual system tests. Engström and Runeson [1] investigated regression testing practices
and challenges and pointed out that a majority of the challenges are related to testa-
bility issues, and good practices are related to test automation. The authors suggested
that researchers must better understand the practitioners' needs and practices to tailor
regression testing research to industry needs.

In this thesis, we conducted a study (study 3) focusing on understanding the indus-
try's regression testing practice. We have conducted this study with a broader scope,
and besides understanding regression testing practices, we have investigated the chal-
lenges that practitioners face during regression testing. We have also discussed the
potential improvements in regression testing practice.

1.2.3 Goal question metric (GQM) approach
A goal question metric (GQM) approach advocates a goal-oriented measurement frame-
work [56]. A GQM model has three levels 1) conceptual level (Goals), 2) operational
level (Questions), and quantitative level (Metrics) [57]. It represents a hierarchical
structure, and the elements of a GQM are defined in a top-down manner. First, the goals
are defined, and then questions are formulated whose answers guide towards achiev-
ing goals. Finally, the metrics provide actual measurement and determine whether the
goals are achieved [56, 57]. While making a GQM plan, it is essential to make clear

5

Chapter 1. Introduction

what information needs are available, as the operational level stems from informational
needs that provide the basis for quantification [57].

We incorporated the GQM approach in our two studies (Study 1 & 2). Study 1 was
conducted using a focus group, and we structured the focus group discussion using
the GQM approach. Later, we created a mapping of a chosen regression testing goal
with information needs and metrics. In Study 2, we created a GQM model to map the
regression testing goals identified from research and practice with the corresponding
questions and metrics.

1.2.4 Replication
Replication is a means to validate experimental results and examine if the results are
reproducible [34]. Replications are essential for solidifying knowledge and validat-
ing if the original experiment results are authentic and generalizable. In principle,
replication provides a way forward to create, evolve, break, and replace theoreti-
cal paradigms [35, 36]. During the previous four decades, software engineering re-
searchers have built new knowledge and proposed new solutions. Many of these lack
consolidation [35]. Replication studies can help in establishing the solutions and ex-
panding the knowledge. Software engineering researchers have been working on repli-
cation studies since the 1990s. Still, the number of replicated studies is small, and a
more neglected area is the replication of software testing experiments [35, 38, 40, 41].
Most software engineering replication studies are conducted for experiments involving
human participants; few replications exist for artefact-based experiments [38].

Replication could be of two types 1) internal replication –a replication study carried
out by the authors of the original study themselves, 2) external replication –a replication
study carried out by researchers other than the authors of the original study [35, 37].

In software engineering research, the number of internal replications is much higher
than external replications [38, 39]. The results of 82% of the internal replications are
confirmatory, and the results of 26% of external replications conform to the original
studies [38]. From the empirical software engineering perspective, Shull et al. [36]
classify replications as exact and conceptual replication. In an exact replication, the
replicators closely follow the procedures of the original experiment, whereas, in a con-
ceptual replication, the research questions of the original study are evaluated using a
different experimental setup. If the replicators keep the conditions in the replication ex-
periment the same as the actual experiment, it would be categorized as exact dependent
replication. If replicators deliberately change the underlying conditions of the original
experiment, it would be referred to as exact independent replication. Exact dependent
and exact independent replications could be mapped to strict and differentiated repli-
cations, respectively. A strict replication compels the researchers to replicate a prior

6

study as precisely as possible. In contrast, in a differentiated replication, researchers
could intentionally alter the aspects of a previous study to test the limits of the study's
conclusions.

In this thesis, we conducted an exact independent (external) replication (Study 5)
of a test case prioritization technique to explore the possibility of adopting regression
testing techniques.

1.2.5 Checklists

A checklist is a standardized tool that enlists the required process criteria for the prac-
titioners performing a specific activity. It provides support in recording the presence or
absence of the essential process tasks [42]. Two popular uses of checklists are, using
checklists as mnemonic systems or as evaluation tools. The first is used as a reminder
system to help practitioners avoid omitting any essential task. It also assures that practi-
tioners follow the organizational framework and utilize best practices. Such checklists
help minimize human error and improve the overall performance. In contrast, the eval-
uative checklists can aid in the standardization of evaluation by providing assessment
guidelines and ultimately improving the evaluation process's credibility [42].

Using a checklist to aid any process is not a new concept. For example, in the
aviation industry since the 1930s, it has been a standard operating procedure for the
pilots and other aviators to use checklists [43]. Pilots are using the checklists before,
during, and after the flight [44]. In medicine, checklists are used as a decision aid
to identify a medical condition and decide on an appropriate course of treatment. In
comparison, surgical checklists are recommended as a safety measure to reduce the
margin of human error and any adverse effects during surgery [45].

Social and behavioral scientists are using self-reporting questionnaires as an as-
sessment mechanism. Usually, such questionnaires include checklist items that enable
the goal-based assessment of a phenomenon [46].

Software engineers are using checklists in various tasks, including the audit of re-
quirement/design specifications and code inspection [47]. Checklists can help make
a process repeatable, and the practitioners can use various checklists in the software
development life cycle. For instance, they can use a release checklist to assure that no
essential step is missed out. At the start, a checklist does not have to be exhaustive. If
some items are missing, still, checklists are helpful, and we can add the missing or new
items later. Improvising a checklist is always helpful in adding future goals [48].

The final study of this thesis (Study 6) presents a regression testing checklist, with
the aim of assisting practitioners in decision making.

7

Chapter 1. Introduction

1.2.6 Industry academia collaboration

Industry-academia collaboration (IAC) has been a widely discussed topic in the soft-
ware engineering community since the early days of software engineering. Practition-
ers can benefit from IAC by improving various practices, and researchers can benefit
from it by producing industry-relevant research. Researchers need to work on dif-
ferent mechanisms to communicate their research to practitioners. To improve the
communication between software testing researchers and practitioners, Engström et
al. [15] proposed a four-faceted taxonomy (SERP test). It can help identify an in-
tervention with the desired outcome in a specialized testing area for a given context.
The taxonomy is helpful as a framework for direct communication (industry-academia
collaboration) and indirect communication (reporting research results to the industry).
Success stories regarding IAC in the field of software engineering are limited [26].
Garousi and Felderer [25] argue that differences in objectives, less scientific value in
industry-related problems and limited applicability of methods proposed in academia
are hindrances to industry-academia collaboration. The communication gap between
researchers and practitioners is one of the critical challenges that can lower the moti-
vation for collaboration.

The studies included in this thesis are the outcome of industry-academia collabo-
ration. We attempted to address some of the mentioned issues of IAC. For example,
regression testing taxonomies presented in Chapter 5 attempt to reduce the commu-
nication gap between research and practice of regression testing and improve the ap-
plicability of regression testing research. The goal-question-metric model presented in
Chapter 3 is a step forward to aligning research and practice goals of regression testing.

1.3 Research gaps and contributions

Regression testing is a well-researched area, however, the adoption of the proposed
techniques in industry is limited [33]. The possible reasons for this are 1) lack of
empirical evaluation of the techniques in industry [5, 33], 2) the differences in goals,
and 3) cognitive gap between research and practice [8, 15, 16].

This thesis aims at reducing the industry-academia gap in regression testing. The
focus is 1) to understand practitioners' needs, challenges, and goals, 2) to map the
solutions proposed in research to industry context and goals, and 3) to provide support
to improve the regression testing process in industry.

In the following, along with the identified gaps, we present the contributions of this
thesis.

8

Gap1 There is a disparity in regression testing research and practice, and software
engineering researchers need to understand the industry needs and practices of regres-
sion testing [1, 16]. While working on Study 1, we identified a disparity in perceptions
of regression testing goals between practitioners and researchers. Study 2 also points
to differences in research and practice perspectives of regression testing.

Contribution 1 Study 1 highlights differences in the perspectives of researchers and
practitioners regarding the goals of regression testing. It also provides a set of jointly
prioritised regression testing goals by researchers and practitioners.

Contribution 2 Using the GQM model, Study 2 maps regression testing goals, infor-
mation needs, and metrics to compare research and practice perspectives of regression
testing and reduce the differences between the two perspectives.

Gap2 To our knowledge, not many studies identify the state of regression testing
practice, the practitioners' goals, and the challenges they face during the regression
testing activity. Only a few authors have investigated the state of regression testing in
practice [1, 58, 59]. However, the investigations are limited to a specific aspect of re-
gression testing. We identified this gap while searching for industry-related regression
testing research for our systematic literature review (Study 4).

Contribution 3 In the context of large-scale software development, study 3 presents
the state of regression testing practice, the practitioners' goals, and the challenges they
faced.

Gap3 Despite the extensive body of research literature, research results have shown
to be hard to adopt for the practitioners [2, 17]. It is hard for them to know what to
search from the literature, as studies presenting techniques do not include the context
information. We identified this gap while interacting with the practitioners for our
studies and while analyzing the industry-relevant research for study 4.

Contribution 4 Study 4 presents a taxonomy to facilitate the industrial adoption of
regression testing research by addressing the attributes of concern from the practition-
ers' perspective.

9

Chapter 1. Introduction

Contribution 5 Based on the lessons learned by replicating a test case prioritization
technique, Study 5 presents guidelines to support the replication and industry adoption
of regression testing techniques.

Gap 4 Regression testing practice lacks a well-defined structure and mainly relies on
expert judgments [1]. The various challenges identified in Study 3 stem from the lack
of structure in regression testing practice. We also observed this fact while working on
studies 1 and 2.

Contribution 6 To support practitioners in decision-making and improve regression
testing practice, study 6 presents regression testing checklists designed, evolved, and
evaluated by involving senior testing practitioners.

1.4 Research questions

This thesis aims to understand the industry needs for regression testing, find the relevant
solutions in the literature, and provide support for regression testing practice. The work
can be distributed into three segments:

1. Understanding the state of regression testing practice with a focus on goals and
challenges.

2. Exploring the state of research with a focus on applicability in practice.

3. Providing support to the practitioners in structuring and improving the regression
testing practice.

Table 1.1 summarizes the mapping of chapters and research questions. The focus of
RQ1 is understanding the state of regression testing practice, which is further divided
into RQ1.1 and RQ1.2. RQ2 explores the possibilities for the adoption of regression
testing research, and this question is divided further into RQ2.1 and RQ2.2. The pur-
pose of RQ3 is to investigate the ways to provide support in regression testing practice.
The following provides the detail of RQs.

RQ1 What is the state of regression testing practice in industry?

10

Table 1.1: Research questions and thesis chapters

Chapters
2 3 4 5 6 7

R
Q

s

RQ1.1
RQ1.1

RQ1.2
RQ2.1 RQ2.1

RQ2.2
RQ3

RQ1.1 What are the goals considered essential for the success of regression test-
ing?
While implementing any strategy for regression testing, it is important to
assess whether the chosen strategy is a good choice. A good strategy can
be aligned with the success goals. The purpose here is to understand the
regression testing goals and learn which information should be utilized to
measure these goals. Based on the findings, the aim is to provide action-
able guidelines for practitioners and researchers to align their goals. This
can help in reducing industry-academia gap. This aspect is the focus of
Chapters 2 and 3.

RQ1.2 How is regression testing performed in large-scale software development
companies?
Researchers argue that there is a gap between regression testing research
and practice. Researchers propose their techniques by utilizing different
criteria and well-managed sources of information. Whereas in industry,
the most crucial criteria is the experience of the practitioners involved, and
the best source of information is their knowledge about the system under
test. The goal here is to understand the practices that practitioners utilize
during regression testing, how they select and/or prioritize the tests, what
challenges practitioners face while running regression tests, how they ad-
dress the challenges and how they measure the success of regression test-
ing. These aspects are the consideration of Chapter 4.

RQ2 How can regression testing research be utilized in practice?

RQ2.1 How to map regression testing research with industry context?
There is a large body of research on regression testing, and researchers fo-
cus on three main areas: 1) test case selection, 2) test case prioritization,

11

Chapter 1. Introduction

and 3) test suite minimization. Only a few studies have been empirically
evaluated on large-scale systems. The purpose of Chapter 5 is to identify
and synthesize the industry-relevant research on regression testing to pro-
vide recommendations for future research and guidelines for practitioners
regarding the choice of regression testing methods.

RQ2.2 To what extent regression testing techniques proposed in the literature are
replicable?
Most regression testing techniques proposed in the research do not get the
attention of practitioners. Practitioners do not know much about these tech-
niques since most regression testing techniques have not been tested in the
industry. These techniques need to be re-examined in the context of indus-
try goals to ensure that regression testing techniques proposed in research
are applicable in industry. Replication can be helpful in this regard. In
Chapter 6, we experimented with replicating a test case prioritization tech-
nique and discussed the lessons learned.

RQ3 How to support practitioners improve decision-making in the regression testing
process?
Study three lists the challenges practitioners face during regression testing ac-
tivities. These challenges are of two kinds, one that requires technical support
and the other where the process needs to be improved. In Chapter 7, together
with practitioners, we have developed checklists to improve the regression test-
ing process. These checklists aim to improve decision-making by streamlining
the regression testing process and aligning it with practitioners' goals.

1.5 Research methods
Systematic literature reviews and various empirical methods have been utilized in this
thesis. The empirical methods utilized in this thesis are 1) focus groups, 2) surveys, 3)
case studies, and 4) experiments. Table 1.2 summarizes the methods used in different
studies (chapters) It also shows the involvement of companies in the studies. Figure
1.1 describes an overall view of the thesis regarding a relationship between research
questions, thesis chapters, research methods, and contributions.

1.5.1 Empirical methods
Empirical methods have been used in software engineering research since the 1960s.These
methods have become powerful means to create scientific evidence on software devel-

12

Table 1.2: Research methods and thesis chapters

Chapters
Research method 2 3 4 5 6 7 Partner

Companies
Focus Group ✓ Two
Case Study ✓ Two
Survey ✓ ✓ Multiple
Experiment ✓

Literature Review ✓

SLR ✓ Two

opment, operation, and maintenance through various iterations. Besides researchers,
software practitioners benefit from these methods in their decision making and learn-
ing [52]. In empirical methods, evidence is collected using qualitative and quantita-
tive methods. Qualitative methods comprise interviews and participant observation,
and quantitative methods include surveys, archival data, experimentation, and sim-
ulations [51]. Data collected through qualitative methods are subject to qualitative
analysis (e.g., grounded theory, thematic analysis, narrative analysis, etc.). Quanti-
tative data are analyzed using statistical methods and mathematical modelling based
approaches [10, 51]. The following subsections provide a summary of empirical meth-
ods used in different studies of this thesis.

Focus group

A focus group is a convenient method for data collection from a group of individuals
when it is required to obtain participants' viewpoints on a topic of shared interest. It
allows people to sit together and have an open discussion about a specified topic [49].
The role of the moderator is crucial for the success of a focus group. A focus group
should be conducted with at least three participants, and the suggested upper limit for
a focus group is twelve participants [9].

Our first study (Chapter2) focused on understanding the perspectives of academics
and practitioners on regression testing goals. The study's first objective was to identify
the goals for the success of regression testing, and the second objective was to investi-
gate whether there are any disparities in thoughts between researchers and practitioners.
Senior researchers and practitioners participated in the study. The most suitable way
was to allow them to sit together and voice their opinion on the topic. To achieve this
objective, we utilized the focus group method.

13

Chapter 1. Introduction

C3

Regression testing
for large-scale

embedded software
development --

Exploring the state
of practice

Regression testing
goals - views of
practitioners and

researchers

C1

C2

Using GQM to
Compare Research

and Practice
Perspectives on

Regression Testing

C5

Lessons learned
from replicating a

study on
information-retrieval

based test case
prioritization

State of the
RT practice and
challenges to it

RQ2.2

RQ2.1
RQ2.1

Mapping regression
testing research to

industry context

C4

On the search for
industry-relevant
regression testing

research

Support in
 industry adoption and

replication of RT
techniques

Mapping of
RT research

 to industry context

RQ3

Providing support to
improve/formalize
regression testing

practice

Support to
Improve/formalize RT

activities

RQ1.2 RQ1.1

RQ1.1

Understanding
current state of

regression testing
practice

Objective Contributions

A model to integrate
 research and practice

perspectives on RT

 Regression testing
 goals

RT: Regression Testing

Chapters
addressing

 the
respective

RQs

C6

Checklists to
 support decision

making
 in regression

testing

Chapter 2 (Study 1) Chapter 4 (Study 3)

Chapter 3 (Study 2) Chapter 5 (Study 4) Chapter 6 (Study 5)

Chapter 7 (Study 6)

Method: Focus GroupMethod: Case Study

Method: LR & SurveyMethod: Systematic L RMethod: Experiment
Method: Survey,

interviews

Objective 1

Objective 2

Objective 3

Figure 1.1: Thesis overview: research questions, chapters, and contributions (C1 –
C6)

Survey

A survey helps to identify the characteristics of a larger population, and it is a suitable
method where the aim is to collect the opinions of a large sample [49]. In Chapter
3 (Study 2), we were interested in knowing as many practitioners' perceptions of re-
gression testing goals as possible. Simultaneously, we were keen to have some insight
into the regression testing goals and other associated practices. Therefore, we decided
to survey by opting for two data collection methods interviews and an online ques-

14

tionnaire. Interviews allowed us to interact with the practitioners and understand their
perceptions directly. The online questionnaire helped us reach the broader population
and collect the information about regression testing goals from a larger sample. We
used the survey method in Chapter 7 (Study 6) to collect practitioners' feedback on the
regression testing checklists.

Online Questionnaire: A questionnaire is a preferred method for data collection in a
survey. It needs to be designed carefully and should be rooted in related literature.
Before preparing a questionnaire, the researcher should be clear about the intended ob-
jectives of the survey. The questions need to be framed clearly and concisely, as unclear
questions can irritate the respondents [50]. A questionnaire can be composed of open
or close-ended questions. Both have their merits and demerits. Open-ended questions
allow the respondents to provide their opinion according to their perceptions. However,
with open-ended questions, there is always a chance of misinterpretation. Close-ended
questions are easy to answer as the respondent has to select one option. Close-ended
questions are the preferred option for an online questionnaire [50]. Besides the order-
ing of questions, the wording choice and provision of options have vital role to obtain
the correct results [49]. In the open-ended questions, along with agree/disagree or
yes/no, there should always be an option to facilitate the respondents to choose if they
are undecided or have some other opinion [50].

The online questionnaire was used as one of the data collection methods for Study
2 (Chapter 3). We also used online questionnaires while evolving and verifying regres-
sion testing checklists in Study 6 (Chapter 7).

Case study

To address the second research question a multi-case study (Study 3) was conducted.
Case studies enable the researcher to get an in-depth understanding of the phenomenon
under investigation [10]. A case study could be exploratory, descriptive, or explanatory
[11]. Mostly case studies are based on qualitative data and are meant to provide a
deeper insight into some aspects of the study [10]. Yin [11] argues that a case study
would be a suitable choice when: 1) research questions are based on how or why, 2)
the researcher has no or little control over the behavioral events, and 3) the focus of the
study is on contemporary events.

Regarding the data collection for case studies, Runeson and Höst [10] suggest to
use multiple sources of data collection for a case study, since it will improve the valid-
ity of the results. The data collection methods adopted in the studies of this thesis are
focus groups, interviews, and archival data.

15

Chapter 1. Introduction

Interviews: Interviews are vital tools for data collection in software engineering em-
pirical studies. They allow the researcher to have direct interaction with the subjects
and get a deeper insight into the phenomenon under study. Interviews can be clas-
sified into three classes: 1) unstructured, 2) semi-structured, and 3) fully structured.
Conventionally, a semi-structured interview method is used in case studies [10] The re-
searcher formulates the interview questions in semi-structured interviews and prepares
a guide/plan to conduct the interviews. The order of asking questions is flexible in
semi-structured interviews. The purpose is to be able to adjust the order according to
the expertise/interest of the subject [10]. Interviews were the primary data collection
method for Chapter 4 (Study 3), and these were part of the data collection methods for
Chapter 3 (Study 2) and Chapter 7 (Study 6). We conducted semi-structured interviews
for all the mentioned studies. The objective of these studies was to understand the cur-
rent state of regression testing practice, regression testing goals, and factors considered
significant for regression testing practice.

Archival data: Archival data refers to the procedural documents, historical data/met-
rics, and documentation related to management activities [10]. This type of data en-
ables the researcher to understand the working environment of the case company, their
processes, and previous history regarding the execution of the methods. Using archival
data, a researcher can validate information obtained through interviews. Archival data
was the secondary source of information for Study 3 (Chapter 4). The primary purpose
was to validate some of the data points collected through interviews.

Experiments

Researchers use experiments to examine the causal relationship between different vari-
ables that characterize a phenomenon [53]. An experiment is used when we want to
test the existing theories, test the accuracy of models, and validate measures. It can
investigate the correctness of claims and can test the use of specific standards, meth-
ods, and tools for a given context. An experiment allows the experimenter to have
certain control over the situation and systematically manipulate behaviour [51]. The
experimenter can formulate and test a hypothesis about the phenomenon under study
using an experiment. Based on the experiment results, the experimenter can decide to
accept or reject the hypothesis [51, 52]. However, to have correct results of an experi-
ment, it is required to prepare, analyze, and conduct an experiment correctly [51]. The
starting point for the experiment is when we have an idea of a causal relationship. The
process further proceeds with experiment scoping, planning, operation, analysis and
interpretation, presentation, and concludes with reporting. A well planned, designed,
and reported experiment provides a basis for replication [51].

16

Replication experiments: The replication of an experiment is meant to reconstruct the
experiment design under similar conditions and potentially with new objects of study.
The purpose of replication is to validate that the results produced in the original exper-
iment are repeatable. The replication will be regarded as successful if the replicators
can replicate both the design and results. However, in general, the results of most repli-
cations differ from the original study to some extent [51]. Replications are categorized
as internal replication and external replication [37]. Internal replications are carried out
by the authors of the original experiment, and external replications are carried out by
the authors other than of original study [37]. We conducted an experiment to replicate
a test case prioritization technique in Study 6 (Chapter 7).

1.5.2 Systematic literature review

A systematic literature review (SLR) provides a way to collect the research evidence in
a systematic way [12]. This method was adopted in software engineering from medical
research. With the help of this method, a researcher can collect, evaluate and interpret
the available research relevant to a topic or phenomenon. The guidelines for conducting
SLRs suggested by Kitchenham [13] propose three phases of a systematic review (i.e.,
planning, conducting, and 3 reporting the review).

Planning

The crucial phase in systematic reviews is the planning phase. As a part of planning,
the researcher needs to establish the need for an SLR. In the planning phase, the re-
searcher has to prepare a review protocol that includes research questions, search strat-
egy, criteria for selecting primary studies, quality assessment criteria, data extraction,
and synthesis strategy.

Conducting

After planning, the next step is to conduct the review. In this phase, a researcher follows
the strategies defined in the planning phase to execute the review process. This phase
consists of identifying relevant research from various research databases, selection of
primary studies in the light of inclusion and exclusion criteria, quality assessment of
the studies, data extraction, and data synthesis.

17

Chapter 1. Introduction

Reporting

Careful documentation of the results collected in the previous phases is an integral part
of an SLR. Finally, these results are published in a report or an article.

To investigate RQ3, we conducted a systematic literature review of empirically
evaluated regression testing techniques. The findings regarding RQ3 are presented
in Chapter 5 (Study 3). Regarding the study selection process, a snowball sampling
technique was followed [14].

1.6 Threats to validity

We have used various research methods to conduct studies in this thesis. Every study
has its limitations. Therefore, every individual study could have unique threats to its
validity. We have discussed validity threats for all our studies in the respective chapters
(i.e., Chapter 2 – Chapter 7). Here we summarise how we mitigated the threats to
validity in various studies.

Construct Validity This aspect of validity is regarding the underlying operational
measures, concepts, and terms of the study. Four of our studies, Study 1, 2, 3, and
6, presented in Chapters 2, 3, 4, and 7, are exploratory and involve humans as study
subjects. In these studies, the potential threats to construct validity could be the selec-
tion of relevant participants and the appropriate design of data collection instruments.
For selecting participants, we followed non-random (snowball) sampling techniques.
While designing the data collection instruments, we followed the guidelines by Rune-
son and Höst [10] to design interview instruments and Kitchenham and Pfleeger [50]
to design the survey questionnaires. To avoid inconsistency and bias, we performed
pretests and involved independent reviewers to review the instruments. Study 4, pre-
sented in Chapter 5, and part of Study 2, presented in Chapter 3, are based on literature
reviews. Threats to construct validity in these studies could be the selection of relevant
literature. We followed a snowball sampling search strategy [14]. Snowball sampling
has been effectively used to conduct [60] and extend [61] systematic literature reviews.
Study 5, presented in Chapter 6, is a replication experiment. We followed the philoso-
phy of exact replication [36]. Therefore, if the original study suffers from any aspects
of construct validity, the replication may do so. However, we took various measures
to avoid researcher bias in this study's constructs, such as using automated tools and
random generators for mutant generation and selection.

18

Internal Validity Internal validity threats mainly deal with the credibility (data col-
lection, sample selection) of the study, i.e., whether the obtained results are valid or
not. It refers to the factors that affect the outcome of the research. In the case of our
exploratory studies (i.e., Chapters 2, 3,4, and 7), the critical aspect could be if we get
responses from relevant people. Especially for questionnaire-based surveys, this aspect
is critical, where the researcher has no control over the respondents. To mitigate this
threat, we provided a good introduction and added experience-related constraints in the
survey questionnaires. Another aspect that can impact the outcome is the interpretation
and analysis of data collected in surveys and interviews. We involved multiple re-
searchers for data interpretation and analysis. For data collected during the interviews,
we validated our interpretations from the participants. Concerning the literature-based
studies (Chapter 5 and part of Chapter 3), we took several steps to limit the chances
of missing relevant literature, such as following a systematic study selection process,
performing pilot selection on a randomly selected subset of papers, involving multiple
researchers in the study selection process, and peer-reviewing of excluded papers. In
the replication experiment presented in Chapter 6, we took various measures to miti-
gate threats to internal validity. For instance, to reduce the researcher's control over the
variables that could impact the experiment's outcome, we avoided human interaction
and used automated tools for data (mutants) generation and selection.

External Validity This aspect of validity refers to the generalization of findings.
Concerning the studies presented in Chapters 2 and 4, the findings are not general-
izable since these represent specific contexts. However, we have provided the detail of
participants of Study 1 (Chapter 2) and teams that participated in the multi-case study
(Chapter 4) to facilitate analytical generalization of results. Concerning the survey-
based studies presented in Chapter 3 and Chapter 7, we tried to involve participants
with diverse backgrounds working in different environments. However, we can not
claim that findings apply to all development contexts. To overcome this limitation,
we have provided the contextual detail of the participants, their teams and compa-
nies. Although we attempted to include the maximum possible relevant studies in our
literature-based studies (Chapter 5 and part of Chapter 2), we cannot claim the exhaus-
tive searches. We have provided the research questions and search mechanisms in both
studies that could help the researchers to extend the findings of these studies. Concern-
ing the replication experiment presented in Chapter 6, the software programs used are
small and medium-sized Java programs. Therefore, we can not claim the generalizabil-
ity of results to large-scale industrial projects.

19

Chapter 1. Introduction

Reliability This aspect concerns the extent to which the data and analysis depend
on the specific researchers. The results are reliable if they are free of biases, and in-
dependent researchers can reproduce them using similar methods. We attempted to
minimize its impact by involving multiple researchers during the planning, execution,
analysis, and reporting of the studies included in this thesis. We have explained all as-
pects of data collection, analysis, and reporting in the respective studies. Furthermore,
data collection instruments are made available in the studies. In all exploratory studies
(i.e. Chapters 2, 3, 4, and 7), we ensured triangulation by involving multiple authors in
interpreting the results, and the participants reviewed and validated all the results. In
SLR (Chapter 5), we tested the data extraction form on a sample of papers. This helped
to develop a shared understanding of the form. Furthermore, to increase the reliability
of the study, the actual data extraction (from all selected papers) and the formulation
of facets in the taxonomies were reviewed by two additional reviewers (authors of the
paper).

1.7 Summary of studies included in the thesis
The studies conducted in this thesis have a certain level of interdependence on each
other. For instance, study 1 motivated us to expand its findings. As a result, we con-
ducted study 2. Similarly, the results of studies 1 and 2 provided the reasons to conduct
study 3 to understand regression testing practice in the industry. The challenges iden-
tified in study 3 motivated us to conduct all subsequent studies (study 4, study 5, and
study6). The following subsections briefly summarise each study included in this the-
sis.

1.7.1 Regression testing goals - view of practitioners and researchers
In this study, we aimed to elicit the views of industry and academia testing experts.
We conducted a focus group study with seven experts who were the representatives of
two large companies and two universities. We structured the focus group discussion
using the GQM approach and divided it into three phases. We elicited goals, then
mapped the goals to questions, and then worked on the measures to evaluate goals. We
identified a prioritized list regression testing goals, “Confidence” was marked as the
highest priority regression testing goal. Other goals identified in this study are, “High
precision”, “Fault slippage to the customer”, “Efficiency”, and “Inclusiveness”. We
also identified the information needs to be required to evaluate the success in regression
testing in terms of “Confidence”. Finally, we elicited the measures corresponding to
the identified information needs. We observed a few similarities in the views of the

20

practitioners and researchers about the definition of regression testing goals. However,
both perspectives differ in the priorities of these goals. From the results of this study, we
can conclude that there is a gap in the industry and academic perceptions of regression
testing. We conducted this study with a limited scope. Therefore, we cannot say that
these findings apply to different software development contexts.

1.7.2 Using goal-question-metric (GQM) to compare research and
practice perspectives on regression testing

In the second study, we intended to extend the findings of Study 1 by adding the per-
ception of more practitioners. Therefore, we conducted a survey by using interviews
and questionnaires. A total of 56 practitioners from multiple companies represent-
ing different software development domains participated in the study. We conducted
a literature review of 44 relevant research papers to know the research perspective on
regression testing goals.

We identified that industry and research highlight different regression testing goals.
The literature emphasizes increasing the fault detection rates of test suite, whereas the
focus in practice is on test suite maintenance, controlled fault slippage, and aware-
ness of changes. Similarly, the literature suggests maintaining information needs from
test case execution histories to evaluate regression testing techniques based on various
metrics, whereas, at large, the practitioners do not use the metrics suggested in the
literature.

The outcome of this study is GQM-based mapping of regression testing goals, in-
formation needs, and measures, representing both perspectives (industry and research).
The GQM model can serve as a tool to bridge the gap between industry and academia.
It can guide researchers in proposing new techniques closer to industry contexts by con-
sidering the practitioners’ goals for regression testing. Practitioners can benefit from
information needs and metrics presented in the literature and can use GQM as a tool to
follow their regression testing goals.

1.7.3 Regression testing for large-scale embedded software devel-
opment

Most of the regression testing techniques proposed in literature do not get the attention
of the practitioners. Among the reasons could be that researchers do not understand
practitioners needs and perspectives on regression testing [5, 29]. Researchers need
to understand the essential aspects of how regression testing is performed in industry
and the challenges practitioners face during the regression testing activity. This could

21

Chapter 1. Introduction

help researchers propose regression testing techniques closer to industry context and
ultimately improve the adoption rate of proposed techniques in industry.

This study aims at exploring the regression testing state of practice in the large-
scale embedded software development. The study has two objectives, 1) to highlight
the potential challenges in practice, and 2) to identify the industry-relevant research
areas regarding regression testing. We conducted a qualitative study in two large-scale
embedded software development companies, where we carried out semi-structured in-
terviews with representatives from five software testing teams. We did conduct the
detailed review of the process documentation of the companies to complement/vali-
date the findings of the interviews.

We found that mostly, the practitioners run regression testing with a selected scope,
the selection of scope depends upon the size, complexity, and location of the change.
Test cases are prioritized on the basis of risk and critical functionality. The practition-
ers rely on their knowledge and experience for the decision making regarding selection
and prioritization of test cases. The companies are using both automated and manual
regression testing, and mainly they rely on in-house developed tools for test automa-
tion. The challenges identified in the companies are: time to test, information man-
agement, test suite maintenance, lack of communication, test selection/prioritization,
lack of strategy, lack of assessment, etc. Majority challenges identified in the study are
management related, and there is a dependency among the identified challenges. The
proposed improvements are in line with the identified challenges. Regression testing
goals identified in this study are customer satisfaction, critical defect detection, confi-
dence, effectiveness, efficiency, and controlled slip through of faults.

Considering the current state of practice and identified challenges, we conclude that
there is a need to reconsider the regression test strategy in the companies as most of
the identified challenges are either management related or have a dependency to test
strategy. We further suggest that researchers need to analyze the industry perspective
while proposing new regression testing techniques. The industry-academia collabora-
tion projects would be a good platform in this regard.

1.7.4 On the search for industry-relevant regression testing research
Regression testing is a means to assure that a change in the software, or its execution
environment, does not introduce new defects. It involves the expensive undertaking
of re-running test cases. Several techniques have been proposed to reduce the number
of test cases to execute in regression testing, however, there is no research on how to
assess industrial relevance and applicability of such techniques. In Study 4, we con-
ducted a systematic literature review with the following two goals: firstly, to enable
researchers to design and present regression testing research with a focus on indus-

22

trial relevance and applicability and secondly, to facilitate the industrial adoption of
such research by addressing the attributes of concern from the practitioners' perspec-
tive. Using a reference-based search approach, we identified 1068 papers on regression
testing. We then reduced the scope to only include papers with explicit discussions
about relevance and applicability (i.e. mainly studies involving industrial stakehold-
ers). Uniquely in this literature review, practitioners were consulted at several steps to
increase the likelihood of achieving our aim of identifying factors important for rel-
evance and applicability. We have summarized the results of these consultations and
an analysis of the literature in three taxonomies, which capture aspects of industrial-
relevance regarding the regression testing techniques. Based on these taxonomies, we
mapped 38 papers reporting the evaluation of 26 regression testing techniques in in-
dustrial settings.

1.7.5 Lessons learned from replicating a study on information-
retrieval based test case prioritization

Researchers have been proposing techniques to support regression testing practice, and
a few of them are evaluating their techniques in the industry context. However, most
regression testing techniques proposed in research have not been evaluated in industry.
Adopting these techniques in practice is challenging because the results are inacces-
sible to the practitioners, and they do not know the context these techniques can fit.
Replications of existing solutions for regression testing can be helpful in this regard,
provided the availability of data and other contextual information for these replica-
tions. Replication studies help solidify and extend knowledge by evaluating previous
studies' findings. However, too few replications are conducted in the field of software
testing focusing on artefact-based experiments.

In Study 5, we have replicated an artefact-based study on software regression test-
ing. The original study presents a test case prioritization technique. We attempted to
replicate the original study using six software programs, four from the original study
and two additional software programs. The replication study was implemented using
Python (Jupyter notebook) to support future replications.

As an outcome of the replication experiment, various general factors facilitating
replications are identified, such as: (1) the importance of documentation; (2) the need
of assistance from the original authors; (3) issues in the maintenance of open-source
repositories (e.g., concerning needed software dependencies); (4) availability of scripts.
We also raised several observations specific to the study and its context, such as in-
sights from using different mutation tools and strategies for mutant generation. The
conclusion of our replication experiment is that it is not easy to externally replicate an

23

Chapter 1. Introduction

experiment when context information and relevant data are not available in a complete
manner, and without the support of original authors it becomes an uphill task.

1.7.6 Checklists to support decision making in regression testing
From our interactions with practitioners of various companies for our studies (1, 2, 3,
& 6), we observed that regression testing practice lacks a well defined structure, which
is among the primary reasons for various regression testing challenges.

In Study 6, with the input from 25 experienced testing professionals of 12 com-
panies, we identified factors that practitioners think are significant to consider while
planning, performing, and analyzing regression testing. Based on these factors, we
designed regression testing checklists to help practitioners make regression testing de-
cisions. We sent these checklists to the participating practitioners and collected their
feedback. We made improvements in the regression testing checklists based on the
suggestions received from the participants. Finally, the practitioners provided feed-
back on the proposed checklists concerning their usefulness in their environment, and
most participants provided us with positive feedback.

The first part of the proposed checklists can help test managers to gauge the readi-
ness of their team/team members and decide on the start of regression testing activity.
These checklists can also help practitioners track all necessary steps while planning
and performing regression testing. The second part of the checklists can help the test
team for post regression testing activity. The participants from two companies showed
their intention to use these checklists. In future, based on the feedback from the com-
panies using the checklists, we plan to improve these checklists. We are also looking to
automate these checklists and use machine learning techniques to make an intelligent
decision support system for regression testing.

1.8 Discussion
Working on strategies to reduce the industry-academia gap and improving regression
testing practice is the primary goal of this thesis. To achieve this goal, we opted to
work on three research questions. RQ1 aimed at understanding the current state of
regression testing practice in the companies, identifying the challenges the practitioners
face during regression testing, and finding the essential goals for regression testing.
In RQ2, we worked on strategies to identify regression testing research that could
be mapped to industry context and find ways to adopt regression testing research in
practice. Finally, in RQ3, the aim was to help practitioners improve regression testing
practice without altering how they work.

24

In this quest, we conducted six studies, four of which involved testing practitioners.
While working on strategies to tailor regression testing research to the industry context,
we engaged practitioners partially. We conducted an experiment-based study where a
practitioner was involved in all steps of the study. In the following paragraphs, we
present a brief discussion of the findings of this thesis.

1.8.1 Regression testing state of practice

Concerning the state of regression testing practice, the companies consider regression
testing an essential activity for their products, and in most cases, they cannot ignore
it. Some times exploratory testing is used to complement regression testing. The
frequency of regression testing depends on the domain and criticality of the produc-
t/module under test. There is no concept of a separate regression test plan, but it is
considered part of the overall test plan. Sometimes, an informal regression test plan is
part of the sprint planning meeting. The practitioners set regression testing goals, most
do it informally, and some have a formal mechanism for setting and assessing the goals.
Expert judgment based on experience and domain knowledge is the primary driver for
decision-making. The companies are transitioning from manual to automated regres-
sion testing. The changes and their impact are the basis for selecting a regression test
scope. Based on knowledge of requirements specifications, the practitioners decide
on the impacted modules to include in the regression test scope. During the regular
changes, regression testing is performed with a selected set of test cases. However, be-
fore the release, companies with automated regression tests prefer to run the complete
regression suite.

While working on the studies to understand the regression testing practice, we iden-
tified disparities in research and practice perspectives of regression testing. Hence we
endorse the findings concerning the gap in research and practice of regression test-
ing [8, 23, 25, 26]. The challenges identified by the practitioners were divided into
two categories (i.e., i) challenges that need process support and ii) challenges that need
technique level support). The regression testing challenges identified in this thesis are
not new, as some of the challenges were discussed a decade ago [1]. There could be
two reasons for recurring challenges: 1) regression testing techniques proposed in the
literature do not fit the companies' context, and 2) companies are not aware of the avail-
ability of the techniques that could be suitable for their context. Both facts entail the
need to work on the strategies of mapping the regression testing research to the industry
context.

25

Chapter 1. Introduction

1.8.2 Supporting the adoption of regression testing research in prac-
tice

Test case selection and prioritization are the challenges identified in our multi-case
study presented in Chapter 4. To support the practitioners in mitigating these technique-
level challenges, we identified 26 regression testing techniques evaluated in an industry
context. We created a taxonomy to map the regression testing techniques to industry
context, goals, and needs. The identified techniques apply to web-based, real-time, em-
bedded, database, and component-based systems. The challenges listed in this thesis
represent the perspectives of the companies working on large-scale embedded systems.
The technical areas where these companies seek improvements are related to test case
selection and prioritization. In chapter 5, we have identified five studies, which are
addressing the test case selection and prioritization issues for regression testing in em-
bedded systems [18, 21–24]. Some common characteristics of these studies are that
the systems under test consist of several million lines of code and development pro-
cesses are iterative in their nature. Four studies [18, 21, 23, 24] have been carried out
in the telecommunication domain, while the study presented in [22], was conducted in
the automotive domain. The technique presented in [24] works for test case selection
and prioritization, while other mentioned techniques work for test case selection. The
detail about the mentioned techniques with respect to scope, context, effect, and infor-
mation is presented in Table 1.3. Desired effects addressed in these techniques could
be mapped to the regression testing goals identified in Chapter 2 (Study 1) and Chapter
3 (Study 2).

To support the adoption of regression testing research in the industry, we experi-
mented with replicating a test case prioritization technique. During the experiment, we
observed that various limitations could hinder the successful replication/adoption of re-
gression testing techniques. Based on the lessons learned in the replication experiment,
we have devised a set of guidelines to facilitate future replications and the adoption of
regression testing techniques. This thesis also presents a goal-question-metric model
to compare research and practice perspectives on regression testing. The GQM model
provides a detailed mapping of regression testing goals, information needs, and mea-
sures. The model is flexible and could be tailored to a specific industry context by
adding or removing goals from it. Practitioners can use this model to follow and eval-
uate the regression testing goals according to their context. Researchers can use the
GQM model for proposing new techniques to fulfil practitioners' goals and needs.

26

Table 1.3: Mapping of regression testing techniques for embedded systems in tax-
onomies

SID Scope Context Effect Information

[18] Selection Heterogeneous
embedded

Effectiveness
& Efficiency,
improved
precision

Source code
& Test reports

[21] Selection Product-line
embedded

Effectiveness
& Efficiency

Source code
& Issues

[22] Selection embedded Effectiveness
& Efficiency

Design Arti-
facts

[23] Selection Product-line
embedded

Test suite re-
duction, im-
proved preci-
sion

Source code
& Issues

[24] Selection /
prioritization

Product-line
embedded

Effectiveness
& Efficiency

Test reports

1.8.3 Providing support to improve regression testing practice

While interacting with the practitioners for our various studies, we observed that practi-
tioners do not follow a defined regression testing process, and their decision-making is
based on expert judgement. The lack of testing process in the industry projects has been
reported by Kasoju et al. [54]. It is common to use expert judgment for various soft-
ware development activities. However, making decisions without defined procedures
can impact the results negatively. Experienced practitioners may overlook essential
aspects when making reviews and decisions [47]. To improve the regression testing
process and provide support in practitioners' decisions, we have designed regression
testing checklists with the input of 25 senior testing practitioners. The proposed check-
lists can help practitioners structure their regression testing activities and ultimately
improve the practitioners' decision-making on regression testing. We did not alter the
way how practitioners carry out their activities. Instead, we documented the steps they
think are essential to consider before, during, and after the regression testing.

The GQM model and regression testing checklists presented in this thesis are a step
towards goal-based regression testing process improvement.

27

Chapter 1. Introduction

1.9 Conclusions and future work
Researchers argue that there is a gap between industry and academia [15, 25, 26]. In
this thesis, we aimed to understand and reduce the industry-academia gap concerning
regression testing. We identified a disparity in the research and practice perspectives
on regression testing goals. The practitioners emphasize the goals like confidence, test
suite maintenance, controlled fault slippage, and awareness of changes. In contrast, the
focus of researchers while proposing regression testing techniques is on increasing test
suite's rate of fault detection and maximizing coverage. We learned that the practition-
ers rely on expert judgment for test case selection, prioritization, and other decisions
related to regression testing. There are several challenges that practitioners face during
regression testing activities. They need research support on test case selection and pri-
oritization issues, improving communication, streamlining regression testing activities,
and methods for estimating success goals.

We have proposed a GQM model that maps the practitioners' and researchers'
goal along with the information needs and measures. This model can help the prac-
titioners to follow and assess the success goals, and researchers propose regression
testing techniques relevant to practitioners' goals and needs.

To find test case selection and prioritization techniques suitable to industrial con-
text, we have proposed regression testing taxonomies and demonstrated the use of these
taxonomies by mapping 26 regression testing techniques according to industry context,
desired effects (goals), and information needs. The proposed taxonomies can help com-
municate the regression testing techniques to practitioners. Further, we have replicated
a test case prioritization technique to demonstrate the adoption of regression testing
research. Based on the lessons learned, we have reported various guidelines that can
help the future replication and adoption of regression testing techniques. These guide-
lines need to be considered by the researchers while conducting and reporting original
experiments.

Lastly, we have proposed checklists to support the regression testing practitioners
to improve communication among the test teams and streamline the regression testing
activities. The proposed checklists will serve as a tool to remind the practitioners not
to miss any essential regression testing activities. These checklists will also support
the managers in various decisions about regression testing. Practitioners' feedback on
the usefulness, comprehensiveness, and customizability of checklists was encouraging.
We have delivered the final version of the checklists to the participating practitioners,
and some of them are committed to sharing the usage data with us.

In future, we aim to test and enhance the GQM model and frame a comprehensive
mechanism for the assessment of regression testing. We plan to improve and automate
the regression testing checklists based on the companies’ usage data.

28

1.10 References
[1] E. Engström and P. Runeson, “A qualitative survey of regression testing prac-

tices,” in Proceedings of the International Conference on Product Focused Soft-
ware Process Improvement. Springer, 2010, pp. 3–16.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software Testing, Verification and Reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[3] P. K. Chittimalli and M. J. Harrold, “Recomputing coverage information to assist
regression testing,” IEEE Transactions on Software Engineering, vol. 35, no. 4,
pp. 452–469, 2009.

[4] S. Banitaan, M. Alenezi, K. Nygard, and K. Magel, “Towards test focus selec-
tion for integration testing using method level software metrics,” in Tenth In-
ternational Conference on Information Technology: New Generations (ITNG),
2013. IEEE, 2013, pp. 343–348.

[5] G. M. Kapfhammer, “Empirically evaluating regression testing techniques:
Challenges, solutions, and a potential way forward,” in Proceedings of the
Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011, pp. 99–102.

[6] I. ISO, “Ieee, systems and software engineering–vocabulary,” ISO/IEC/IEEE
24765: 2010 (E)) Piscataway, NJ: IEEE computer society, Tech. Rep., 2010.

[7] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Univer-
sity Press, 2016.

[8] X. Lin, “Regression testing in research and practice,” Computer Science and
Engineering Department University of Nebraska, Lincoln, pp. 1–402, 2007.

[9] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an empirical
tool in software engineering,” in Guide to advanced empirical software engi-
neering. Springer, 2008, pp. 93–116.

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical software engineering, vol. 14, no. 2,
p. 131, 2009.

[11] R. K. Yin, “Case study research: Design and methods (applied social research
methods),” London and Singapore: Sage, 2009.

29

REFERENCES

[12] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–a system-
atic literature review,” Information and software technology, vol. 51, no. 1, pp.
7–15, 2009.

[13] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK,
Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[14] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 2014,
p. 38.

[15] E. Engström, K. Petersen, N. bin Ali, and E. Bjarnason, “Serp-test: a taxonomy
for supporting industry–academia communication,” Software Quality Journal,
pp. 1–37, 2016.

[16] V. Garousi, K. Petersen, and B. Ozkan, “Challenges and best practices in
industry-academia collaborations in software engineering: A systematic litera-
ture review,” Information and Software Technology, vol. 79, pp. 106–127, 2016.

[17] R. H. Rosero, O. S. Gómez, and G. Rodríguez, “15 years of software regression
testing techniques – a survey,” International Journal of Software Engineering
and Knowledge Engineering, vol. 26, no. 05, pp. 675–689, 2016.

[18] E. D. Ekelund and E. Engström, “Efficient regression testing based on test his-
tory: An industrial evaluation,” in Proceedings of IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME, 2015, pp. 449–457.

[19] G. Rothermel, M. J. Harrold, J. Von Ronne, and C. Hong, “Empirical studies
of test-suite reduction,” Software Testing, Verification and Reliability, vol. 12,
no. 4, pp. 219–249, 2002.

[20] G. Rothermel and M. J. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Transactions on software engineering, vol. 22, no. 8, pp. 529–
551, 1996.

[21] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White, “Dynamic regres-
sion test selection based on a file cache an industrial evaluation,” in Proceedings
of the International Conference on Software Testing Verification and Validation,
ICST. IEEE, 2009, pp. 299–302.

30

[22] S. Vöst and S. Wagner, “Trace-based test selection to support continuous inte-
gration in the automotive industry,” in Proceedings of the International Work-
shop on Continuous Software Evolution and Delivery, CSED, 2016, pp. 34–40.

[23] E. Engström, P. Runeson, and G. Wikstrand, “An empirical evaluation of re-
gression testing based on fix-cache recommendations,” in Proceedings of the
3rd International Conference on Software Testing, Verification and Validation,
ICST, 2010, pp. 75–78.

[24] E. Engström, P. Runeson, and A. Ljung, “Improving regression testing trans-
parency and efficiency with history-based prioritization - an industrial case
study,” in Proceedings of the 4th IEEE International Conference on Software
Testing, Verification and Validation, ICST, 2011, pp. 367–376.

[25] V. Garousi and M. Felderer, “Worlds apart: industrial and academic focus areas
in software testing,” IEEE Software, vol. 34, no. 5, pp. 38–45, 2017.

[26] V. Garousi, M. M. Eskandar, and K. Herkiloğlu, “Industry–academia collab-
orations in software testing: experience and success stories from canada and
turkey,” Software Quality Journal, vol. 25, no. 4, pp. 1091–1143, 2017.

[27] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A
family of empirical studies,” IEEE transactions on software engineering, vol. 28,
no. 2, pp. 159–182, 2002.

[28] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma, “Regression testing
in an industrial environment,” Communications of the ACM, vol. 41, no. 5, pp.
81–86, 1998.

[29] M. J. Harrold and A. Orso, “Retesting software during development and main-
tenance,” in Proceedings of Frontiers of Software Maintenance FoSM. IEEE,
2008, pp. 99–108.

[30] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling the
size of a test suite,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 2, no. 3, pp. 270–285, 1993.

[31] J. Chi, Y. Qu, Q. Zheng, Z. Yang, W. Jin, D. Cui, and T. Liu, “Relation-based
test case prioritization for regression testing,” Journal of Systems and Software,
vol. 163, p. 110539, 2020.

31

REFERENCES

[32] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection and
prioritization using machine learning: a systematic literature review,” Empirical
Software Engineering, vol. 27, no. 2, pp. 1–43, 2022.

[33] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz, “On the search for industry-relevant
regression testing research,” Empirical Software Engineering, pp. 1–36, 2019.

[34] N. Juristo and O. S. Gómez, Replication of Software Engineering Experiments.
Springer Berlin Heidelberg, 2012, pp. 60–88. [Online]. Available: https:
//doi.org/10.1007/978-3-642-25231-0_2

[35] J. L. Krein and C. D. Knutson, “A case for replication: synthesizing research
methodologies in software engineering,” in RESER2010: proceedings of the
1st international workshop on replication in empirical software engineering re-
search. Citeseer, 2010, pp. 1–10.

[36] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in
empirical software engineering,” Empirical software engineering, vol. 13, no. 2,
pp. 211–218, 2008.

[37] M. Shepperd, N. Ajienka, and S. Counsell, “The role and value of replication in
empirical software engineering results,” Information and Software Technology,
vol. 99, pp. 120–132, 2018.

[38] F. Q. Da Silva, M. Suassuna, A. C. C. França, A. M. Grubb, T. B. Gouveia,
C. V. Monteiro, and I. E. dos Santos, “Replication of empirical studies in soft-
ware engineering research: a systematic mapping study,” Empirical Software
Engineering, vol. 19, no. 3, pp. 501–557, 2014.

[39] R. M. Bezerra, F. Q. da Silva, A. M. Santana, C. V. Magalhaes, and R. E. San-
tos, “Replication of empirical studies in software engineering: An update of
a systematic mapping study,” in 2015 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 2015, pp.
1–4.

[40] A. Santos, S. Vegas, M. Oivo, and N. Juristo, “Comparing the results of replica-
tions in software engineering,” Empirical Software Engineering, vol. 26, no. 2,
pp. 1–41, 2021.

[41] M. Cruz, B. Bernárdez, A. Durán, J. A. Galindo, and A. Ruiz-Cortés, “Replica-
tion of studies in empirical software engineering: A systematic mapping study,
from 2013 to 2018,” IEEE Access, vol. 8, pp. 26 773–26 791, 2019.

32

[42] B. Hales, M. Terblanche, R. Fowler, and W. Sibbald, “Development of medi-
cal checklists for improved quality of patient care,” International Journal for
Quality in Health Care, vol. 20, no. 1, pp. 22–30, 2008.

[43] W. Y. Higgins and D. J. Boorman, “An analysis of the effectiveness of checklists
when combined with other processes, methods and tools to reduce risk in high
hazard activities,” Boeing Technical Journal, 2016.

[44] B. M. Hales and P. J. Pronovost, “The checklist - a tool for error management
and performance improvement,” Journal of critical care, vol. 21, no. 3, pp. 231–
235, 2006.

[45] A. Chaparro, J. R. Keebler, E. H. Lazzara, and A. Diamond, “Checklists: A
review of their origins, benefits, and current uses as a cognitive aid in medicine,”
ergonomics in design, vol. 27, no. 2, pp. 21–26, 2019.

[46] R. Van de Schoot, P. Lugtig, and J. Hox, “A checklist for testing measurement
invariance,” European Journal of Developmental Psychology, vol. 9, no. 4, pp.
486–492, 2012.

[47] M. Usman, K. Petersen, J. Börstler, and P. S. Neto, “Developing and using
checklists to improve software effort estimation: A multi-case study,” Journal
of Systems and Software, vol. 146, pp. 286–309, 2018.

[48] M. A. Heroux and J. M. Willenbring, “Barely sufficient software engineering:
10 practices to improve your cse software,” in 2009 ICSE workshop on software
engineering for computational science and engineering. IEEE, 2009, pp. 15–
21.

[49] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical
methods for software engineering research,” in Guide to advanced empirical
software engineering. Springer, 2008, pp. 285–311.

[50] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 3:
constructing a survey instrument,” ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 2, pp. 20–24, 2002.

[51] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

33

REFERENCES

[52] M. Felderer and G. H. Travassos, “The evolution of empirical methods in soft-
ware engineering,” in Contemporary Empirical Methods in Software Engineer-
ing. Springer, 2020, pp. 1–24.

[53] Y.-G. Guéhéneuc and F. Khomh, “Empirical software engineering,” in Hand-
book of Software Engineering. Springer, 2019, pp. 285–320.

[54] A. Kasoju, K. Petersen, and M. V. Mäntylä, “Analyzing an automotive testing
process with evidence-based software engineering,” Information and Software
Technology, vol. 55, no. 7, pp. 1237–1259, 2013.

[55] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani, “Effective regression
test case selection: A systematic literature review,” ACM Computing Surveys
(CSUR), vol. 50, no. 2, pp. 1–32, 2017.

[56] H. Koziolek, “Goal, question, metric,” in Dependability metrics. Springer,
2008, pp. 39–42.

[57] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric approach,”
Encyclopedia of software engineering, pp. 528–532, 1994.

[58] D. Parsons, T. Susnjak, and M. Lange, “Influences on regression testing strate-
gies in agile software development environments,” Software Quality Journal,
vol. 22, no. 4, pp. 717–739, 2014.

[59] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlogel, and
A. Wubbeke, “Regression test selection of manual system tests in practice,” in
Proceedings of the 15th European Conference on Software Maintenance and
Reengineering (CSMR), 2011, pp. 309–312.

[60] D. Badampudi, C. Wohlin, and K. Petersen, “Experiences from using snow-
balling and database searches in systematic literature studies,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering, EASE, 2015, pp. 17:1–17:10.

[61] K. R. Felizardo, E. Mendes, M. Kalinowski, E. F. d. Souza, and N. L. Vijayku-
mar, “Using forward snowballing to update systematic reviews in software en-
gineering,” in Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM, 2016, pp. 53:1–53:6.

34

Chapter 2

Regression testing goals - views
of practitioners and researchers

2.1 Introduction

Regression testing is a well-researched area. However, the majority regression testing
techniques proposed by the researchers are not getting the attention of the practition-
ers [5]. Communication gaps between industry and academia, and disparity in the
regression testing goals are the main reasons. Close collaboration can help in bridg-
ing the communication gaps and resolving the disparities. A close collaboration be-
tween industry and academia is important to both sides, and this collaboration should
be based on similar views of the studied problems and their importance [12]. Set-
ting common goals and achieving a shared understanding is important for successful
industry-academia collaboration. Having consensus on goals for collaborative research
is a real challenge [21]. For a successful regression testing, it is essential to be able to
manage the constraints. The key constraint of regression testing is the maintenance of
the test suite (adding new test cases or updating or deleting obsolete test cases) [8, 11].
Test suite maintenance is not an easy task and if not done in a correct manner, utility of
the test suite will be decreased and associated risks will be amplified [10]. To measure
the success of regression testing, we need to define the regression testing goals. Cher-
nak [17] emphasizes that test suite evaluation is the basis for the improvement of the
overall testing process.

In earlier work Engström et al. [5] investigated regression testing practices and
challenges using the focus group meeting and an online questionnaire with the indus-

35

Chapter 2. Regression testing goals - views of practitioners and researchers

try practitioners. We complement these findings by exploring the value for practition-
ers and researchers alike. The objective is to reflect on how to evaluate regression
testing. By choosing the right measures for the goals of a successful regression test-
ing. From the EASE 1 platform, together with the testing practitioners, we identified
seven software testing challenges in 3 companies. These companies operate in mobile-
communications, surveillance, and embedded software systems. To identify the testing
challenges at the companies, we utilized the SERP-test taxonomy. The SERP-test is
designed to support the industry-academia collaboration [6]. The identified challenges
were related to test planning, test design, and test execution. Out of these challenges,
three were related to regression test selection, regression test prioritization, and test
suite minimization. With the consultation of companies' representatives, we find that
companies were more interested to cope with the regression testing challenges. This
study is a step forward in the identified direction, with a focus on understanding the
regression testing goals. The broad objective of the study is to obtain the answer to the
following question:

RQ : What are the views of academics and practitioners about regression
testing?

The study aims at exploring the views of academics and practitioners about the
goals of regression testing. The purpose is to investigate the commonalities and differ-
ences in their viewpoints and defining some common goals for the success of regression
testing. We conducted a focus group study with industry and academic participants.
Seven experts participated in the study. Among the participants, 4 were representatives
of testing practitioners from 2 large companies, and 3 were senior researchers from 2
universities. The contributions of this study could be listed as, a) regression testing
definition, b) success goals, c) information needed (questions) to evaluate the success
and d) measures to answer the questions.

The reminder of this paper is structured as follows: Section 2.2 presents the related
work, Section 2.3 presents the detail about the methodology (i.e. planning, design, and
conduct of the focus group). Threats to validity have been discussed in Section 2.4.
Study results have been discussed in Section 2.5, and conclusions on key findings have
been presented in Section 2.6.

1EASE- the Industrial Excellence Centre for Embedded Applications Software Engineering http://
ease.cs.lth.se/about/

36

2.2 Related work
Researchers believe that industry-academia collaboration in software engineering is
very low [19–21]. Garousi et al. [19] emphasize the importance of collaboration be-
tween industry and academia to support improvement and innovation in the industry.
Ramler et al. [18], suggest the collaboration between industry and academia for the im-
provement and innovation of software testing in the industry. This collaboration could
be the basis for transferable and empirically evaluated results. To facilitate the collab-
oration between industry and academia, Engström et al. [26] proposed a taxonomy of
testing. The taxonomy can assist to improve communication between practitioners and
researchers. It can work for both types of communication (i.e. direct communication
and indirect communication).

Kapfhammer [7] pointed out the limited adoption of regression testing techniques,
the reason identified is the lack of empirical evaluations. Chernak [17] stresses the
importance of test suite evaluation as a basis for improving the test process. Chernak
emphasizes that objective measures should be defined and built into the testing process
to improve the overall quality of testing. Rothermel & Harrold [1, 2], proposed a 5 step
framework to evaluate the regression testing techniques.

Engström et al. [6] suggested that more empirical evaluations conducted in indus-
trial settings are required to facilitate the adoption of regression testing research in
practice. The authors concluded that in order to enable practitioners to utilize the out-
comes of research on testing, these outcomes must be evaluated in the actual environ-
ment. Through a focus group and an online questionnaire, Engström & Runeson [5]
conducted a survey on regression testing practices, authors investigated what is consid-
ered regression testing by practitioners i.e. the definition, purpose and scope of it. They
further investigated the challenges practitioners face with respect to regression testing.
Our work complements the results of [5], as our subjects are the representatives of both
sides (i.e. industry and academia). It is comparatively more focused, as purpose was to
identify the regression testing goals.

We conducted an exploratory study to systematically elicit the goals, information
needs and measures. We are focusing on industry-academia collaboration within re-
gression testing challenges. The current focus is on regression test suite evaluation, as
the first step in this study we tried to establish the regression testing goals.

2.3 Methodology
Focus groups are used to acquire the viewpoints of a group on some defined topic,
which is a common area of interest for all group members. The key role in the focus

37

Chapter 2. Regression testing goals - views of practitioners and researchers

groups is the moderator, who is responsible for guiding, facilitating and making sure
that the discussion stays focused. Different guidelines are available for focus groups,
Kontio et al. [4], [3] have deduced software engineering specific guidelines for conduct-
ing focus groups. Our approach to conducting the focus group was aligned with [4], a
brief description about each step is given in the following sub sections.

2.3.1 Planning the research.

It is essential to make sure, that the focus group is suitable for the planned work [4].
Considering the research question presented in Section 2.1, our intention was to know
the viewpoints of academics and practitioners about regression testing. Focus group
was selected as it facilitates discussion, immediate reflection and it helps find the depth
of the problem and some potential ideas for future research. As part of planning, we
acquired the informed consent of the participants. We did also inform all participants
about the purpose of the activity.

2.3.2 Designing the focus groups.

Focus group can comprise 3 to 12 participants, but a suitable number is between 4 and
8 [4]. We invited 7 participants from 2 Sweden based companies and 2 Swedish univer-
sities. Among the invited participants, 4 were testing practitioners from the companies
(2 from each). 3 participants were senior academics from 2 universities. It is important
to mention that all 3 academics are actively involved in software testing research. A
brief description of the participants is shown in Table 2.1.

We followed the GQM approach for the focus group. GQM is an established
method for planning and executing software engineering research and capturing soft-
ware engineering related phenomena [25]. We phrased the questions using the inter-
view guide formulated by Petersen et al. [9]. Table 2.2 shows the GQM template for the
evaluation of regression testing, the template is divided into 5 activities (i.e. A1. A2,
A3, A4, & A5). The purpose of A1 and A2 was to identify and prioritize the regression
testing goals respectively, whereas A3 was to elicit the information needs (questions)
corresponding to the identified goals. A4 was to capture the measures that could be
used to answer the questions of related goal(s), while the objective of A5 was to know
about the measures that the industry experts are actually using for the evaluation of test
suites.

38

Table 2.1: Focus group participants

P.Id. Organization Participant's Expertise

P1. Sony Mobile Communications Testing/ Development
P2. Sony Mobile Communications Testing/Development
P3. Axis Communications Testing/Development
P4. Axis Communications Testing
P5. Blekinge Institute of Techology SE & Testing Research
P6. Lund University RE & Testing Research
P7. Lund University Regression Testing Research

2.3.3 Conducting the focus group session.
A focus group may last for 2 to 3 hours and it should have a predefined schedule. Within
one session, the number of issues to be focused should be limited so that participants
can have sufficient time to give their opinion on every aspect of the topic [4]. We
allocated 2 hours for the activity, 30 minutes were assigned for setting up the focus
group environment and introducing the basic purpose to the participants, although the
overall objective was already communicated. We used the following schedule in the
focus group:

1. Introduction: Short introduction to the goals of the workshop.

2. Round-the-table: What is regression testing in your view? Describe in one to 2
sentences.

3. Summarizing, presenting and verifying.

4. GQM activity (Table 2.2).

5. Summarizing, presenting and verifying (after every GQM, i.e. A1....A5).

6. Closing (Any other reflection or discussion points? Next steps).

We used color stickers (green and yellow) for data collection, green stickers were used
by the practitioners and yellow stickers were used by the researchers. Discussion points
were recorded by 2 of the authors. We took several breaks in between to collect the an-
swers (to gather the sticky notes), cluster similar answers, put logical labels on clusters.
Reflect on the names of the clusters and also whether individual sticky notes belong in
it. Finally, we presented the initial results and asked the participants to verify the labels
according to their given options.

39

Chapter 2. Regression testing goals - views of practitioners and researchers

Table 2.2: GQM-Template for evaluation of regression testing

Activity Question Rational

A1 Regression Testing is successful when a), b),
c)... Complete the sentence (e.g. Regression
testing is successful if it is a) efficient.)

Capture the goals

A2 Which success factors/goals are most impor-
tant to you? Prioritize.

Prioritize success factors and goals
and hence determine which mea-
sures should really be collected and
whether this matches to what is col-
lected today.

A3 What information is needed to evaluate suc-
cess? Formulate as a question (e.g. How
complex are our test cases, How many test
cases are we running in a given test period?)

Capture the information needs
(questions)

A4 What measures do we need to collect to an-
swer the questions? (e.g. #test-steps for
complexity)

Capture the measures that allow to
quantify (and hence automate) the
analysis of results

A5 What are you collecting today (measure-
ments) of what has been identified in #4

Learn about input we already have
available for evaluating test suites

2.3.4 Analyzing the data and reporting the results.

We followed the inductive approach for data analysis. It is a systematic approach for
analyzing qualitative data [22, 23].

According to Thomas [22],“inductive analysis refers to approaches that primar-
ily use detailed readings of raw data to derive concepts, themes, or a model through
interpretations made from the raw data by an evaluator or researcher”.

The inductive approach allows the findings to emerge from the raw data without
imposing any restrictions, the approach revolves around 3 steps: 1) data reduction, 2)
data visualization and 3) conclusions and verifications .

We collected the sticky notes from the participants and made the groups of the
responses along with the labels (reduction). We displayed the results to the participants
and asked them to verify the labels with reference to their options. For example, we
received the 43 options for regression testing goals, we reduced the options to 10 by
making the clusters of the options on the basis of similarities. After the clustering of
the data, results were displayed and the participants were invited to verify the labels
according to their given options. In the second phase, together with the authors, results

40

were reviewed by all participants in a separate review meeting, resultantly identified
anomalies were fixed in the results.

The inductive approach provided us with the required flexibility to understand the
viewpoints of the experts. The outcomes of focus group study are presented in Sec-
tion 2.5.

2.4 Threats to validity
This study presents the viewpoints of academics and practitioners about the goals, in-
formation needs and measures of regression testing. The results presented here are of
an exploratory nature. We addressed the threats to validity according to guidelines of
Runeson and Host [24].

Construct validity: This aspect of validity is regarding the underlying operational
measures, concepts and terms of the study. One potential threat to construct validity
for our study is the subjects of the study representing 2 different working environments
(i.e. academics and industry). Potentially they can have different understanding of
concepts and terms. To mitigate the threats to this aspect of validity, we started with
the exploration of the perception of participants about regression testing. To ensure
the common understanding about the concept and terms during the entire focus group
meeting.

Internal validity: This aspect of validity threat is important if causal relations are
examined. Generally, we can state that studying causal relationships was not in the
scope of this study. It is a descriptive/interpretive study, as it presents the viewpoints
of the participants. We created a mapping between information needs and measures,
that is the only causal relationship presented in the study. The mapping created between
information needs and measures requires empirical evaluation to determine the validity
of relationships between information needs and measures.

External validity: This aspect of the validity refers to the generalization of findings.
We selected subjects of the study from academics and industry, to ensure the accept-
ability of results for both communities (i.e. practitioners and researchers). But as the
practitioners were representing only 2 companies, so acceptability of results cannot be
ensured in all companies working in the field of telecommunication. Further analytical
generalization of results is possible, to support this we have reported the information
of the participants in Table 2.1.

Reliability: To ensure the reliability of the study, we triangulated the results, as
we presented and verified the initial results to the participants during the focus group
meeting. Later after the complete analysis, results were presented to all participants
in a review meeting. For detail please refer to the Section 2.3.4. Goals and measures

41

Chapter 2. Regression testing goals - views of practitioners and researchers

identified in this study have not been verified through actual implementations.

2.5 Results and analysis

2.5.1 Defining regression testing.
As a kick-off activity, we asked the experts to give their opinion about, [What is re-
gression testing in your view?]. The purpose was to elicit the definition of regression
testing with respect to participants' perception/experience. 5 out of 7 people came up
with their definitions, presented in Table 2.3. Here an interesting fact that can be drawn
from the individual definitions is the agreement between the views of academics and
practitioners. We find that, the definitions presented at S.No. 1, 2 and 5 are almost the
same and could be grouped together. Similarly, definitions at 3 and 4 are on same lines
and we can group these 2 as well. After collecting the 5 definitions, we presented the
definitions to the participants. Participants were agreed with our grouping scheme i.e.
to group 1,2, & 5 and 3 & 4 in the form of the following 2 definitions:

1. Regression testing is an activity which gives us confidence in what we have done
and a trust that we have not broken anything.

2. Regression testing is an activity which makes sure that everything is working
correctly after the changes in the system and it is a guarantee to continue in
future.

Table 2.3: Defining regression testing

S.No. Perspective Definition

1. Academic Make sure that we have not broken anything.
2. Academic Trust on what you have done
3. Industry To make sure that everything else work correctly
4. Industry To make future work possible, it is a guarantee to continue in future
5. Industry Trust on what you have done and make sure that we have not broken anything

Regression testing definitions presented in the literature

We selected 3 definitions from the literature to compare with the definitions presented
by our experts. First definition was selected from a study presented by Engström and

42

Runeson [5]. We selected this definition as it represents the practitioners' perspective
and it could be regarded closer to our concept. Second and third are the standard def-
initions taken from IEEE software Engineering terminology [13], and IEEE, Systems
and software engineering – vocabulary [14] respectively.

1. “Regression testing involves repetitive tests and aims to verify that previously
working software still works after changes to other parts. Regression testing
shall ensure that nothing has been affected or destroyed” [5].

2. “Regression testing is defined as retesting a system or component to confirm that
changes cannot introduce any new bugs or causes other code errors, and the sys-
tem or component can still follow the prescribed requirement specification” [13].

3. “Regression testing is the selective retesting of a system or component to ver-
ify that modifications have not caused unintended effects and that the system or
component still complies with its specified requirements” [14].

We observed that the definitions finalized in our study are closer to the defini-
tion presented by Engström and Runeson [5]. The distinctive factor of the definition
proposed in our study is that it presents the viewpoints of both practitioners and re-
searchers, while Engström's definition presents the viewpoints of practitioners only.
On the other hand IEEE standard definitions is about that after the modification modi-
fied system or component still conforms to the specified requirements. That is system
or component still works correctly after the changes. Our second definition conforms
with the standard definitions. If we look at the individuals' definitions presented in
Table 2.3, three words (make sure, guarantee, and trust) are prominent. This indi-
cates that through regression testing our experts are seeking some assurance about the
system's correctness, a guarantee that future work is possible and a trust on what they
have done. Moreover, the results indicate that practitioners and researchers have similar
viewpoints on the definition of regression testing that addresses one of the challenges
highlighted in Section 2.2.

Regression testing definition adopted

During the second phase of the study (i.e. presentation of results and obtaining feed-
back from the participants), it was decided to adopt a single definition for the study.

43

Chapter 2. Regression testing goals - views of practitioners and researchers

Goal:
A1+A2

Question: A3

Measure:
A4+A5

Figure 2.1: GQM representation

The agreed upon opinion was to merge the two definitions into a single definition in a
way that it should represent the viewpoint of all participants. Later on, we combined
the both definitions and created the following definition:

Regression testing is an activity which makes sure that everything is working
correctly after the changes to the system. It builds the trust, that nothing has
broken in the system and it guarantees to continue work in the future.

2.5.2 GQM activity.
To execute the GQM (Goal, Question, Metric) theme, we used the GQM template, the
template of questions used here are the inspiration from [9]. We divided this activity
as A1, A2, ..., A5 as listed in Table 2.2. The purpose of A1 was to elicit the goals
and A2 was to prioritize the goals. A3 was for the elicitation of information needs
(questions) to achieve the regression testing goals. With the A4 we intended to collect
measures for answering the questions related to information needs. Finally, with the A5
intention was to know about the measures that are currently used by the practitioners.
The concept followed in the study is represented in Figure 1.

A1–Goals identification

To identify the goals, participants were asked to complete the following sentence, [Re-
gression Testing is successful when a), b), c) ?]. Here a), b), c) indicate that the partic-
ipants can state more than one goal regarding the success of regression testing. A total
of 43 different options for goals were identified by the experts, we find that majority
of the options were similar. For example we had the following options for G1 (Fault
slippage to the customer):

44

1. No fault slippage through.

2. The customer/user finds no further bugs/flaws.

3. No issue leakage.

4. Ensure that the system fulfills the desired properties and no stopping bug slipped
away.

5. We have no issue leakage on release.

With the consent of participants, we decided to group the identified goals on the basis
of similarities and assign an appropriate label for each group. Hence the identified
goals were restricted into 10 regression testing goals. The final list of the goals along
with the description about each goal is shown in Table 2.4.

There are some goals identified by the participants, which are either irrelevant or
too generic in scope. For example, visual overview could be taken as irrelevant or too
broad in scope. Similarly, automation could be subsumed in efficiency. Achieving de-
sired pass fail rate has been highlighted by 4 participants, if we see the goal description
it can be subsumed by the effectiveness goal. It is important to highlight that visual
overview and automation were identified by only one participant.

Confidence, Efficiency, and Effectiveness are the goals identified by the majority of
participants. Here it is important to mention that a goal identified by more participants
does not refer to its importance, rather it only shows how may subjects have pointed
out a particular goal. G5 (i.e. confidence) was identified by all 7 participants, but with
varying descriptions. For example, some of the perceptions can be summarized as,
"Stakeholders are confident with the reached quality and/or we can ensure that noth-
ing is broken." To measure the desired quality or to determine that nothing is broken,
requires multiple testing metrics.

A2–Goals prioritization

Next task was to assign the priority order to the elicited goals. The question asked to the
participants was, [Which success factors/goals are most important to you? Prioritize].
The participants were asked to assign priorities against every goal, each participant was
given 10 points to prioritize. We used colored markers for priority assignment, red for
researchers and Black for practitioners. As the distribution of experts was not equal on
both sides (i.e. 3 researchers and 4 practitioners), we decided to normalize the priority
of both sides. For normalization we devised an equation presented at (2.1).

NP = AP/N ∗4 (2.1)

45

Chapter 2. Regression testing goals - views of practitioners and researchers

Table 2.4: Regression testing goals

G.Id. Options Goal Goal description

G1. 5 Fault slippage to customer The customer/user finds no further
bugs/flaws

G2. 3 High precision Non affected test cases excluded

G3. 3 Inclusiveness Have run the most effective tests first

G4. 5 Achieved desired coverage All desired modules have been executed
when a regression test suite runs

G5. 7 Confidence Stakeholders are confident with the reached
quality and/or We can ensure that nothing is
broken

G6. 7 Efficiency Finished retesting with the limited time and
low cost

G7. 7 Effectiveness Costly faults detected early and/or finding
new defects in old code

G8. 1 Visual overview Visualization of complete software is dis-
played

G9. 1 Automation Being able to automate

G10. 4 Achieving desired pass fail rate When the expected tests pass and/or fail

Here NP = Normalized Priority, AP = Actual Priority and N = No. of Experts.
The normalized priorities along with the total points are shown in Table 2.5. G5

(i.e. Confidence) was marked with 21 total points, G2 (i.e. High precision) was given
17 points while G1 (i.e. Fault slippage to customer) was third in the list with 14 points.
It was observed that in most cases there was a sort of agreement between researchers
and practitioners. But there was a complete disagreement regarding the priority of
some goals. We can see that for researchers G1 & G5 are the highest priority goals
with equal priority, whereas for Practitioners G5 is the highest priority. Similarly, G8
and G9 are somewhat important for practitioners but researchers assigned zero to both
the goals. An interesting fact, that we think is important to mention here is that the
participants on both sides marked zero priority for G7 (i.e. effectiveness). Although
this goal was identified by all 7 participants. And it is among the goals which have been

46

Table 2.5: Allocated priorities to the goals

G. Id A Priority I Priority Total Priority

G1. 9 5 14
G2. 8 9 17
G3. 4 3 7
G4. 3 0 3
G5. 9 12 21
G6. 7 3 10
G7. 0 0 0
G8. 0 5 5
G9. 0 3 3
G10. 0 0 0

cited in the literature by different authors [16, 17]. We found similarity in views of both
sides, regarding the top 3 goals (i.e G5, G2, & G1 respectively). As G5 (Confidence)
was ranked as the highest priority goal by the participants, and considering its generic
nature we decided to elicit the information needs for G5, in the next phase of the focus
group (i.e. A3). During the final review meeting participants were agreed to consider
G1, G2, G3, G5, & G6 as the final list of goals.

A3–Questions (Information needs elicitation)

To elicit questions (information needs), participants were asked to answer the question,
[What information is needed to evaluate the success?]. We decided to elicit informa-
tion needs only for G5 (i.e. confidence), we took the decision because of the following
reasons:

1. Because of the generic nature of the goal.

2. It was ranked as the highest priority goal by the participants.

3. It was highlighted that, to achieve this goal multiple metrics need to be evaluated.

47 questions (information needs) were identified by the participants. During analysis,
we find that a majority questions are similar. On the basis of identified similarity, we
grouped these 47 questions (information needs) into 10. The final list of information
needs questions is shown in Table 2.6. The questions with most options were, Have
critical parts been covered? (16 options), and What are the test outcomes? (10 op-
tions). A majority of information needs listed in Table 2.6 are quantifiable, but some

47

Chapter 2. Regression testing goals - views of practitioners and researchers

Table 2.6: G5. Questions (Information needs)

Q.Id. Question Extracted from

Q1. What are the changes to the system? 5 similar options
Q2. What is the experience of development and testing? 3 similar options
Q3. Have critical parts been covered? 16 similar options
Q4. Have modifications been tested? 5 similar options
Q5. What are the test outcomes? 10 similar options
Q6. What is the perception of team about confidence? 3 similar options
Q7. What is the nature of defects in the product? 2 similar options
Q8. What is the balance between pass fail? 1 option
Q9. What is the complexity of the product under test? 1 option

Q10. What has been blocked by the tests? 1 option

information needs are relatively generic in nature. Information need listed at Q2 (Team
Experience) cannot be taken as a direct testing metric, but it is important with regard to
confidence. Similarly, Q6 (Confidence perception) is not a specific metric, still it can
affect the measure of other factors. Product characteristics listed as Q9 can determine
the complexity of the product, this can also affect confidence perception. We can draw
a correlation between Q2, Q6, and Q9. After finishing with the clustering, the final list
of grouped information needs was presented to the participants for the verification of
the clusters. Later in the results review meeting, all the stakeholders were agreed to
consider Q1, Q3, Q4, Q5, and Q7 as the final list of information needs to achieve the
confidence goal. Participants were agreed about the subjective importance of Q2 and
Q7 with respect to the underlying goal of confidence.

A4–Measures identification

The aim here was to identify the suitable measures to collect the information needs and
ultimately achieve the defined goal (i.e. Confidence). We asked, [What measures do we
need to collect to answer the questions?]. Our experts identified 5 measures presented
in the Table 2.7. Later together with the experts we started a brainstorming activity to
find the possible mapping between the questions and measures. We carried the activity
in a step wise manner. That is, for every single goal we asked the experts to map it with
possible measure(s). 4 measures (i.e. M1,M2,M3, & M4) were mapped to 7 questions
(i.e. Q1, Q3, Q4, Q5, Q7, Q8, and Q10). The finalized GQM (goal-question-measure)
mapping is shown in Figure 2.

48

Table 2.7: Measures

MID Measure

M1 #LOC changed
M2 #Defect fixes from test
M3 #Changed LOC covered
M4 #defect history/change
M5 #Affected Non-changed LOC/Modules

Q1

M1 M2 M3 M4

Q3 Q4 Q5 Q7 Q8 Q10

G5

Figure 2.2: Goal-question-measure mapping

A5–Available measures

The last activity was to know about the actual measures that are being used in the
companies. We asked the question, [What are you collecting today? (measurements)
of what has been identified in A4]. This question was to know about the actual state
of the implementation of measurement program regarding the evaluation of regression
testing in the industry. Therefore we asked practitioners to answer this question. We
requested the researchers to sit as observers and provide their feedback on the activ-
ity. Practitioners expressed, that they do not use any explicit measures. There is no
predefined measurement mechanism regarding the evaluation of regression testing that
could be used. Instead, they rely on their experience, to evaluate the success. Their
agreed-upon statement about the measurement was, it is a gut feeling, that we have
tested enough and we are successful. To further continue and to come up with some
substantial outcome, we added another question.

49

Chapter 2. Regression testing goals - views of practitioners and researchers

Do, we actually need to evaluate the success of regression testing?

We asked the participants to provide their opinion about the need for measuring
the regression testing. There was a consensus among the participants about the impor-
tance of measuring the success of regression testing. It was emphasized that suitable
measures need to be defined and used in the companies. It was also highlighted, that
participating companies are interested to implement an evaluation mechanism/frame-
work to measure the success.

Related measures presented in the literature

To make a way towards the identification/implementation of evaluation framework, we
decided to identify the measures from literature and test the identified measures in the
partner companies. As a starting point we identified some measures from literature to
further strengthen our findings.

Rothermel and Harrold [1, 2] presented a complete framework for the evaluation of
the regression testing techniques. They suggested inclusiveness, precision, efficiency,
generality, & accountability as measures to evaluate the regression testing. Horváth
et al. [10] used code coverage & partition metrics for measuring fault detection ca-
pability and fault localization. They defined coverage metric (Cov) as a ratio of the
number of procedures in a code group P that are covered by test group T. Whereas
they defined partition metric (Part) to express the average ratio of procedures that can
be distinguished from any other procedures in terms of coverage. output uniqueness is
defined by Alshahwan and Harman [15], who define the output uniqueness as if the 2
test cases yield different kinds of output. The authors believe that this metric can help
in effective fault detection capability, it also works for fault finding consistency.

Vidacs et al. [11] uses the code coverage, efficiency & uniqueness for Assessing the
Test suites of large system. The authors argue that better coverage or partitioning can
be achieved using more test cases, provided test cases are different. But, in case if such
test cases are added to the test suite, which covers the same code, they will increase
the test suite size possibly with little additional benefit. They suggested measuring
the efficiency, that (refer to the relative number of test cases in test suite), to mea-
sure efficiency, they defined coverage efficiency (EFFCOV) and partitioning efficiency
(EFFPART). Coverage efficiency refers to the average number of procedures covered
by a test case, while partitioning efficiency shows that on average, how much a sin-
gle test contributes to the partitioning capability of whole functional unit. To measure
uniqueness authors used 2 metrics (specialization metric SPEC and uniqueness metric
UNIQ). SPEC shows how specialized a test group is to a code group, while the UNIQ

50

Table 2.8: Measures found in literature

S.No. Metric Measure Reference

1. Effectiveness Defects, TestCaseEscaps, AssertionDensity,
Directness

[16, 17]

2. Fault Detection Capability CodeCoverage, OutputUniqaueness [10, 11, 15, 16]
3. Fault localiztion Partition [10]
4. Effeciency EffCov, EffPart [11]
5. Uniqueness UNIQ, SPEC [11]

metric measures what portion of the covered elements is covered only by a particular
test group.

To measure the effectiveness, Chernak [17] named his measure as defect, which
is the ratio between the number of defects covered by a test suite to the number of
defects missed by the test suite. Athanasiou et al. [16] argued that test code quality
has 3 dimensions completeness, effectiveness, and maintainability. They defined as-
sertion density as a measure of calculating the effectiveness of test code to detect the
defects. For the effectiveness of test code authors also suggested directness as measure,
they defined directness as it measures the extent to which the production code is cov-
ered directly. Test suite evaluation metrics and corresponding measures selected from
literature are presented in Table 2.8.

Mapping between focus group and literature findings

As we mentioned already, due to the time constraint, we investigated only one goal (G5)
in the subsequent steps of the focus group session. Therefore we decided, to create a
mapping between the goals presented in the Table 2.4, and metrics/measures we find
in the literature. Majority goals listed in the Table 2.4 are specific and measurable.
Measures presented in the literature can be mapped to identified goals. For instance,
G1 can be mapped to the metric “Fault detection capability” , related measures have
been discussed in the following studies [10, 15, 16]. G2 & G3 can be mapped to
the metrics “precision ” and “inclusiveness” defined in [1, 2]. Similarly, G6 can be
linked to the metric “Efficiency” presented in [1, 2, 11]. Finally, G7 can be mapped to
“effectiveness” metric discussed in [16, 17].

The measures identified from literature can also be mapped to some of the ques-
tions listed in Table 2.6. For example, Q5 could be mapped to No. of Defects, Test-
CaseEscaps, & OutputUniqueness, similarly Q7 can be mapped with No. of Defects &
CodeCoverage, Q3 can be mapped with AssertionDensity & Directness.

51

Chapter 2. Regression testing goals - views of practitioners and researchers

2.6 Conclusions
In this paper, we presented the results of our exploratory study. The study presents
the views of practitioners and researchers about the regression testing definition, goals
of regression testing, information needed (questions) to evaluate the success, and the
measures to reveal the required information. For the elicitation of information, we
used the focus group method, a total of seven experts (representatives of industry and
academia) participated in the study. We have identified the five priority goals for the
success of regression testing including fault slippage to the customer, high precision,
inclusiveness, confidence, and efficiency. The top priority and common goal among all
participants was ‘confidence’ (about the system integrity). We identified information
(seven questions) needed to achieve this goal. We also elicited the measures corre-
sponding to these information needs. Finally, a mapping among goal, questions, and
measures was created.

While defining the concepts and goals of regression testing, we did not observe
any significant difference of opinion between researchers and practitioners. However,
there were visible differences in the priority of goals. We believe that such platforms
where industry and academia can sit together can be beneficial for both. Resultantly,
researchers can work on actual industry problems and practitioners could be able to
cope with the real challenges by using the relevant research.

52

2.7 References
[1] G. Rothermel and M. J. Harrold, “A framework for evaluating regression test

selection techniques,” in Proceedings of the 16th International Conference on
Software Engineering, ICSE-16., 1994. IEEE, 1994, pp. 201–210.

[2] G. Rothermel and M. J. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Transactions on software engineering, vol. 22, no. 8, pp. 529–
551, 1996.

[3] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method in software
engineering: obtaining practitioner and user experiences,” in Proceedings of the
International Symposium on Empirical Software Engineering, ISESE’04. 2004.
IEEE, 2004, pp. 271–280.

[4] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an empirical
tool in software engineering,” in Guide to advanced empirical software engi-
neering. Springer, 2008, pp. 93–116.

[5] E. Engström and P. Runeson, “A qualitative survey of regression testing prac-
tices,” in Proceedings of the International Conference on Product Focused Soft-
ware Process Improvement. Springer, 2010, pp. 3–16.

[6] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression
test selection techniques,” Information and Software Technology, vol. 52, no. 1,
pp. 14–30, 2010.

[7] G. M. Kapfhammer, “Empirically evaluating regression testing techniques:
Challenges, solutions, and a potential way forward,” in Proceedings of the IEEE
Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011. IEEE, 2011, pp. 99–102.

[8] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities of test-
suite evolution,” in Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering. ACM, 2012, p. 33.

[9] K. Petersen, C. Gencel, N. Asghari, and S. Betz, “An elicitation instrument for
operationalising gqm+ strategies (gqm+ s-ei),” Empirical Software Engineering,
vol. 20, no. 4, pp. 968–1005, 2015.

[10] F. Horváth, B. Vancsics, L. Vidács, Á. Beszédes, D. Tengeri, T. Gergely, and
T. Gyimóthy, “Test suite evaluation using code coverage based metrics,” pp. 46–
60, 2015.

53

REFERENCES

[11] L. Vidács, F. Horváth, D. Tengeri, and Á. Beszédes, “Assessing the test suite of a
large system based on code coverage, efficiency and uniqueness,” in Proceedings
of the IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2016, vol. 2. IEEE, 2016, pp. 13–16.

[12] S. Masuda, “Software testing in industry and academia: A view of both sides
in japan,” in Proceedings of the IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2017. IEEE, 2017,
pp. 40–41.

[13] I. S. C. Committee et al., “Ieee standard glossary of software engineering ter-
minology (ieee std 610.12-1990). los alamitos,” CA: IEEE Computer Society,
1990.

[14] I. ISO, “Ieee, systems and software engineering–vocabulary,” ISO/IEC/IEEE
24765: 2010 (E)) Piscataway, NJ: IEEE computer society, Tech. Rep., 2010.

[15] N. Alshahwan and M. Harman, “Coverage and fault detection of the output-
uniqueness test selection criteria,” in Proceedings of the International Sympo-
sium on Software Testing and Analysis 2014. ACM, 2014, pp. 181–192.

[16] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code quality and
its relation to issue handling performance,” IEEE Transactions on Software En-
gineering, vol. 40, no. 11, pp. 1100–1125, 2014.

[17] Y. Chernak, “Validating and improving test-case effectiveness,” IEEE software,
vol. 18, no. 1, pp. 81–86, 2001.

[18] R. Ramler, M. Felderer, T. Kitamura, and D. Marinov, “Industry-academia col-
laboration in software testing: An overview of taic part 2016,” in Proceedings of
the IEEE Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2016. IEEE, 2016, pp. 238–239.

[19] V. Garousi, M. M. Eskandar, and K. Herkiloğlu, “Industry–academia collab-
orations in software testing: experience and success stories from canada and
turkey,” Software Quality Journal, pp. 1–53, 2016.

[20] V. Garousi and K. Herkiloglu, “Selecting the right topics for industry-academia
collaborations in software testing: an experience report,” in Proceedings of the
IEEE International Conference on Software Testing, Verification and Validation
(ICST), 2016. IEEE, 2016, pp. 213–222.

54

[21] V. Garousi, K. Petersen, and B. Ozkan, “Challenges and best practices in
industry-academia collaborations in software engineering: A systematic litera-
ture review,” Information and Software Technology, vol. 79, pp. 106–127, 2016.

[22] D. R. Thomas, “A general inductive approach for analyzing qualitative evalua-
tion data,” American journal of evaluation, vol. 27, no. 2, pp. 237–246, 2006.

[23] L. Liu, “Using generic inductive approach in qualitative educational research: A
case study analysis,” Journal of Education and Learning, vol. 5, no. 2, p. 129,
2016.

[24] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical software engineering, vol. 14, no. 2,
p. 131, 2009.

[25] V. Caldiera and H. D. Rombach, “The goal question metric approach,” Encyclo-
pedia of software engineering, vol. 2, no. 1994, pp. 528–532, 1994.

[26] E. Engström, K. Petersen, N. bin Ali, and E. Bjarnason, “Serp-test: a taxonomy
for supporting industry–academia communication,” Software Quality Journal,
pp. 1–37, 2016.

55

REFERENCES

56

Chapter 3

Using goal-question-metric to
compare research and practice
perspectives on regression
testing

3.1 Introduction

Regression testing is carried out subsequent to any change in the system to verify that
the change did not impact the unchanged parts of the system [37, 66, 71]. It is a
complex and costly activity, especially for large scale systems with continuous inte-
gration and delivery, and can consume up to 80% of testing and 50% of maintenance
cost [7, 43, 65, 66]. The research proposes test case selection and prioritization to deal
with the cost and complexity of regression testing [6, 9, 67, 71]. Test case selection
refers to selecting a subset of test cases from the regression test suite to test the effects
of changes. In contrast, test case prioritization guides an optimal ordering of test cases
that can help achieve the desired goals [6, 9]. If the selected suite is large, test case
prioritization can be applied as a subsequent process. However, test case selection and
prioritization can also be applied independently. The primary goal of regression test
case selection and prioritization techniques is to detect faults as early as possible [71].

One of the challenging aspects of software testing is to decide when to stop the
testing. How much to test, is an essential question as it affects the overall budget of the

57

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

project. Especially in large scale software development with continuous integration, it
is imperative for the practitioners to decide how long they should be testing the software
before releasing it [57–59, 81]. Various authors have defined prediction models for
stopping criteria while taking into consideration the testing time, effort, cost, reliability,
and coverage [58, 60, 61]. The industry practitioners set regression testing goals and
evaluate the achievement of these goals using their experience and product knowledge.
From the practitioners' perspective, regression testing goals provide an opportunity to
decide to stop running more tests, as the achievement of the defined goals gives them
confidence about the attained quality, and they can decide to release the product [4, 29].

A goal is an intended outcome of a process that a practitioner plans to achieve, and
it should be realistic and measurable. Therefore a goal should be associated with the
metrics which can be used to evaluate it. Regression testing goals could correspond to
the pre-defined objectives that a practitioner wants to achieve by applying a regression
testing process or technique. The achievement of these goals should be assessed us-
ing metrics (see, e.g., [42]). Furthermore, test case selection and prioritization should
be based on regression testing goals. These goals may vary from organization to or-
ganization based on their priorities [7]. The goal of most existing regression testing
techniques is effectiveness (increasing test suite's rate of fault detection). Some tech-
niques encompass efficiency (i.e., execution time and cost) as a goal. Test coverage is
also among the goals of various techniques as the assumption is that test cases with a
higher coverage will detect more defects [66]. Coverage-based techniques aim to cover
maximum code with fewer test cases [34]. Regression testing techniques utilize multi-
ple sources of information, including coverage information, requirement information,
and test execution history. Furthermore, to evaluate the outcomes, these techniques
use metrics including APFD (average percentage of fault detected) and its variants,
coverage-based metrics, and metrics related to execution time [71, 76, 79].

Various regression test selection and prioritization techniques have been proposed
in the literature [9]. However, the adoption rate of these techniques in industry is not
encouraging, and only a few techniques have been evaluated in the industry context. It
is a clear indication of the gap between research and practice [7, 39–41, 43]. Among
the other factors, one important aspect is the disparity in the regression testing goals of
practitioners and researchers [4]. There are few studies that have an explicit focus on
regression testing goals, especially in an industry context [2, 4, 29].

This research aims to get a better understanding of the regression testing goals
from the literature and practitioners' perspective. We, therefore, have reviewed the
literature and conducted a survey with industry practitioners. For the survey, we opted
for interviews and an online questionnaire as data collection methods. We incorporated
the GQM (goal-question-metric) approach [52] to map regression testing goals with
related information needs and metrics.

58

In an earlier study [4], we investigated regression testing goals, in a more limited
scope. We conducted a focus group-based study with the practitioners and researchers.
The participating practitioners represented large-scale embedded software develop-
ment companies, and the researchers are actively working on testing research. This
study aimed to know the industry-academia perspective on regression testing goals.
The present study is the continuity of the earlier study and extends it by adding further
data and insights concerning regression testing goals, information needs, and metrics.
The earlier study used a focus group-based workshop with seven industry and academic
participants. In contrast, the present study comprises findings from 44 research papers
and perspectives of 56 industry practitioners (representing nine development domains).
Table 3.1 presents a summary of how our current study extends the earlier study.

Table 3.1: A summary of how our current study extends our previous work [4]

Factors Minhas et al. [4] Current study
Focus of the study Regression testing goals Regression testing goals
Perspectives Practitioners and researchers Practitioners and literature
Literature review Reviewing 7 articles to find

measures
Reviewing 44 articles to find
goals, information needs, and
measures

Method used Focus group Interviews and online question-
naire

Participants Academics and practitioners Practitioners
No of participants 4+3 (7) 11+45 (56)
Development domains 2 9

The contributions of this study are as follows:

• Identification of some new regression testing goals from the practitioners' per-
spective.

• Mapping of regression testing goals to information needs, and metrics.

• Identification of differences in research and practice concerning regression test-
ing goal preferences, use of information needs and metrics.

• Formulation of a GQM model to present an integrated view of the perspectives
from the literature and from practice, that can be used as a guide to reduce the
industry-academia gap.

The remainder of this paper is organized as follows: Section 3.2 presents a review
of related work, Section 3.3 describes the methodology. Section 3.4 presents the results
of the literature review and the survey. Section 3.5 discusses the implications of this
study for researchers and practitioners, and Section 3.6 concludes the paper.

59

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

3.2 Related work
This section discusses related work on regression testing goals, information needs, and
metrics. Included studies are recent systematic literature reviews, literature survey, and
some empirical studies on regression testing.

We looked at 11 systematic reviews on regression testing published during the last
six years (i.e., 2017 to 2022) [43, 71–80] to learn the recent trends in regression test-
ing techniques and see which goals, information needs, and measures are considered.
Six of the 11 studies reviewed the techniques regardless of application domain or tech-
niques type. Four of the 11 studies are conducted with a specialized focus. For ex-
ample, Pan et al. [71] reviewed machine learning-based regression testing techniques,
Abdul Manan et al. [73] reviewed regression test prioritization in combinatorial test-
ing, Husnain et al. [74] reviewed regression test case prioritization techniques for web
services, and Lima and Vergilio [78] reviewed regression testing techniques in con-
tinuous integration environment. The most-reported goal in these studies is increas-
ing the fault detection capability, whereas the evaluation metrics reported are APFD
(average percentage of faults detected) and its variants. Pan et al. [71] conducted a
systematic review of machine learning-based regression test case selection and prior-
itization techniques. The authors motivate their work from the context of continuous
integration. They argue that with the adoption of continuous integration in software
development, the frequency of regression testing is increased, and running all tests can
be time-consuming and resource-intensive. This problem could only be resolved by
introducing regression test case selection and prioritization. Pan et al. further revealed
that machine learning-based techniques rely on multiple sources of information, in-
cluding coverage information, test execution history, and domain-specific information.
The evaluation metrics used in these techniques are variants of APFD and some general
metrics like precision and recall. The goals of the machine learning-based techniques
are early identification of critical faults and increasing the test suite's rate of fault de-
tection.

Rahmani et al. [79] conducted a systematic review of regression test case prior-
itization (TCP) techniques proposed from 2017 to 2020. The authors classified the
techniques based on TCP approaches (e.g., risk-based, history-based, etc.). The au-
thors also investigated the metrics and source of information utilized with these tech-
niques. The metrics reported in this study are the variants of APFD, execution time,
code coverage, requirement coverage, and severity measure. The information used for
these techniques is requirement information (e.g., requirement coverage, requirement
dependency). The most-reported goal for the techniques proposed during 2017–2020
is increasing the test suite's rate of fault detection. In another review [80] the authors
classified the regression test prioritization techniques based on the approaches and met-

60

rics used. The criteria used in the prioritization techniques are cost, code coverage, and
fault detection ability. The goal highlighted by the authors is effectiveness, and to
measure the effectiveness, they mentioned the use of precision and recall.

Rehan et al. [72] conducted a systematic analysis of multi-criteria based regres-
sion test selection. The authors analyzed the techniques based on the selection criteria
and metrics used for evaluation. They reported that the efficiency of test selection de-
pends on execution cost, coverage, fault detection ability, and code changes. Early
detection of critical faults and increasing the test suite's rate of fault detection are
the goals discussed in the study. The information sources utilized in the techniques
are coverage information, the number of faults detected, execution history, degree of
severity, and execution time. The metrics used in the reviewed techniques are cover-
age, fault detection rate, code modifications, and severity measure. Abdul Manan et
al. [73] analyzed regression test case prioritization in combinatorial testing. The goals
of these techniques are to increase the test suite's rate of fault detection and early iden-
tification of critical faults. The metrics used with these techniques is APFD, APFDc
(cost-cognizant weighted average percentage of faults detected), and APSC (average
percentage of statement coverage).

Lima and Vergilio [78] presented a mapping of regression test prioritization tech-
niques in continuous integration environment. The authors revealed that the trend of
proposing test case prioritization techniques during the last four years had been in-
creased, and 80% of the proposed techniques are history-based. The goal of the ma-
jority of the techniques is to increase test suite's rate of fault detection. The evaluation
metrics used in these techniques are APFD, APFDc, fault detection rate, and time. The
sources of information utilized in these techniques are test execution and fault history,
coverage information, code changes, user priority. Hasnain et al. [74] analyzed the
regression test case prioritization techniques for web services. The authors reported
that most regression testing techniques for web services are criteria-based. These tech-
niques use coverage information, test adequacy, fault severity, and fault dependency
as sources of information. Evaluation metrics used for these techniques are APFD,
APFDc, APFDD (average percentage of fault dependency detected), fault detection
rate, and severity measure. The goals of these techniques are increasing test suite's rate
of fault detection and early identification of critical faults.

bin Ali et al. [43] reviewed the empirically evaluated regression testing techniques.
The aim was to map the existing regression testing techniques to the aspects of the in-
dustrial context. Along with mapping the existing solutions on regression testing to the
industry context, the authors mapped these solutions regarding desired effects (goals)
and information needs. According to the authors, existing techniques are considering
the goals of increasing test suite's rate of fault detection, identification of sever/critical
faults, and coverage. The information sources mentioned in this study are requirement

61

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

changes, code changes, execution history (test reports), and fault severity. The mea-
surement metrics mentioned in this study are cost, coverage, severity measure, and
fault detection rate.

In a systematic literature review, Khatibsyarbini et al. [76] classified the regression
test prioritization techniques as fault-based, history-based, search-based, and coverage
based. The authors revealed that APFD is the most utilized metric, followed by APFDc
and coverage metrics. The goal of these techniques is effectiveness (i.e., increasing test
suite's rate of fault detection). Test execution history and code coverage information
are mentioned as information sources in this study. de S. Campos Junior et al [77]
conducted a review of empirical studies and systematic literature reviews on test case
prioritization. They revealed that most reported prioritization techniques are coverage
based and history-based. The information sources utilized in these techniques are test
execution and fault history, coverage information, change analysis, and requirement
information. The metrics used for evaluation are APFD, APFDc, and APSC.

Along with the recent systematic literature reviews, we selected a literature survey
published in 2012 by Yoo and Harman [9] to see the trends of regression testing goals
from the older studies. The reason to select this study is that it presents regression
testing research spanned over three decades. Yoo et al. surveyed the literature on re-
gression testing published between 1977 – 2009 to explore different regression testing
techniques. The authors analysed various approaches to regression testing and provided
the list of trends, issues, and goals of regression testing techniques. The goals listed
in this work are increasing test suite's rate of fault detection, early identification of
critical/severe faults, detection of faults related to changes, and coverage. Confidence
is stated as the overall goal of regression testing. The authors stated, “the purpose of
regression testing is to provide confidence that the newly introduced changes do not
obstruct the behaviours of the existing, unchanged part of the software.” Information
needs mentioned in this study are test execution and fault detection history, code cover-
age information, and requirement information. Whereas the metrics highlighted in this
survey are APFD, APFDc, fault severity, code coverage metrics, and metrics related to
changes.

Besides considering the systematic reviews of regression testing, we also reviewed
some primary studies to see the trends of regression testing concerning the goals, infor-
mation needs, and metrics. These studies either propose a regression testing technique
or present practitioners' perspectives.

Jafrin et al. [2] proposed an algorithm to prioritize test cases based on the rate of
severity detection associated with dependent faults. In this study, the authors listed the
goals for test cases and test case prioritization goals. Prioritization goals listed in this
study are increasing test suite's rate of fault detection, increasing coverage, confidence,
increasing rate of high-risk fault detection, and revealing the faults related to changes.

62

However, the authors did not explain the sources from where they have identified these
goals.

Kwon et al. [68] proposed an information retrieval and coverage based regression
test prioritization technique. Increasing test suite's rate of fault detection was consid-
ered the goal of the technique, whereas information sources utilized are code coverage
and fault detection rate. The authors suggested using mutation faults in the absence of
actual faults. To measure the test suite's rate of fault detection, the authors used the
APFD metric.

In a survey, Engstrom et al. [7] stressed the need to define the organization-specific
regression testing goals. However, the authors did not mention any such goals in the
study. White et al. [41] performed an industrial study. The authors listed a few goals
concerning regression testing. The goals observed in this study are, early defect detec-
tion based on changes and critical defect detection. The study also presents the metrics
like module dependencies, execution cost, time, number of test cases executed, and
code changes. It is reported in various studies [15, 17, 31] that most of the regression
techniques presented in the literature are using effectiveness (increasing test suite's rate
of fault detection) as a goal. To measure the effectiveness, the authors are using APFD
and APFDc metrics. In most cases, authors utilize test execution and fault detection
history to evaluate their techniques concerning effectiveness (i.e., increasing test suite
rate of fault detection). However, fault mutation can also be utilized to compensate for
the absence of actual faults [68].

From the recent systematic reviews representing the regression testing research up
to 2022 and survey by Yoo and Harman [9], and the primary studies presented above,
we learned that the common goal of most techniques is increasing test suite's rate of
fault detection. Early identification of critical faults and coverage are also mentioned as
goals of some techniques. The most utilized metrics in all studies are APFD, APFDc,
and code coverage metrics. Most of the reviewed literature present the goals of re-
gression testing techniques, and a few studies considered the regression testing goals
a primary concern. Only a couple of studies considered this aspect from an industry
perspective. Furthermore, we could not find a precise mapping between the goals and
metrics. This fact motivated the authors to conduct a study to investigate research and
industry perspectives on regression testing goals and related aspects. The current study
is the continuation of our earlier work [4, 29], and it extends [4] by adding literature
findings, and perspective of more practitioners representing more domains (see Table
3.1 in Section 3.1).

63

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

3.3 Methodology
The study aims to characterize the regression testing goals from research and practice
perspectives, and it also strives at comparing two perspectives on regression testing
goals. Table 3.2 presents the research questions that further elaborate the study's aim.
To answer the research questions, we have chosen to conduct the literature review and

Table 3.2: Research questions

RQ Motivation
RQ1) What are the goals of regression test-
ing discussed in the literature, and what
are the corresponding information needs and
metrics to evaluate these goals?

The objective is to better understand which
goals are considered by the researchers while
proposing or evaluating regression test se-
lection and prioritization techniques. Which
information needs they utilize to achieve
the goals. Moreover, to evaluate the goals,
what metrics have been proposed by the re-
searchers. We will also investigate to see
if there is any mapping between the success
goals, information needs, and metrics (e.g.,
what metrics could be used to evaluate a spe-
cific success goal?).

RQ2) What are the goals of regression test-
ing defined by the practitioners, and what
are the corresponding information needs and
metrics to evaluate these goals?

The objective is to know if the practitioners
define any goals to determine the success in
regression testing. Moreover, to see if they
use/define any information needs to achieve
the goals and evaluate these with the pre-
scribed metrics.

RQ3) How are the findings from the litera-
ture and the survey related?

The aim is to create an integrated view of
findings on regression testing goals, infor-
mation needs, and metrics and provide ac-
tionable guidelines for practitioners and re-
searchers.

a survey. For the literature review, we selected the studies where the authors discuss
regression testing goals, information needs, and metrics. We did not opt to conduct the
systematic literature review (SLR) because, along with the in-depth analysis, an SLR
covers the breadth of the existing literature relevant to the research questions [64]. An
in-depth analysis of regression testing techniques is not the goal of this study. The only
aim was to identify the regression testing goals, information needs, and metrics. For
selecting relevant literature, we performed systematic searches that helped to include a
reasonable number of relevant studies. We could have two alternatives to understand

64

the practitioners' perspective of regression testing goals, i) case study and ii) survey.
A case study investigates a phenomenon in deeper detail. It is a suitable method for
the situations where context is important, and analysis of the cause-effect relationship
is the aim [63]. In contrast, a survey helps to identify the characteristics of a larger
population and it is a suitable method where the aim is to collect the opinions of a large
sample [63]. In our case, we were interested to know the perception of as many practi-
tioners as possible. Simultaneously, we were also keen to know some insight about the
regression testing goals and other associated practices. Therefore, we decided to sur-
vey by opting for two data collection methods interviews and an online questionnaire.
Interviews provided us an opportunity to have direct interaction with the practition-
ers and understand their perceptions. The online questionnaire helped us to reach the
broader population and collect the information about regression testing goals from a
larger sample.

3.3.1 Literature review

Study selection

To answer the first research question (RQ1), we have conducted a literature review of
33 selected papers. Though we did not conduct systematic literature review (SLR), we
used systematic searches and followed established methods to extract and present the
selected papers' data. However, we do not claim the exhaustive searches of the studies,
and we did not incorporate quality assessments. The reason was that the aim was to get
a view of what goals, questions, and metrics exist concerning regression testing.

Search strategy: We followed snowball search strategies for the selection of stud-
ies [45]. Snowball search strategy helps find all relevant studies and still not get too
many irrelevant papers to be excluded manually in the subsequent steps [47]. The first
step in snowball searches is to find the start set, then we have to iterate the backward
and forward snowball iterations [45].

Finding the start set: To find a start set for snowball searches, we used keywords based
search to identify a basic set of papers, and used the following search string:
(“regression testing” OR “retesting”) AND (“goal” OR “desired effect”) AND (“met-
ric” OR “measure” OR “information need”). We applied the search string in IEEE,
Scopus, and Inspec. We found a total of 175 research papers. We did title scanning
of these 175 papers and selected 62 relevant papers for further processing. Later we
read the abstracts of the selected 62 papers, and after applying the inclusion/exclusion
criteria, we selected 13 research papers to include in the start set for snowball searches.

65

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

Snowball iterations: By taking the selected 13 articles as start-set, we performed snow-
ball iterations (see Table 3.3). In the backward snowballing, we examined the refer-
ences of every paper in the start-set. For the forward snowballing, we reviewed the
studies that were citing any of the papers in the start-set. For the identification of ci-
tations and searching for papers, we used google scholar. In each iteration, the papers
were selected based on the inclusion and exclusion criteria mentioned below. In the
event of selection, new papers further went through the snowball iterations. In the first
iteration we found 16 related papers, and in the second iteration we found only four
papers. We stopped the process after the second iteration because we could not find
new papers related to our topic.

Table 3.3: Snowball iterations

Iterations References No of Studies
Start set [1–13] 13
Iteration 1 [15–30] 16
Iteration 2 [31–34] 4

Total No of studies included 33

Additional searches: Since our initial searches were focused on the regression testing
goals, information needs, and metrics, we did not focus on any development context
during the snowball iterations. However, to overcome this limitation, besides the snow-
ball searches, we looked at systematic reviews of regression testing published during
the last six years (i.e., 2017 to 2022) to see if there are studies published lately consid-
ering the context-specific regression testing (goals, information needs, and measures).
We searched the Scopus database to find the systematic reviews on regression testing,
and we found eleven systematic reviews published during the last six years.

Inclusion and exclusion criteria: Table 3.4 presents the inclusion and exclusion criteria
we used for the selection of primary studies. We selected regression testing studies that
include goals, information needs, and metrics regardless of the development domain.
Other constraints that were applied are the language of the article, publication stage,
and availability of the article in full text.

66

Table 3.4: Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

1 Article is written in English Article is written in a language other than
English

2 Article is focusing on any aspect of regres-
sion testing goals, information needs, or met-
rics

Article related to regression testing but not
considering any aspect of regression testing
goals, information needs, or metrics

3 Article is peer reviewed (i.e., journal, confer-
ence, and workshop)

Article is not peer reviewed (Grey literature)

4 Article is available in full text (i.e., the article
is downloadable)

Article is not available in full text

Data extraction

Before the data extraction, we went through the reading of selected studies, and after
the first round of reading, we started identifying the goals, information needs, and met-
rics. We used different colors (green for goals, grey for information needs, and yellow
for metrics/measures). After finishing with the color-codes, we assigned appropriate
labels (where required), and finally, we extracted data by using the data extraction form
(see Table 3.5). Data extraction was performed jointly by the first and second authors.

Table 3.5: Data extraction form

Data Item Description
Title Title of the selected study
Authors Authors' names and affiliations
Publication Type, year, and venue of publication
Research Method Stated objectives of research, and chosen research methodology
Goals Regression testing success goals, along with the authors' description of the goals
Information needs Information required to fulfill the achievement of the goal
Metric Metrics/measures used/mentioned in the study to evaluate the achievement of the

goals

Validating literature findings

To ensure the correctness and consistency of data extracted from literature, the first au-
thor reviewed the second author's data. The second author reviewed the data extracted
by the first author. Issues were discussed and resolved jointly. Finally, the third author
did a random check of the extracted data.

67

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

3.3.2 Survey

To answer the second research question (RQ2), we have conducted a survey comprising
of interviews and an online questionnaire.

The interviews allow an in-depth investigation of any phenomenon, while the ques-
tionnaire provides an opportunity to broaden the scope of findings [47]. We have
chosen to conduct interviews with the testing practitioners, as we were interested in
understanding the practitioners' perspectives in a detailed manner. Later, to know the
perspective of the testing practitioners at large, we distributed an online questionnaire
among the practitioners of various companies. Along with the interview guide and on-
line questionnaire detail, the following subsections present the steps carried to conduct
the survey.

Sample selection

For the surveys, sample selection from the target population is a crucial step [50].
Considering the challenge of selecting a representative sample of all testing practition-
ers worldwide using probability sampling, we chose non-probability sampling meth-
ods (i.e., convenience and snowball sampling). Non-probability sampling provides an
easy way to select samples using non-random sampling techniques, including conve-
nience sampling, quota sampling, or snowball sampling [35]. To ensure the selection
of suitable participants for the survey, we set a pre-condition that the participant must
have worked or is currently working in regression testing. We made this characteristic
mandatory for the interviews and also embedded this requirement in the online ques-
tionnaire. If a survey respondent has no experience in regression testing, he will not be
able to continue with the questionnaire's subsequent sections. However, we did not put
any boundaries concerning the years of experience. The reason for not limiting years of
experience was that the more answers from people with regression test experience we
gain, the more comprehensive the GQM model would be. The less experienced people
may miss out on some of the goals in the organization due to lack of experience, they
still contribute valuable input to the tree by providing a few goals/measures.

Interview participants: For semi-structured interviews, we used the convenience and
snowball sampling methods [50]. We started with convenience sampling and contacted
practitioners with experience in regression testing using our contact networks. Five
participants responded to our first attempt. We started scheduling interviews with these
respondents. Later we opted for snowball sampling and asked the participating respon-
dents to refer us to practitioners experienced in regression testing, who can willingly
participate in the study. With these five participants' help, we reached six testers who

68

gave their consent to participate in the study (see Table 3.7 Section 3.4.2).

Online questionnaire participants: For the online questionnaire, we used the snow-
ball sampling approach [50]. We asked the interview participants to provide us further
contacts of practitioners with expertise in regression testing. We also sent LinkedIn
messages to the testing practitioners and posted the link to the questionnaire in two
testers' groups. From all these sources (i.e., contact snowballing, LinkedIn messages,
and testing groups), we received 45 responses to our online questionnaire. The detail
of online questionnaire participants is presented in Section 3.4.2, please see also Figure
3.1 and Figure 3.2.

Interview steps

Eleven practitioners of nine companies participated in the interviews. Seven of eleven
respondents had testing experience ranging from 10 to 15 years. While two of eleven
respondents had two years of testing experience, and two had testing experience of one
year. Complete detail of interview participants is presented in Table 3.7 (Section 3.4.2).

Interview guide: We designed the interview guide (see Appendix A) based on the
guidelines of Runeson et al. [46]. We opted for the open-ended questions in the in-
terview guide that allowed the interviewees to present their views freely. The second
author developed the interview guide, and the first author reviewed and revised it. Later,
the third and fourth authors reviewed the interview guide and provided their feedback.
The comments were discussed among the authors, and necessary changes were made
in the interview guide. Finally, to test our interview guide, we conducted pilot inter-
views with two experts, and based on the feedback from these experts, we finalized the
interview guide.

The interview guide is divided into three sections, including introduction, back-
ground, and regression testing. The introduction section explains the context and pur-
pose of the study. The background section consists of questions to capture the interview
respondents' background information, including their current role, testing experience,
current projects/product under test, etc. In the regression testing section, questions
were organized to understand practitioners' perspectives on regression testing in gen-
eral and the success of regression testing in particular. Then, the questions to capture
practitioners' viewpoint on regression testing goals, information needs, and metrics. In
the end, we also added some questions to know the response of practitioners regarding
the metrics we identified from the literature.

Interview conduct: We conducted semi-structured interviews, mainly containing open-

69

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

ended questions, except the questions related to the metrics identified from the litera-
ture. To avoid researchers' bias we did not include any question that could lead to a
desired answer. For interview questions please see Appendix A.

The interviews with open-ended questions make it hard to capture the complete
responses by taking notes. There is a high chance of missing the essential aspects of
the discussion. Besides taking notes, with the participants' prior consent, we audio-
recorded all the interviews to ensure not to leave any piece of information from the
participants' responses. Each interview took approximately 30 minutes.

Analysis: Data collected from the interviews were subject to qualitative analysis. For
the analysis of qualitative data, we used thematic analysis, in the thematic analysis, the
data is identified into themes and codes based on the frequency and relevance of the
collected data. To carry out data analysis using thematic analysis, we followed a five
steps process presented by Lacey et al. [51].

• Transcription: Since all the interviews were audio-recorded, the first step was
to transcribe the interviews. The first and second authors transcribed the audio
records. In the next step, both transcribers verified each other's transcripts. We
also used notes taken during the interviews to complement the transcripts gener-
ated from audio recordings.

• Organizing data: The transcribed data is organized in some specific order to
make it uncomplicated and easily accessible. At the first stage, we assigned id
numbers to each interview, we also assigned ids to sections of interview tran-
scripts. We eliminated the information from the transcripts that were possibly
revealing the identity of the respondents or their organizations.

• Familiarization with the data: Since the interviews were conducted by the first
and second authors alternatively. Therefore to completely understand the context
of interviews, we repeatedly went through the listening of recordings and reading
of transcripts.

• Coding: For the preliminary coding, we used different colors to categorize dif-
ferent themes in the transcripts. The investigation's primary focus was on three
themes, which mainly correspond to the research questions (goals, information
needs, and metrics). We used green color to highlight the goals, grey color to
distinguish information needs, and yellow color to represent the metrics.

• Themes: To define more specific labels, we clustered the definitions based on the
similarity of views. For instance, one of the interviewees stated a goal as “The
goal is that no fault with priority 1 (high-risk faults) should slip through. We

70

want to make sure that the customer should not find any such fault.”. Another
interviewee stated that “We try to maintain a 100% success rate, we do not want
any fault slippage to our customer”. Similarly, one interviewee stated that “All
test cases in regression test pack should be executed with 100% pass, the goal is
that customers should not find any fault”. In all these statements, we can see that
practitioners do not want any fault to be slipped to the customer. Therefore we
grouped all these statements into one cluster. After arranging the goals and mea-
sures into relevant clusters, we assigned appropriate labels to goals, information
needs and metrics by using literature findings. For instance, the goals discussed
here were assigned a label of “No or controlled fault slippage”.

Validation: In addition to the above steps of interpreting and analyzing, after assigning
labels, we validated our interpretations with the selected interview participants. In the
feedback, we did not receive any complaint of misinterpretation or misquote from any
of the respondents. All of them were agreed that our interpretations are appropriate and
closer to their perspective.

Online questionnaire steps

Characterization of subjects: In response to our invitation to participate in the online
questionnaire, we received 45 testing practitioners' responses. The respondents are QA
Engineers, test leads, test managers, and test analysts. Regarding testing experience,
the respondents' experience lie in the range of 2 to 15 years. The survey respondents are
working on the products from different domains, including accounting/finance, auto-
mobiles, embedded systems, etc. For detail please see the Figures 3.1 and 3.2 (Section
3.4.2).

Questionnaire design: To conduct an online survey on regression testing goals, using
google forms, we prepared a questionnaire 1. The purpose was to expand the scope of
our findings, and to some extent, validate the information collected from the literature
and interviews. The questionnaire was designed by following the guidelines provided
in [48] and guided by the results obtained from the literature and interviews. The ques-
tionnaire is divided into three sections. In the first section, the objective, motivation,
and terminology of the research are explained. In the second section, questions are
included to collect the respondents' background, the product under test, and informa-
tion about the organization. In this section, there is a question about the respondent's
experience in regression testing. They have to answer this question as yes or no, and
respondents having experience in regression testing could proceed to the remaining

1https://drive.google.com/file/d/1aKDObyHGq6E5UTgtEXqJ_ZfGWpXz1sQL/view?usp=sharing

71

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

part of the survey. This ensured the quality and validity of the survey. The last section
contains the questions specific to the research topic. There are a total of 21 questions
in this section, and all are close-ended. In this section, we embedded the questions
on information needs and metrics with their respective goals. If a respondent selects a
goal, then the possible list of information needs and metrics is displayed. This helped
to keep track of the right information/metrics for the right goals. We used a five-point
Likert scale for the regression testing goals, which allowed respondents to disagree
with any goal provided in the questionnaire. For information needs and metrics, we
used the nominal scale. In addition to a specific list of information needs and metrics,
the questionnaire provided free text space for respondents to include information needs
and the metrics of their choice. These steps helped avoid researchers' bias.

Questionnaire validation: To evaluate the survey instrument, one of the methods is
the pilot execution of the survey. The purpose of the pilot survey is to identify possible
problems with the questionnaire [49]. To test our survey questionnaire's validity, we
conducted the pilot survey with the two practitioners. They did not raise any significant
issue in the questionnaire except suggesting to elaborate on the study's purpose. Based
on the feedback, we made a few changes to the questionnaire.

Questionnaire conduct: We used google forms to distribute the questionnaire to the
potential respondents. With the help of interview participants, we contacted 14 prac-
titioners and requested them to forward the questionnaire to the people working in
regression testing. We also sent 80 requests using LinkedIn messages, and we posted
our questionnaire in two testing groups. As an outcome of these invites, we received
45 responses.

Analysis: Data collected using the questionnaire was subject to quantitative analysis.
We were supposed to present the Likert scales' summaries for the goals, information
needs, and metrics selected/identified by the respondents. We used descriptive statistics
for the analysis of the data [44]. The results are presented in form of summary tables
and graphs (see Figures 3.1, 3.2, & 3.3 and Table 3.6 in Section 3.4.2).

3.3.3 Threats to validity
This study employed the literature review and a survey as the research methods. There
could be potential threats to the validity of the results obtained through literature and
survey. The following subsections discuss the threats to validity and possible mitiga-
tion strategies, following the guidelines provided in [46, 47].

72

Construct validity: This aspect of validity could be associated with the choice of treat-
ment for the study and its expected outcomes. In our case, it could be linked to selecting
studies for the literature review, selecting survey participants, and creating the GQM
model.

For the literature review, while selecting the primary studies, we opted snowballing
technique [45]. However, we cannot guarantee the exhaustive searches, but the con-
sistency of findings is the evidence that we retrieved a sufficient amount of relevant
studies.
While designing the survey instruments, we carefully followed the respective guide-
lines [46, 48] for the design of the interviews and online questionnaire. Further, we
conducted pretests by conducting pilot interviews and surveys. Based on the outcomes
of pretests, we augmented our survey instruments. Concerning the survery partici-
pants, we used convenience sampling to select the initial participants. Later we used
the snowball sampling method to select the participants further. Given the specific
focus of the study (experience in regression testing), it was not easy to recruit practi-
tioners. To reduce this threat to validity to some degree, we created our GQM model
from three sources (Figure 3.4): the literature, the interviews with company represen-
tatives, and the survey. The consequence may be that we may have missed including
some goals and measures in this model. Therefore, we do not claim to have developed
an all-encompassing model for regression testing goals, information needs and mea-
sures. Rather, we created a baseline that companies can work with and extend based
on their context.

Internal validity: Internal validity threats mainly deal with the credibility (data col-
lection, sample selection) of the study, i.e., whether the obtained results are valid or
not. Internal validity refers to the factors that affect the outcome of the research. We
followed the well-defined search strategies to find the relevant studies, and employed
systematic procedures for data extraction and analysis. We used audio recordings for
the interviews and selected the interviewees based on their experience and interest in
the regression testing. Furthermore, after transcribing the interviews and assigning the
appropriate labels, we validated our interpretations from the interview participants. For
the survey, the questionnaire is updated and revised before distributing it. In the ques-
tionnaire, we used the multiple-choice questions, and to avoid the researchers' bias, in
every question, we provided the option for the free-text response.

External validity: The external validity threats refer to the concept of generalization
of the results. Along with the literature review of 33 research papers, this study results
from 11 interviews and 45 responses to the online questionnaire. The practitioners
who participated in this study represent various organizations working on diversified

73

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

domains and from different countries. Even though we have added data to the body of
knowledge, since we employed convenience sampling to select interview participants,
it may threaten external validity. However, we have provided the interview and ques-
tionnaire respondents' background information, which may help generalize the context.

Conclusion validity: The conclusion validity threat deals with the quality of the con-
clusions drawn from the collected data. We ensured the triangulation for all aspects of
data that is data collection and interpretation. This study's conclusions are the outcome
of data collected from multiple sources (literature review, interviews, and online ques-
tionnaire). We employed well-defined methods for data interpretation and analysis. We
also verified our interpretations from the selected respondents.

3.4 Results and analysis

3.4.1 Literature review
To answer RQ1, we have selected 33 research papers. The selected studies are those in
which authors consider regression testing goals or propose or evaluate the regression
testing techniques based on goals. Various selected studies are also specifying the
information needs and metrics that could be used to evaluate the goals' achievement.
Besides the initial searches, we also looked at 11 systematic reviews of regression
testing published during the last six years (i.e., 2017 – 2022) to determine whether
these systematic reviews lead to additional goals, information needs, and metrics. The
detailed review of these studies is presented in Section 3.2 (Related work).The findings
of these studies are merged in the results. Table 3.6 presents a mapping of goals and
corresponding metrics, along with the information needed to aid the assessment of the
goal. We have created the mapping using the authors' descriptions in the studies and
the following proposition:

“To achieve/evaluate goal G, based on information needs IN, use the metric M.”

A | Regression testing goals identified from literature

This section presents a brief description of the regression testing goals found in the
literature.

G1. Increasing test suite's rate of fault detection: Finding maximum faults early
and quickly is the objective of any testing process, and it corresponds to the
effectiveness of any testing method/technique [2, 31]. The goal is listed in 72%
of the included studies.

74

Table 3.6: GQM mapping of regression testing goals, information needs, and metrics
– Literature

Goal Information need Metric
G1: Increasing test suite's rate
of fault detection [1, 2, 5, 6, 8–
12, 12, 13, 16, 17, 17, 21, 22,
28, 29, 31–34] [43, 71–79]

Coverage based information
[5, 32, 34] [71, 72, 74, 77, 78],
Requirements information [28]
[43, 77, 79], Test execution/-
fault detection history [6, 9, 13]
[43, 71, 72, 76–78]

APFD [2, 6, 9, 11–13, 17,
22, 28, 32–34, 36] [71, 73–
79], APFDc [2, 5, 9, 22,
31] [71, 73–79], Test case
failure rate [13]

G2: Early identification of crit-
ical faults [2, 5, 13, 15, 22, 23,
28, 29, 32, 33] [71–74]

Module criticality/Test critical-
ity [5] [71, 72] Fault de-
pendency matrix [10] [79],
Changes in requirements [33]
[43, 77, 78], Test execution/-
fault detection history [15, 24,
25]

APFDc [2, 5, 22] [71, 73–
79], APFDD [10, 15] [74],
Fault severity [2, 5] [72,
74, 79]

0G3: Detection of faults re-
lated to changes [2, 3, 19, 32]

Changes in requirements [33]
[43, 77, 78], Code changes [3,
19, 24] [43, 77, 78]

BFCP [3]

G4: Coverage [2, 4, 5, 11, 25,
29, 30, 32, 34] [43]

Coverage based information
[25, 26, 32, 34] [71, 72, 74, 77,
78]

Code coverage metrics [5,
11, 13, 26] [43, 72, 73, 77,
79]

G5: No or Controlled fault
slippage [4, 29]
G6: Confidence [2, 4, 11, 29,
32]

Changes in requirements, Cov-
erage based information, and
Product complexity [4]

G2. Early identification of critical faults: Finding highly critical faults early in the
testing process is another performance goal for regression testing. It refers to
detecting the faults that could have a severe impact on the system under test and
can exist in critical modules. This goal appeared in 30% of the included studies.

G3. Detection of faults related to changes: Early detection of faults introduced by
the developers due to changes and bug fixes is another performance goal because
the presence of such faults could break the regression testing [3]. Such faults
should be detected as early as possible. The goal is listed in 10% of the included
studies.

G4. Coverage: Covering maximum code with a small number of test cases is the goal
of regression testing techniques. These techniques are referred to as coverage-
based techniques, and 25% of the included studies refer to this goal.

75

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

G5. No or controlled fault slippage: Fault slippage is a phenomenon where the test-
ing process fails to find a fault in software under test, and the product is delivered
to the subsequent phases (e.g., release). This goal is highlighted in only two in-
cluded studies, and both these studies represent the practitioners' perspective.

G6. Confidence: The testers should have confidence in their regression testing pro-
cess and ultimately they must have confidence about the reached quality of soft-
ware under test [29, 32]. Confidence is listed as regression testing goal in the
studies which are representing the perspective of practitioners (e.g., [4, 29], this
goal appeared in 11% of the included studies.

B | Information needs and metrics identified from literature

Information needs: The fulfillment of regression testing goals is subject to the selec-
tion/prioritization of the test cases, and it requires practitioners to know various aspects,
generally termed as information needs. We present here the information needs required
to fulfill the regression testing goals identified in this study.

IN1: Requirements information: Based on the importance, stability, and fault-proneness
of the requirements, practitioners can prioritize the test cases to increase the fault
detection rate. Further requirements information can help the practitioners locate
the source of defects more conveniently [28].

IN2: Test case execution/fault detection history: Using test execution history, we
can evaluate various metrics for a test case, for example, fault detection rate, de-
tection of severe faults, and test case failure rate. Various authors have specified
the use of test case execution and fault detection history for the test case selection
and test case prioritization techniques [6, 9].

IN3: Module criticality/Test criticality: To estimate fault severity, two possible in-
formation could be used, i. information related to module criticality (importance
of the module under test), ii. information related to test criticality (ability of a
test case to detect severe faults) [5].

IN4: Changes in requirements/code changes: Bug-fixing changes might break the
regression testing [3]. The code changes are the source of a majority of new de-
fects in the system. Therefore knowledge of changes is an essential information
need for the regression testing process [19].

IN5: Coverage based information: The testers can utilize the coverage-based infor-
mation to select/prioritize test cases. It will help achieve regression testing goals

76

and ultimately increase the efficiency and effectiveness of the regression testing.
Various authors mention utilizing this information for the test case selection and
prioritization techniques [5, 32, 34].

IN6: Fault dependency matrix: The fault dependency matrix could be used to iden-
tify the leading faults. Such faults are considered severe faults, and identifying
these faults is in the scope regression testing goal (i.e., early identification of
critical faults) [10].

Metrics: Various metrics concerning regression testing techniques are presented in the
literature. Below, we discuss the metrics relevant to evaluating the identified goals. It
is significant to highlight that most metrics require data from test execution history,
which might not always be available. Therefore, it is suggested that practitioners main-
tain historical data to assess metrics. For example, practitioners need to record the
fault detection history to measure the average percentage of fault detection (APFD).
They should record coverage-based information with test execution history to evaluate
the code coverage metric. Furthermore, change-logs are required to assess the bug-
fixing-change-impact-prediction (BFCP). The practitioners need to maintain the fault
dependency matrix to measure the average percentage of fault dependency detected
(APFDD).

M1 To measure the rate of fault detection, APFD (average percentage of faults de-
tected) could be used [17, 32]. APFD measures the average of total percentage
of faults detected by executing all the test cases present in the test suite. The
APFD value is directly proportional to the fault detection rate.

M2 The APFDc (cost-cognizant weighted average percentage of faults detected) is
used to measure the rate of fault detection and cost efficiency of test suite. It
provides a mechanism to measure the varying test cases along with the fault cost
and severity [22].

M3 Test case failure rate represents the ratio of number of times a test case has
failed to a number of times it has been executed. A test case with higher failure
rate is a potential test case to be included in the regression suite.

M4 APFDD (average of the percentage faults dependency detected) measures how
quickly dependency among the faults can be detected during the execution of
a test suite. APFDD values range from 0 to 100, higher value means faster
dependency detection [15].

77

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

M5 Tang et al. [3] introduced an information retrieval (IR) based approach, BFCP
(Bug-fixing change impact prediction). BFCP could help predict whether a bug-
fixing change will break the regression testing. By mining the source code
change history, it identifies the bug-fixing changes that can break the regression
testing before running the regression test cases.

M6 Code coverage metrics estimate how much code is tested by a test set. Askarunisa
et al. [5] introduced various coverage based metrics to evaluate the test coverage
at various levels of detail, including, the average percentage of statement cov-
erage (APSC), the average percentage of branch coverage (APBC), the average
percentage of loop coverage (APLC), and the average percentage of condition
coverage (APCC).

M7 Severity measure helps to identify the test cases that can reveal higher number of
severe faults. Severity value could be assigned to the faults based on their impact
on the product [56]. ASFD (average severity of faults detected) is a metric used
to measure the severity of faults [53].

3.4.2 Survey
The survey findings consist of the interview results and the online questionnaire results.
The following subsections present the findings from both means of the survey.

Interviews

We have conducted semi-structured interviews with eleven practitioners from nine dif-
ferent companies. The participating practitioners' testing experience ranges from 1 to
15 years. Concerning development approaches, all the participants reported using Ag-
ile/Scrum. Table 3.7 presents details about the interview participants. The practitioners
who participated in the interviews represent four different countries (Sweden, Belgium,
India, and the USA). They work on different product, including health care, mobile
gaming, IT services, Telecom, retail and distribution systems, customized solutions,
and infotainment systems. Although the participants represented different companies,
there is overlap concerning the development domains. For example, participants I-1
and I-8 are working on health care systems, I-4 and I-5 are working on IT services.
However, we can not infer that commonalities in the product domains impact the per-
spectives.

The primary focus of investigations was to know the perception of practitioners
about regression testing in general and regression testing goals and metrics in particu-
lar. Besides collecting the background information of the participants, we asked them

78

Table 3.7: Interview participants

ID Role Testing
Experi-

ence
(in years)

Product Approach Releases
Per Year

Location

I-1 Lead QA engi-
neer

15 Health care Agile 2 Sweden

I-2 Program test
manager

12 Retail and distribu-
tion

Agile 4 Belgium

I-3 Test lead 12 Web & Mobile
products

Scrum Releasing
Patches
Fre-
quently

Sweden

I-4 Senior test lead
manager

12 IT services Scrum 4 USA

I-5 Technical test
lead

11 IT services and
consulting

Scrum 3 India

I-6 Senior test ana-
lyst and QA lead

10 Multiple domains Agile 2 to 6 Sweden

I-7 Test lead 10 Infotainment sys-
tems

Scrum Not
fixed

India

I-8 SQA engineer 2 Health care Scrum 6 India
I-9 Software tester 2 Mobile Gaming

and casino
Scrum 6 Sweden

I-10 Software tester 1 Telecom Scrum 4 Sweden
I-11 Test analyst 1 Financial Services Scrum 6 to 12

Patches
Sweden

to tell us how they are performing regression testing in their company, the scope of re-
gression testing, and the goals and metrics they use to assess their success in regression
testing. To get an overall overview, we asked the participants to elaborate on, "What
is regression testing for them? Why and when they need to perform the regression
testing?" The practitioners' perception of regression testing is presented here:

I-1 “After adding new features or bug fixing we go back and try to see if this change
has broken something else.”

I-2 “In the event of any change, we have to perform regression testing to ensure that
we have not damaged the quality of the existing software product's functionality.”

I-3 “To ensures that nothing is broken and everything is working in the system.”

I-4 “To make sure that whatever the bug fixed in the previous release, those do not
break the existing working functionality.”

79

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

I-5 “When we introduce new changes to the application, we perform regression test-
ing on the other areas of the application that are not part of new changes. To
make sure that the new changes do not affect the other parts of the application.
The functionality of the other parts is working correctly.”

I-6 “Regression testing is to verify the existing functionality did not get affected with
the update to the existing code, and that is the main idea of this.”

I-7 “Regression testing focuses on finding out the side effects that might cause be-
cause of bug fixes, or it might be side effects because of the implementation of
the new features. Therefore our primary focus is to identify the side effects of the
changes.”

I-8 “Because of changing technology, we need to add new features to our product,
and after adding new features, we perform regression testing to ensure that the
current product is working fine.”

I-9 “In general, regression testing is system testing that ensures the software’s qual-
ity after the changes to the system. In our case, the changes are enhancements,
patches, or any configuration changes. Along with the changes, regression test-
ing helps identify new faults that could be the results of the bug-fixes”.

I-10 “After every release, we need to make sure that the previous functionalities are
workings. We have to ensure that all bugs are fixed, and there are no new bugs
introduced so that the old functionalities are working together with the new func-
tionalities.”

I-11 “Regression testing checks that after any changes, if the system is working? It is
to test whether the system is working according to the mentioned functionality.
Hence, regression testing is a kind of functional re-testing.”

The practitioners use existing system tests for regression testing. They run the regres-
sion tests after modifications or bug-fixing to see if the changes did not negatively affect
the unchanged parts of the system. All the participants told us that they run a selected
set of test cases while performing regression testing. However, the criteria for selecting
the subset of test cases from the larger test suites vary among different perspectives.
For instance, three of them (I-5, I-6, & I-7) select and prioritize test cases based on
changes and their possible impact on the other functionalities. In some cases, practi-
tioners (I-1, I-8, & I-9) told us that they have a predefined set of test cases applied to
test if the basic functionality is working correctly after any system changes. Along with
running the predefined set of test cases, they also run some sanity tests to ensure that

80

other major functionalities are also working correctly. Three participants (I-2, I-3, &
I-4) told us that they prioritize the test cases based on the importance of functionality.
For instance, test cases that test the core functionalities will have the highest priority.
One participant (I-10) revealed that they prioritize the test cases based on robustness,
and one participant (I-11) told us that they prioritize the test cases based on the business
impact.

Table 3.8: Regression testing goals – interviews results
I-1 to I-11 are the practitioners' IDs and (✓) means that the goal was defined by the
respective practitioners.

Goal I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11
G1: Increasing test suite's
rate of fault detection

✓ ✓

G2: Early identification of
critical faults

✓ ✓ ✓

G3: Detection of faults re-
lated to changes

✓ ✓

G4:Coverage ✓ ✓ ✓

G5: No or controlled fault
slippage

✓ ✓ ✓ ✓ ✓ ✓

G6: Confidence ✓ ✓ ✓ ✓

G7: Test suite mainte-
nance

✓ ✓

G8: Team's awareness of
changes and overall appli-
cation knowledge

✓ ✓

A | Regression testing goals defined by the interview participants

To know the practitioners' goals for regression testing, we asked: “What are the goals
that you think are essential to achieve success in regression testing?” To grasp the right
perception of the practitioners, many times we needed to rephrase this question from
different angles. Table 3.8 presents the summary of regression testing goals identified
from interviews, whereas, practitioners' definitions of the goals are presented in the
paragraphs to follow.Table 3.8 presents the summary of regression testing goals identi-
fied from interviews, whereas practitioners' definitions for these goals are presented in
the subsequent paragraphs.
Of the eleven, six practitioners defined G5: No or controlled fault slippage as their
goal, with varying descriptions. The statements of the practitioners regarding this goal
are:

81

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

I-1 “The goal is that no fault with priority 1 (high-risk faults) should slip through.
We want to make sure that the customer should not find any such fault.”

I-2 “All test cases in regression test pack should be executed with 100% pass, the
goal is that customers should not find any fault.”

I-4 “There should be no priority 1 or priority 2 defects in the system while releasing
it to the client.”

I-6 “The goal is that we should not let a fault slip through that can break the existing
application.”

I-9 “We try to avoid hotfixes after release, or at least we try to reduce the number of
hotfixes.”

I-11 “We try to maintain a 100% success rate, we do not want any fault slippage to
our customer.”

Four practitioners defined G6: Confidence as their goal. The practitioners want to be
confident about the reliability and the reached quality of the product. The statement of
the practitioners regarding confidence are as follow:

I-3 “The goal is to increase the confidence in the reliability of the system under test
at a faster rate, and this could be only done with opting smarter approaches for
regression testing.”

I-4 “With the regression testing, I want to be confident that nothing should be broken
in the system under test.”

I-10 “We want to be confident that it is safe enough to release the product to the
customer.”

I-11 “The goal is to gain the customers’ confidence and trust, and this is only pos-
sible if we are confident that we have tested enough and it is safe to release the
product.”

Three practitioners stated that G2: Early identification of critical faults is their goal,
the practitioners perspective in this regard is:

I-1 “We try to identify the high risk faults, early detection of critical faults is our
goal.”

I-3 “Early identification of critical bugs is our goal, we have to make it sure that
there should be no severe faults in the key user functionalities.”

82

I-9 “Critical bugs are show stopper. Severity detection of bugs and their early de-
tection is one of our essential goals.”

Three practitioners defined G4: Coverage as their success goal, the statements of the
practitioners are:

I-7 “What percentage of code is covered, and what percentage of test cases covered
against defects found? It is an important parameter to assess the success in
regression testing.”

I-8 “Whenever we get a new build, we have to make it sure that all basic function-
alities have been covered.”

I-10 “Covering all robust test cases is an important goal.”

G3: Detection of faults related to changes is the goal specified by the two practition-
ers, their statements are:

I-3 “Early evaluation of changes and detection of faults related to changes is an
essential goal in regression testing.”

I-7 “How many defects found based on changes and against changes is an important
goal to be measured.”

Two practitioners stated G1: Increasing test suite rate of fault detection is their goal.
The practitioners’ perspective regarding defect detection is:

I-4 “Early detection of bugs is an important goal, which saves time for developers
and testers. What is the rate of fault detection is important.”

I-9 “An increased rate of fault detection provides you confidence about your under-
lying regression testing approach and strategy.”

Two practitioners stated that G7: Test suite maintenance is their goal. Test suite
maintenance is listed as a regression testing challenge in the existing studies [7, 29, 54,
55]. The practitioners' perspective regarding test suite maintenance is:

I-5 “To keep the test suite updated all the time so that it really helps with future
releases. A well-maintained test suite is always an essential requirement for
your success in regression testing.”

I-7 “ To make it sure that we should not miss any issues, we have to keep the test
suite updated. ”

83

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

Two practitioners stated that G8: Team’s awareness of changes and overall appli-
cation knowledge has a significant impact on the success of regression testing. In our
interview-based multi-case study [29], the practitioners highlighted it as a success cri-
terion required to aid the achievement of various goals. The practitioners’ perspective
regarding this goal is:

I-5 “To keep the team educated always with the new changes and with the overall
application knowledge is important.”

I-8 “ What are the fixes developers have made in the newer version? We need to
learn that. We have to review the release note of the old version and get aware
of the product. Having knowledge of such things is crucial for the success of
regression testing.”

B | Information needs and metrics defined by the interview participants

The next essential part of our investigations was to know the response of practition-
ers about information needs and metrics/measures to be used to achieve/evaluate the
success in regression testing. We asked a series of questions for instance, we asked:

i. Do you measure or evaluate the goals?

ii. How do you measure?

iii. Which are the information-needs necessary to achieve the goals?

iv. Which metrics do you use to evaluate the success goals?

While responding to the question, “Do you measure or evaluate the goals?”, the re-
sponse of the interview participants was a mix of yes and no. The majority of them
responded, yes, we do measure, a couple of participants straightforwardly said no, we
do not measure, and some of the participants told us that to some extent, they analyze
the results.

In response to the second question, “How do you measure?”, one of the participants
revealed that they are using an agile-based tracking system to track the fulfillment of
the goals. Some participants narrated that they make guesses based on their experience
and product knowledge. Whereas, a couple of participants are using defect count as
a measure to evaluate their goals. They have a defined threshold to decide if they can
release the product. For instance, defect rate per unit time and the number of critical
defects vs. total defects are used to evaluate the success. Another measure that is being
used is the ratio between the number of defects and test cases.

84

From the responses of the participants regarding the questions, “Which are the
information-needs necessary to achieve the goals?” and “Which metrics do you use to
evaluate the success goals?”. We learnt that companies are making some sort of as-
sessments to evaluate the success in regression testing. Regarding information needs,
five practitioners (I-1, I-2, I-5, I-6, and I-8) stated that the use of requirements infor-
mation helps fulfill the regression testing goals. Four practitioners (I-3, I-4, I-5, and
I-7) discussed the use of test case execution/fault detection history. Two practition-
ers (I-2 and I-5) highlighted the importance of knowledge of changes for success in
regression testing, and one practitioner (I-9) said that they maintain the code coverage
information to track the coverage of high-risk cases. Regarding metrics, three practi-
tioners (I-3, I-4, and I-7) reported the use of fault detection rate (number of defects
found). Three practitioners (I-2, I-5, and I-8) stated that they track the test case failure
rate to evaluate success. Two practitioners (I-2 and I-9) said that they measure the cov-
erage rate to evaluate the success goals. In the majority of the companies, judgments
are made based on the guesses of practitioners. However, while making assessment
guesses, the practitioners consider some real-time outcomes like the number of defects
found vs. the number of test cases executed.

C | Interview participants' responses on metrics identified from literature

In the last part of the interview, we presented the metrics that we found from litera-
ture and asked them to see if they recognize these metrics and what is their opinion
about the usefulness of these metrics for measuring the success. Six metrics got recog-
nition from the interview participants (see Table 3.9). Three participants (I-3, I-8, and
I-11) endorsed APFD, three participants (I-1, I-3, and I-11) endorsed APFDc, two par-
ticipants (I-2 and I-8) voted for test case failure rate, and two (I-1 and I-8) endorsed the
fault severity measure. One participant (I-8) endorsed BFCP, and one participant (I-7)
opted for code coverage. Three participants (I-4, I-6, and I-10) stated that they were
not aware of the metrics presented in the literature. In contrast, two participants (I-5
and I-9) said they do not use the metrics defined in the literature.

The perspective of individual practitioners who did not recognize the metrics iden-
tified from literature are presented here:

I-4 I am unaware of these metrics.

I-5 In actual projects, we would not be using any of the metrics defined in the liter-
ature.

I-6 We are not familiar with the metrics given in the literature.

85

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

I-7 Some of the metrics presented in the literature may not be applicable in some
areas. However, code coverage is a metric that is measurable.

I-9 We do not consider the metrics given in the literature, but somehow we follow
these metrics as summary.

I-10 I am unable to answer this question because I am unaware of these metrics.

Table 3.9: Literature metrics of regression testing, recognized by the interview partic-
ipants

Metric Endorsed by
APFD (Average percentage of faults detected) I-3, I-8, I-11
APFDc (Cost-cognizant weighted average percentage of faults detected) I-1, I-3, I-11
Test case failure rate I-2, I-8
APFDD (Average percentage of fault dependency detected) -
Fault severity measure I-1, I-8
BFCP (Bug fixing change impact prediction) I-8
Code coverage I-7

Online questionnaire

To illustrate the research perspective, we used results from the literature. To highlight
the industry perspective, we interviewed the practitioners representing nine companies
from four different countries. We conducted interviews openly asking about goals,
information needs, and metrics to check saturation (do we find more goals and metrics
prior to surveying a larger set of people). Then we see yes, we got two new goals but
did not learn anything new for the metrics. We also got more qualitative information
here (deeper insights). From the interview results, we observed that practitioners have a
different perspective of regression testing goals and metrics. Although the practitioners
have their own goals, to some extent, they recognize the literature goals. However,
almost half of them did not support the metrics/measures presented in the literature.

To have insight from a larger set, we opted for an online questionnaire based sur-
vey. To avoid any misinterpretations, we provided a brief description of each goal. We
listed all goals that we found in the literature and interviews. We received 45 correct
responses of the practitioners working in different roles and having different experi-
ences. Figure 3.1 provides the detail of participating practitioners' roles and experience
in the field of software testing. The most-reported role is QA engineer with (23 of 45)
51% of the participants, followed by the test lead with (9 of 45) 20% of the partici-
pants, test manager (6 of 45) 13%, test analyst (4 of 45) 9%, and test architect (3 of 45)

86

7%. The majority of the respondents (21 of 45) 47% have an experience between two
to five years, followed by (11 of 45) 24% having more than ten years of experience,
(10 of 45) 22% have an experience between five to ten years, and (3 of 45) 7% of the
respondents have an experience between one to two years. Concerning the company
size, most of the respondents represented large scale companies. As (27 of 45) 60%
of the respondents are from companies with more than 1000 employees, (6 of 45)13%
are from companies with 500 - 1000 employees, (8 of 45) 18% are from companies
with 100- 500 employees, and (4 of 45) 9% are from companies with less than 100
employees.

QA Engineer Test lead Test manager Test analyst Test architect

Testing roles

N
u
m

b
e
r

o
f
p
a
r
ti
c
ip

a
n
ts

0

5

10

15

20

2 − 5 More than 10 5 − 10 1 − 2

Testing experience in years

N
u
m

b
e
r

o
f
p
a
rt

ic
ip

a
n
ts

0

5

10

15

20

Figure 3.1: Role and testing experience of the survey respondents

The respondents are working on different domains, including accounting and fi-
nance, automobile systems, business services, embedded systems, Telecom, mobile
applicant ions, and medical devices. Figure 3.2 presents the detail of product domain
on which survey respondents are working. Regression testing is highly important for
58% of the respondents, important for 20%, and moderate for 22% of the respondents.
Among the respondents 27 of 45 said that they implement selective regression testing
(i.e., running a selected sub of test cases). Whereas 18 of 45 stated that they implement
re-test all policy (i.e., running all test cases in the regression suite). Concerning product
releases, the majority of respondents replied that they have multiple releases for their
products every year. Only two of 45 respondents revealed that they have one release
for their product per year.

87

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

Customized Telecome Mobile Apps Retail Acc & Finance Gamming Consultant Automobiles Embedded

Software development domains

N
um

be
r

of
 p

ar
tic

ip
an

ts

0

2

4

6

8

Figure 3.2: Software development domains on which survey respondents are working

Figure 3.3: Regression testing goals – questionnaire results

A | Regression testing goals

Figure 3.3 presents the response of survey respondents on regression testing goals,
and an overall mapping of goals, information needs, and metrics is presented in Table
3.10.

Of the 45 respondents, 26 (58%) practitioners selected increasing test suite's rate

88

of fault detection (G1) as their goal, 13 were neutral, and six opposed this option. 39
(87%) of the respondents were agreed that early identification of critical faults (G2),
is a goal for regression testing, four opted to neutral, and two disagreed. 37 (82%)
were agreed that the detection of faults related to changes (G3)is an essential goal
for regression testing, two were neutral, and six disagreed with this option. Only 18
(40 %) chose coverage (G4) as their goal, 22 (49 %) chosen to remain neutral, and five
disagreed. 35 (78%) were agree that no or controlled fault slippage (G5) is their goal,
eight respondents opted to stay neutral, and only two respondents disagreed. 35 (78%)
practitioners chosen confidence (G6) as their goal, five remained neutral, and five dis-
agreed. Besides these goals, 89% of the survey respondents suggested that test suite
maintenance (G7) is an efficient way contributes to the success of regression testing.
Similarly, 80% of the respondents emphasized that the team's awareness of changes
and overall application knowledge (G8) are the primary requirements for success in
regression testing.

B | Information needs and metrics

In the survey questionnaire, we embedded the information needs and metrics with ev-
ery goal. We also provided the free text space to allow the respondents to state any
goal, information need, or metric which we may not have listed in the questionnaire.
The survey respondents did not mention any new goals. However, they listed a few
information needs and metrics other than those we listed in the questionnaire.

Information needs: The survey respondents have listed a few information needs.
The most mentioned information need is the requirements information as it was listed
against five different goals. For example, 73% of the respondents mentioned it against
G8, 69% listed it against G7, 63% against G6, 42% against G5, and 5% mentioned it
against G1. Code changes was listed as information need for two goals, 71% of the
respondent mentioned it as information need to achieve G7, and 41% of the respondents
thinks it is required to achieve G3. 57% of the respondents against G8 lists past fault
detection history. Similarly, fault dependence is listed against G2 by 37% of the
respondents. Along with the listed information needs, the survey respondents have
stated their own information needs, including business impact against two goals G2
and G4, domain knowledge against G8, and coverage of impacted modules G3 and
G5. Table 3.10 presents the detail of information needs along with the respective goals
and metrics.

Metrics: From the interviews, we learned that practitioners do not use any met-
rics defined in the literature to evaluate the success goals. They mainly make guesses
based on their experience and knowledge. Only six interview participants endorsed a

89

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

Table 3.10: GQM mapping of goals, information needs, and metrics – Survey

Goal G-
Response
(%age)1

Information needs IN-
Response
(%age)2

Metrics M-
Response
(%age)3

G1: Increasing test
suite's rate of fault
detection

58% Requirements infor-
mation

5% Test case failure rate 62%

APFD 56%
Code coverage met-
rics

26%

G2: Early identi-
fication of critical
faults

87% Business Impact 81% Severity measure 77%

Fault dependency 37% Code coverage met-
rics

28%

APFDc 23%
G3: Detection of
faults related to
changes

82% Code changes 41% BFCP 69%

Coverage of im-
pacted modules

77% APFD 26%

Test case failure rate 9%
G4: Coverage 40% Business impact 58% Code coverage met-

rics
38%

G5: No or con-
trolled fault slip-
page

78% Requirements infor-
mation

42% Code coverage met-
rics

42%

Coverage of im-
pacted modules

61%

G6: Confidence 78% Requirements infor-
mation

63% Test case failure rate 63%

Code coverage met-
rics

45%

Pass percentage of
the total scenarios
executed

5%

G7: Test suite main-
tenance

95% Requirements infor-
mation

69%

Code changes 71%
G8: Team's aware-
ness of changes &
overall application
knowledge

80% Domain knowledge 80%

Requirements infor-
mation

73%

Past fault detection
history

57%

1. G-Response (%age)= Practitioners' response for goals as sum of percentages of Strongly agree and Agree.
2. IN-Response (%age)= The percentage is calculated against the number of respondents who have selected the corre-
sponding goal.
3. M-Response (%age)= The percentage is calculated against the number of respondents who have selected the corre-
sponding goal.

90

few metrics defined in the literature. Therefore, it was interesting to see if the survey
respondents recognize the metrics given in the literature. Using the results obtained
from the literature, we listed a set of metrics for each goal. The respondents could
select the one, many, or none for the goals they opted to agree to or strongly agree.
They were provided with the free text space to provide their own choices if differ-
ent from those provided. The majority of practitioners listed metrics/measures against
each goal. They selected varying choices of metrics against each goal. However, the
majority preferred to choose from the list of given options. A few of the respondents
provided metrics other than the given list. For instance, two respondents mentioned
pass percentage of the total number of scenarios executed as a metric to evaluate
G6. Table 3.10 presents the complete set of metrics along with the respective goals.
Three metrics test case failure rate, APFD, and code coverage metrics were respec-
tively selected by 62%, 56%, and 26% of the respondents for G1. The metrics severity
measure, code coverage metrics, and APFDc were selected for G2 by 77%, 28%, and
23% respondents. BFCP, APFD, and Test case failure rate were listed by 69%, 26%,
and 9% respondents to evaluate G3. Code coverage metrics is listed by 38% of the
respondents to evaluate G4, and 42% of the respondents listed it to evaluate G5. To
have confidence (G6) in the regression testing 63% respondents suggested to measure
the test case failure rate, 45% opted to evaluate the code coverage metrics, and 9%
suggests to evaluate the pass percentage of total scenarios executed. For G7 and G8,
the survey respondents did not suggest any metrics.

3.4.3 Using GQM to integrate research and practice perspectives
From the interview results (see Table 3.8), it is evident that the majority of the practi-
tioners defined more than one goal for success in regression testing. The same trend
was observed in the responses to the online questionnaire (see Figure 3.3). Although
the authors of most techniques proposed in the literature focus on a single goal, they
mention other goals. It reflects that only a single goal can not guarantee success. Fur-
thermore, the identified goals have a certain level of interdependence. For instance,
increasing test suite's coverage (G4) without increasing fault detection rate (G1) will
be useless. Besides its maximum coverage (G4) and a reasonable fault detection rate
(G1), if a test suite misses the critical faults (G2), it will not solve the purpose. Sim-
ilarly, Controlling fault slippage (G5) requires that the underlying regression testing
technique should be able to select/prioritize the fault-revealing test cases (G1), it should
identify all critical faults (G2), and cover all changed/impacted modules (G3, G4). Fi-
nally, to be confident (G6) about the success in regression testing, testers want to ensure
that no critical fault is being slipped through (G5) to the customer. This highlights the
need for a holistic map of goals and associated selection/prioritization strategies.

91

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

G1: Increasing test
suite's rate of fault

detection

Select / Prioritize fault
revealing test cases

Select/ Prioritize test
cases that reveal

severe faults

G2: Early identification
of critical faults

G5: No or controlled
fault slippageG6: Confidence

G4: Coverage

Select/Prioritize test
cases to test

changes/bug fixes

Select/ Prioritize test
cases with higher

coverage

What is the past
 fault detection

history?

What is the
coverage

of changed
/impacted
 modules?

What is the
coverage

of high risk/overall
requirements?

What are the
changes/bug fixes?

APFD APFDc
Code

coverage
metrics

What is the
dependency

among
the modules?

Select/ Prioritize test
cases according to

module dependency

Module
dependency

 matrix

What is the
 dependency

among
 the faults?

Test case
failure rate Severity

measure
BFCPAPFDD Business

impact

What is the overall
business

impact/criticality of
modules?

Practitioners' goal
Selection/

Prioritization
strategy

Questions/
information

needs

Measures
Literature goal Goal identified from

survey or the industry
 related studies.

G8: Team's
awareness of

changes and domain

G7: Test suite
maintenance

Regression
 testing
 goals

Raise questions
about information

needs

Can be answered
using measures/

metrics

Selection/
prioritization
strategies

G3: Detection of faults
related to changes

Figure 3.4: A GQM based model of regression testing goals, information needs, and
metrics.

Using GQM approach, we have created a model that maps goals, information
needs, and metrics (see Figure 3.4). The model provides a combined view of the litera-
ture and survey findings, and it would be helpful for practitioners in adopting regression
testing strategies suitable to their context. It will also help researchers to propose new
techniques tailored to the industry's needs.

We have classified the goals into three categories. Practitioners' goals (identified
from the survey) are shown in dark green, goals shown in light green represent goals
identified from studies conducted in an industry context and from the survey. Goals
in light blue represent goals identified from studies proposing or evaluating regres-
sion testing techniques. Our model gives confidence (G6) a central place and suggests
controlling the fault slippage (G5). To control the fault slippage, ensure the early iden-
tification of critical faults (G2), detect the faults related to changes and bug fixes (G3),

92

ensure that all essential paths have been covered (G4), and try to maximize the rate of
fault detection (G1). Furthermore, two goals test suite maintenance (G7) and team's
awareness of changes and overall application knowledge (G8) identified from the sur-
vey have been placed on top and considered essential criteria to be confident in the
regression testing process. The model is created based on the following proposition:

To achieve a goal “G”, calculate metric “M” using relevant information needs “IN”
and opt for the respective regression testing strategy.

Using the model, we can derive the following guidelines:

1. To increase test suite's rate of fault detection (G1), use the APFD value calculated
using fault detection history and select/prioritize the fault revealing test cases.

2. To achieve the early detection of critical faults (G2), use the APFDc and severity
measure calculated using test execution/fault detection history and select/priori-
tize test cases that reveal severe faults.

3. To achieve the early detection of critical faults (G2), use the APFDD value cal-
culated using fault dependency matrix and select/prioritize test cases that reveal
leading faults.

4. To detect the faults related to changes (G3), use the BFCP calculated using the
information of changes/fixes and select test cases that test changes.

5. To achieve increased coverage (G4), use coverage metrics calculated using the
coverage information of test cases and select test cases with higher coverage.

Application of these guidelines would not be difficult for practitioner's. For instance,
if practitioners want to achieve the goal increasing test suite's rate of fault detection
(G1), they can use the past execution history of the test cases to measure the rate of
fault detection, and based on these metrics, they can select/prioritize the fault revealing
test cases. Similarly, to assess the achievement of a goal, the practitioners can use the
real-time test results to see if they have achieved their goal(s). For example, to measure
the achievement of increasing test suite's rate of fault detection (G1), using the fault
detection data for each test case, they can calculate the average percentage of fault
detection (APFD).

3.5 Discussion
In this study we have investigated the literature and the industry perspectives on re-
gression testing goals, information needs, and metrics. From the findings of 33 studies

93

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

selected initially and 11 additional systematic reviews, we learnt that regression test-
ing goals are not specific to product domain, development environment, or technique
type. For example, increasing test suite's rate of fault detection is mentioned as a goal
of regression testing techniques proposed for web applications [74], continuous inte-
gration environment [78], and of the techniques where authors did not highlight any
domain or environment. Similarly, authors of machine learning [71], history-based,
search-based, and coverage-based [72, 76] regression testing techniques use increasing
test suite's rate of fault detection as one of the goals for their techniques. From the
findings of survey, we learnt that the practitioners have their preferences for regression
testing goals. However, we can not conclude that this variation of choices depends on
the product domain or development environment. Besides preferring specific goals,
most survey respondents endorsed the regression testing goals found in the literature.
The following paragraphs provide a brief discussion on the study's findings.

The performance of a test process could be gauged by the number of faults detected
during the process. “Increasing test suite's rate of fault detection”, is one of the regres-
sion testing goals identified in this study. The goal appeared in various studies, and the
survey respondents also identified this goal. This goal corresponds to the effectiveness
of regression testing and could be achieved by adding those test cases in the regression
test suite, which have more fault detection capability. Using fault detection history and
requirements information could help in selecting the fault-revealing test cases. The
benefit of increasing test suite's rate of fault detection early in the testing process is
quicker feedback on the system under test, early start of debugging, and ultimately
reduced testing time and cost [31]. Some of the faults are crucial and can break the
product. Finding such faults early in the regression testing process is critical. “Early
identification of critical faults” is the part of the findings of this study. We found this
goal in the literature, and the survey respondents also identified it. Critical faults could
be of two types, 1) faults that affect the core functionality of the system under test, 2)
leading faults, the faults that cause the other faults to appear later in the operations.
Uncovering the critical faults needs to identify the modules that are badly affected and
then prioritizing the test cases which cover the identified modules [23]. If a testing pro-
cess fails to identify such faults early, there could be adverse outcomes. More precisely,
the overall goal could be to identify more severe leading faults early in the testing pro-
cess [2]. Early evaluation of changes could help identify critical faults, especially faults
related to changes and bug fixing. Detection of faults related to changes is also iden-
tified as a regression testing goal in this study. Achieving this goal requires selecting
the test cases based on the changes/bug fixes in the system. Detection of these faults is
crucial, especially for scenarios like fixing critical bugs in an emergency and running
tests under tight time schedules [19].

In selective regression testing, an important aspect that a testing practitioner con-

94

siders is how much code would be covered by the selected test cases [38]. One of the
interview participants stated that “Whenever we get a new build, we try to find the de-
fects based on the changes and find the percentage of code covered against these newly
found defects. So code coverage can also be considered as a part of success criteria.
It is also imperative because it reduces the effort and cost of regression testing.” The
coverage alone could not be a goal of any regression testing process because maximiz-
ing coverage can not guarantee fault detection. Instead, it will help in minimizing the
test execution time and cost. The coverage can be evaluated using code coverage met-
rics like method coverage, statement coverage, and branch coverage. The techniques
using coverage-based metrics could additionally use the program mutation to measure
the fault exposing potential. For example, Kwon et al. [68] used mutation score to
determine the fault detection capability of their technique in the absence of test execu-
tion/fault history. Program mutation refers to introducing a small change in the source
code, and the changed version would be referred to as a mutant. A mutant is killed if
a test case can identify it. The number of mutants killed by a test case is referred to as
the mutation score of the test case, and it could be the reflection of the fault detection
capability of that test case [9]. Although various authors have been using mutation
testing to evaluate their techniques, applying mutation testing at an industrial scale is
challenging because of the time required to execute each mutant against the test suite
under evaluation [69].

While releasing a product to the customer, the team wants to ensure that customer
should not find any fault after release. In our previous study [4], the practitioners la-
beled this goal as “no-fault slippage”. We argue that setting a goal of no-fault slippage
does not mean that there would be no fault slip through. Therefore more appropriate
would be to set a goal of controlling or minimizing the fault slip through. The majority
of interview participants and survey respondents highlighted that controlling fault slip-
page to the customer is one of the essential success goals of regression testing. Fault
slippage is the primary reason for higher rework costs. Damm et al. [14] introduced
a metric called fault slip through (FST) to determine the faults that would have been
more cost-effective to find earlier in the testing process. Keeping fault slippage rate as
low as possible may help the managers decide about releasing the product, provided if
they are confident that no known fault is supposed to be slipped-through [4, 29]. This
study suggests that to control the fault slippage the practitioners need to focus on the
other goals (G1, G2, G3, & G4).

Practitioners frequently use the term confidence concerning their success in regres-
sion testing. They want to be confident about their regression testing process that they
have uncovered and fixed all such bugs that can break the system under test. “Con-
fidence” appeared as a regression testing goal in the studies conducted in the indus-
try context. In a focus group workshop [4], the practitioners identified ten essential

95

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

questions if answered correctly, then a tester can be confident about the underlying
regression testing process. The questions are regarding the changes to the system, ex-
perience of the testing team, coverage of critical parts, testing of modifications, and
test outcomes. Considering the finding of our previous work and discussion with the
practitioners in the current study, we suggest that confidence is a subjective goal, and
it can subsume various goals, depending upon the perception of practitioners involved.
To be confident, the practitioners must achieve the other measurable goals, for instance,
no or controlled fault slippage, early detection of critical faults, and detection of faults
related to changes.

Test suite maintenance is another goal mentioned by most of the survey partici-
pants. It refers to adding new test cases to test the changes and delete the test cases that
have become irrelevant/obsolete because of changes in the requirements. For success
in regression testing, another essential aspect is the knowledge and experience of the
team members. The knowledge refers to the domain, requirements, and changes of the
system under test. Test suite maintenance and the team's knowledge are essentially re-
quired to be confident in the regression testing process. However, in practice, test suite
maintenance and educating team members are challenges for the practitioners work-
ing with large-scale systems because of the tight deadlines. The practitioners have to
perform too much testing in short span of time [29].

While interacting with the practitioners during this and our past studies [4, 29, 43],
we learned that practitioners do not evaluate the achievement of the goals as they do
not have any mechanism to follow the goals' achievement. Instead, they rely on expert
judgment to guess the achievement of their goals. However, making a judgment with-
out a formal mechanism may negatively impact the outcomes. Moreover, without a
formal mechanism, the practitioners may overlook some essential aspects while mak-
ing assessments/judgments [62]. As a step forward, we have proposed a GQM model
to guide the practitioners to follow the goals. However, better information mainte-
nance strategies are required to ensure achieving/evaluating regression testing goals.
The practitioners are aware of this as they recognized that information maintenance is
a challenge in the companies, and there is a desire to improve the information main-
tenance strategies [29]. We argue that the GQM could potentially be used in many
organizations that conduct regression testing. What the organizations would have to do
is to prioritize the goals for their specific context. They can add their goals that are not
yet captured in the model. Further, the organizations have to choose the metrics they
wish to use. One factor here is the cost of collecting the metrics, which may vary with
the test framework used (e.g., lacking the ability to collect the measures automatically).
Thus, depending on the context, different measures would be chosen. The companies
could use the method in [70]. Having a starting point (our model) will help them use
the method and select relevant measures.

96

The validation of GQM is not part of this work, and it is a proposal based on the
literature and survey findings. However, in future, we are aiming to extend this proposal
and validate it from industry practitioners. The evaluation will entail prioritizing the
goals to decide on measures. As the GQM is not static, new goals and measures will
be identified with further contexts and developments. We plan to create guidelines for
updating and extending the GQM with forthcoming studies. The current GQM serves
as a baseline for people to use. With further usage, it will become completer and
more comprehensive. In the future, we also would like to investigate the importance of
different goals, questions and measures depending on context. This allows practitioners
to select the right metrics. We plan to follow the approach suggested by Gencel et
al. [70].

3.6 Summary and conclusions
The study explored the regression testing goals, information needs, and metrics from
the research and practice perspectives. The quantitative and qualitative data is collected
using the literature review, interviews, and online questionnaire. The purpose was to
present an integrated view of literature and industry perspectives on regression testing
goals. To present the literature perspective of regression testing goals (RQ1) we have
conducted a literature review of 33 research papers. In addition, we also looked at the
11 systematic reviews published between 2017 –2022. Except for a couple of studies
explicitly focusing on regression testing goals, most of the studies discuss regression
testing goals while proposing, evaluating, or reviewing regression testing techniques.
From the literature, we found six regression testing goals, two of them, are identified
from the studies representing the practitioners' perspective. Most of the authors eval-
uate their techniques in terms of fault detection rate by using the APFD metric. The
information needs mentioned to evaluate the fault detection rate are “requirement in-
formation”, “test case execution/fault detection history”, and “coverage based informa-
tion”. Other goals mentioned in the literature are “early identification of critical faults”,
“detection of faults related to changes”, and “coverage”. The goals identified from the
industry-related literature are “no or controlled fault slippage” and “confidence”. A
complete mapping of regression testing goals, information needs, and metrics found
from the literature is presented in Table 3.6. Till now, there is a lack of literature re-
view on the topic of regression testing goals. This study provides a step forward in this
context.

To present the practitioners' perspective (RQ2) we conducted a survey comprising
11 interviews and 45 responses to an online questionnaire. We observed that the inter-
view participants have varying perspectives on regression testing goals. In the overall

97

Chapter 3. Using goal-question-metric to compare research and practice perspectives
on regression testing

survey results, we learned that, besides recognizing the literature goals, the practition-
ers emphasize on their own goals including i) test suite maintenance and ii) team's
awareness of changes and overall application knowledge. They recognized only a few
of the information needs and metrics identified from the literature. The practition-
ers also suggested some information needs and metrics including, domain knowledge,
business impact, coverage of impacted modules, and pass percentage of executed sce-
narios. A complete list of goals, information needs, and corresponding metrics select-
ed/defined by the survey respondents is presented in Tables 3.8, 3.10.

To compare the research and practice perspective on regression testing goals, we
have created a goals-questions-metrics (GQM) model (RQ3). The model presents an
integrated view of the literature and the practitioners' perspectives. Researchers can
utilize this model to align their research closer to the industry context while proposing
the new regression testing techniques. Similarly, the practitioners can utilize this model
to better follow the goal-based regression testing strategies. Based on the findings of
our study, we suggest that researchers should consider multi-objective strategies while
proposing and evaluating regression testing techniques. They need to incorporate no
or controlled fault slippage (G6) as a primary goal of the proposed techniques. It will
provide confidence to the practitioners that applying such techniques will help control
the fault slippage.

The results provide a basis for future research on the evaluation of regression test-
ing, and the GQM model presented in this study is a step forward in this direction.
Furthermore, this study's findings will help the researchers propose new methods to
align their research with the practitioners' regression testing goals. Hence, contributing
to the adoption of research on regression testing in the industry. The identified goals
and metrics will also help the practitioners to access the new techniques while adopting
them. The metrics listed in this study can allow the practitioners to try out new metrics
since many of these metrics are not incorporated in the industry. This study's over-
all contribution would be reducing the gap in the research and practice of regression
testing.

98

3.7 References
[1] H. Do and G. Rothermel, “On the use of mutation faults in empirical assess-

ments of test case prioritization techniques,” IEEE Transactions on Software
Engineering, vol. 32, no. 9, pp. 733–752, 2006.

[2] S. Jafrin, D. Nandi, and S. Mahmood, “Test case prioritization based on fault de-
pendency,” International Journal of Modern Education and Computer Science,
vol. 8, no. 4, p. 33, 2016.

[3] X. Tang, S. Wang, and K. Mao, “Will this bug-fixing change break regression
testing?” in ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2015. IEEE, 2015, pp. 1–10.

[4] N. M. Minhas, K. Petersen, N. Ali, and K. Wnuk, “Regression testing goals-
view of practitioners and researchers,” in 24th Asia-Pacific Software Engineer-
ing Conference Workshops (APSECW). IEEE, 2017, pp. 25–32.

[5] M. A. Askarunisa, M. L. Shanmugapriya, and D. N. Ramaraj, “Cost and cov-
erage metrics for measuring the effectiveness of test case prioritization tech-
niques,” INFOCOMP, vol. 9, no. 1, pp. 43–52, 2010.

[6] R. H. Rosero, O. S. Gómez, and G. Rodríguez, “15 years of software regression
testing techniques–a survey,” International Journal of Software Engineering and
Knowledge Engineering, vol. 26, no. 05, pp. 675–689, 2016.

[7] E. Engström and P. Runeson, “A qualitative survey of regression testing prac-
tices,” in International Conference on Product Focused Software Process Im-
provement. Springer, 2010, pp. 3–16.

[8] R. Wang, S. Jiang, D. Chen, and Y. Zhang, “Empirical study of the effects of
different similarity measures on test case prioritization,” Mathematical Problems
in Engineering, vol. 2016, 2016.

[9] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software Testing, Verification and Reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[10] I. Kayes, S. Islam, and J. Chakareski, “The network of faults: a complex network
approach to prioritize test cases for regression testing,” Innovations in Systems
and Software Engineering, vol. 11, no. 4, pp. 261–275, 2015.

99

REFERENCES

[11] S. Nayak, C. Kumar, and S. Tripathi, “Effectiveness of prioritization of test cases
based on faults,” in 3rd International Conference on Recent Advances in Infor-
mation Technology (RAIT), 2016. IEEE, 2016, pp. 657–662.

[12] X. Zhao, Z. Wang, X. Fan, and Z. Wang, “A clustering-bayesian network based
approach for test case prioritization,” in IEEE 39th Annual Computer Software
and Applications Conference (COMPSAC), 2015, vol. 3. IEEE, 2015, pp. 542–
547.

[13] G. Chaurasia, S. Agarwal, and S. S. Gautam, “Clustering based novel test case
prioritization technique,” in IEEE Students Conference on Engineering and Sys-
tems (SCES), 2015. IEEE, 2015, pp. 1–5.

[14] L.-O. Damm, L. Lundberg, and C. Wohlin, “Faults-slip-through—a concept for
measuring the efficiency of the test process,” Software Process: Improvement
and Practice, vol. 11, no. 1, pp. 47–59, 2006.

[15] M. I. Kayes, “Test case prioritization for regression testing based on fault depen-
dency,” in 3rd International Conference on Electronics Computer Technology
(ICECT), 2011, vol. 5. IEEE, 2011, pp. 48–52.

[16] S. Elbaum, D. Gable, and G. Rothermel, “Understanding and measuring the
sources of variation in the prioritization of regression test suites,” in Proceed-
ings. Seventh International Software Metrics Symposium, 2001. METRICS 2001.
IEEE, 2001, pp. 169–179.

[17] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A
family of empirical studies,” IEEE transactions on software engineering, vol. 28,
no. 2, pp. 159–182, 2002.

[18] G. Rothermel and M. J. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Transactions on software engineering, vol. 22, no. 8, pp. 529–
551, 1996.

[19] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development
environment,” in ACM SIGSOFT Software Engineering Notes, vol. 27. ACM,
2002, pp. 97–106.

[20] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to achieve ef-
fective and scalable prioritisation incorporating expert knowledge,” in Proceed-
ings of the eighteenth international symposium on Software testing and analysis.
ACM, 2009, pp. 201–212.

100

[21] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical study of
the effect of time constraints on the cost-benefits of regression testing,” in Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering. ACM, 2008, pp. 71–82.

[22] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying test costs
and fault severities into test case prioritization,” in Proceedings of the 23rd Inter-
national Conference on Software Engineering. IEEE Computer Society, 2001,
pp. 329–338.

[23] H. Kumar and N. Chauhan, “A module coupling slice based test case prioritiza-
tion technique,” IJ Modern Education and Computer Science, vol. 7, no. 7, pp.
8–16, 2015.

[24] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of effective
regression testing in practice,” in Software Reliability Engineering, 1997. Pro-
ceedings., The Eighth International Symposium on. IEEE, 1997, pp. 264–274.

[25] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient multi-
objective test suite minimisation,” Journal of Systems and Software, vol. 83,
no. 4, pp. 689–701, 2010.

[26] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White, “Dynamic regres-
sion test selection based on a file cache–an industrial evaluation,” in | 2009 In-
ternational Conference on Software Testing Verification and Validation. IEEE,
2009, pp. 299–302.

[27] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults
from cached history,” in Proceedings of the 29th international conference on
Software Engineering. IEEE Computer Society, 2007, pp. 489–498.

[28] M. J. Arafeen and H. Do, “Test case prioritization using requirements-based
clustering,” in IEEE Sixth International Conference on Software Testing, Verifi-
cation and Validation (ICST), 2013. IEEE, 2013, pp. 312–321.

[29] N. M. Minhas, K. Petersen, J. Börstler, and K. Wnuk, “Regression
testing for large-scale embedded software development – exploring the state
of practice,” Information and Software Technology, vol. 120, p. 106254,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0950584919302721

101

REFERENCES

[30] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,”
in Proceedings of the 2007 international symposium on Software testing and
analysis. ACM, 2007, pp. 140–150.

[31] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” Technical Report TR-UNL-CSE-2006-0004,
University of Nebraska-Lincoln, Tech. Rep., 2006.

[32] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioritiza-
tion: An empirical study,” in Proceedings of IEEE International Conference on
Software Maintenance, 1999.(ICSM’99). IEEE, 1999, pp. 179–188.

[33] T. Muthusamy and K. Seetharaman, “A new effective test case prioritization for
regression testing based on prioritization algorithm,” International Journal of
Applied Information Systems (IJAIS), vol. 6, no. 7, pp. 21–26, 2014.

[34] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case prior-
itization,” in Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, 2009, pp. 233–244.

[35] A. S. Acharya, A. Prakash, P. Saxena, and A. Nigam, “Sampling: Why and how
of it,” Indian Journal of Medical Specialties, vol. 4, no. 2, pp. 330–333, 2013.

[36] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing junit test cases: An empirical
assessment and cost-benefits analysis,” Empirical Software Engineering, vol. 11,
no. 1, pp. 33–70, 2006.

[37] A. Pravin and S. Srinivasan, “S. srinivasan:—effective test case selection and
prioritization in regression testing,” Journal of Computer Science, 2013.

[38] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 2, pp. 173–210, 1997.

[39] E. Engström, P. Runeson, and G. Wikstrand, “An empirical evaluation of regres-
sion testing based on fix-cache recommendations,” in Third International Con-
ference on Software Testing, Verification and Validation (ICST), 2010. IEEE,
2010, pp. 75–78.

[40] M. Skoglund and P. Runeson, “A case study of the class firewall regression test
selection technique on a large scale distributed software system,” in Interna-
tional Symposium on Empirical Software Engineering, 2005. IEEE, 2005, pp.
10–pp.

102

[41] L. White and B. Robinson, “Industrial real-time regression testing and analysis
using firewalls,” in 20th IEEE International Conference on Software Mainte-
nance, 2004. Proceedings. IEEE, 2004, pp. 18–27.

[42] I. Eusgeld, F. Freiling, and R. H. Reussner, Dependability Metrics: GI-Dagstuhl
Research Seminar, Dagstuhl Castle, Germany, October 5-November 1, 2005,
Advanced Lectures. Springer, 2008, vol. 4909.

[43] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz, “On the search for industry-relevant
regression testing research,” Empirical Software Engineering, pp. 1–36, 2019.

[44] J. Linaker, S. M. Sulaman, M. Höst, and R. M. de Mello, “Guidelines for con-
ducting surveys in software engineering v. 1.1,” Lund University, 2015.

[45] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 2014,
p. 38.

[46] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical software engineering, vol. 14, no. 2,
p. 131, 2009.

[47] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

[48] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 3:
constructing a survey instrument,” ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 2, pp. 20–24, 2002.

[49] B. Kitchenham and S. L. Pfleeger, “Principles of survey research part 4: ques-
tionnaire evaluation,” ACM SIGSOFT Software Engineering Notes, vol. 27,
no. 3, pp. 20–23, 2002.

[50] ——, “Principles of survey research: part 5: populations and samples,” ACM
SIGSOFT Software Engineering Notes, vol. 27, no. 5, pp. 17–20, 2002.

[51] A. Lacey and D. Luff, Qualitative data analysis. Trent focus Sheffield, 2001.

[52] V. Caldiera and H. D. Rombach, “The goal question metric approach,” Encyclo-
pedia of software engineering, vol. 2, no. 1994, pp. 528–532, 1994.

103

REFERENCES

[53] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization of
new and regression test cases,” in 2005 International Symposium on Empirical
Software Engineering, 2005. IEEE, 2005, pp. 10–pp.

[54] M. J. Harrold and A. Orso, “Retesting software during development and main-
tenance,” in Proceedings of the Frontiers of Software Maintenance Conference,
2008, pp. 99–108.

[55] D. Brahneborg, W. Afzal, and A. Čauševič, “A pragmatic perspective on regres-
sion testing challenges,” in Proceedings of the IEEE International Conference
on Software Quality, Reliability and Security Companion (QRS-C), 2017, pp.
618–619.

[56] R. Kavitha and N. Sureshkumar, “Test case prioritization for regression testing
based on severity of fault,” International Journal on Computer Science and En-
gineering, vol. 2, no. 5, pp. 1462–1466, 2010.

[57] S. R. Dalal and A. A. McIntosh, “When to stop testing for large software sys-
tems with changing code,” IEEE Transactions on Software Engineering, vol. 20,
no. 4, pp. 318–323, 1994.

[58] B. Zachariah, “Optimal stopping time in software testing based on failure size
approach,” Annals of Operations Research, vol. 235, no. 1, pp. 771–784, 2015.

[59] A. Jangra, G. Singh, C. Kant et al., “When to stop testing,” in International
Conference on High Performance Architecture and Grid Computing. Springer,
2011, pp. 626–630.

[60] A. K. Shrivastava and N. Sachdeva, “Generalized software release and testing
stop time policy,” International Journal of Quality & Reliability Management,
2019.

[61] P. Kapur, A. Shrivastava, and O. Singh, “When to release and stop testing of a
software,” Journal of the Indian Society for Probability and Statistics, vol. 18,
no. 1, pp. 19–37, 2017.

[62] M. Usman, K. Petersen, J. Börstler, and P. S. Neto, “Developing and using
checklists to improve software effort estimation: A multi-case study,” Journal
of Systems and Software, vol. 146, pp. 286–309, 2018.

[63] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical
methods for software engineering research,” in Guide to advanced empirical
software engineering. Springer, 2008, pp. 285–311.

104

[64] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” Tech. Rep., 2007.

[65] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang, “How
does regression test prioritization perform in real-world software evolution?”
in Proceedings of the 38th International Conference on Software Engineering,
2016, pp. 535–546.

[66] J. Chi, Y. Qu, Q. Zheng, Z. Yang, W. Jin, D. Cui, and T. Liu, “Relation-based
test case prioritization for regression testing,” Journal of Systems and Software,
vol. 163, p. 110539, 2020.

[67] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo,
“Learning-to-rank vs ranking-to-learn: Strategies for regression testing in con-
tinuous integration,” in Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering, 2020, pp. 1–12.

[68] J.-H. Kwon, I.-Y. Ko, G. Rothermel, and M. Staats, “Test case prioritization
based on information retrieval concepts,” in 2014 21st Asia-Pacific Software En-
gineering Conference, vol. 1. IEEE, 2014, pp. 19–26.

[69] L. Chen and L. Zhang, “Speeding up mutation testing via regression test se-
lection: An extensive study,” in 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2018, pp. 58–69.

[70] Ç. Gencel, K. Petersen, A. A. Mughal, and M. I. Iqbal, “A decision support
framework for metrics selection in goal-based measurement programs: Gqm-
dsfms,” Journal of Systems and Software, vol. 86, no. 12, pp. 3091–3108, 2013.

[71] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection and
prioritization using machine learning: a systematic literature review,” Empirical
Software Engineering, vol. 27, no. 2, pp. 1–43, 2022.

[72] M. Rehan, N. Senan, M. Aamir, A. Samad, M. Husnain, N. Ibrahim, S. Ali, and
H. Khatak, “A systematic analysis of regression test case selection: A multi-
criteria-based approach,” Security and Communication Networks, vol. 2021,
2021.

[73] M. S. Abdul Manan, D. N. Abang Jawawi, and J. Ahmad, “A systematic liter-
ature review on test case prioritization in combinatorial testing,” in 2021 The
5th International Conference on Algorithms, Computing and Systems, 2021, pp.
55–61.

105

REFERENCES

[74] M. Hasnain, I. Ghani, M. F. Pasha, C. H. Lim, and S. R. Jeong, “A comprehen-
sive review on regression test case prioritization techniques for web services,”
KSII Transactions on Internet and Information Systems (TIIS), vol. 14, no. 5, pp.
1861–1885, 2020.

[75] M. d. C. de Castro-Cabrera, A. García-Dominguez, and I. Medina-Bulo, “Trends
in prioritization of test cases: 2017-2019,” in Proceedings of the 35th Annual
ACM Symposium on Applied Computing, 2020, pp. 2005–2011.

[76] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case priori-
tization approaches in regression testing: A systematic literature review,” Infor-
mation and Software Technology, vol. 93, pp. 74–93, 2018.

[77] H. de S. Campos Junior, M. A. P. Araújo, J. M. N. David, R. Braga, F. Cam-
pos, and V. Ströele, “Test case prioritization: A systematic review and mapping
of the literature,” in Proceedings of the 31st Brazilian Symposium on Software
Engineering, 2017, pp. 34–43.

[78] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in continuous inte-
gration environments: A systematic mapping study,” Information and Software
Technology, vol. 121, p. 106268, 2020.

[79] A. Rahmani, S. Ahmad, I. E. A. Jalil, and A. P. Herawan, “A systematic literature
review on regression test case prioritization,” International Journal of Advanced
Computer Science and Applications, vol. 12, pp. 253–267, 2021.

[80] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim, “Regression test case pri-
oritization: A systematic literature review,” International Journal of Advanced
Computer Science and Applications, vol. 12, pp. 655–663, 2021.

[81] S. Dalal, K. Solanki et al., “Challenges of regression testing: A pragmatic per-
spective.” International Journal of Advanced Research in Computer Science,
vol. 9, no. 1, 2018.

106

Appendix A

Interview guide

Introduction

Personal introduction The lead Interviewer will tell the participant about research
team, their background and training, and their research interest in regression testing.

Study goal The lead interviewer explains the study goal to the participant.

Goal: The goal of the study is to compare the literature and practitioners’ perspec-
tives on regression testing goals, needs, and metrics. The purpose this interview is to
know that which are the regression testing goals that practitioners set for their success
in regression testing. Further, the interviewers are interested to investigate if the practi-
tioners measure their success in regression testing. The following points are the focus
of the interview.

◦ Regression testing goals,
◦ Metrics to assess the goals,
◦ Information needs used to compute the metrics,
Benefit: This study will provide the basis for proposing a mapping of the selected

goals with the information needs and required metrics. The said mapping will help the
practitioners in selective regression testing, it will also help the testing researchers to
align their research to the industry needs. We believe your opinion is valuable. This
investigation gives you (interviewee) a chance to contribute to the improvement of the
regression testing research and practice.

107

Chapter A. Interview guide

Interview process Interviewer describes the overall process, that how the interview
will take place.

◦ Interview duration: The interview will be completed in about 30 minutes time.
◦ Interview questions: There may be some questions that the interviewee perceives

as not suitable or challenging to answer. It is possible that a question appropriate for
one person may not be ideal for the other.

◦ Counter questions: The interviewee may feel free to ask counter questions for
the clarification of an interview question and can disagree with any statement of the
interviewer.

◦ Answers: The interview participants need not worry about their answers, as we
can not rate any answer as correct or incorrect. We expect they will answer the ques-
tions based on their knowledge and experience.

Respondent background

In this section, the interviewers are interested to know about the participant’s profes-
sional background, organizational role and responsibilities.
Question 1: Could you please briefly describe your professional background?

◦ For how long you have been working with this organization?
◦ What is your role in the organization?
◦ For how long you have been taking up this role?
◦ What kind of products does your organization deal with?

Question 2: How will you define your expertise?
◦ Software Engineering,
◦ Software Development,
◦ Software testing.

Question 3: Please specify about your current job.
◦ Your current team,
◦ Your role in the team.

Interview part to explore the regression testing goals

We are heading to the core part of this interview, and we are interested to know about
the practitioners’ perspective on regression testing goals. We will also be interested
to know about the information needs and metrics used to measure these goals. Please
feel free to add detail at any point of the interview that you think we missed asking or
forgetting to describe.

108

Defining regression testing We know the academic definition of regression testing,
and we are interested in learning that perception of regression testing that prevails in
practice.
Question 1: How do you perceive regression testing?
Question 2: How do you perform regression testing?
Question 3: Are you satisfied with the regression testing approaches used in your
team/organization?

Success in regression testing To determine the success of any activity, we measure
it with the predefined goals, that is, if the goals have met or not.
Question 1: At your company / team do you define success goals?
Question 2: What are the goals that you think are essential to achieve success in re-
gression testing?
Question 2: Which are the information needs necessary to achieve the goals?
Question 2: Do you measure the success? or Do you measure or evaluate the goals?
Question 3: How do you measure?
Question 4: How will you determine that the desired goals have been achieved? Or
Which metrics do you use to evaluate the success goals?

Closing questions We mentioned earlier that this research aims to compare the liter-
ature and practitioners’ perspective on regression testing goals. Since you have given
us a walkthrough of your regression testing process and your success goals and mea-
sures, we want to know your opinion on the literature findings. We have identified the
following goals and measures from the literature.
Question 1: Which of these goals do you think are aligned to your perspectives?
Question 2: Which metrics do you think can be used in your environment? Question
3: Do you want to share some more information that you think is important to consider
that we may have missed?

109

Chapter A. Interview guide

110

Chapter 4

Regression testing for
large-scale embedded software
development – exploring the
state of practice

4.1 Introduction

Testing is an essential aspect of any software development project. The companies are
facing various testing challenges, especially for large and complex products [3, 17].
The most challenging testing activity in large-scale systems development is regression
testing, which can consume up to 80% of the total testing cost [20, 25]. Regression
Testing (RT) is a retest activity to ensure that system modifications do not affect other
parts of the system and that the unchanged parts of the system are still working as they
did before a change.

RT is a challenge for the software industry, especially for large-scale embedded
software development companies in the context of systems with continuous integration
and delivery. Considering the recent systematic literature review studies conducted
on the topic of regression testing: [24, 26, 32, 33] we can conclude that it is a well-
researched area with a large number of suggested techniques. Despite extensive re-
search on RT, research results are not finding their way into practice. There are several
reasons, like differences in terminology, availability of research results and a lack of

111

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

empirical evaluation of RT techniques in real industrial environments [19, 25].
Other factors that affect the transition of research to the industry are, communication-

gap between practitioners and researchers, consideration of testing challenges at the
different level of abstraction, and differences in the vocabulary and context regard-
ing the concepts of testing [21]. It is essential that researchers consider real-world
situations. Without a focus on real industrial needs and practices, a majority of new
techniques proposed in the literature will not fit with existing practices. Testing is not
only a technical challenge, but also a socio-technical issue [17].

In this paper, we have investigated the current state of regression testing practice in
two large-scale embedded software development companies. The contributions of this
study are as follows:

• Regression testing definition: Presented the practitioners' perspective of regres-
sion testing.

• Regression testing practices: Presented how practitioners undertake the regres-
sion testing activity in the companies. How they are selecting/prioritizing and
what are the challenges the practitioners are facing in their current practices.

• Improvements: Highlighted the suggestions of the practitioners to overcome the
identified challenges.

• Regression testing goals: Presented the goals and criteria that could be used to
evaluate the success in regression testing.

The remainder of this paper is structured as follows. Section 4.2 discusses the re-
lated work. Section 4.3 describes our research methodology. Threats to validity are
discussed in Section 4.4. Results of the study are presented and discussed in Sec-
tion 4.5. A summary, organized along our research questions, as well as conclusions
can be found in Section 4.6.

4.2 Related work
There is a large body of research on software testing ([1, 4]), but most of this research
is focused on methods and tools. There is only little work on the perspectives of testing
practitioners in industry on regression testing. We found only 14 articles [10–16, 18,
22–25, 28, 34] related to our work, which we discuss further below. Out of these
14 studies, nine deal specifically with regression testing, whereas five have a broader
focus. Other than regression testing specific studies, we included those papers in the
related work, where authors are discussing any aspect of regression testing. It is worth

112

mentioning, that some of the works (especially, studies presented in [18, 22, 25]) are
not recent. This further underlines the need for investigations on the topic, specifically
with a focus on industry cases. Ali et al. conducted a systematic review on industry-
relevant regression testing research [34], which also emphasizes the lack of industrial
research in terms of studying regression testing interventions and classifying them.

We did not conduct a systematic review for the related work. However, in our
searches, we focused on the literature that seemed most relevant:

• general testing practices, as we are focusing on industry testing,

• automation, as this is considered an important aspect, given that regression test-
ing is conducted repeatedly, and

• studies explicitly focusing on regression testing with a specific focus on industry
applications.

To identify studies on the mentioned areas, we used the search terms (“Regres-
sion Testing", “Testing practice", “Automated testing", “Testing challenges", “Testing
tools", and “Testing methods"). With respect to the main focus of the related works,
we organized them into four groups: (1) general testing practices, (2) testing methods
and tools, (3) automated testing, and (4) regression testing.

General testing practices Two studies, both of them surveys, investigated general
testing practices ([11, 12]). Dias-Neto et al. [11] conducted a survey to identify the
software testing practices in South America. The study was carried out with the prac-
titioners from Brazil and Uruguay. The authors highlight the testing practices that the
practitioners consider as essential and beneficial. For instance, the practitioners think
testing documentation as useful for current and future testing activities. The practi-
tioners acknowledge the importance of test management and error reporting tools. The
essential testing types are system and regression testing. The authors also highlight
some weaknesses of the companies. For example, they indicate that the companies do
not measure their testing activity and the tendency of using test automation tools is not
encouraging.

Kassab et al. [12] conducted a web-based survey to explore how software practi-
tioners are using testing. The focus of their research was to study the overall testing
practices. Authors indicate that the use of black box testing techniques is more com-
mon as compared to white box testing. Regression testing is one of the testing levels
getting more attention of the companies. There is a trend in the companies to outsource
the regression testing activity. Among the surveyed companies majority of telecommu-
nication and gaming companies prefer the outsourcing of regression testing, and they

113

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

are satisfied with this practice. The authors highlight requirement coverage as the most
used metric in the companies, followed by the test execution rate. Test stopping criteria
for the majority of the companies is the deadline of the project.

Testing methods and tools Ng et al. [18] investigated software testing practices in
ICT companies in Australia. Their focus was on testing methodologies/techniques,
tools, metrics, and standards. The authors highlighted that the training share for testing
staff is low, according to the results presented in the study, universities and training
colleges offer only 10.7% of the total training courses for testing staff. Regarding re-
gression testing, the authors report that 69.2% of the organizations are using regression
testing for all of the applications they are developing. Regarding the frequency of re-
gression testing, 53.3% of the organizations repeat regression testing for every new
version of the product and 28.9% reported the use of regression testing after every
change.

Automated testing Two studies focused on the state of practice in testing automation
([13, 15]). Rafi et al. [13] highlighted the benefits and challenges of automated testing
using a systematic literature review followed by a practitioner survey. They found only
few studies discussing the benefits and limitations of automated testing. The authors
conclude that automation is beneficial in an environment where excessive regression
testing is performed and it helps in improving test coverage. The key limitations are
initial setup costs, training, and availability of reliable testing tools. Furthermore, a
majority of testers believe that automated testing cannot replace manual testing.

Kasurinen et al. [15] studied the current state of practice and required improvements
in software test automation in an interview-based empirical study. The authors suggest
that most of the practitioners are satisfied with their current test policy and testing
practices, and they are not thinking of any change in it. Regarding automation, the
authors reveal that only 26% of the test cases were automated, and the majority of
these test cases are related to unit and regression testing. The automation of regression
testing is a common practice among the companies, and regression testing was the most
practiced testing type in the sample organizations.

Regression testing Nine studies focused specifically on regression testing aspects
([10, 14, 16, 22–25, 28, 34]).

In a recent systematic review, Ali et al. [34] synthesized the industry-relevant re-
search on regression testing. The authors introduced three taxonomies to support the
communication of industry relevant research on regression testing to the testing prac-
titioners. These taxonomies capture aspects of industrial-relevance regarding the re-

114

gression testing techniques. The authors defined context, effect, and information tax-
onomies to enable the practitioners to compare the research proposals and access their
applicability and usefulness for their specific context. In this study, the authors mapped
26 industrially evaluated regression testing techniques with the taxonomies. The iden-
tified techniques are addressing the aspects of test case selection, prioritization, and
minimization.

Brahneborg et al. [28] extracted the challenges corresponding to the existing meth-
ods of regression testing from a set of empirical studies. The authors classified the
challenges into two categories, 1) method related challenges, 2) Organization related
challenges. Among method related challenges they highlighted, handling failures, per-
formance measurement, handling fault distribution, scalability of techniques, and tool
support. Whereas regarding organization related challenges, the authors describes exis-
tence of a structured test suite (test suite maintenance), information availability, knowl-
edge and skills of testers and developers, and management support.

Minhas et al. [10] conducted a focus group based study to investigate the views
of industry practitioners and software engineering researchers concerning regression
testing. The authors explore the perceptions of both communities about the scope of
regression testing. They also identify the regression testing success goals. The authors
listed confidence, high precision, and fault-slippage as the essential goals of regression
testing. They conclude that the perception of the practitioners and researchers about
regression testing is alike, and there are similarities in views concerning regression
testing goals. However, the authors highlighted the differences in the priorities of goals
among the practitioners and the researchers. Finally, the authors indicate the need for
measuring the regression testing task to enable the testers to measure success. The
goals identified in the study are summarized in Table 4.2.

Parsons et al. [23] conducted case-studies and an online survey to investigate the
adoption of regression testing strategies in agile development. The authors analyzed
different contextual factors that can have an impact on regression testing strategy. The
focus of their research was to identify the organizational maturity regarding regression
testing and operational aspects of regression testing in the surveyed organizations. The
authors found that the maturity of the organization is the primary factor for successful
regression testing. The authors conclude that organizations can get potential benefits of
investments in regression testing. The authors highlighted the need for investigations
in the areas of change and risk management regarding regression testing.

Yoo and Harman [24] surveyed the literature on regression test case minimization,
selection, and prioritization. They specified the state of the art, trends and issues con-
cerning these areas of regression testing. The authors conclude that the trend to evaluate
regression testing techniques is getting a significant increase in the research. However,
the majority of empirical studies are carried out with systems under test of less than

115

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

10,000 lines of code and test suite sizes of less than 1,000 test cases. They also found
that almost 60% of the empirical studies on regression testing are using programs from
the software infrastructure repository (SIR1) ([5]). It indicates that evaluation of re-
gression testing techniques in real industrial context is limited. The authors argued that
there is a potential risk of over-fitting the research on regression testing techniques to
the programs that are readily available. They suggested that for the future research on
regression testing, researchers should opt for alternative data sources and focus should
be on the transfer of technology to industry.

Juergens et al. [14] carried out an industry case study to highlight the challenges
concerning regression test selection techniques when applied in manual system tests.
They suggest that the testing effort could exceed the expected limit when applying
selective regression testing techniques on manual testing. The authors also think that
under-specification of manual tests can reduce the conclusiveness of results. Finally,
they suggest strategies to improve the manual regression test selection.

Engström and Runeson [16] investigated regression testing practices and challenges
and pointed out that a majority of the challenges are related to testability issues and
good practices are related to test automation. The authors note that most findings of
their study are related to testing in general and are not specific to regression testing.
However, there was a consensus among the practitioners regarding the concept and
importance of regression testing. Some key findings of this study are provided in Table
4.2.

Harrold and Orso [25] analyzed the state of research and practice in regression
testing. The authors conducted the review of research on regression testing and infor-
mal survey with the researchers and practitioners. They concluded that hardly a few
methods and tools proposed in the research are in use of industry. The authors identi-
fied various issues that are hindering the transition of proposed techniques to practice.
They also highlighted the technical/conceptual issues, needed to be addressed by the
research. Issues identified by Harrold and Orso are listed in Table 4.2.

Lin [22] conducted a literature-based survey on the regression testing research and
recent practices. Their goal was to identify the gaps in regression testing research
and its industrial practices. The author suggests that there are some gaps and efforts
should be made towards the implementation of regression testing research in industry.
Addressing these gaps should be the future direction in research.

Summary A summary of related work is presented in Table 4.1. Of the 14 studies
discussed above, 9 focused on aspects of regression testing. Overall, the related work
shows that there is a gap between research and practice. New techniques should have to

1http://sir.unl.edu/portal/index.php

116

be evaluated in the real industrial context. The researchers should work on technology
transfer of the regression testing techniques.

Table 4.1: Summary of related work. The first column indicates the subsection in
Section 4.2 (GTP: General Testing Practices, TMT: Testing Methods and Tools, AT:
Automated Testing, RT: Regression Testing).

Ref. Methods Year RT1 Focus of the study

G
T

P [11] Survey 2017 No Characterizing the testing practices in South America.
[12] Survey 2017 No Overall testing practices.

T
M

T [18] Survey 2004 No Current state of testing practices, testing methodolo-
gies/techniques, testing tools, metrics, and standards
in Australian ICT companies.

AT

[13] SLR and
Survey

2012 No Benefits and challenges of automated testing.

[15] Interviews 2010 No Current state and required improvement in test au-
tomation.

R
T

[34] SLR 2019 Yes Industry relevant regression testing research.
[28] Literature

study
2017 Yes Identification of regression testing challenges.

[10] Focus Group 2017 Yes Regression Testing goals, information needs and met-
rics.

[23] Case study
and survey

2014 Yes Regression testing strategies and the factors that in-
fluence the adoption.

[24] Literature
Survey

2012 Yes A detailed analysis of trends and issues in regression
testing concerning minimization, selection and prior-
itization.

[14] Case study 2011 Yes Regression test selection challenges when applied to
system manual tests.

[16] Focus group
and survey

2010 Yes Regression testing practices and challenges.

[25] Literature re-
view and sur-
vey

2008 Yes An analysis of the state of the research and the state
of the practice.

[22] Literature
survey

2007 Yes Identification of gaps between the regression testing
research and practice.

1Whether the work focuses on regression testing aspects.

In order to build a mapping between the existing literature and findings of our study,
we extracted related information from some of the studies presented in the related
work. Considering the scope and method the studies that could be regarded as closely
relevant to our work are [16, 25]. Both studies are of exploratory nature and purpose to

117

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

investigate the current state of practice concerning RT. We extracted information related
to practices, selection and prioritization criteria and challenges from these studies. We
did extract some information regarding the selection and prioritization criteria from the
literature survey by Yoo and Harman [24]. For the regression testing challenges, we
also utilized the study by Brahneborg et al. [28]. Regarding RT goals we extracted the
information from [10, 31]. We have listed the key findings of these studies in Table 4.2.
It is essential to specify that the literature findings are not exhaustive because finding
practices, challenges, etc. from the literature was not the goal of this study.

118

Table 4.2: Literature findings on RT state of practice

Aspect ID Description Ref

R
T

Pr
ac

tic
es

LPr1. In industry test suite maintenance is largely manual. [25]
LPr2. For RT, many organizations rerun all test cases (retest all). [16, 25]
LPr3. A most common approach is running core set of test cases. [16, 25]
LPr4. In large number of organization, test case are selected randomly on the basis

of experience of testers.
[25]

LPr5. Mostly organizations use in-house build techniques and tools [25]
LPr6. Some practitioners prefer to run as many as possible. [16]
LPr7. Start RT as early as possible. [16]
LPr8. Run RT before each release. [16]
LPr9. Complete re-test for critical parts. [16]
LPr10. Focus is on functional test cases [16]
LPr11. Selection of test cases depends on the situation. [16]
LPr12. The amount and frequency of RT depends upon the various factors. [16]

Pr
io

ri
tiz

at
io

n LPc1. Change. [16, 24, 25]
LPc2. Cost. [25]
LPc3. Running time. [25]
LPc4. Criticality. [25]
LPc5. Complexity of the test cases. [25]

Se
le

ct
io

n LSc1. Change. [16, 24, 25]
LSc2. Historical test data on test case effectiveness. [24, 25]
LSc3. Timing data on the last time a test case was run. [25]
LSc4 Traceability between requirements to test cases. [24, 25]
LSc5. Situation based selection. [16]
LSc6. Areas affected by the changes. [16]

C
ha

lle
ng

es

LC1. Identification of obsolete test cases. [25]
LC2. Selection of relevant test cases. [16, 25]
LC3. Test case prioritization. [25]
LC4. Test suite augmentation. [25]
LC5. Removing redundant test cases. [16, 25]
LC6. Creating effective test cases. [16, 25]
LC7. Manual testing (expensive and time consuming). [25]
LC8. information maintenance. [25, 28]
LC9. Test suite maintenance. [16, 25, 28]
LC10. Test suite assessment. [25]
LC11. Time to RT. [16]
LC12. Balance between manual and automated RT. [16]
LC13. Execution of automated RT. [16]
LC14. Time to analyze results. [16]
LC15. Management support. [28]

G
oa

ls

LG1 Increasing rate of fault detection (effectiveness) [10, 31, 34]
LG2 Increasing coverage of test suite (coverage) [10, 31, 34]
LG3 Increasing confidence regarding the system reliability (confidence) [10, 31]
LG4 Identifying high risk (critical/sever) faults [31, 34]
LG5 Identifying change specific faults (effected areas) [31]
LG6 The customer should not find fault in the product (fault slippage to the cus-

tomer)
[10]

LG7 Finishing RT in limited time and low cost (efficiency) [10, 34]
LG8 Running most effective test cases (inclusiveness) [10]
LG9 Excluding non effective test cases (precision) [10, 34]

119

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

4.3 Methodology
We conducted a multi-case study in two large companies to investigate the current
state of practice regarding regression testing. Data were mainly collected through in-
terviews. Interviews provide an opportunity for direct interaction with the respondents
and resolving issues with interpretations during the interview sessions. We choose to
conduct semi-structured interviews, since it allows improvisation and exploration of
the studied objects [9].

4.3.1 Research questions
RQ1 How is regression testing perceived by the practitioners in industry?

RQ2 What is the current state of regression testing practice in industry?

RQ2.1 How are the practitioners selecting and prioritizing test cases?

RQ2.2 What are the key challenges for the practitioners regarding regression test-
ing?

RQ3 What are the possible improvements regarding regression testing practices sug-
gested by the practitioners?

RQ4 How do the practitioners evaluate their success in regression testing?

4.3.2 Case companies
We conducted this study from the platform of EASE 2, which is an industry-academia
collaboration project. The companies participated in this study are Sony Mobile Com-
munications AB and Axis Communications AB, from hereafter we will use Sony and
Axis to refer the companies. Both Sony and Axis are large-scale embedded software
development companies, and both are the collaborators in the EASE project. Sony is
a multinational telecommunication company producing smartphones and other smart
products. The core part of the software is used in different versions and variants of the
devices. The estimated size of different modules varies between 30 and 100 thousand
lines of code (KLOC). The approximate number of releases is 20 releases per quar-
ter. At Sony, a majority of the code is written in C. Axis is manufacturing network
cameras and other surveillance devices, and claim to be the inventors of the first net-
work camera. Regarding the software for their products, the core platform is similar

2EASE – the Industrial Excellence Centre for Embedded Applications Software Engineering http://
ease.cs.lth.se/about/

120

for all products. The estimated size of the platform is 20 millions lines of code. The
approximate number of releases for the complete product line at Axis is 100 releases
per quarter. For the product development at Axis, the programming languages used are
C and C++. For the testing tools, they are using Python. Both case companies invest a
substantial effort in regression testing. Each of them has a common code base for their
products from which they have release multiple products over several years.

Table 4.3: Overview of interviewees.

PID Team1 Current Role Exp2

C
om

pa
ny

A

P1 SWSE Test Architect &Team Lead 10
P2 SWSE Manager Verification 9
P3 SWSE, FCS Verification Engineer 13
P4 FCS Test Architect 10
P5 FCS Verification Engineer 10
P6 FCS Product Owner 11

C
om

pa
ny

B

P7 FWD Tech Lead 6
P8 FWD Engineering Manager 8
P9 FWR Program Manager 2
P10 PTS Technical Coordinator 7
P11 PTS Test Area Maintainer 6

1 SWSE (Software Security & Enterprise), FCS (Flash Core Secu-
rity), FWD (Firmware Development), FWR (Firmware Release &
Upgrade), PTS (Platform Storage).

2 Experience in number of years the practitioner is working with the
current company.

From Sony, the practitioners from two teams (Software Security & Enterprise
(SWSE) and Flash Core Security (FCS)) participated in the study. These teams are
working on two different parts of a product, and some modules of the software for both
parts are developed within the respective teams. Along with the in-house development,
the company is also using modules developed by their vendors. The SWSE team is
working on the enterprise part of the product, and performs testing for software se-
curity and enterprise at the system level. Testing for software security is automated,
whereas testing for the enterprise part is manual. For test automation a third-party tool
is used. The stated reason for using a third-party tool is lower costs and higher quality.
The team uses test automation tools provided by the vendors who are also providing
different modules of their product. The FCS team is working on the boot & loader
part and performs testing mainly at the component level. Testing for the loader is

121

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

automated, whereas testing for the boot part is manual. The team uses an in-house de-
veloped tool for automated testing and currently working on complete test automation
and the adoption of an open source tool. The reason for relying on internally developed
tools is that the teams' perception is that third-party tools might not fit their context and
would require extensive effort to adapt.

From Axis, practitioners from three teams (Firmware Development (FWD), Firmware
Release & Upgrade (FWR), and Platform Storage (PTS)) participated in the study. The
FWD team is responsible for the new product development and new feature additions
to products. They perform testing at unit, integration, and system level. Mainly regres-
sion testing is automated except the testing of new features.

The FWR team works on upgrades and new releases. Their primary responsibil-
ity is pre-release (Beta testing), performance, and stability testing. Performance and
stability testing is automated, but complemented by manual exploratory testing. Re-
gression testing is regarded as input to release. The PTS team is responsible for the
storage part of the platform and performs testing at the unit and system level. For re-
gression testing, the policy of the team is to run all test suits during nightly trials. At
Axis, the practitioners are mainly relying on an in-house developed automated testing
framework. The reason for using an in-house developed testing framework is to ensure
testing performance and stability. Furthermore, the testing tools are tightly tied with
their APIs. The automation framework is common for the whole platform.

4.3.3 Data collection

The data was mainly collected through interviews. We conducted semi-structured in-
terviews with a total of eleven testing practitioners.

Selection of participants

Before the actual study, with the help of project contact persons, we conducted two sep-
arate workshops at both companies. The purpose was to present our research objectives
to the managers and potential participants. We did highlight the required experience
and roles of the potential participants. These workshops enabled us to understand the
overall hierarchy of the companies, their team structures, and the working procedures.
The selection of the participants was based on convenience sampling [29]. Conve-
nience sampling is a non-probability non-random sampling method. We refer our se-
lection as convenience sampling because we selected those participants who were ful-
filling our selection criteria of role and experience, and who were willing to participate.
A summary of the participants is presented in Table 4.3.

122

Interview design

Based on the research questions, we prepared an interview guide consisting of open-
ended questions. We did not restrict ourselves to the pre-defined questions, we added/im-
provised the interview questions during the sessions. The first author developed the
interview guide, while the second author helped during the revisions, and an indepen-
dent researcher reviewed the interview guide. The interview guide consists of seven
sections: introduction, background, current practices, selection and prioritization, chal-
lenges and improvements, and success criteria. The complete interview guide is pre-
sented in A.

Interview execution

In total, we conducted eleven interviews (five at Axis, and six at Sony) with the rep-
resentatives of five teams. The first and second author participated in the interviews at
Axis, whereas the first and fourth author participated in the interviews at Sony. The first
author guided all the eleven interviews, while the second and fourth authors assisted
in their respective sessions. Observer triangulation was utilized during all interviews.
Besides the person guiding an additional researcher took the interview notes.

Each interview took about one hour and was audio-recorded with the consent of the
participants. During the interview, we complemented our documentation with mind-
maps and free text notes. The template of mind-map used for this study is presented
in Figure 4.1. The template consists of six nodes, five nodes represent the main topics
of our study (i.e. current practices, selection and prioritization criteria, challenges, im-
provements, and evaluation), whereas one node of the mid-map shows the background
information of the participant.

Figure 4.1: Mind-map used for data management and classification.

123

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

4.3.4 Interpreting, analyzing and validating interview transcripts

To minimize misunderstands and misinterpretations, we documented the interviews by
three different means: structured mind-maps, free text notes, and audio recordings.
The mid-map was the master document for the recording of interview results. Based
on the research questions, we already structured the mind-maps according to the main
themes of our study (see Figure 4.1). For the analysis of interview notes and audio
transcribed transcripts we followed the steps defined by Cruzes and Dybå [8]. We
also took inspiration from the method followed by the Petersen and Wohlin in their
study [27].

Step 1: Transcribing the interview recordings The first step was to finalize the
interview transcripts. In this step we transcribed the audio recordings, the first author
transcribed all the audio records and the second author randomly verified these tran-
scripts. We did use the free text notes as a separate source of raw data.

Step 2: Clustering of categories The second step was to cluster the raw data into
meaningful groups. We used color coding to separate the concepts in the transcripts
and identified the similarities and differences in the themes of different transcripts. For
example, the statements were grouped according to the categories, “current practices”,
“selection and prioritization criteria”, “challenges”, etc. As an example, we have listed
some statements of interviewees in the in Table 4.4. We clustered the raw data sepa-
rately for each participating team.

Step 3: Clustering of subcategories In the third step, we assigned the labels (themes)
to the statements already clustered in step 2. In this step, beside the labeling process,
we also did restructure the statements where it was necessary. Table 4.4 presents the
labels along with the restructured statements.

Step 4: Mapping categories and subcategories to mind-maps In this step, we
mapped the results generated from free text notes and audio generated transcripts to
the mind-maps, and updated the mind-maps accordingly.

Step 5: Generation of Results From the final copy of mind-maps we generated
Tables (4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, & 4.12) of results according to the research
questions presented in the section 4.3.1.

124

Table 4.4: Analysis procedure adopted for step 2 and step 3.

SNo Original statement Category Subcategory Restructured statement

1 i) Working very close with our devel-
opment team, Developers cannot merge
any thing with out the approval of testers
ii) Decision making approach: Before
heavy documents and test plans. Scoped
out a lot of overhead, now it is within
the project, in collaboration with the de-
velopers and with the project manager
and QA (decision within the develop-
ment team).

Practice Process Developers and testers col-
laborate while deciding
the scope for the testing of
changes and new features.

2 i) If we don't find issues with regression
testing, we try exploratory to find some-
thing
ii) We do some exploratory testing to
find new issues.

Practice Testing type Use of exploratory testing
as an alternative to RT.

3. i) Usually when we are closer to the
freeze of the code deadline we try to
make a little bigger scope.
ii) We run full scope at the of devel-
opment, when developers cannot make
changes.
iii) If there is a change in the core of the
product we run the full scope.

Practice Process Regression testing is per-
formed with full/bigger
scope at code-freeze, be-
fore release, or in case of
changes in the core of the
system.

4. We tag our test cases like sanity, scope,
mandatory, tagged test cases are sup-
pose to be really important test cases.

Practice Prioritization Use of priority tags for the
test cases with respect to
the relevant importance.

Step 6: Validation of results In qualitative studies, the researcher's bias can influ-
ence the interpretation of the results. It can be avoided by validating the interpretations
from the sources.

To validate our interpretation of results, we conducted two workshops with the par-
ticipants of our study and the representatives of the companies for EASE. We used val-
idation sheets to record the issues regarding the interpretation of the results. Feedback
of the study participants and companies representatives was positive, they identified a
few minor revisions (mainly related to the RT practices), which we adjusted accord-
ingly. Lately, we provided the final results to the companies representatives for the
final verification, their response was encouraging, and they did not raise any issue in
the final results.

125

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

4.4 Threats to validity

This study is exploratory and based on the experience and perceptions of industry prac-
titioners. The data was collected through semi-structured face-to-face interviews. We
asked open-ended questions to capture viewpoints without any restriction. The purpose
was to avoid researcher bias and get insights into current industry practices.

In our discussion of threats to validity, we follow the guidelines by Runeson and
Höst [9].

Construct validity This aspect of validity is regarding the underlying operational
measures, concepts, and terms of the study. In our case, the selection of the participants
regarding their competence and relatedness to the study area was a potential threat.
Similarly, missing any critical aspect from the interview design could also be a threat.
To mitigate these, we conducted pre-study workshops to explain the purpose of the
study to the focal persons in the companies and recruit appropriate participants for the
study (Ref: Section 4.3.3). Regarding the interview design, we have carefully designed
and reviewed the interview guide (see Section 4.3.3 and A).

Internal validity This aspect of validity is essential if causal relations are examined.
Generally, we can state that studying causal relationships was not in the scope of this
study. While describing the challenges and improvements we did analyze the possi-
ble dependencies among the identified challenges. We also studied the relationship
between the identified challenges and improvements. To avoid inconsistencies and re-
searcher bias while analyzing the results, we consulted the participants to validate our
interpretations of dependencies/relationships.

External validity This aspect of the validity refers to the generalization of findings.
Participants of this study represented five different teams of two large, multi-national
companies working on embedded software systems in the communications domain.
We have linked our findings with the findings from existing literature, which indicates
similar findings. A general challenge of case studies is generalizability, but their ad-
vantage is the amount of qualitative information that can be collected and the depth of
analysis this makes possible. The effort needed for qualitative data collection and anal-
ysis limits the number of cases that can be studied, though. With a questionnaire, for
example, more data points could be obtained, but qualitative information on the desired
level of detail could not be obtained. Given the limitations of case studies, Ghaisas et
al. [30] suggest to describe the cases in sufficient detail and generalize by analyzing

126

the similarity of cases. To support such an analytical generalization of our results, we
have presented a detailed discussion of the cases under study in Subsection 4.3.2.

Reliability To ensure the reliability of the results, we assured the correctness of the
collected data and interpretation of the results, see sections 4.3.3 and 4.3.4. For each
round of interview two authors participated. We did ensure the results triangulation, by
involving multiple authors in the results interpretations, and we did validate the results
in two workshops with the participants of the study.

4.5 Results and discussion

This section presents the results regarding the practitioners' perspectives on regression
testing, test case selection and prioritization criteria, challenges, improvements, and
success criteria. The subsections are organized according to the research questions
presented in Section 4.3.

4.5.1 The Practitioners' perceptions of regression testing (RQ1)

The purpose of our first research question was to elicit what participants think about
regression testing. Our first interview question was “What is regression testing for
you?”. Instead of standard definitions of regression testing [6, 7], our participants pro-
vided practical descriptions of regression testing with close relations to the perspectives
(teams) they were representing.

From Table 4.5, we can see that the practitioners covered three aspects while defin-
ing regression testing: 1) The timing or frequency of regression testing, 2) the scope of
regression testing, and 3) the overall goal of regression testing. Regarding timing, the
participants define the need for regression testing after changes or fixes, before release,
whereas some participants suggest running regression testing continuously. About the
scope of RT, the practitioners are flexible, some of the participants describe running
RT with smaller scope, whereas some prefer to adopt a “re-test all” policy. Finally, the
participants are agree on the goal of RT, (i.e. to get confidence about the integrity of
the system after changes, fixes or before the release). Difference in the initiation timing
of RT and scope does not means that teams / companies are perceiving RT differently.
In fact this represent that on which development level a team is employing the RT and
how often they are making changes or adding new features to the releases.

We thus synthesized the views of all participants from both the companies and
finalized the following definition:

127

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

Regression testing is a repetitive activity which is applied to ensure that
changes/fixes/upgrades did not affect the behavior of the system/product nega-
tively and nothing was broken or destroyed in the functionality.

4.5.2 Regression testing practices (RQ2)
The objective of the second research question was to understand how the practitioners
conduct regression testing in their projects. Figure 4.2 presents the regression testing
process in the case companies and Table 4.6 summarizes the regression testing prac-

Table 4.5: The practitioners' definitions of regression testing, as response to inter-
view question “What is regression testing for you?”.

CID1 PID2 RT Definition

SW
SE

P1. To verify that introduced changes/fixes have not changed the behavior of the
system in a negative way.

P2. Small sanity check on the changing part of system, try to figure out nothing has
broken.

P3. Run selected test cases continuously, to check If something has broken or if
everything has broken.

FC
S

P4. For every release, along with the testing of the new features, it is much important
to make sure that old functionality is intact.

P5. To make it sure that everything still works, need to run a regression test for every
new fix from developers. It could differ concerning what are the changes.

P6. It is a validation that primary use cases are working, regression testing is a hy-
giene thing to make sure that any basic functionality have not broken. It is not
expected to find much during regression testing.

FW
D

P7. To test what happened with other products, did changes destroy other products?
P8. Regression testing is a constant qualifier, and it is a process to test over and

over.

FW
R P9. To make sure that there is no regression, no degrades. Regression testing is input

to release.

PT
S

P10. Regression testing is to verify that the functionality that was working previously,
still works correctly or something has broken that was not expected while mak-
ing changes.

P11. To verify that during changes or adding new features the overall quality of the
functionality, performance of the database has not decreased.

1 Company/team ID according to Table 4.3.
2 Participant ID according to Table 4.3.

128

Program Modification

P is modified
to P'

Assess the
change

Regression Test Suite

Add new test
cases that
cover new
features

Identify test
cases from
T which are
valid for P'

Test Scope

 Test case
Selection

Retest all?

No

Test case
Minimization

T' is Large?

Test case
Prioritization

Yes

No

T' has
redundant
Tests?

Yes

Determine the
scope of RT

Test Execution

Execute T' on
P'

Exploratory
Testing

Yes

Yes

No

Output Comparison

Verify the test
results

No

Fault
identified?

OR

Fault Mitigation

Fault
Mitigation

Figure 4.2: Regression testing process in the case companies

tices identified in our study. Regression testing is instantiated after any modification
(change, fix, or upgrade). The practitioners start the process by assessing the change
and adding relevant test cases to the RT suite. The scope of RT is determined to decide
about the adoption of a retest-all vs selective RT strategy. In the case of retest-all, the
next step would be running the RT suite and in case of selective RT, a series of deci-
sions are carried out, see Figure 4.2 for detail. After running the RT suite, test results
are verified and in case defects are found, defect mitigation is invoked. If no defects are
found by running the current RT suite, two alternatives could be adopted; to augment
the RT suite or to continue with exploratory testing.

From Table 4.6, it is evident that the practitioners do collaborate with each other
while making any decision regarding RT. The companies are using a mix of automated
and manual RT, at Sony the practitioners specified that almost 50% of their testing ac-
tivity is automated, whereas participants from Axis claimed that majority of the RT

129

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

Table 4.6: Regression testing practices.

ID Description of practice SWSE FCS FWD FWR PTS CPL 1

Pr1. Collaboration: Developers and testers collaborate while
deciding the scope for the testing of changes and new
features.

✓ ✓ ✓ ✓ ✓

Pr2. Execution frequency: The frequency of executing tests
depends upon the type/importance of the functionality.

✓

Pr3. Execution frequency: Testing as much as possible with
selected test cases near the completion of the project.

✓ LPR6

Pr4. Reuse of test cases: Using existing test cases for the test-
ing of changes.

✓ ✓

Pr5. Adding new test cases: New test cases are added for new
features and issue leakage.

✓ ✓

Pr6. Running full scope: Regression testing is performed
with full/bigger scope at code freeze, before release, or
in case of changes in the core of the system.

✓ ✓ ✓ ✓ LPr2

Pr8. Nightly testing: RT is executed with full scope in nightly
runs.

✓ ✓ LPr2

Pr7. Day time testing: Select a scope that should run (fast) in
a day time and cover bigger part.

✓ ✓ ✓

Pr9. Weekly round of RT: Run a weekly round of RT with a
smaller scope.

✓

Pr10. Scope Selection: Mostly run RT with selected scope be-
cause of time constraint.

✓

Pr11. Running fix suite: Using fix set of test cases (that cover
the core/basic functionality) for RT.

✓ LPr3

Pr12. RT Automation: The companies are using both manual
and automated RT.

✓ ✓ ✓

Pr13. Testing tools: For test automation using third party tools. ✓
Pr14. Testing tools: For test automation using in-house devel-

oped tool.
✓ ✓ ✓ ✓ LPR5

Pr15. RT suite size: Regression test suites are fairly large. ✓ ✓
Pr16. Exploratory testing: Use of exploratory testing to com-

plement RT.
✓ ✓ ✓ ✓

Pr17. Test strategy: For every new project a detailed test strat-
egy / plan is developed.

✓ ✓ ✓ ✓

Pr18. Priority tags: Using tags with test cases to determine the
priority.

✓

Pr20. Traceability labels: Use of test case labels to link with
respective modules.

✓

Pr19. Tickets: Use of tickets for highlighting the issues, it
helps to identify the type and nature of the error.

✓

Pr21. When to introduce RT: Sometime early start of regres-
sion testing is preferred to catch defects at early stages.

✓ ✓ LPr7

Pr22. RT level: Applying RT at System level. ✓ ✓ ✓
Pr23. RT level: Applying RT at Component level. ✓
Pr24. RT goal: The goal of regression testing is to have confi-

dence that product is in good shape.
✓ ✓

CPL: Corresponding practice(s) in literature.

130

is automated. For test automation the companies are using in-house build test tools,
except one team who is currently using a third party tool. All three teams at Axis are
using the same test automation and management tool. The scope of RT depends on
change/fix and time-line of the project. For changes, testers prefer to run the smaller
scope (selected test cases), in case of complex changes (e.g., in the core) they try to opt
for a wider scope. Near the completion of project (code freeze or near the release) the
practitioners favor the execution of RT with full scope (re-test all). The practitioners
at Axis also highlighted that during day time they run selected test cases and during
nightly testing they prefer to run full scope. The participants from SWSE (Sony) high-
lighted that they run weekly rounds of RT with selected scope, whereas FCS (Sony)
adopt the selection of scope because of time constraints.

The practitioners reuse of existing test cases as regression test suite, they do aug-
ment new test cases in the existing test suites in case of adding of new functionality
or any issue leakage. The practitioners label the test cases with “test tags” and/or “test
case labels” according to the respective importance and/or modules. The use of labels
conceptually differs in both the companies, at Sony labels are used to highlight the
relative priority of the test case, and at Axis labels are used to link the test cases with
respective modules.

Regarding test strategy or test planning, two teams SWSE (Sony) and PTS (Axis)
highlighted this aspect, both teams claimed it a company wide activity. At Sony, a high
level test strategy exists that serves the basis for the design of detailed test strategy.
For every new project test architect design the detailed strategy, it includes the details
about the modules to test, scope of testing, test cases, and etc. At Axis, there exists an
organization wide test plan. Preparing and updating the project specific test plan and
test scripts is the responsibility of the QA team. Some of the practices identified in our
study are already defined in the existing literature (see Table 4.2), we have created the
mapping of literature identified practices in the last column of Table 4.6. Considering
the results of a survey-based study conducted by Dias-Neto et al. [11] in which authors
surveyed the overall software testing practices we can conclude that practices identified
in our study are purely regression testing related. As opposed to the survey conducted
by Engström and Runeson [16] where authors specified that the practices identified in
their survey are general testing practices.

Test case selection and prioritization (RQ2.1)

An important aspect of regression testing practices is test case selection and prioriti-
zation, which we investigated in RQ2.1. A summary of selection and prioritization
criteria along with the information sources used for decision making can be found in
Tables 4.7 and 4.8, respectively. We did map the information sources with the se-

131

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

lection/prioritization criteria in Table 4.7 under the column heading “UIS”. The last
column “CCrL” in Table 4.7 lists the selection/prioritization criteria available in the
literature (Literature findings are listed in Table 4.2).

Table 4.7: Test selection and prioritization criteria.

ID1 Criteria SWSE FCS FWD FWR PTS UIS2 CCrL3

SPCr1. Change (size, complexity,and
location).

✓ ✓ ✓ ✓ IS1, IS2,
IS7

LPc1,
LPc5

PCr2. Risk. ✓ ✓ ✓ IS2, IS4
PCr3. Critical functionality. ✓ ✓ IS1, IS2,

IS3, IS7
LPc4

PCr4. Defect priorities. ✓ IS6
SCr5. Situation based scope assess-

ment.
✓ IS2, IS7 LSc5

SCr6. Coverage(feature/module). ✓ ✓ IS2, IS5
SCr7. Affected areas. ✓ ✓ IS1, IS2 LSc6
SCr8. Deadlines. ✓ ✓ ✓ IS8
SCr9. Least recently used test cases. ✓ IS2, IS5
SCr9. Most frequently failed test

cases.
✓ IS2, IS5

1 SPCr: Selection/Prioritization Criteria, PCr:Prioritization Criteria, SCr: Selection Criteria
2 UIS: Utilized Information Sources.
3 CCrL: Corresponding Criteria in Literature

Table 4.8: Information sources utilized for test selection and prioritization.

ID Information sources SWSE FCS FWD FWR PTS

IS1. Developers' feedback. ✓ ✓ ✓ ✓
IS2. Experience and Knowledge of system. ✓ ✓ ✓ ✓
IS3. Issue ranking. ✓
IS4. Team meetings. ✓ ✓ ✓
IS5. Test history. ✓
IS6. Test tags. ✓
IS7. Feature to test traceability. ✓ ✓
IS8. Project managers. ✓ ✓ ✓

The primary criteria for regression test suite selection and prioritization is ‘change’.
The practitioners assess the size, complexity, and location (area) of change. The par-
ticipants from all the teams highlighted this criterion. Feedback from developers, and

132

experience and knowledge of the practitioner about the system are the information
sources used to assess the change. Experience and knowledge of system and feedback
from developers are the primary sources of information for majority selection/prioriti-
zation criteria. For instance, scope assessment, fix regression test suite, critical func-
tionality, and coverage are the criteria where the practitioners are using their experience
to access these criteria.

Other relevant criteria that are used for the test selection or prioritization are risk,
deadlines, and critical functionality. Three out of five teams are using these criteria.
Measurement of risk is based on change (area and complexity of change), the prac-
titioners are sometimes using issue ranking to prioritize the risk. Knowledge of the
practitioner about risk areas is another source of information for risk measurement.
Deadlines are central concerning the scope selection. If the project is on schedule and
deadlines are relaxed then testers prefer to run full scope (complete test suite) for re-
gression testing. If deadlines are tight (often, it is the case), then the practitioners opt
for an adaptive (selected) scope. In this case, they do prioritize the test cases on the ba-
sis of the critical (essential) functionality. The selected scope consists of the test cases
that cover the critical functionality and the primary use cases (basic functionality). The
companies are using a predefined test suite that covers the primary use cases (basic
functionality). They update this suite (add new test case) in case developers add new
functionality (features) or if they think that something (test case) is missing.

Some selection criteria are team specific. For instance, the SWSE team selects the
test cases that have not been executed recently (least recently used test cases), they do
choose the test cases concerning the date of use. The testers in the FWD team are using
most recently failed test cases and most frequently failed test cases during the selection
process.

Key challenges in regression testing (RQ2.2)

The identified challenges are summarized in Table 4.9. They can be classified into two
categories: 1) management related challenges and 2) technical challenges. Manage-
ment related challenges include “C1: Time to test”, “C2: Information management”,
“C4: Communication”, “C9: Lack of strategy”, “C11: Developers interest in test-
ing”, and “C13: Management support”. Whereas technical challenges include “C3:
Obsolete test cases (Test suite maintenance)”, “C5: Test case selection”, “C6: Test
case prioritization”, “C7: Evaluating and improving (Lack of assessment)”, “C8: Low
coverage”, “C10: Traceability”, and “C12: Tool support”. Although only one team
identified lack of management support as a challenge initially, all teams agreed that a
lack of management support might lead to most other challenges.

Figure 4.3 presents the relationship between the identified challenges. Based on the

133

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

Table 4.9: Regression testing challenges.

ID Challenge SWSE FCS FWD FWR PTS CCL1

C1 Time to test: Too much testing in a short time.
Lack of time is the primary hindrance for the as-
sessments and innovation of regression testing.

✓ ✓ ✓ ✓ LC11

C2 Information management: Because of poor infor-
mation maintenance and lack of documentation it
is hard to extract the required information.

✓ ✓ ✓ ✓ LC8

C3 Test suite maintenance:There are tests which are
not failing for a long time; the issue of obsolete
test cases is a big challenge as it affects efficiency
and effectiveness.

✓ ✓ ✓ ✓ LC9

C4 Communication: Lack of information about the
changes and upcoming plans from the other teams
makes it challenging to trace the changes.

✓ ✓ ✓ ✓

C5 Test case selection: Instead of the dynamic test
scope focus is on fixed test suites. Adding value to
the scope by selecting relevant test cases is a chal-
lenge.

✓ ✓ ✓ ✓ ✓

C6. Test case prioritization: Inappropriate assumptions
about the priorities and what to select.

✓ ✓ ✓ LC3

C7 Lack of assessment: Lessons learned on a project
are often broad in nature, not possible to reflect on
the success. Time to test is one the factors that lim-
its the option of evaluations and improvements.

✓ ✓ ✓ ✓ LC10

C8 Low coverage: Detection of new bugs is a chal-
lenge this is because of, running the same test cases
for a long time that is causing the low test coverage.

✓ ✓ ✓

C9 Lack of strategy: Focus is on project success in-
stead of organizational success, no long-term strat-
egy.

✓ ✓

C10 Traceability: Finding trace-links between tests and
other artifacts is a challenge.

✓ ✓

C11 Developers interest in testing: Developers' least in-
terest in quality, delivering their code without test-
ing.

✓

C12 Tool support: The testers have to go through exces-
sive manual work in RT because of the unavailabil-
ity of good verification tools.

✓ LC13

C13 Management support: Lack of understanding
about the importance of verification, and not allo-
cating sufficient time to test.

✓ LC15

1 CCL: Corresponding challenges in literature

134

C13

C2

C1 C11

C4

C9

C7

C3

C12

C5

C6

C10

C1: Time to test
C2: Information Maintenance
C3:Test Suite Maintenance
C4: Communication
C5: Test case selection
C6: Test case prioritization
C7: Lack of assessment
C8: Low coverage
C9: Lack of strategy
C10: Traceability
C11: Developer interest in testing
C12: Tool support
C13: Management Support

C8

Figure 4.3: Relationship between RT challenges.

descriptions of the practitioners, two challenges are said to be related if the presence
of one challenge can cause the existence of another challenge, or if the resolution of
one challenge can resolve the dependent challenge. For instance, practitioners describe
time to test (C1) as “[t]oo much testing in a short time. Lack of time is the primary hin-
drance for assessment and innovation of regression testing.” From this description, we
can see that lack of time affects evaluating and improving (C7). Similarly, practitioners
define management support (C13) as “[l]ack of understanding about the importance
of verification, and not allocating sufficient time to test.” From this description, we can
conclude that the existence of the challenge time to test (C1) might be caused by (lack
of) management support (C13).

In Figure 4.3, we linked the challenges to each other with arrows. The arrowhead
is towards the challenge that can affect the challenge that is on the tail side of the
line. For example, challenge C13 (management support) can cause the presence of
the challenges C1, C2, C4, C9, and C11. From the figure we can see that the central
challenge is C13 (management support) which could cause all other related problems
directly or indirectly. Time to test (C1), information management (C2), and lack of
strategy (C9) are root causes of technical challenges. Among the technical challenges,
C7 (lack of assessment) is a root of other technical challenges including C3, C5, C6,
C8 and C12). Similarly, traceability (C10) can effect selection (C5) and prioritization
(C6). Finally C3, C5, C6 and C10 can cause low coverage (C8).

In the last column of Table 4.9 we mapped the challenges identified from the liter-
ature (see Table 4.2) with the challenges identified in our study. Seven challenges (C1,
C2, C3, C6, C7, C12, & C13) identified in our study are similar to the challenges iden-

135

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

tified in the studies [16, 25, 28]. Interesting aspect is that first study by Engström and
Runeson [16] was conducted in 2010 and the other study by Harrold and orso [25] was
carried out in 2008. Despite the voluminousness research on regression testing [24], it
is evident that the challenges are not fully addressed after 10 years. It is an indicator
that either published research is not fulfilling the industrial needs or the industrial stake-
holders are unable to exploit the intended benefits from the available research. Along
with the identification of challenges with the help of practitioners, it is also important
to work on improvements in a close collaboration with the practitioners.

4.5.3 Suggested improvements for regression testing (RQ3)
In RQ3, we investigated improvements that the practitioners seek in their testing envi-
ronment. Table 4.10 summarize the possible improvements we identified with the help
of the practitioners.

A majority of identified improvements correspond to the challenges presented in
Table 4.9. Last column (CC) of Table 4.10 list the challenges that could be addressed
by the respective improvements. There is often a one-to-one mapping between the chal-
lenges and the suggested improvements. For instance, C2 (information management)
is identified as a challenge in both the companies, the practitioners even who did not
recognize it as challenge agree to build and maintain a standard information repository
(I-1). Similarly, C3 (test suite maintenance) is highlighted as a challenge. To address
the issue, the practitioners suggest to work on the elimination of irrelevant and obsolete
test cases (I-2: Test suite minimization) and updating test suites by adding new relevant
test cases (I-3: Test suite augmentation). Working on test suite minimization will also
be helpful for reduction of testing time, that ultimately will be helpful to cope with the
challenge of time to test (C1). Another important suggestion that can be helpful for
the reduction in time to test is to introduction of parallelized testing (I-12). Overall test
optimization (I-14) will also improve the situation.

Availability of good verification tools (C12) is an issue of concern for the compa-
nies, because of this fact testers have to do a lot of manual work in RT. In this regard, it
is suggested to identify and adopt the verification tools (I-4) appropriate for the compa-
nies environment. To cope with the challenge of communication (C4), the practitioners
think that there is a need to work for the improved collaboration (I-5). Although, the
practitioners (developers and testers) do have a certain level of communication, but
there is no formal mechanism for the communication. Specifically, with reference to
information sharing regarding changes and change plan. In the presence of well main-
tained information repository this issue should be minimized. Test case selection and
test case prioritization are of central importance in regression testing, especially for
the large-scale development. Because right selection with appropriate priority order

136

Table 4.10: Identified improvements.

ID Improvements SWSE FCS FWD FWR PTS CC1

I-1. Information repository: Need to build and maintain
a standard information repository, to make infor-
mation extraction easier and faster.

✓ ✓ ✓ ✓ C2

I-2. Removing irrelevant test cases: Need to identify
and remove irrelevant/obsolete test cases, to reduce
the test cost and improve the efficiency and effec-
tiveness.

✓ ✓ ✓ ✓ C1,
C3

I-3. Test suite augmentation: Need to update test suites
by adding new relevant test cases, to improve the
coverage and effectiveness.

✓ C3

I-4. Good verification tools: Need to identify and add
good verification tools, to reduce the dependence
on manual testing.

✓ ✓ C12

I-5. Improved collaboration: There is a need to regu-
late the collaboration mechanism between develop-
ers and tester, to improve the information sharing
(What developers are changing? and what testers
have to test?)

✓ ✓ ✓ ✓ C4

I-6. More exploratory testing: To find new bugs, need
to do more exploratory testing.

✓ ✓ C8

I-7. Evaluate: To measure success and improve RT,
need to collect test execution statistics and evalu-
ate.

✓ ✓ ✓ C7

I-8. Improved test strategy: Need to improve the testing
strategy and innovate testing methods.

✓ C9

I-9. Test History: Need to maintain test execution his-
tory dynamically, so that it could be reused to inno-
vate testing.

✓ ✓ C5,
C6

I-10. Early start of regression testing: To ensure the sta-
bility, need to introduce early start of regression
testing.

✓ C1

I-11. Test case classification: To classify test cases ac-
cording to severity, need to introduce a standard
template for error reporting, that should allow link-
ing tests to errors.

✓ C6,
C10

I-12. Parallelized testing:To cope with the time con-
straints, need to introduce the concept of paral-
lelized testing.

✓ C1

I-13. Selective RT: Need to improve the selection mech-
anism of test cases, selection should be without any
compromise.

✓ C5

I-14. Test optimization: To shorten the release cycle,
need to work on overall optimization of RT.

✓ C1,
C3,
C5,
C6

1 CC: Corresponding challenge(s).

can improve the coverage and defect detection rate. The companies lack in both areas
(C5: Test case selection and C6: Test case prioritization). From the identified improve-

137

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

ment (I-7, I-8) provides the basis for the improvement in selection and prioritization
methods. Exploratory testing (I-6) could be an immediate solution choice for the prac-
titioners.

4.5.4 Goals and criteria for successful regression testing (RQ4)
In response to our question “How do you evaluate the success in regression testing?”
the majority of the participants responded that they don’t use any objective metrics, but
apply subjective judgements. Subsequently, we did change our question, “If you have
to evaluate the success, which would be your success goals?” Tables 4.11 and 4.12
summarize goals and criteria regarding the success of regression testing. The suc-
cess criteria refer to the conditions that are essential to achieving the regression testing
goals.

Table 4.11: Regression testing success goals.

ID Goal SWSE FCS FWD FWR PTS CSC1 CGL2

SG1. Customer satisfaction: The released product
is working and the customer is not complain-
ing.

✓ ✓ SC6

SG2. Critical defect detection: RT is regarded as
successful if it can find the critical bugs (no
critical bugs should be delivered to the cus-
tomer).

✓ ✓ ✓ ✓ ✓ SC1,
SC2,
SC3,
SC7

LG4

SG3. Confidence: The tester should be confident
about the achieved quality.

✓ ✓ ✓ ✓ All
SCs

LG3

SG4. Effectiveness: In term of fault detection, the
goal is to find as many bugs as it is possible.

✓ ✓ ✓ ✓ ✓ SC1,
SC2,
SC3,
SC5,
SC7

LG1

SG5. Controlled fault slip-through: How many is-
sues have slipped to the customer is impor-
tant, it provide a measure to success. The
goal is to keep fault-slip through as low as
possible.

✓ ✓ ✓ SC1,
SC2

LG6

SG6. Efficiency:Running the planned scope for RT
in a limited time.

✓ ✓ ✓ ✓ ✓ SC1,
SC2,
SC3

LG7

1 CSC: Corresponding Success Criteria.
2 CGL: Corresponding goals in the literature

138

Table 4.12: Regression testing success criteria.

ID Criteria SWSE FCS FWD FWR PTS

SC1. Right selection: Based on requirements se-
lecting and defining the right test cases. Se-
lection of appropriate test cases is the key for
successful RT.

✓ ✓ ✓

SC2. Knowledge of changes: For successful re-
gression testing, QA should be well aware
of changes in the system.

✓ ✓

SC3. Early start of RT:The success criteria in RT
is to start of RT as early as possible.

✓

SC4. Coverage: Coverage is one the criteria to
evaluate the success.

✓ ✓ ✓

SC5. Tester's Experience: Knowledge and expe-
rience of tester is the subjective measure of
confidence in RT.

✓ ✓

SC6. Customer's feedback: The customer feed-
back is the measure of confidence in the soft-
ware testing.

✓ ✓

SC7. Quality of test cases: Carefully designed test
cases can guarantee the finding issues and
good coverage.

✓ ✓ ✓

We identified six regression testing goals (SG1–SG6) along with the seven success
criteria. From Table 4.11 it is evident that the goals “Critical defect detection” (SG2),
“Confidence” (SG3), “Effectiveness” (SG4), and “Efficiency” (SG6) are highlighted
by the majority of the participating teams. It is interesting that “Customer satisfac-
tion” (SG1) is highlighted by only two teams, whereas internal business perspectives
(SG2, SG4, SG6) are highlighted by all five teams. This is surprising since the case
companies are market-driven with customer satisfaction as a main success factor. The
customers might not care about how much regression testing a company performs as
long as the products work and the customers' expectations are fulfiled. Regarding re-
gression testing success criteria (SC1–SC7), they were mainly defined by three teams
(SWSE, FCS and FWR). The other teams defined only one success criterion and none,
respectively. In Table 4.11, we mapped the success criteria to the respective goals and
found that all criteria corresponded to goal “confidence”. However, confidence is a
subjective term and difficult to measure. Testers could be confident about the testing
results based on their experience and knowledge. We also identified RT success goals
from related studies ([10, 31, 34], see Table 4.2) and related them to the RT success
goals found in our work (see column CGL in Table 4.11).

139

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

These results are encouraging, although, initially, the majority of the practitioners
responded that they don't use objective metrics. The practitioners are aware of the
importance of success criteria and they could indicate how to measure them. Presently,
they are not making objective assessments because of lack of environment support,
availability of resources, and an appropriate mechanism for the assessment.

4.6 Summary and conclusions
We have conducted an interview-based study in two large communication companies
and investigated various aspects of regression testing in practice. In the following, we
summarize our findings regarding each research question.

The definition of RT that emerged from the practitioners (RQ1) (see Section 4.5.1)
is in line with the standard definition presented in ISO, IEEE, system and software
engineering vocabulary [7]. The goal of regression testing is to get confidence that
the system changes have not introduced unwanted system behavior rather than to find
errors. The scope of regression testing depends on the timing in the projects (e.g., small
fix or a major release) and risk analysis for incoming changes. This study confirms our
previous viewpoints [10] and Engström et al. [16].

Looking at the regression testing practices (RQ2), our respondents are using man-
ual and automated regression testing, there is a lot of manual work that practitioners
have to do. For test automation mainly the companies are relying on in-house de-
veloped tools. Inability to find a third party tool is an interesting findings that points
towards specific testing requirements or processes that can not be captured by a general
regression testing tool support. Another possible explanation is that our respondents
prefer to change the tools rather than wait for tool vendors to provide the necessary
adaptations. This allows for faster and better alignment between the testing process,
testing strategy and the tool support. Test strategy definition seems to be an ad hoc
practice among our respondent which confirms the need for in-house and flexible tool-
ing.

The testers and developers collaborate in the decision making regarding various
aspects of RT. Only SWSE and FWR respondents confirmed to reuse test cases. This
may explain how exploratory testing is used as a replacement for regression testing
when they fail to find issues with fixed regression suites. Greater test reuse seems to
be hindered by a lack of traceability labels (mentioned by one group) or tickets (also
mentioned by one group), see Table 6 for details.

The scope and time of change drive regression testing activities. Our practitioners
mostly applied a static regression testing scope to cover the basic/core functionality
of the respective systems. Size, position and complexity of change drive test case

140

selection, supported by domain knowledge and experience and dialog with developers.
When pressed by short deadlines, our practitioners limit the scope of regression testing.
The selection/prioritization criteria identified in our study are closely related to the
selection/prioritization criteria described in related studies [16, 24, 25]. We noticed
that for test coverage, our practitioners mentioned feature or module coverage. They
did not talk about code coverage. A reason for that might be that the case companies
are not developing the complete product-lines using in-house development. They are
also using code provided by their external vendors. Therefore, the case companies
might perform regression testing mainly at the system level, and the coverage criteria
they are using are feature or module coverage.

Looking at the 12 identified challenges (RQ2.2), information management, test
suite maintenance, communication, test case selection, and test case prioritization are
common for both companies. We identified fourteen challenges from the related studies
[16, 25]. Six of the challenges identified in our study can also be found in the related
work (see Table 4.9). We have also identified relationships among the challenges (see
Figure 4.3). There could be further relationships, for instance, a lack of communication
might impact traceability. Similarly, traceability might affect test suite maintenance.
A majority of the participants mentioned communication and test suite maintenance,
but only two groups highlighted traceability as a challenge. This may mean that our
respondents underestimate the role of traceability in regression testing. We believe
that more research should be directed towards understanding the relations between the
challenges and how the solutions can mitigate them.

We identified two improvement categories for regression testing practices (RQ3):
1) Improvements related to management related challenges, 2) improvements re-

lated to technical interventions. The latter ones are related to test case selection, test
case prioritization, test suite minimization, test suite augmentation, and assessment of
regression testing. Yoo and Harman [24] presented a literature survey of 159 papers on
test case selection, minimization and prioritization techniques, which includes a large
number of techniques proposed in these three areas. Despite a lot of work in these
areas, the practitioners still think that there is a need for improvement. This indicates
that either the techniques proposed in the literature are not fulfilling the requirements
of industry or that the practitioners are not aware of these techniques. The synthesis
of industry-relevant research on regression testing by Ali et al. [34] is a step forward
to communicate RT techniques to industry practitioners. Surprisingly, our respondents
pointed out good verification tools as a necessary improvement despite developing in-
house and heavily tailored solutions themselves. Another interesting aspect are irrele-
vant or obsolete test cases that appear to be a similar challenge. In a survey by Wnuk
et al. [2], over 80% of the respondents confirmed negative influence of obsolescence
on their processes.

141

Chapter 4. Regression testing for large-scale embedded software development –
exploring the state of practice

The success goals identified in our study are, customer satisfaction, critical defect
detection, confidence, effectivenss, controlled fault slip-through, and efficiency (RQ4).
Our study also reveals some preconditions which can guarantee the success of RT. For
instance, right selection of test cases, and knowing the changes are the conditions that
are essential for the success of RT. Regarding goals findings of this study complement
the findings of previous studies [10, 31, 34]. Similarity in the success goals identified
in two different studies indicate that there is an awareness and urge in the industry
regarding evaluating the success of regression testing.

142

4.7 References
[1] A. Bertolino, “Software testing research: Achievements, challenges, dreams,” in

Proceedings of the Workshop on the Future of Software Engineering (FOSE07,
2007, pp. 85–103.

[2] K. Wnuk, T. Gorschek, and S. Zahda, “Obsolete software requirements,”
Information and Software Technology, vol. 55, no. 6, pp. 921 – 940,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0950584912002364

[3] N. B. Ali, K. Petersen, and M. V. Mäntylä, “Testing highly complex system
of systems: an industrial case study,” in Empirical Software Engineering and
Measurement (ESEM), 2012 ACM-IEEE International Symposium on. IEEE,
2012, pp. 211–220.

[4] A. Orso and G. Rothermel, “Software testing: a research travelogue (2000–
2014),” in Proceedings of the Workshop on Future of Software Engineering
(FOSE14), 2014, pp. 117–132.

[5] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact,” Empirical
Software Engineering, vol. 10, no. 4, pp. 405–435, 2005.

[6] I. S. C. Committee et al., “Ieee standard glossary of software engineering ter-
minology (ieee std 610.12-1990). los alamitos,” CA: IEEE Computer Society,
1990.

[7] ISO/IEC, “ISO/IEC/IEEE24765:2010: Systems and software engineering–
vocabulary,” 2010.

[8] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in
software engineering,” in Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on. IEEE, 2011, pp. 275–284.

[9] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study re-
search in software engineering,” Empirical software engineering, vol. 14, no. 2,
p. 131, 2009.

[10] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk, “Regression testing goals-
view of practitioners and researchers,” in 24th Asia-Pacific Software Engineer-
ing Conference Workshops (APSECW), 2017. IEEE, 2017, pp. 25–31.

143

REFERENCES

[11] A. C. Dias-Neto, S. Matalonga, M. Solari, G. Robiolo, and G. H. Travassos, “To-
ward the characterization of software testing practices in south america: looking
at brazil and uruguay,” Software Quality Journal, vol. 25, no. 4, pp. 1145–1183,
2017.

[12] M. Kassab, J. F. DeFranco, and P. A. Laplante, “Software testing: The state of
the practice,” IEEE Software, vol. 34, no. 5, pp. 46–52, 2017.

[13] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits and lim-
itations of automated software testing: Systematic literature review and practi-
tioner survey,” in Proceedings of the 7th International Workshop on Automation
of Software Test. IEEE Press, 2012, pp. 36–42.

[14] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlogel, and
A. Wubbeke, “Regression test selection of manual system tests in practice,” in
Proceedings of the 15th European Conference on Software Maintenance and
Reengineering (CSMR), 2011, pp. 309–312.

[15] J. Kasurinen, O. Taipale, and K. Smolander, “Software test automation in prac-
tice: empirical observations,” Advances in Software Engineering, vol. 2010,
2010.

[16] E. Engström and P. Runeson, “A qualitative survey of regression testing prac-
tices,” in Proceedings of the International Conference on Product Focused Soft-
ware Process Improvement. Springer, 2010, pp. 3–16.

[17] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in the wild: The so-
cial and organisational dimensions of real world practice,” Computer Supported
Cooperative Work (CSCW), vol. 18, no. 5-6, p. 559, 2009.

[18] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A preliminary survey
on software testing practices in australia,” in Software Engineering Conference,
2004. Proceedings. 2004 Australian. IEEE, 2004, pp. 116–125.

[19] G. M. Kapfhammer, “Empirically evaluating regression testing techniques:
Challenges, solutions, and a potential way forward,” in Proceedings of the
Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011, pp. 99–102.

[20] E. Engström, P. Runeson, and G. Wikstrand, “An empirical evaluation of re-
gression testing based on fix-cache recommendations,” in Proceedings of the
Third International Conference on Software Testing, Verification and Validation
(ICST), 2010. IEEE, 2010, pp. 75–78.

144

[21] E. Engström, K. Petersen, N. bin Ali, and E. Bjarnason, “Serp-test: A taxonomy
for supporting industry-academia communication,” Software Quality Journal,
pp. 1–37, 2016.

[22] X. Lin, “Regression testing in research and practice,” Computer Science and
Engineering Department University of Nebraska, Lincoln, pp. 1–402, 2007.

[23] D. Parsons, T. Susnjak, and M. Lange, “Influences on regression testing strate-
gies in agile software development environments,” Software Quality Journal,
vol. 22, no. 4, pp. 717–739, 2014.

[24] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Software Testing, Verification and Reliability, vol. 22, no. 2,
pp. 67–120, 2012.

[25] M. J. Harrold and A. Orso, “Retesting software during development and main-
tenance,” in Proceedings of Frontiers of Software Maintenance FoSM. IEEE,
2008, pp. 99–108.

[26] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression
test case selection: A systematic literature review,” ACM Comput. Surv., vol. 50,
no. 2, pp. 29:1–29:32, 2017.

[27] K. Petersen and C. Wohlin, “A comparison of issues and advantages in agile
and incremental development between state of the art and an industrial case,”
Journal of systems and software, vol. 82, no. 9, pp. 1479–1490, 2009.

[28] D. Brahneborg, W. Afzal, and A. Čauševič, “A pragmatic perspective on re-
gression testing challenges,” in Software Quality, Reliability and Security Com-
panion (QRS-C), 2017 IEEE International Conference on. IEEE, 2017, pp.
618–619.

[29] B. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 5: popula-
tions and samples,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 5,
pp. 17–20, 2002.

[30] S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, and R. J. Wieringa, “Generalizing
by similarity: Lessons learnt from industrial case studies,” in Proceedings of the
1st international workshop on conducting empirical studies in industry, 2013,
pp. 37–42.

145

REFERENCES

[31] S. Jafrin, D. Nandi, and S. Mahmood, “Test case prioritization based on fault de-
pendency,” International Journal of Modern Education and Computer Science,
vol. 8, no. 4, p. 33, 2016.

[32] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case priori-
tization approaches in regression testing: A systematic literature review,” Infor-
mation and Software Technology, 2017.

[33] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic review on test
suite reduction: Approaches, experiment’s quality evaluation, and guidelines,”
IEEE Access, vol. 6, pp. 11 816–11 841, 2018.

[34] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas,
D. Helgesson, S. Kunze, and M. Varshosaz, “On the search for industry-relevant
regression testing research,” Empirical Software Engineering, pp. 1–36, 2019.

146

Appendix B

Interview guide

Introduction

Personal introduction Interviewers tell the participant about themselves, their back-
ground and training, and interest in the area of software testing.

Study goal The lead interviewer explains the study goal to the participant.

Goal: The goal of the study is to know the state of regression testing practice in the
large-scale embedded software development. The purpose is to know that how com-
panies are managing their test systems, specially with reference to regression testing.
The following points are the focus of the interview.

◦ Current Practices,
◦ Test Selection and prioritization,
◦ Challenges and issues,
◦ Improvements, and
◦ Evaluation of success goals.

Benefit: This study will provide the basis for improving the different aspects of
regression testing considering the different views of people within the organization. We
believe your opinion is valuable. This investigation gives you (interviewee) a chance
to contribute to the improvement of the regression testing environment.

147

Chapter B. Interview guide

Interview process Interviewer describes the overall process, that how the interview
will take place.

◦ Interview duration: The interview will be completed in about an hour time.
◦ Interview questions: there may be some questions that the interviewee perceives

as stupid, silly, or difficult to answer. It is possible that an appropriate question for one
person may not be suitable for the other.

◦ Counter questions: The interviewee may feel free to ask counter questions for
the clarification of an interview question and can disagree with any statement of the
interviewer.

◦ Answers: We believe that in an interview, we can not rate any answer as right or
wrong. The interviewee need not worry about in this regard, and we expect he/she will
answer the questions on the basis of knowledge and experience.

Respondent background

The purpose of this section is to know about the participant's professional background,
current role and responsibilities.
Question 1: Could you please briefly describe on your professional background?

◦ Your qualification,
◦ Overall Experience,
◦ Time in the current company.

Question 2: How will you define your expertise?
◦ Software Engineering,
◦ Software Development,
◦ Software testing.

Question 3: Please specify about your current job.
◦ Your current team,
◦ Your role in the team.

Question 4: Can you please brief us about your current project(s).

Interview part to explore the RT state of practice

This is the central part of this interview, and we are interested to know about the current
practice, selection and prioritization criteria, challenges, and improvements regarding
regression testing. In the final part of the interview, we will discuss the regression
testing success goals. We will start by asking our questions regarding current practices.
Please feel free to add detail at any point of the interview that you think we missed to
ask or you forget to describe.

148

Defining regression testing The purpose is not to get the academic definition of
regression testing. The interviewers are interested to know the perception of the prac-
titioner.
Question 1: What is regression testing for you?

Questions regarding current practices The aim is to know how practitioner's team
is performing regression testing.
Question 1: Can you please give us a walk-through of overall process and highlight
where and how often regression testing is performed?
Question 2: Have you been involved in decision making regarding (When to do regres-
sion testing? Which test cases should be executed? How to select a subset of candidate
test cases?)?
Question 3: In your team regression testing is manual or automated?
Question 4: For automation which tools are in use of your company / team?
Question 5: Decision are taken by the individuals or by the QA team? (Who are the
people involved in decision making?)

Selection and prioritization Although, selection and prioritization are regarding as
the part of practice. Considering the importance of selection and prioritization, we are
asking focused questions.
Question 1: Do you use some predefined criteria for the selection and / or prioritization
of test cases?
Question 2: Which information you use while making decisions for selection and/or
prioritization?
Question 3: Do you or your team maintain the required information? Is this information
readily available?
Question 4: When have you made the right selection of test cases?
Question 5: How do you evaluate / know whether the selection was right?

Challenges and improvements Challenges are the obstacles that can hinder the
smooth and successful execution of the operations. Like other working environments,
practitioners working in software development organizations are facing different is-
sues. Our interest is to know those issues which are recurring and require attention.
Question 1: What are the challenges for testers regarding regression testing?
Question 2: Do you have any mitigation strategies to overcome these challenges?
Question 3: What are the challenges, you think need to pay more attention?

149

Chapter B. Interview guide

Question 4: Considering the underlying challenges, can you identify the areas of im-
provement?

Success Criteria To determine the success of any activity, we measure it with the
predefined goals, that is, if the goals have met or not.
Question 1: What is your criteria of success of regression testing? Do you measure the
success?
Question 2: At your company / team do you define success goals?
Question 3: For a successful regression testing what are the goals that should be
achieved?
Question 4: How will you determine that the desired goals have been achieved?

Closing Questions We mentioned earlier that the goal of this research is to identify
potential problems and come up with suggested solutions. Your opinion counts!
Question 1: In your opinion which is the most important area that should have to be
the focus of this research?
Question 2: Do you want to share some more information which you think is important
to consider, that we may have missed?

150

Chapter 5

On the search for
industry-relevant regression
testing research

5.1 Introduction

Regression testing remains an unsolved and increasingly significant challenge in in-
dustrial software development. As a major step towards quality assurance, regression
testing poses an important challenge for the seamless evolution (e.g., continuous inte-
gration and delivery) of large-scale software. Similarly, dealing with variability (e.g.,
in software product lines/product variants) makes regression testing of industrial soft-
ware a non-trivial matter. Testing is highly repetitive at all levels and stages of the
development, and for large and complex systems precision in regression test scoping
becomes crucial.

These challenges have led to a large body of academic research. There is even
a multitude of systematic literature reviews classifying and analysing the various pro-
posed techniques for regression testing. For example, there are eleven literature reviews
on regression testing published since 2010 ([16, 17, 36, 39, 43, 54, 66, 70, 72, 78, 79]).

Despite this extensive body of research literature, research results have shown to be
hard to adopt for the practitioners ([5–8, 74, 76]). First of all, some results are not ac-
cessible for practitioners due to the discrepancies in terminology between industry and
academia, which in turn makes it hard to know what to search for in the research liter-

151

Chapter 5. On the search for industry-relevant regression testing research

ature. Furthermore, many empirical investigations are done in controlled experimental
settings that have little in common with the complexity of an industrial setting. Hence,
for practitioners, the relevance of such results is hard to assess. [74] surveyed regres-
sion testing practices, which highlighted the variation in regression testing contexts and
the need for holistic industrial evaluations.

There are today a significant number of industrial evaluations of regression test-
ing. Unfortunately, also these results are hard to assess for the practitioners, since there
are no conceptual models verified by practitioners to interpret, compare, and contrast
different regression testing techniques. [8] conducted an in-depth case study on the
procedures undertaken at a large software company to search for a relevant regression
testing technique and to evaluate the benefits of introducing it into the testing process at
the company. This study further emphasises the need for support in matching the com-
munication of empirical evidence in regression testing with guidelines for identifying
context constraints and desired effects that are present in practice.

To respond to this need, in this paper, we review the literature from a relevance
and applicability perspective. Using the existing literature reviews as a seed set for
snowball sampling [20], we identified 1068 papers on regression testing, which are
potentially relevant for our study. To gain as many insights as possible about relevance
and applicability we have focused the review on large-scale industrial evaluations of
regression testing techniques, as these studies in many cases involve stakeholders and
are more likely to report these issues.

Both relevance and applicability are relative to a context, and we are not striving to
find a general definition of the concepts. In our study, we are extracting factors that may
support a practitioner (or researcher) in assessing relevance and applicability in their
specific cases. We define relevance as a combination of desired (or measured) effects
and addressed context factors and include every such factor that have been reported in
the included studies. Similarly, applicability, or the cost of adopting a technique, may
be assessed by considering the information sources and entities utilised for selecting
and/or prioritising regression tests. For each of these facets, we provide a taxonomy to
support classification and comparison of techniques with respect to industrial relevance
and applicability of regression testing techniques.

The original research questions stem from an industry-academia collaboration1 (in-
volving three companies and two universities) on decision support for software testing.
Guided by the SERP-test taxonomy [75], a taxonomy for matching industrial chal-
lenges with research results in software testing, we elicited nine important and chal-
lenging decision types for testers, of which three are instances of the regression testing

1EASE- the Industrial Excellence Centre for Embedded Applications Software Engineering http://
ease.cs.lth.se/about/

152

challenge as summarised by [17]: regression test minimisation, selection, and prioriti-
sation. These challenge descriptions (i.e., the generic problem formulations enriched
with our collaborators' context and target descriptions) guided our design of the study.

To balance the academic view on the regression testing literature, we consulted
practitioners in all stages of the systematic review (i.e., defining the research ques-
tions, inclusion and exclusion criteria, as well as the taxonomies for mapping selected
papers).

The main contributions provided in this report are:

• three taxonomies designed to support the communication of regression testing
research with respect to industrial relevance and applicability, and

• a mapping of 26 industrially evaluated regression testing techniques (in total 38
different papers) to the above-mentioned taxonomies.

The remainder of the paper is structured as follows: Section 5.2 summarises pre-
vious research on assessing the industrial relevance of research. It also presents an
overview of existing systematic literature reviews on regression testing. Research ques-
tions raised in this study are presented in Section 5.3. Section 5.4 and Section 5.5 detail
the research approach used in the study and its limitations, respectively. Sections 5.6
to 5.8 present the results of this research. Section 5.9 and Section 5.10 present advice
for practitioners and academics working in the area of regression testing. Section 5.11
concludes the paper.

5.2 Related work
In this section, we briefly describe related work that attempts to evaluate the relevance
of software engineering research for practice. We also discuss existing reviews on
regression testing with a particular focusing on the evaluation of the industrial relevance
of proposed techniques.

5.2.1 Evaluation of the industry relevance of research
Software engineering being an applied research area continues to strive to establish
the industrial practice on scientific foundations. Along with the scientific rigour and
academic impact, several researchers have attempted to assess the relevance and likely
impact of research on practice.

[62] proposed a method to assess the industrial relevance of empirical studies in-
cluded in a systematic literature review. The criteria for judging relevance in thier

153

Chapter 5. On the search for industry-relevant regression testing research

proposal evaluates the realism in empirical evaluations on four aspects: 1) subjects
(e.g. a study involving industrial practitioners), 2) context (e.g. a study done in an
industrial settings), 3) scale (e.g. evaluation was done on a realistic size artifacts) and
4) research method (e.g. use of case study research). Several systematic reviews have
used this approach to assess the applicability of research proposals in industrial settings
(e.g. [1, 85]).

Other researchers have taken a different approach and have elicited the practition-
ers' opinion directly on individual studies ([59–61]). In these studies, the practitioners
were presented a summary of the articles and were asked to rate the relevance of a
study for them on a Likert scale.

The Impact project was one such initiative aimed to document the impact of soft-
ware engineering research on practice [46]. Publications attributed to this project,
with voluntary participation from eminent researchers, covered topics like configura-
tion management, inspections and reviews, programming languages and middle-ware
technology. The approach used in the project was to start from a technology that is es-
tablished in practice and trace its roots, if possible, to research [46]. However, the last
publications indexed on the project page2 are from 2008. One of the lessons learned
from studies in this project is that the organisations wanting to replicate the success of
other companies should “mimic successful companies' transfer guidelines” ([40, 46]).
Along those lines, the study presently read attempts to identify regression testing tech-
niques with indications of value and applicability from industrial evaluations [57].

To address the lack of relevance, close industry-academia collaboration is encour-
aged ([19, 46, 57]). One challenge in this regard is to make research more accessible to
practitioners by reducing the communication-gap between industry and academia [75].
SERP-test [75] is a taxonomy designed to support industry academia communication
by guiding interpretation of research results from a problem perspective.

5.2.2 Reviews of regression testing research

We identified eleven reviews of software regression testing literature ([16, 17, 36, 39,
43, 54, 66, 70, 72, 78, 79]). Most of these reviews cover regression testing literature
regardless of the application domain and techniques used. However, the following
four surveys have a narrow scope: [43] and [16] target testing web-based applications,
and [70] focus on identifying security-related issues, while [79] only considers lit-
erature where researchers have used Genetic Algorithms for regression testing. The
tertiary study by [68] only maps the systematic literature studies in various sub-areas
of software testing including regression testing. Instead of focusing only on regression

2https://www.sigsoft.org/impact.html

154

testing research, [47] reviewed the literature on test case selection in general. They
identified that only six of the selected studies were performed on large-scale systems,
and only four of these were industrial applications.

In the most recent literature review, [54] reviewed empirical research on regression
testing of industrial and non-industrial systems of any size. They mapped the identified
research to the following dimensions: evaluation metrics used in the study, the scope
of the study, and what they have termed as the theoretical basis of the study (research
questions, regression testing technique, SUT, and the dataset used). Their approach
indicates a similar aim as other literature reviews: to identify “the most effective”
technique considering the measures of “cost, coverage and fault detection”. However,
they do not take into consideration the aspect of the relevance and likely applicability
of the research for industrial settings.

Among the identified reviews, only five discuss aspects related to the industrial ap-
plication ([17, 36, 66, 72, 78]). [78] found that 64% of the included 120 papers used
datasets from industrial projects in their evaluation. They further recommend that fu-
ture evaluations should be based on non-proprietary data sets that come from industrial
projects (since these are representative of real industrial problems) [79]. [17] identi-
fied that a large majority of empirical studies use a small set of subjects largely from
the SIR3 repository. They highlight that it allows comparative/replication studies, and
also warn about the bias introduced by working with the same small set of systems.
Similarly, [72] concluded that most empirical investigations are conducted on small
programs, which limits the generalisation to large-systems used in industry. [36] also
found that 50% of the 65 selected papers on regression test prioritisation included in
their review use SIR systems. Furthermore, 29% of the studies use the same two sys-
tems from the repository.

[66] reviewed the state of research and practice in regression testing. Authors
presented the synthesis of main regression testing techniques and found that only a
few techniques and tools developed by the researchers and practitioners are in use of
industry. They also discussed the challenges for regression testing and divided the chal-
lenges into two sets (transitioning challenges and technical/conceptual issues). Along
with the review of research on regression testing authors also presented the results of
their discussions (an informal survey) with researchers and practitioners. They were
intended to understand the impact of existing regression testing research and the major
challenges to regression testing.

Unlike existing literature reviews, this study has an exclusive focus on research
conducted in industrial settings. This study provides taxonomies to assist researchers
in designing and reporting research to make the results more useful for practitioners.

3Software Infrastructure Repository http://sir.unl.edu/

155

Chapter 5. On the search for industry-relevant regression testing research

Using the proposed taxonomies to report regression testing research, will enable syn-
thesis in systematic literature reviews and help to take the field further. One form of
such synthesis will be the technological-rules [33] (as extracted in this paper) with
an indication of the strength-of-evidence. For practitioners, these taxonomies allow
reasoning about the applicability of research for their own unique context. The study
also presents some technological-rules that are based on the results of this study which
practitioners can consider research-informed recommendations from this study.

5.3 Research questions

In this study, we aggregate information on regression testing techniques that have been
evaluated in industrial contexts. Our goal is to structure this information in such a way
that it supports practitioners to make an informed decision regarding regression testing
with a consideration for their unique context, challenges, and improvement targets. To
achieve this goal we posed the following research questions:
RQ1: How to describe an industrial regression testing problem? Regression testing
challenges are described differently in research ([38]) and practice ([74]). To be ac-
cessible and relevant for practitioners, research contributions in terms of technological
rules ([33]) need to be interpreted and incorporated into a bigger picture. This, in
turn, requires alignment in both the abstraction level and the terminology of the aca-
demic and industrial problem descriptions. To provide support for such alignment, we
develop taxonomies of desired effects and relevant context factors by extracting and
coding knowledge on previous industrial evaluations of regression testing techniques.
RQ2: How to describe a regression testing solution? Practitioners need to be able to
compare research proposals and assess their applicability and usefulness for their spe-
cific contexts. For this purpose, we extract commonalities and variabilities of research
proposals that have been evaluated in industry.
RQ3: How does the current research map to such problem description? To provide an
overview of the current state of the art, we compare groups of techniques through the
lens of the taxonomies developed in RQ1 and RQ2.

5.4 Method

To capture what information is required to judge the industrial-relevance of regression
testing techniques, we relied on: 1) industrial applications of regression testing tech-
niques reported in the literature, 2) existing research on improving industry-academia

156

collaboration in the area of software testing, 3) and close cooperation with practition-
ers.

To develop the three taxonomies presented in Section 5.6 and 5.7 and arrive at the
results presented in Section 5.8 we conducted a systematic literature review of regres-
sion testing research, interleaving interaction with industry practitioners throughout the
review process.

The process followed can be divided into six steps, which are visualised in Fig-
ure 5.1. Research questions were initially formulated within a research collaboration
on decision support for software testing (EASE). To validate the research questions and
the approach of constructing a SERP taxonomy [75] a pilot study was conducted (Step
1, Section 5.4.3). Based on the pilot study, a preliminary version of the taxonomy was
presented to the researchers and practitioners in EASE, together with a refined study
design for the extensive search. Through the extensive search of the literature (Step
2, Section 5.4.4) we identified 1068 papers on regression testing. This set was then
reduced (Step 3, Section 5.4.5) by iteratively coding and excluding papers while re-
fining the taxonomy (Step 4, Section 5.4.6). Finally, the constructed taxonomies were
evaluated in a focus group meeting (Step 5, Section 5.4.7) and the regression testing
techniques proposed in the selected papers were mapped to the validated version of the
taxonomies (Step 6, Section 5.4.8).

5.4.1 Practitioners' involvement
As shown in Figure 5.1 (ovals with shaded background), practitioners were involved
in three steps. For validating the selection criteria (Step 3a) a subset of selected pa-
pers was validated with practitioners. In Step 4a, the initial taxonomy was presented
to EASE partners in a meeting. This meeting was attended by five key stakeholders in
testing at the case companies. In Step 5, for taxonomy evaluation, we relied on a focus
group with three key practitioners. The three practitioners came from two companies
which develop large-scale software-intensive products and proprietary hardware. The
participating companies are quite different from each other; Sony Mobile Communi-
cations has a strict hierarchical structure, well-established processes and tools, and is
globally distributed, while the development at Axis Communications AB, Sweden still
has the entrepreneurial culture of a small company and has less strictly defined pro-
cesses. The profiles of the practitioners involved in the study are briefly summarized
below:

Practitioner P1 is working at Axis. He has over eight years of experience in soft-
ware development. At Axis, he is responsible for automated regression testing from
unit to system-test levels. His team is responsible for the development and mainte-
nance of the test suite. The complete regression test suite comprises over 1000 test

157

Chapter 5. On the search for industry-relevant regression testing research

 Collaborating
companies

(EASE-theme-E)

Research
questions

SERP-test
taxonomy

Pilot study
(literature)

1st Refined
taxonomy

Provided refined:
• Research questions
• Selection criteria,
• Data extraction forms
• Validation set for the systematic search

Citation-based
systematic

search
Taxonomy
extension

2nd Refined
taxonomy

Taxonomy
evaluation

3rd Refined
taxonomy

38 papers Industrial
evaluations, excluding open

source evaluations and
experimental benchmark

studies

Mapping of 26
interventions (38 papers)

to the proposed
taxonomy

1068 unique papers

Presented to
practitioners
from EASE

theme-E

Input of
practitioners
from EASE

theme-E

 Application of
selection
criteria

Refined selection criteria

4.11

2 3.1

94 papers with potential
industrial evaluations, excluding

open source evaluations and
experimental benchmark studies

+ 4 papers from pilot study

4.2
Mapping of

interventions to
the taxonomy

5

6

3

Taxonomy
development

4

Legend: activities
involved

Academics
&

practitioners

Only
academics

Figure 5.1: A description of the flow of activities including alternately reviewing the
literature and interacting with practitioners from the research project EASE.

cases that take around 7 hours to execute. He was also involved in previous research-
based initiatives to improve regression testing at Axis [76].

Practitioner P2 also works at Axis communications. He has over 12 years of soft-
ware development and testing experience. He is responsible for both automated and
manual regression testing at the system-test level. He has recently overseen a complete
assessment and review of the manually executed test-cases in the regression test suite.

Practitioner P3, works at Sony Mobile Communications. He has over 18 years of
experience in software development with responsibilities primarily include software
testing and overall automation and verification strategies. His current role as verifica-
tion architect covers testing at all levels including regression testing. Within the EASE
project, he has collaborated with researchers in several research-based investigations at
his company.

158

5.4.2 Need for a literature review

The broader context of this study is a collaborative research project EASE (involving
two academic and three industrial partners) working towards decision support in the
context of software testing. As shown in Figure 5.1, the research questions and the
need for a systematic literature review were identified in the context of this project. We
considered the literature to answer the following two questions in the pilot study:

1. Have existing systematic literature reviews taken into consideration the indus-
trial relevance and applicability of regression testing techniques? We identified
11 systematic literature studies ([16, 17, 36, 39, 43, 54, 66, 70, 72, 78, 79]), and
they have been briefly discussed in Section 5.2. These studies have not addressed
the research questions of interest for the current study.

2. Are there sufficient papers reporting an industrial evaluation of regression test-
ing techniques? Once we had established the need to analyse the existing re-
search from the perspective of industrial relevance, we conducted a pilot study
to:

• identify if there are sufficiently many published papers to warrant a sys-
tematic literature review,

• develop an initial taxonomy that serves as a data extraction form in the
main literature review, and

• identify a set of relevant papers that serve as a validation set for our search
strategy in the main literature review.

5.4.3 Pilot study

By manually searching through recent publications of key authors (identified in pre-
vious literature reviews discussed in Section 5.2) and by skimming through the top
most-relevant results of keyword-based searches in Google Scholar, we identified 36
papers. Using a data extraction form based on the SERP-test taxonomy [75], data were
extracted from these papers. Data extraction was done independently by at least two
reviewers and results were consolidated by discussion. This validation was considered
useful for two reasons: firstly, through the cross-validation, we developed a shared un-
derstanding of the process. Secondly, since the results were to be used as a guide for
data extraction in the main literature review, it was necessary to increase the reliability
of this initial step.

159

Chapter 5. On the search for industry-relevant regression testing research

The pilot study indicated that sufficient literature exists to warrant a systematic
literature review. The results of analysing the extracted information were useful for
formulating the data extraction forms for the main literature review.

5.4.4 Search strategy
Using the following search string, we identified the existing systematic literature stud-
ies on regression test optimization as listed in Table 5.1:
(“regression test” OR “regression testing”) AND (“systematic review” OR “research
review” OR “research synthesis” OR “research integration” OR “systematic review”
OR “systematic overview” OR “systematic research synthesis” OR “integrative re-
search review” OR “integrative review” OR “systematic literature review” OR “sys-
tematic mapping” OR “systematic map”))

Additionally, we also used [17] survey as it has a thorough coverage (with 189
references) and is the most-cited review in the area of regression testing. Using the
references in the papers listed in Table 5.1, and the citations to these papers were re-
trieved in August 2016 from Google Scholar. We identified a set of 1068 papers as
potentially relevant papers for our study. One of the systematic reviews, by [54] as
discussed in Section 5.2, was not used for snowball-sampling as it was published yet
when the search was conducted.

Table 5.1: Systematic literature studies used as start-set for snowball sampling

ID No. of References. No. of Citations

[70] 75 5
[43] 69 1
[16] 71 0
[79] 24 4
[36] 80 14
[78] 24 25
[72] 73 135
[47] 46 1
[39] 59 0
[17] 189 515

Using the 36 papers identified in the pilot-study (see Section 5.4.3) as the validation-
set for this study, we calculated the precision and recall ([15, 53]) for our search strat-
egy. 36 papers in a validation-set are reasonable for assessing the search strategy of a
systematic literature review [53].

Recall = 100 * (# of papers from the validation-set identified in the search) / (total
of papers in the validation set).

160

Precision = 100 * (total # of relevant papers (after applying the selection criteria)
in the search results) / (total # of search results).

Recall =
32
36

∗100 = 89%

Only four of the papers in the pilot-study were not identified by our search strategy
([18, 37, 48, 49]). These papers neither cite any of the literature reviews nor were they
included by any of the literature reviews comprising the starting set for search in this
study. We also included these four papers to the set of papers considered in this study.

As shown in Figure 5.1, after applying the selection criteria 94 relevant papers
were identified. These papers were used to extend the taxonomy. Using this number,
we calculated the precision of our search strategy as follows:

Precision =
94

1068
∗100 = 8%

An optimum search strategy should maximise both precision and recall. However,
our search strategy had high recall (with 89% recall it falls in the high recall range, i.e.
≥ 85% [15]) and low precision. The precision value was calculated considering the 94
papers that were used in extending the taxonomies.

The value of recall being well above the acceptable range [15] of 80% adds con-
fidence to our search strategy. Furthermore, such low value of precision is typical of
systematic literature reviews in software engineering e.g. approx. 5% [79] approx. 2%
([9, 85]), and below 1% ([36, 43, 72]).

5.4.5 Selection of papers to include in the review
We applied a flexible design of the study and inclusion criteria were iteratively refined.
The notion of “industrial” was further elaborated after the first iteration. To make
the set of papers more manageable, we decided to exclude open source evaluations
and industrial benchmark studies. The assumption was that such reports contain less
information about application context and limitations in terms of technology adoption.
The following inclusion-exclusion criteria were the ones finally applied:

• Inclusion criteria: peer-reviewed publications that report empirical evaluations
of regression testing techniques in industrial settings. It was detailed as the fol-
lowing, include papers that:

– are peer-reviewed (papers in conferences proceedings and journal articles)

– report empirical research (case studies, experiments, experience reports ...)

161

Chapter 5. On the search for industry-relevant regression testing research

– report research conducted in industrial settings (i.e. uses a large-scale soft-
ware system, involves practitioners or reports information on the real ap-
plication context including the process).

– investigate regression testing optimization techniques (i.e. regression test
selection, prioritization, or minimization/ reduction/ maintenance)

• Exclusion: exclude papers that:

– are non-peer reviewed (Ph.D. thesis, technical reports, books etc.)
– report a non-empirical contribution (analytical/ theoretical/ proposals)
– report evaluation in non-industrial settings.

We decided to use lines of code (LOC), if reported, as an indicator for the scale of
the problem instead of the number of test cases in the test suite or turnaround time of a
test suite (and similar metrics) for the following reasons:

• LOC/kLOC is the most commonly reported information regarding the size of a
SUT.

• Size and execution time of individual test cases in a test suite varies a lot, there-
fore, an aggregate value reporting the number of test cases or the execution time
of test cases is not very informative.

Techniques that work well on a small program may work on large programs. How-
ever, this is yet to be demonstrated. Practitioners seem to trust the results of research
conducted in environments similar to their [2]. Previous research on assessing the in-
dustrial relevance of research has also relied on the realism in the evaluation setting
regarding the research method, scale, context and users ([62, 85]).

We performed pilot selection on three papers to validate the selection criteria and to
develop a shared understanding among the authors. Each author independently applied
the selection criteria on the these randomly chosen papers. We discussed the decisions
and reflected on the reasons for any discrepancies among the reviewers in a group
format.

After the pilot-selection, remaining papers were assigned to each author randomly
to apply selection criteria. Inclusion-exclusion was performed at three levels of screen-
ing: ‘Titles only’, ‘Titles and abstracts only’, and ‘Full text’. If in doubt, the general
instruction was to be more inclusive and defer the decision to the next level. Each
excluded paper was evaluated by at least two reviewers.

Additionally, to validate that the studies we were selecting were indeed relevant,
during the paper selection phase of this study, a sample of eight papers from the in-
cluded papers was shared with practitioners. They labelled the paper as relevant or

162

Table 5.2: The list of papers included in this study

Study ID Reference. Study ID Reference.

S1 [76] S20 [41]
S2 [37] S21 [52]
S3 [48] S22 [32]
S4 [49] S23 [58]
S5 [81] S24 [71]
S6 [35] S25 [21]
S7 [23] S26 [73]
S8 [22] S27 [30]
S9 [13] S28 [63]
S10 [11] S29 [34]
S11 [14] S30 [64]
S12 [12] S31 [45]
S13 [24] S32 [65]
S14 [27] S33 [51]
S15 [28] S34 [84]
S16 [26] S35 [50]
S17 [29] S36 [77]
S18 [25] S37 [80]
S19 [42] S38 [67]

irrelevant for their companies and also explained their reasoning to us. This helped
us to improve the coverage of information that practitioners are seeking, which they
consider will help them make informed decisions regarding regression testing.

After applying the selection criteria on 1068 paper and excluding open source and
industrial benchmarks we had 94 remaining papers. Four papers from the pilot-study
were also added to this list. These 98 papers were randomly assigned to the authors of
this paper for data-extraction and taxonomy extension. After full-text reading and data
extraction, 38 papers were included as relevant papers (see list in Table 5.2), which
represent 26 distinct techniques. All excluded papers were reviewed by an additional
reviewer.

5.4.6 Taxonomy extension

Table 5.3 presents an abstraction of the data extraction form, which was based on the
first version of our taxonomy that was developed in the pilot study (see Step-4 onwards
in Figure 5.1 that produced the “1st Refined taxonomy" and Section 5.4.3 for details of
the pilot study). We followed the following steps to validate the extraction form and to
develop a shared understanding of it:

163

Chapter 5. On the search for industry-relevant regression testing research

1. Select a paper randomly from the set of potentially relevant papers.
2. All reviewers independently extract information from the paper using the data

extraction form.
3. Compare the data-extraction results from individual reviewers.
4. Discuss and resolve any disagreements and if needed update the data extraction

form.

This process was repeated three times before we were confident in proceeding with
data extraction on the remaining set of papers.

Table 5.3: Data extraction form

Item Value Remarks

1) Meta information
2) Description of testing technique
3) Scope of technique
4) High-level Effect/Purpose
5) Characteristics of the SUT
6) Characteristics of the regression testing process
7) Required sources of information
8) Type of required information
9) Is this an industrial study?
10) If yes, could the SUT be categorised as closed source?
11) Is the paper within the scope of the study? If not, please explain the reason.

The extracted information was used to develop extensions of SERP-test taxon-
omy [75] relevant to our focus on regression testing techniques. Separate taxonomies
for “addressed context factors”, “evaluated effects” and “utilised information sources”
were developed (shown as step 4.2 in Figure 5.1). The initial version of these tax-
onomies was developed in a workshop where six of the authors participated. Each of
the taxonomies were then further refined by two of the authors and reviewed indepen-
dently by a different pair of authors. This resulted in what is referred to as “2nd refined
taxonomy" in Figure 5.1. This version of the taxonomy was further validated with
practitioners, which is discussed in the following section.

5.4.7 Taxonomy evaluation
Once data analysis was complete, and we had created the three taxonomies presented
in Section 5.6, Section 5.7 and Section 5.8, we conducted a focus group with three key
stakeholders from the companies (brief profiles are presented in Section 5.4.1). In this
focus group, moderated by the second author, we systematically collected practition-

164

ers' feedback on the context and effect taxonomies because these two taxonomies are
supposed to describe the practitioners' need.

Practitioners were asked to assess the relevance of each of the nodes in the tax-
onomies (as presented in Table 5.4) and grade these from 1 to 3, where 1) means very
relevant (i.e. we are interested in this research), 2) possibly relevant and 3) means ir-
relevant (i.e. we are not interested in such research). The practitioners were asked to
respond based on their experience and not only based on their current need.

The feedback from the practitioners was taken into account, and some refinements
to the taxonomies were made based on it. As this is primarily a literature review, we de-
cided not to add factors that were not presented in the included papers although initial
feedback pointed us to relevant factors in the studies. Neither did we remove factors
completely from the taxonomies (although we removed some levels of detail in a cou-
ple of cases). The feedback was mainly used to evaluate and improve understandability
of the taxonomies and changes were mainly structural.

5.4.8 Mapping of techniques to taxonomy

As shown in Figure 5.1 after incorporating the feedback from the practitioners in the
taxonomy, we mapped the 26 techniques to our multi-faceted taxonomy. The re-
viewer(s) (one of the authors of the study) who were responsible for data extraction
from the papers reporting the technique mapped the paper to the taxonomy. Two ad-
ditional reviewers validated the mapping, and disagreements were resolved through
discussion and by consulting the full-text of the papers. The results of the mapping are
presented in Table 5.5.

5.5 Limitations

In this section, we discuss validity threats, our mitigation actions, and the limitations
of the study.

5.5.1 Coverage of regression testing techniques:

To identify regression testing techniques that have been evaluated in industrial settings,
we used snowball sampling search strategy. Snowball sampling has been effectively
used to extend systematic literature reviews ([69]). The decision to pursue this strategy
was motivated by the large number of systematic literature studies (as discussed previ-
ously in Section 5.2) available on the topic. Some of these reviews (e.g. [17] and [72])

165

Chapter 5. On the search for industry-relevant regression testing research

are well cited, indicating visibility in the community. This increases the likelihood of
finding recent research on the topic.

The search is not bound to a particular venue and is restricted to citations indexed
by Scopus and Google Scholar before August 2016. We choose Scopus and Google
scholar because of their comprehensive coverage of citations [4]. We are also confident
in the coverage of the study as out of the 36 papers in the validation set, only four were
not found (see Section 5.4).

To reduce the possibility of excluding relevant studies, we performed pilot selec-
tion on a randomly selected subset of papers. Furthermore, all excluded papers were
reviewed independently by at least two of the authors of this paper. In cases of dis-
agreement, the papers were included in the next phase of the study, i.e. data extraction
and analysis.

5.5.2 Confidence in taxonomy building process and outcome

The taxonomies presented in this paper were based on data extracted from the included
studies. To ensure that no relevant information was omitted, we tested the data extrac-
tion form on a sample of papers. This helped to develop a shared understanding of the
form.

Furthermore, to increase the reliability of the study, the actual data extraction (from
all selected papers) and the formulation of facets in the taxonomies were reviewed by
two additional reviewers (authors of this paper).

As shown in Figure 5.1, the intermediate versions of the taxonomy were also pre-
sented to practitioners and their feedback was incorporated in the taxonomy. Possible
confounding effects of their participation is due to their representativeness. The impact
of practitioner feedback was mainly on the understandability and level of detail of the
proposed taxonomies and a confounding effect could be that the understandability of
the taxonomy is dependant of dealing with a context similar to our practitioners' . The
two companies are large-scale and the challenges they face are typical for such con-
texts [75, 86]. All participants have many years of experience of testing (as described
in Sec 5.4.1). Therefore, their input is considered valuable for improving the validity of
our study, which focuses on regression testing research of large-scale software systems.

The taxonomies presented were sufficient to capture the description of challenges
and proposed techniques in the included studies and the practitioners consulted in this
study. However, new facets may be added by both researchers and practitioners to
accommodate additional concerns or aspects of interest.

166

5.5.3 Accuracy of the mapping of techniques and challenges

All mappings of included papers to the various facets of the three taxonomies were
reviewed by an additional reviewer. Disagreements were discussed, and the full-text
of the papers was consulted to resolve them. Despite these measures, there is still a
threat of misinterpretation of the papers, which could be further reduced for example by
consulting the authors of the papers included in this study to validate our classification.
However, due to practical reasons we did not implement this mitigation strategy.

5.6 RQ1 – Regression testing problem description

In response to RQ1, we created taxonomies of addressed context factors and desired
effects investigated in the included papers.

The taxonomies created in this study follow the SERP-taxonomy architecture [3],
i.e. they cover four facets, intervention, context constraints, objective/effect and scope.
A SERP-taxonomy, should include one taxonomy for each facet. In our case, we cre-
ate the regression testing taxonomies by extending an existing SERP-taxonomy (i.e.
SERP-test [75]) by adding the details specific to regression testing. More precisely,
we develop extensions for three out of four SERP facets: context factors (extends con-
text in SERP-test), desired effects (extends objective\improvements in SERP-test) and
utilised information entities and attributes (extends intervention in SERP). We do not
extend the scope taxonomy further since regression testing is in itself a scope entity in
SERP test, which all reviewed techniques target.

The taxonomy creation was done in three steps (considering both the researcher's
and the practitioner's perspective on the regression testing challenge): firstly we, to-
gether with our industry partners, defined an initial set of factors and targets which
were important to them; secondly we extracted information regarding these factors in
the included papers and extended the taxonomies with details provided in the reports,
and finally we evaluated the extended taxonomies in a focus group meeting with our
industry partners to get feedback on its relevance and understandability to them in their
search for applicable regression testing techniques. The items of the final taxonomies
are visible in Table 5.4

At the highest abstraction level, all categories of our proposed taxonomies were
considered relevant when describing a regression testing challenge (i.e. characteristics
of the system, the testing process and test suite and people related factors in the context
taxonomy and similarly improved coverage, efficiency, effectiveness and awareness in
the effect taxonomy).

The taxonomies reported in this paper are the revised version that addresses the

167

Chapter 5. On the search for industry-relevant regression testing research

feedback from this focus group. Due to the dual focus when creating the taxonomies,
we believe they could provide guidelines for both researchers and practitioners in defin-
ing the real-world regression testing problems they address, or wish to address consis-
tently to support the mapping between research and practice.

5.6.1 Investigated context factors
The purpose of the context taxonomy can be summarised as: Provide support for iden-
tifying characteristics of an industrial environment that make regression testing chal-
lenging and hence support the search for techniques appropriate for the context.

Table 5.4 shows a taxonomy of contextual factors that were investigated in the in-
cluded papers, as well as considered relevant by our industry partners. To be classified
as an investigated context factor the mere mentioning of it in general terms was not
considered sufficient, only in cases where the authors of the study include a discussion
or explanation of the effect a factor has on regression testing and why it is considered
in their study we include it as an investigated context factor.

Since we only include factors that have been discussed in the literature, the context
taxonomy is not extensive but can still be used as a guideline for describing regres-
sion testing problems and solutions. We identified three main categories of relevant
contextual factors (system related, process related, and people related) that have been
addressed in the included papers.

System related context factors

System related context factors include factors regarding the system (or subsystem) un-
der test, such as size, complexity and type. How size and complexity are measured
varies in the studies, but a common measure of size is lines of code. Factors that are
reported to add to the complexity are heterogeneity and variability (e.g. in software
product lines). Some techniques are designed to address the specific challenges of ap-
plying regression testing to a certain type of systems (e.g. web-based systems, real-time
systems, embedded systems, databases or component-based systems).

In the focus group meeting, embedded systems as a type of system were considered
to be a relevant factor, characterising the regression testing challenges, but the other
suggested system types were not - mainly on account of them not being applicable to
the specific situation of the practitioners in the group. We interpret that the abstraction
level is relevant and choose to keep the system types in the context taxonomy only
where an explanation of what makes the context challenging from a regression testing
perspective is given in any of the included studies (i.e. system types that are mentioned
but not explained from a regression testing challenge perspective are removed from the

168

Table 5.4: A taxonomy of context, effect and information factors addressed in the
included papers and considered relevant by our industry partners

Context taxonomy Factors along Study ID

System-related
factors

Size e.g. Large-scale S1, S2, S5 – S35
Complexity e.g. Heterogeneneous S1, S6, S9 – S12, S19, S20, S26, S29, S30, S31, S35 or
Customizeable or using product-line approach S3, S4, S6, S13 – S18, S24 – S26, S35, S38
Type of the system e.g. Web-based/SOA S3, S4, S6, S30, S31, S36 Real time S3, S4, S7,S8,
S13 – S18, S27 Embedded S1, S24 – S27 Database applications S19, S20, S36 Component-
based S6, S9,S10,S11,S12, S31

Process-related
Testing process (e.g. Continuous S1, S3, S4, S26)
Test technique e.g. Manual testing S5, S33, Combinatorial S19, S20 Scenario-based testing
S6 or Model-based testing S35

People-related
factors

Cognitive factors e.g. lack of experience S13 – S18, S26 or that new tools need to be easy
to implement and use S22
Organizational factors (e.g. Distributed development S6)

In
ve

st
ig

at
ed

co
nt

ex
tf

ac
to

rs

Effect taxonomy References

Test Coverage
Feature-coverage S3,S4, S13 – S18
Input (Pairwise) S19,S20

Efficiency and ef-
fectiveness

Reduction of test suite S5 – S18, S23 – S25, S27 S28, S30 – S32, S35 – S37
Reduced testing time S1, S3, S4, S5, S7, S8, S13 – S18, S23, S28, S29, S30, S32, S33, S36
Improved precision S1, S7 – S12, S24, S25
Decreased time for fault detection S2 – S4, S21, S22, S26, S29, S37
Reduced need for resources S2, S13 – S18, S29, S30
Fault detection capability S7, S8, S13 – S21 – S4, S24 – S26, S28, S29, S34
Severe fault detection S3, S4, S21
Reduced cost of failure S9 – S12, S19, S20, S33

Awareness
Transparency of testing decisions S26

D
es

ir
ed

ef
fe

ct
s

Information taxonomy References

Requirements
No. of changes in a requirement, Fault impact, Subjective implementation complexity,
Perceived completeness, Perceived traceability S21
Customer assigned priority S21, S33

Design artefacts
System models S13 – S18, S27, S35
Code dependencies S19,S20S37

Source code
Code changes/ Revision history S1, S2, S5, S7,S8, S24, S25, S38
Source file S2, S7, S8, S30, S37
No. of Contributors S32

Intermediate code
Class dependencies S6
Code changes (method or class) S2, S6, S28

Binary code
Revision history S6, S29
Component changes S9 – S12, S31
Binary files S6, S9 – S12, S23, S29

Test cases
Target variant S26 Type of test S26 Model coverage S13 – S20 Functionality coverage
S3, S4Static priority S26 Age S26 Fault detection probability (estimated) S22, S29, S33
Execution time (estimated) S22, S29 Cost (estimated) S22, S33 Link to requirements
S21, S22 Link to faults S21 – S4 Link to source code S6 – S8

Test Execution
Execution time S29, S32 Database-states S36 Invocation counts S28 Invocation chains
S28, S31 Runtime component coverage S31 Method coverage S28 Code coverage S5,
S23, S29, S37 [67] S38 Browser statesS36 Class coverage S6

Test reports
Execution time S4, S13 – S18, S3, S28 Verdicts S1 – S4, S13 – S18, S26, S32, S34
Severity S28, S33 Link to packages and their revisions S1 Link to branch S32 Build
type S32 Link to failure S13 – S18 Test session S13 – S18, S26 Variant under test S32

Issues
Link to fixed file / link to source code S24, S25
Fix-time S32
Link to test case S24, S25, S37
Failure severity S3, S4

U
til

is
ed

in
fo

rm
at

io
n

en
tit

ie
sa

nd
at

tr
ib

ut
es

169

Chapter 5. On the search for industry-relevant regression testing research

taxonomy). A similar approach was used for the other system related factors of which
only one, variability, was considered very important by the practitioners.

Process related context factors

Process related context factors include factors of the development or testing process
that may affect the relevance of a regression testing technique, such as currently used
processes and testing techniques. Some regression testing techniques address new re-
gression testing challenges arising with highly iterative development strategies such as
continuous integration (which also was the first and main challenge identified by our
collaborators and a starting point for this literature review). How testing is designed
and carried out (e.g. manual, black-box, combinatorial or model based) may also be
crucial for which regression testing technique is relevant and effective.

Of the testing process characteristics, use of a specific tool was considered irrele-
vant while the use of testing technique (all three examples) was considered very im-
portant. Thus, we removed the testing tool as a context characteristic and kept the
examples of testing techniques, manual testing, and combinatorial testing. Black box
testing was removed as it is covered by the information taxonomy. From the literature,
we added two more examples of test techniques that affect the applicability of regres-
sion testing solutions, Scenario based testing and Model based testing. The frequency
of full regression test (i.e. how often is the complete regression test suite run) was
considered important, and we rephrased it to continuous testing in the final taxonomy.
Also, size and long execution times of test suites were considered important but since
it is covered by the desired effects, we removed it from the context taxonomy.

People related context factors

People related context factors refer to factors that may cause, or are caused by, distances
between collaborating parties and stakeholders in the development and testing of the
software system. The terminology used stems from [82]. Cognitive context factors
include the degree of knowledge and awareness, while organisational factors include
factors that may cause, or are caused by, differences in goals and priorities between
units.

People related issues were important to all participants in the focus group, but the
message about which factors were most important was mixed. Ease of use got the
highest score. A new node Cultural distances was proposed as well, however, we
have not found any such considerations in the selected set of papers, and thus did not
include it in the taxonomy. This branch of the taxonomy showed to have overlaps with
the effect taxonomy (e.g. Lack of awareness and Need for quick feedback), and we

170

decided to remove such nodes from the context taxonomy and add them to the effect
taxonomy instead.

General reflection

A reflection about the overall context taxonomy is that it is not obvious which char-
acteristics are relevant to report from a generalisation perspective. Even in industrial
studies, the problem descriptions are in many cases superficial and many context fac-
tors are mentioned without any further explanation as to why they are relevant from
a regression testing perspective. Some factors mentioned are crucial only to the tech-
nology being evaluated, and not necessarily an obstacle preventing the use of other
technologies. One such example is the type of programming language - it was ini-
tially added to the taxonomy, as it is a commonly reported aspect of the cases used for
empirical evaluation. However, it was finally removed as it was considered a part of
the constraints of a solution, rather than characterising trait of the addressed problem
context.

5.6.2 Desired effects

The desired effect of a technique is basically about the reported types of improve-
ment(s) achieved by applying the technique, such as ‘improving efficiency’ or ‘de-
creasing execution time’. To be recognised as a desired effect, in our setting, the effect
of the technique has to be evaluated in at least one (industrial/large scale) case study,
rather than just being mentioned as a target of the technique without any evidence. Ac-
cordingly, the effect has to be demonstrated as a measurement showing the effect of the
proposed technique on regression testing.

Table 5.4 shows a taxonomy of effect (-target) factors. The proposed effect taxon-
omy provides a categorisation of the various effects (improvements) identified in the
research while simultaneously, it meets the level of information (or detail) required (or
considered relevant) by our industrial partners. The improvements (effects) of tech-
niques are categorised into three main categories: Improved test coverage, Improved
efficiency and effectiveness and increased awareness.

Improved test coverage

Improved coverage refers to the effects aiming at improving (increasing) the coverage
of any type of entity by the selected test suite. The type of entity, which is under
consideration, depends on the context and the proposed solution. We identified two

171

Chapter 5. On the search for industry-relevant regression testing research

main desired effects for coverage in the included papers, namely increased feature
coverage and improved combinatorial-input coverage (Pairwise).

Improved efficiency and effectiveness

Efficiency and effectiveness cover cost reduction factors such as reduced number of test
cases and reduced execution time with a consideration for how comprehensively faults
are detected. In principle, efficiency does not look into how well a testing technique
reveals or finds errors and faults. Improving only the efficiency of a technique will lead
to a testing activity that requires less amount of time or computational resources, but it
may not be effective (i.e. comprehensively detect faults). Efficiency and Effectiveness
are often distinguished in the research literature, while in practice they are equally im-
portant objectives and are most often targeted at the same time. Thus, we treat them as
one class in our taxonomy. Reduction of test suite often leads to a set of test cases re-
quiring less resource (memory) and less amount of time to be generated, executed, and
analysed. Note that test suite reduction in the research literature is often referred to as
a technique as such ([17]). It is then used interchangeably with test suite maintenance
referring to the permanent removal of test cases in contrast to the temporary removal
or ordering of test cases in “test case selection” or “test case prioritisation”. However,
“reduction of the number of test cases” is at the same time the most common measure
of the effectiveness of a regression test selection technique in industrial evaluations. It
is used in evaluation of regression testing techniques when comparing with the current
state of practice (both in the maintenance case and the selection case) in a particular
context. Thus, we add it as a desired effect in our taxonomy.

Reduction of testing time considers any time/resource-related aspect, also referred
to as ‘cost’ in some studies. Improved precision refers to the ability of a selection tech-
nique in avoiding non-fault revealing test cases in the selection. High precision results
in a reduction of test suite while it also indicates a large proportion of fault detecting test
cases. Hence, precision is considered a measure of both efficiency and effectiveness.
Decreased time for fault detection i.e. the aim is to reduce the time it takes to identify
faults, which is relevant when reflecting on the outcomes of a prioritisation technique
for regression testing. Reduced need for resources i.e. reduces the consumption of a
resource e.g. memory consumption. Improved fault detection capability also referred
to as ‘recall’ or ‘inclusiveness’, measures how many faults are detected regardless of
their severity. Improved detection of severe faults refers to the extent to which a tech-
nique can identify severe faults in the system. Reduced cost of failures, here the focus
is on the consequence (measured in cost factors) of false negatives in the selection.

172

Increased awareness

Increased awareness refers to improvements related to the testing process (activities)
per se and the people involved in the process. Improved transparency of testing de-
cisions has been considered in the existing research and identified as a relevant target
by our industrial partners. It aims at transparently integrating regression testing tech-
niques into daily/normal development activities such that the stakeholders understand
the working of the technique and trust the recommendations regarding the test-cases
they produce.

General reflection

A general reflection regarding the effect-taxonomy is that “what is measured in re-
search is not always what matters in practice”. The taxonomy was initially based solely
on the different variants of measurements used in the studies and rather fine-grained in
some aspects. Different levels of code coverage are for example a popular measurement
in literature but were not considered relevant by the practitioners in the focus group.
All proposed coverage metrics except feature coverage were considered irrelevant by
the participants. Our interpretation is not that code coverage is considered useless as
a test design technique, but that improving code coverage is not a driver for applying
regression testing (not for the practitioners and not for any of the stakeholders in the in-
dustrial evaluations). Although code coverage is not presented as a desired effect in our
taxonomy, it still appears as a characteristic of a technique (information attribute) since
there are some examples of techniques in our included papers that utilise measures of
code coverage to propose a regression testing scope.

Regarding the variants of measurements under effectiveness and efficiency, the
granularity level was considered too high and many of the nuances in the measure-
ments were hard to interpret from a practical point of view. Only three of the low-level
categories were considered relevant for at least one of the participants, ‘detection of
severe faults’ was important for all three while ‘precision’ and ‘test suite reduction’
were important to one of the participants.

5.7 RQ2 – Regression testing solution description in
terms of utilised information sources

To answer RQ2, i.e., “how to describe a regression testing solution?”, we considered
the following choices for developing a taxonomy: 1) based on the underlying assump-

173

Chapter 5. On the search for industry-relevant regression testing research

tions (e.g., history-based and change-based), 2) based on the techniques (e.g., firewall,
fixed-cache, and model-based), or 3) based on the required information (e.g., test case
execution information, code complexity, and version history).

We decided in favour of the third option, in particular, because it allows for rea-
soning about what information is required to implement a regression testing technique.
From a practitioner's point of view the concerns regarding: a) whether a technique
would work in his/her context, and b) whether it can help achieve the desired effect,
are already covered with the context and the effect taxonomy. Thus, while the effect
and context taxonomies enable narrowing down the choice of techniques, the aim of the
information taxonomy is to support practitioners in reasoning about the technical fea-
sibility and the estimated cost of implementing a technique in their respective unique
context.

Hence, the purpose of the information taxonomy can be summarised as to provide
support in comparing regression testing solutions by pinpointing relevant differences
and commonalities among regression testing techniques (i.e., the characteristics affect-
ing the applicability of a technique). We consider this classification particularly useful
for practitioners as it helps one identify relevant techniques in their context. For exam-
ple, if a certain test organisation does not have access to source code, they can focus on
techniques that do not require it.

Similarly, knowing what information is required to implement a technique, the in-
terested reader can: 1) identify if this information is currently available in their or-
ganisation 2) investigate how to derive it from other available information sources, or
3) analyse the feasibility of collecting it. Hence, a practitioner can make an informed
decision about the applicability of a technique in their context by considering the pos-
sibility and the cost of acquiring the required information.

The information taxonomy (as shown in Table 5.4) uses the structure <entity,
information> to identify what information is required to use a certain technique. Thus,
we coded the entities and the utilised information about their various attributes/facets
used by each of the techniques. Some examples of entities, in this case, are design
artefacts, requirements or source code. The respective information about the various
attributes/facets of these three example entities may include dependencies between var-
ious components, the importance of a requirement to a customer or code metrics.

From the papers included in this review, the following nine entities (and different
information regarding them) were used by the regression testing techniques: 1) Re-
quirements, 2) Design artefacts, 3) Source code 4) Intermediate code, 5) Binary code,
6) Closed defect reports, 7) Test cases, 8) Test executions, and 9) Test reports.

174

5.7.1 Requirements

Very few regression testing techniques included in this study have used information
related to requirements (such as the importance of required functionality for the cus-
tomer). Only two papers explicitly make use of information regarding the require-
ments [51, 52]. Such information can be coupled with requirement coverage (i.e., the
number of requirements exercised by a test case) to optimise regression testing with
respect to the actual operational use of the SUT [32, 52].

The information about several attributes of requirements such as their priority and
the complexity of their implementation are stored in requirement management systems.
However, the information regarding requirement coverage may as well be stored in the
test management system with respect to their corresponding test cases.

One reason for the lack of techniques utilizing requirements as input for regression
testing could be that often the traceability information from requirements to source
code to test cases is not maintained [31]. Furthermore, it is significantly more difficult
to recreate these traceability links than, e.g., linking source code to test cases.

The following five techniques are based on the requirements and feature coverage
by test-cases: RTrace [52], MPP [48, 49], TEMSA [25, 26, 29], and FTOPSIS [32].

FTOPSIS [32] uses multi-criteria decision-making as well as fuzzy logic, where
both objective and subjective (expert judgement) data about requirements can be used
to prioritise test cases in a regression suite. Krishnamoorthi and Mary's approach
RTrace [52] expects an explicit link between test cases and requirements for their
proposal. However, they do not describe how the case companies were document-
ing this information. They also do not suggest how such links can be generated.
TEMSA [25, 26, 29] develop and use feature models and component family models, to
ensure feature coverage in regression test selection of a software product line system.
MPP [48, 49] uses the coverage of functionality of the system by individual test cases
as a criterion to prioritise test cases.

5.7.2 Design artefacts

Wang et al. [24–29] use feature models and component feature models. These models
along with an annotated classification of test cases are used for test case selection. Sim-
ilar to the approach of Wang et al., Lochau et al. [50] also exploit models (in their case,
delta-oriented component test models and integration test models). They also used ex-
isting documentation from the industrial partners and interviews with practitioners to
develop and validate these models.

For an automotive embedded system, Vöst and Wagner [30] propose the use of sys-
tem architecture (system specifications) for test case selection. System specifications

175

Chapter 5. On the search for industry-relevant regression testing research

and test case traces were used to create a mapping between components and test cases
using them.

5.7.3 Source code

In IEEE standard for software test documentation, regression testing is defined as: “se-
lective retesting of a system or component to verify that modifications have not caused
unintended effects and that the system or components still complies with its specified
requirements” [10]. Therefore, several regression testing techniques attempt to lever-
age available information to localise changes in a software system that can then inform
the decision of which test cases to run and in which order. Some such techniques, work
with source code and its version history to identify the change. Using source code has
two advantages, first, several static and dynamic approaches exist to link test-cases to
source code (e.g. once we have localised the change, identifying change traversing
test-cases to select or prioritise is possible). The second advantage is that most com-
mercial organisations use a configuration management system. Thus, the techniques
that utilise revision history are relevant for industrial settings.

For example, FaultTracer [67], CCB [81], Fix-cache [21, 71], EFW [22, 23], and
Difference-Engine [76] utilise revision history of source code for regression testing.
Similarly, THEO [65] uses the number of contributors to the code base as input.

Several techniques require access to actual source code to work. Carlson et al. [80]
propose the use of a clustering approach that computes and uses code metrics as one of
the criteria for test case prioritisation. REPiR [37] uses information retrieval techniques
to prioritise test cases that cover the changes in source code. It relies on the likelihood
that similar keywords are used in source code literal and comments as in the test cases.

GWT-SRT [64] instruments source code to be able to generate traces that are used
to connect test-cases and source code. This information along with control flow graphs
(to isolate code changes) are used for selective regression testing in the context of web
applications.

5.7.4 Intermediate and binary code

In cases when the source code is either not available, or it is not feasible to use it, there
are some techniques that work on intermediate and binary code instead of source code
to localise change between two versions of a software system. REPiR [37] and CMAG
[63] use intermediate code to identify changes. While I-BACCI [11–14], Echelon [34],
OnSpot [58] and Pasala and Bhowmick's proposed technique [45] work with binaries
to localise change.

176

5.7.5 Issues
Some techniques utilise information typically residing in issue management systems
[21, 65, 71]. Provided that an issue originates in a fault revealed by a test case, the
attributes of that issue may be used to recreate a link between the said test case and
the source files that were updated to fix the issue [21, 71]. Herzig et al. [65] utilise
information about the closed defect reports (e.g. the time it took to fix the issue) in a
cost model weighing the cost of running a test case against skipping it. The technique
described by Marijan et al. [48, 49] uses the severity information from defect reports,
prioritising test cases that reveal faults of high severity.

Among the included papers, no proposal presents an approach to recreate links be-
tween defect reports and mapping to related test cases. Therefore, if practitioners want
to use one of the techniques that leverage fault coverage by test cases or other fault-
related information (like the severity of faults etc.) they must document and maintain
the links between these artefacts.

5.7.6 Test cases
Test cases refer to the specification of the tests and are static information entities (i.e.,
the information is documented at the design of the test and stored and maintained in
a repository typically a test management system). 50% of the evaluated techniques
rely on such information. What attributes of the test specifications being used vary
between the different techniques, but it could be divided into traceability information
and properties of the test case per se.

Traceability information is typically used for coverage optimisation selection [11,
22, 26, 32, 35, 42, 49, 52, 80, 81]; e.g. links to other information entities such as source
code and requirements, or explicit coverage targets such as model coverage [26, 42] or
functionality coverage [49].

Three techniques utilise the property attributes of the test cases (e.g age and esti-
mated cost) solely for test prioritisation [34, 51, 73] and hence they are not dependent
on static traceability links. Two are risk-based [51, 73] while one recreates traceability
links dynamically [34], see Section 5.7.7.

5.7.7 Test executions
Test executions refer to an implicit information entity, meaning that its information
attributes may be dynamically collected but are not stored and maintained for other
purposes. Just as for the ‘Test cases’ described above the attributes of the ‘Test execu-
tions’ could be divided into coverage information (e.g. ‘invocation chains’ [45, 63],

177

Chapter 5. On the search for industry-relevant regression testing research

‘covered system states’ [77], ‘runtime component coverage’ [45] and ‘code cover-
age’ [34, 35, 58, 63, 67, 80, 81]) and intrinsic properties of the executions (e.g. ‘exe-
cution time’ [34, 65], or ‘invocation counts’ [63])

Dynamically collected coverage information is used for similarity-based and coverage-
based optimisation of regression tests [77, 80, 81] as well as change-based prediction
of regression faults [34, 58, 67] while dynamically collected property attributes of the
test executions are typically used for history-based cost optimisation of regression tests
faults [63, 65].

5.7.8 Test reports

Test reports refer to the static records of the test executions, this information could
either be automatically captured or entered manually by the testers. Such attributes are
used for history-based optimisation of regression tests and most commonly used for
regression test optimisation are verdicts [26, 49, 65, 73, 76, 84], time stamps [26, 49,
63] and links to the tested system configuration [65, 76]. Several information attributes
of the test reports are similar to the test execution attribute or the test case attribute, but
differ in how it is derived and maintained. As an example, test execution time could
be an attribute of all three test information entities but as an attribute of a test case it is
an estimation; as an attribute of a test execution, it is measured at runtime; and as an
attribute of the test report, it is further recorded and maintained.

5.8 RQ3 – Mapping of current research

26 different techniques (reported in 38 papers) were classified under three taxonomies:
context, effect and information (see Table 5.4). This mapping (see Table 5.5) helps
to select techniques that address relevant context factors and deliver the target benefits
for a given scope (regression test selection, prioritization or minimization). The infor-
mation taxonomy helps to reason about whether the information is available or can be
reasonably acquired in the unique context of a particular company. We demonstrate
the use of this taxonomy in Section 5.9 in the form of technological rules [33] derived
from this mapping (see Section 5.9.

5.8.1 Addressed context factors

In terms of system-related factors, when describing the context where the proposed
techniques are applicable, 22 of the included techniques consider the scalability of

178

Table 5.5: Mapping of techniques to the taxonomy

Technique Study ID Scope
Addressed
context fac-
tors

Desired
effects

Utilised information (entities)

Se
le

ct
io

n

Pr
io

ri
tiz

at
io

n

M
in

im
iz

at
io

n

Sy
st

em
-r

el
at

ed

Pr
oc

es
s-

re
la

te
d

Pe
op

le
-r

el
at

ed

Te
st

co
ve

ra
ge

E
ffi

ci
en

cy
an

d
E

ff
ec

tiv
en

es
s

A
w

ar
en

es
s

R
eq

ui
re

m
en

ts

D
es

ig
n

ar
te

fa
ct

s

So
ur

ce
co

de

In
te

rm
ed

ia
te

co
de

B
in

ar
y

co
de

Te
st

ca
se

s

Te
st

ex
ec

ut
io

n

Te
st

re
po

rt
s

Is
su

es

TEMSA S13 – S18 ! ! ! ! ! ! ! ! ! !

History based prioritization
(HPro)

S26 ! ! ! ! ! ! ! ! !

classification tree testing
(DART)

S19, S20 ! ! ! ! ! ! !

I-BACCI S9 – S12 ! ! ! !

Value_based S33 ! ! ! ! ! ! !

multi-perspective prioritisa-
tion (MPP)

S3, S4 ! ! ! ! ! ! ! !

RTrace S21 ! ! ! ! !

Echelon S29 ! ! ! ! ! !

Information retrieval
(REPiR)

S2 ! ! ! ! !

EFW S7, S8 ! ! ! ! ! !

Fix-cache S24, S25 ! ! ! ! !

Most Frequent Failures S34 ! ! ! !

Continuous Multi-scale Ad-
ditional Greedy prioritisa-
tion (CMAG)

S28 ! ! ! ! ! ! !

GWT-SRT S30 ! ! ! !

Clustering (based on cover-
age, fault history and code
metrics)

S37 ! ! ! ! ! ! !

FTOPSIS S22 ! ! ! ! !

Difference engine S1 ! ! ! ! ! !

Change and coverage based
(CCB)

S5 ! ! ! ! ! !

Similarity based minimisa-
tion

S36 ! ! ! !

THEO S32 ! ! ! ! ! ! !

DynamicOverlay / OnSpot S23 ! ! ! ! !

Class firewall S6 ! ! ! ! ! ! ! ! !

model-based architectural
regression testing

S35 ! ! ! ! !

component interaction graph
test case selection

S31 ! ! ! ! !

keyword-based-traces S27 ! ! ! !

FaultTracer S38 ! ! ! !

179

Chapter 5. On the search for industry-relevant regression testing research

techniques for large-scale software systems. Another 13 techniques take the complex-
ity and the type of system under test into account. 9 techniques consider process related
context factors. While only 4 techniques consider people-related factors.

5.8.2 Desired effects

Most techniques (25 out of the total 26) target improved effectiveness and efficiency in
terms of finding known faults. Three techniques focus on improving coverage (which
is considered a proxy for achieving confidence in the testing or confirming the quality
of a system). Only one technique targets increased awareness in the decision-making
process in the scope of regression testing.

5.8.3 Information sources

Except regression testing techniques that rely solely on the history of test-cases, most
techniques use information beyond the test cases to select, prioritise or minimise the
regression testing suite. Such approaches rely on documented/generated links between
test cases and other artefacts. The 26 techniques included in this study utilise informa-
tion contained in nine different types of software engineering artefacts.

Only two and five techniques use information related to requirements and design
artefacts, respectively. Attributes of source code are used in nine techniques while
seven techniques only rely on intermediate or binary code among other information
sources. Ten techniques use information about test cases. Moreover, ten and eight
techniques use information from test executions and test reports. Only four techniques
make use of the issue reports.

5.9 Suggestions for practitioners

Practitioners may utilise the results of this study in different ways. The mappings of
techniques to each category may guide the practitioner looking for relevant research.
The taxonomies could also be used to compare a set of possible solutions found in the
research, or those designed by engineers at a company.

In Table 5.4, three taxonomies for describing regression testing problems and tech-
niques were introduced. In Table 5.5, we present a mapping of the included papers
to the three taxonomies. A practitioner can use the taxonomies and the mapping to
identify recommendations that are likely to help them design a solution in their unique
context. The mapping of techniques to the three taxonomies may be read as technolog-

180

ical rules [33] i.e., “To achieve <effect> in <context> apply <technique>”, which
in turn should be interpreted as recommendations (or advise) extracted from research.

Such rules could be formulated in detail for a single technique (i.e. one row in the
mapping, as in example TR1) or with fewer details for a set of techniques (by including
only the common denominators for that set, TR2) or in more general terms by selecting
nodes at a higher level in the taxonomy (TR3). Three illustrative examples (TR1-3) are
given:

TR 1: To reduce the regression test suite and testing time when regression testing large
scale software systems utilise the following information attributes: #contributors
of a piece of code, measured execution time, verdict, build type, variant under
test and link to tested branch from test reports and fix time in issue reports. This
example was extracted from an evaluation of a tool called THEO ([65]).

TR 2: To increase feature coverage, reduce testing time and improve fault detection ca-
pability when regression testing customisable, real-time systems, utilise informa-
tion about verdicts and execution time in test reports. (This rule is based on the
intersection of the classification of two different techniques, Multi-perspective
prioritisation [49] and TEMSA [28], which have been evaluated in several stud-
ies [24–29, 48, 49].)

TR 3: To improve efficiency and effectiveness when regression testing large scale com-
plex systems, utilise information attributes of the test reports. (This rule is a gen-
eralisation of TR2 and is supported by the same studies and another two [73, 76].)

From the research communication perspective, we argue that formulating such rules
(albeit by compromising some details) will help to communicate our research in par-
ticular to industry practitioners.

By selecting the most important aspects of the two problem-defining taxonomies
(i.e. desired effects and addressed context factors), for the organisation, one or more
research-based recommendations (in terms of technological rules) may be extracted
from the mapping in this study together with pointers to the matching literature. These
recommendations could then be used as input to the design of the specific solution for
the organisation.

5.10 Recommendations for researchers
As for testing, in general, the value of a regression testing technique could be measured
either in terms of its ability to increase confidence in testing or in terms of its ability
to improve fault detection with limited time and resources. Those high-level goals are

181

Chapter 5. On the search for industry-relevant regression testing research

shared by researchers and practitioners but with some variations when it comes to de-
tails and priorities [88]. The recommendations given here are based on our comparison
of what we found in the literature and the feedback from our industry partners.

Evaluate coverage of regression testing techniques at the feature level Confidence
is achieved by measuring any type of coverage. However, of the facets of our effect
taxonomy, coverage was the least important for the practitioners and at the detailed
level of our taxonomy only feature coverage was considered relevant. This is also
reflected in the literature [26, 37, 49]. Few techniques were evaluated with respect to
coverage and of the few the majority focused on feature coverage.

Focus evaluation on the detection of severe faults and reduction of cost From the
practitioners' perspective, the ability of a technique to detect severe faults and to reduce
cost in terms of man- and machine-time was considered more important. While confi-
dence, and coverage, always being priorities in the design of new tests, the pursuit of
trust in the regression test suite is often the root cause of increasing costs and decreas-
ing the effectiveness of regression testing - as more and more test cases are added just
in case [74]. Hence, the main driver for most industrial studies on regression testing is
cost reduction and precision of regression testing. 70% of the techniques in our study
were evaluated with respect to cost reduction. Furthermore, effectiveness should be
considered in terms of the number of severe faults, rather than in the number of faults
in general as there is also a cost-benefit trade-off in the issue backlog. Only 40% of the
techniques in our study were evaluated with respect to fault detection and of those only
two considered severity [49, 52].

Report addressed context factors in industrial evaluations To support general-
isation of results between industrial contexts, relevant contextual factors need to be
identified and clearly reported. Here relevant context factors denote context factors
that are either causing the problems to be solved or affecting the applicability or effect
of the solution. Such relevance may be observed or assumed by the stakeholder or the
researcher.

Despite being a selection of industrial evaluations, reporting the context factors
seems to be of low priority. In 10% of the evaluations, we did not find any context
descriptions at all. For the remaining 90% at least system factors such as size, com-
plexity and type of system under test are reported. Only 30% described the current
process, which will affect (or be affected by) the adoption of the technique and only
15% reported people-related factors.

182

Rather than providing a general and extensive description of the case context, as
proposed in previous research [44] we recommend a careful selection of context fac-
tors to report and discuss. Such selection could be guided by the context-taxonomy
provided in Table 5.4.

Study if and how the proposed context factors are relevant In most cases, the rel-
evance of the context factors described in the included papers is assumed rather than
observed. Furthermore, they are described on a rather high abstraction level. Thus,
there is room for more research on the relevance of various context factors for regres-
sion testing.

Study people-related factors As a research area struggling to gain traction in indus-
try [55, 56, 83] we believe that there is a need to investigate people-related factors. The
need for transparency and understandability that leads to trust in the results of regres-
sion testing techniques was highlighted by the industry partners. Only one study in our
included set has investigated these factors [73]. Future research in this direction that
takes into account the needs and concerns of potential users may increase the likelihood
of successful adoption of regression testing techniques in the industry.

5.11 Conclusion
In this paper, we report an extensive search for and an in-depth analysis of applicability
and relevance of regression testing techniques reported in the literature. We focused on
techniques that have been applied to large-scale software systems in industrial contexts.
Based on the literature review and in collaboration with our industrial partners, we pro-
pose three taxonomies that enable practitioners and researchers to assess and compare
the relevance and applicability of regression testing techniques for a given industrial
context.

The taxonomies extend three out of the four facets of the SERP-test taxonomy [75]:
i.e. addressed context factors, desired improvements and characteristics of the tech-
niques from an applicability point of view (required information and underlying as-
sumptions). It allows for characterisation of regression techniques and helps to deter-
mine which of these techniques could be suitable in a given context and to indicate
what benefits could be expected from its application. The identification of information
needs for these techniques further assists a reader to reason about the implications re-
garding the cost of adoption [87]. In this report, we apply the taxonomies on the 38
papers that are included in the review. However, initially, we identified more than 1000
papers on regression testing and there are many techniques, not included in the review,

183

Chapter 5. On the search for industry-relevant regression testing research

that may still be relevant and applicable in some industrial contexts. The aim of the
taxonomies is to support assessment also of them and of new proposals or adaptations
of techniques.

In our interaction with the practitioners, we identified some discrepancies in re-
searcher’s focus and the perceived needs in the industry. One such example is the
commonly used measure of effectiveness in terms of various levels of code coverage.
Some types of information (such as coverage information) that are extensively studied
in the literature were found to be only partially relevant to the practitioners (e.g., only
at the feature level) for evaluating the benefits of a regression testing technique. At
the same time, some extremely relevant information in choosing technique (e.g. the
context information) is completely neglected in some existing studies.

For academia, this study can help to use evaluation criteria and contexts that are rep-
resentative of industrial needs. This work also supports reporting the research results
to facilitate readers making an informed decision with a consideration for relevance to
their context, potential benefits and the likely investment required to use the technique.

184

5.12 References
[1] H. Munir, M. Moayyed, and K. Petersen, “Considering rigor and relevance

when evaluating test driven development: A systematic review,” Information
and Software Technology, vol. 56, no. 4, pp. 375–394, Apr. 2014. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0950584914000135

[2] M. V. Zelkowitz, D. R. Wallace, and D. Binkley, “Culture conflicts in soft-
ware engineering technology transfer,” in NASA Goddard Software Engineering
Workshop. Citeseer, 1998, p. 52.

[3] K. Petersen and E. Engström, “Finding relevant research solutions for praciti-
cal problems - the SERP taxonomy architecture,” in International Workshop on
Long-term Industrial Collaboration on Software Engineering (WISE 2014).

[4] M. Thelwall and K. Kousha, “ResearchGate versus Google Scholar: Which
finds more early citations?” Scientometrics, vol. 112, no. 2, pp. 1125–
1131, Aug. 2017. [Online]. Available: https://link.springer.com/article/10.1007/
s11192-017-2400-4

[5] A. Rainer, T. Hall, and N. Baddoo, “A preliminary empirical investigation
of the use of evidence based software engineering by under-graduate
students.” in Proceedings of the 10th International Conference on Evaluation
and Assessment in Software Engineering. [Online]. Available: https:
//uhra.herts.ac.uk/dspace/handle/2299/2270

[6] A. Rainer, D. Jagielska, and T. Hall, “Software engineering practice versus
evidence-based software engineering research,” in Proceedings of the ACM
Workshop on Realising evidence-based software engineering (REBSE ’05), pp.
1–5. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083177

[7] A. Rainer and S. Beecham, “A follow-up empirical evaluation of evidence based
software engineering by undergraduate students,” in Proceedings of the 12th In-
ternational Conference on Evaluation and Assessment in Software Engineering.

[8] E. Engström, R. Feldt, and R. Torkar, “Indirect effects in evidential assessment:
a case study on regression test technology adoption,” in 2nd international work-
shop on Evidential assessment of software technologies, pp. 15–20.

[9] H. Edison, N. B. Ali, and R. Torkar, “Towards innovation measurement in the
software industry,” Journal of Systems and Software, vol. 86, no. 5, pp. 1390–
1407, 2013.

185

REFERENCES

[10] IEEE standard for software test documentation IEEE Std. 829-1983, IEEE Std.,
1998.

[11] J. Zheng, L. Williams, and B. Robinson, “Pallino: automation to support re-
gression test selection for cots-based applications,” in Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, ASE,
2007, pp. 224–233.

[12] J. Zheng, B. Robinson, L. Williams, and K. Smiley, “Applying regression test
selection for cots-based applications,” in Proceedings of the 28th International
Conference on Software Engineering, ICSE, 2006, pp. 512–522.

[13] ——, “A lightweight process for change identification and regression test selec-
tion in using COTS components,” in Proceedings of the 5th International Con-
ference on Commercial-off-the-Shelf (COTS)-Based Software Systems, ICCBSS,
2006, pp. 137–143.

[14] J. Zheng, “In regression testing selection when source code is not available,”
in Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, ASE, 2005, pp. 452–455.

[15] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software
engineering,” Information & Software Technology, vol. 53, no. 6, pp. 625–637,
2011.

[16] A. Zarrad, “A systematic review on regression testing for web-based applica-
tions,” JSW, vol. 10, no. 8, pp. 971–990, 2015.

[17] S. Yoo and M. Harman, “Regression testing minimization, selection and priori-
tization: a survey,” Softw. Test., Verif. Reliab., vol. 22, no. 2, pp. 67–120, 2012.

[18] Z. Xu, Y. Kim, M. Kim, M. B. Cohen, and G. Rothermel, “Directed test suite
augmentation: an empirical investigation,” Softw. Test., Verif. Reliab., vol. 25,
no. 2, pp. 77–114, 2015.

[19] C. Wohlin, “Empirical software engineering research with industry: top 10 chal-
lenges,” in Proceedings of the 1st International Workshop on Conducting Em-
pirical Studies in Industry, CESI, 2013, pp. 43–46.

[20] ——, “Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering,” in Proceedings of the 18th International Confer-
ence on Evaluation and Assessment in Software Engineering, EASE, 2014, pp.
38:1–38:10.

186

[21] G. Wikstrand, R. Feldt, J. K. Gorantla, W. Zhe, and C. White, “Dynamic regres-
sion test selection based on a file cache an industrial evaluation,” in Proceedings
of the International Conference on Software Testing Verification and Validation,
ICST. IEEE, 2009, pp. 299–302.

[22] L. J. White and B. Robinson, “Industrial real-time regression testing and anal-
ysis using firewalls,” in Proceedings of the 20th International Conference on
Software Maintenance, ICSM, 2004, pp. 18–27.

[23] L. J. White, K. Jaber, B. Robinson, and V. Rajlich, “Extended firewall for regres-
sion testing: an experience report,” Journal of Software Maintenance, vol. 20,
no. 6, pp. 419–433, 2008.

[24] S. Wang, A. Gotlieb, S. Ali, and M. Liaaen, “Automated test case selection using
feature model: an industrial case study,” in International Conference on Model
Driven Engineering Languages and Systems. Springer, 2013, pp. 237–253.

[25] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen, “Multi-
objective test prioritization in software product line testing: an industrial case
study,” in Proceedings of the 18th International Software Product Line Confer-
ence, SPLC, 2014, pp. 32–41.

[26] S. Wang, S. Ali, T. Yue, O. Bakkeli, and M. Liaaen, “Enhancing test case pri-
oritization in an industrial setting with resource awareness and multi-objective
search,” in Proceedings of IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion, ICSE-C, 2016-05, pp. 182–191.

[27] S. Wang, S. Ali, A. Gotlieb, and M. Liaaen, “Automated product line test case
selection: industrial case study and controlled experiment,” Software and System
Modeling, vol. 16, no. 2, pp. 417–441, 2017.

[28] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimization in prod-
uct lines using search techniques,” Journal of Systems and Software, vol. 103,
pp. 370–391, 2015.

[29] ——, “Minimizing test suites in software product lines using weight-based ge-
netic algorithms,” in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO, 2013, pp. 1493–1500.

[30] S. Vöst and S. Wagner, “Trace-based test selection to support continuous inte-
gration in the automotive industry,” in Proceedings of the International Work-
shop on Continuous Software Evolution and Delivery, CSED, 2016, pp. 34–40.

187

REFERENCES

[31] E. J. Uusitalo, M. Komssi, M. Kauppinen, and A. M. Davis, “Linking require-
ments and testing in practice,” in Proceedings of the 16th IEEE International
Requirements Engineering, RE. IEEE, 2008, pp. 265–270.

[32] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, and S. Larsson,
“Towards earlier fault detection by value-driven prioritization of test cases using
fuzzy TOPSIS,” in Information Technology: New Generations, S. Latifi, Ed.
Springer International Publishing, 2016, pp. 745–759.

[33] M. D. Storey, E. Engström, M. Höst, P. Runeson, and E. Bjarnason, “Using a vi-
sual abstract as a lens for communicating and promoting design science research
in software engineering,” in Proceedings of ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM, 2017, pp.
181–186.

[34] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development
environment,” in Proceedings of ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA ’02. ACM, 2002, pp. 97–106.

[35] ——, “A case study of the class firewall regression test selection technique on
a large scale distributed software system,” in Proceedings of the International
Symposium on Empirical Software Engineering, ISESE, 2005, pp. 74–83.

[36] Y. Singh, A. Kaur, B. Suri, and S. Singhal, “Systematic literature review on
regression test prioritization techniques,” Informatica (Slovenia), vol. 36, no. 4,
pp. 379–408, 2012.

[37] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval ap-
proach for regression test prioritization based on program changes,” in Proceed-
ings of the 37th IEEE/ACM International Conference on Software Engineering,
ICSE, 2015, pp. 268–279.

[38] G. Rothermel and M. J. Harrold, “Analyzing regression test selection tech-
niques,” IEEE Trans. Software Eng., vol. 22, no. 8, pp. 529–551, 1996.

[39] R. H. Rosero, O. S. Gómez, and G. D. R. Rafael, “15 years of software regres-
sion testing techniques - A survey,” Int. J. Software Eng. Knowl. Eng., vol. 26,
no. 5, pp. 675–690, 2016.

[40] H. D. Rombach, M. Ciolkowski, D. R. Jeffery, O. Laitenberger, F. E. McGarry,
and F. Shull, “Impact of research on practice in the field of inspections, reviews
and walkthroughs: learning from successful industrial uses,” ACM SIGSOFT
Software Engineering Notes, vol. 33, no. 6, pp. 26–35, 2008.

188

[41] E. Rogstad, L. C. Briand, and R. Torkar, “Test case selection for black-box re-
gression testing of database applications,” Information & Software Technology,
vol. 55, no. 10, pp. 1781–1795, 2013.

[42] E. Rogstad and L. C. Briand, “Cost-effective strategies for the regression testing
of database applications: Case study and lessons learned,” Journal of Systems
and Software, vol. 113, pp. 257–274, 2016.

[43] D. Qiu, B. Li, S. Ji, and H. K. N. Leung, “Regression testing of web service: A
systematic mapping study,” ACM Comput. Surv., vol. 47, no. 2, pp. 21:1–21:46,
2014.

[44] K. Petersen and C. Wohlin, “Context in industrial software engineering re-
search,” in Proceedings of the 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, ser. ESEM ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 401–404.

[45] A. Pasala and A. Bhowmick, “An approach for test suite selection to validate ap-
plications on deployment of COTS upgrades,” in Proceedings of the 12th Asia-
Pacific Software Engineering Conference, APSEC, 2005, pp. 401–407.

[46] L. J. Osterweil, C. Ghezzi, J. Kramer, and A. L. Wolf, “Determining the impact
of software engineering research on practice,” IEEE Computer, vol. 41, no. 3,
pp. 39–49, 2008.

[47] E. N. Narciso, M. E. Delamaro, and F. de Lourdes dos Santos Nunes, “Test case
selection: A systematic literature review,” Int. J. Software Eng. Knowl. Eng.,
vol. 24, no. 4, pp. 653–676, 2014.

[48] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for continuous re-
gression testing: An industrial case study,” in Proceedings of IEEE International
Conference on Software Maintenance, 2013, pp. 540–543.

[49] D. Marijan, “Multi-perspective regression test prioritization for time-
constrained environments,” in Proceedings of IEEE International Conference
on Software Quality, Reliability and Security, QRS, 2015, pp. 157–162.

[50] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and U. Goltz, “Delta-oriented
model-based integration testing of large-scale systems,” Journal of Systems and
Software, vol. 91, pp. 63–84, 2014.

189

REFERENCES

[51] Q. Li and B. Boehm, “Improving scenario testing process by adding value-based
prioritization: an industrial case study,” in Proceedings of the International Con-
ference on Software and System Process. ACM, 2013, pp. 78–87.

[52] R. Krishnamoorthi and S. A. S. A. Mary, “Factor oriented requirement coverage
based system test case prioritization of new and regression test cases,” Informa-
tion & Software Technology, vol. 51, no. 4, pp. 799–808, 2009.

[53] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Software Engi-
neering and Systematic Reviews. Chapman & Hall/CRC, 2015.

[54] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression
test case selection: A systematic literature review,” ACM Comput. Surv., vol. 50,
no. 2, pp. 29:1–29:32, 2017.

[55] G. M. Kapfhammer, “Empirically evaluating regression testing techniques:
Challenges, solutions, and a potential way forward,” in Proceedings of the 4th
IEEE International Conference on Software Testing, Verification and Validation,
ICST, 2011, pp. 99–102.

[56] N. J. Juzgado, A. M. Moreno, and S. Vegas, “Reviewing 25 years of testing
technique experiments,” Empirical Software Engineering, vol. 9, no. 1-2, pp.
7–44, 2004.

[57] S. T. R. Jr. and W. E. Riddle, “Software technology maturation,” in Proceedings
of the 8th International Conference on Software Engineering, 1985, pp. 189–
200.

[58] M. U. Janjua, “Onspot system: test impact visibility during code edits in real
software,” in Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE, 2015, pp. 994–997.

[59] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners perceive
the relevance of software engineering research,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE
2015. Bergamo, Italy: ACM Press, 2015, pp. 415–425. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2786805.2786809

[60] X. Franch, D. M. Fernandez, M. Oriol, A. Vogelsang, R. Heldal,
E. Knauss, G. H. Travassos, J. C. Carver, O. Dieste, and T. Zimmermann,
“How do Practitioners Perceive the Relevance of Requirements Engineering
Research? An Ongoing Study,” in 2017 IEEE 25th International Requirements

190

Engineering Conference (RE). Lisbon, Portugal: IEEE, Sep. 2017, pp.
382–387. [Online]. Available: http://ieeexplore.ieee.org/document/8049144/

[61] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann, “How
Practitioners Perceive the Relevance of ESEM Research,” in Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement - ESEM ’16. Ciudad Real, Spain: ACM Press, 2016, pp. 1–
10. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2961111.2962597

[62] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial rel-
evance of technology evaluations,” Empirical Software Engineering, vol. 16,
no. 3, pp. 365–395, 2011.

[63] S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan, “An optimized change-driven
regression testing selection strategy for binary java applications,” in Proceedings
of ACM symposium on Applied Computing. ACM, 2009, pp. 558–565.

[64] M. Hirzel and H. Klaeren, “Graph-walk-based selective regression testing of
web applications created with google web toolkit,” in Gemeinsamer Tagungs-
band der Workshops der Tagung Software Engineering (SE), 2016, pp. 55–69.

[65] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing less
without sacrificing quality,” in Proceedings of the 37th International Conference
on Software Engineering, ser. ICSE ’15. IEEE Press, 2015, pp. 483–493.

[66] M. J. Harrold and A. Orso, “Retesting software during development and main-
tenance,” in Proceedings of Frontiers of Software Maintenance FoSM. IEEE,
2008, pp. 99–108.

[67] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An empirical evalua-
tion and comparison of manual and automated test selection,” in Proceedings of
ACM/IEEE International Conference on Automated Software Engineering, ASE,
2014, pp. 361–372.

[68] V. Garousi and M. V. Mäntylä, “A systematic literature review of literature re-
views in software testing,” Information & Software Technology, vol. 80, pp. 195–
216, 2016.

[69] K. R. Felizardo, E. Mendes, M. Kalinowski, E. F. d. Souza, and N. L. Vijayku-
mar, “Using forward snowballing to update systematic reviews in software en-
gineering,” in Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM, 2016, pp. 53:1–53:6.

191

REFERENCES

[70] M. Felderer and E. Fourneret, “A systematic classification of security regres-
sion testing approaches,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 17, no. 3, pp. 305–319, 2015.

[71] E. Engström, P. Runeson, and G. Wikstrand, “An empirical evaluation of re-
gression testing based on fix-cache recommendations,” in Proceedings of the
3rd International Conference on Software Testing, Verification and Validation,
ICST, 2010, pp. 75–78.

[72] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression
test selection techniques,” Information & Software Technology, vol. 52, no. 1,
pp. 14–30, 2010.

[73] E. Engström, P. Runeson, and A. Ljung, “Improving regression testing trans-
parency and efficiency with history-based prioritization - an industrial case
study,” in Proceedings of the 4th IEEE International Conference on Software
Testing, Verification and Validation, ICST, 2011, pp. 367–376.

[74] E. Engström and P. Runeson, “A qualitative survey of regression testing prac-
tices,” in Proceedings of the 11th International Conference on Product-Focused
Software Process Improvement PROFES, 2010, pp. 3–16.

[75] E. Engström, K. Petersen, N. B. Ali, and E. Bjarnason, “SERP-test: a taxonomy
for supporting industry-academia communication,” Software Quality Journal,
vol. 25, no. 4, pp. 1269–1305, 2017.

[76] E. D. Ekelund and E. Engström, “Efficient regression testing based on test his-
tory: An industrial evaluation,” in Proceedings of IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME, 2015, pp. 449–457.

[77] P. Devaki, S. Thummalapenta, N. Singhania, and S. Sinha, “Efficient and flex-
ible GUI test execution via test merging,” in Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA, 2013, pp. 34–44.

[78] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping study,”
Software Quality Journal, vol. 21, no. 3, pp. 445–478, 2013.

[79] C. Catal, “On the application of genetic algorithms for test case prioritization: a
systematic literature review,” in Proceedings of the 2nd international workshop
on Evidential assessment of software technologies. ACM, 2012, pp. 9–14.

192

[80] R. Carlson, H. Do, and A. Denton, “A clustering approach to improving test
case prioritization: An industrial case study,” in Proceedings of the 27th IEEE
International Conference on Software Maintenance, ICSM. IEEE, 2011, pp.
382–391.

[81] G. Buchgeher, C. Ernstbrunner, R. Ramler, and M. Lusser, “Towards tool-
support for test case selection in manual regression testing,” in Workshops pro-
ceedings of the 6th IEEE International Conference on Software Testing, Verifi-
cation and Validation, ICST, 2013, pp. 74–79.

[82] E. Bjarnason, K. Smolander, E. Engström, and P. Runeson, “A theory of dis-
tances in software engineering,” Information & Software Technology, vol. 70,
pp. 204–219, 2016.

[83] A. Bertolino, “Software testing research: Achievements, challenges, dreams,”
in Proceedings of the Workshop on the Future of Software Engineering, FOSE,
2007, pp. 85–103.

[84] J. Anderson, S. Salem, and H. Do, “Improving the effectiveness of test suite
through mining historical data,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM Press, 2014, pp. 142–151.

[85] N. B. Ali, K. Petersen, and C. Wohlin, “A systematic literature review on the
industrial use of software process simulation,” Journal of Systems and Software,
vol. 97, pp. 65–85, 2014.

[86] N. B. Ali, K. Petersen, and M. Mäntylä, “Testing highly complex system of
systems: an industrial case study,” in Proceedings of ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM, 2012,
pp. 211–220.

[87] N. B. Ali, “Is effectiveness sufficient to choose an intervention?: Considering
resource use in empirical software engineering,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM, 2016, pp. 55:1–55:6.

[88] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk, “Regression testing goals-
view of practitioners and researchers,” in 24th Asia-Pacific Software Engineer-
ing Conference Workshops (APSECW), 2017. IEEE, 2017, pp. 25–31.

193

REFERENCES

194

Chapter 6

Lessons learned from
replicating a study on
information-retrieval based test
case prioritization

6.1 Introduction

Replications help in evaluating the results, limitations, and validity of studies in dif-
ferent contexts [46]. They also help establishing or expanding the boundaries of a
theory [38, 46].

During the previous four decades, software engineering researchers have built new
knowledge and proposed new solutions, many of these lack consolidation [37]. Repli-
cation studies can help in establishing the solutions and expanding the knowledge.
Software engineering researchers have been working on replication studies since the
1990s. Still, the number of replicated studies is small, and a more neglected area is the
replication of software testing experiments [33, 34, 37, 38]. Most software engineering
replication studies are conducted for experiments involving human participants; few
replications exist for artefact-based experiments [38]. In the artefacts-based software
engineering experiments, the majority of the authors use the artefacts from the software
infrastructure repository (SIR) [7]. Do et al. [22] introduced SIR in 2005 to facilitate
experimentation and evaluation of testing techniques (mainly regression testing tech-

195

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

nique) and to promote replication of experiments and aggregation of findings.
Researchers have been proposing different techniques to support regression test-

ing practice, and some of them are evaluating their techniques in an industry context.
However, adopting these techniques in practice is challenging because, in most cases,
the results are inaccessible for the practitioners [11]. Moreover, most regression testing
techniques proposed in research have been evaluated using open-source data sets [7].
Adopting these techniques in practice is more challenging because practitioners do
not know the context these techniques can fit. Replications of existing solutions for
regression testing can be helpful in this regard, provided the availability of data and
automation scripts for future replications.

Attempts have been made to replicate regression testing techniques. The majority
of these replications are done by the same group of authors who originally proposed
the techniques [39, 40, 42]. There is a need for conducting more independent replica-
tions in software engineering [22]. However, evidence of independent replications in
regression testing is low [38].

Overall, we would highlight the following research gaps concerning replications:

• Gap 1: Only a small portion of studies are replications: Among the reasons for
a lower number of replications in software engineering is the lack of standardized
concepts, terminologies, and guidelines [37]. Software engineering researchers
need to make an effort to replicate more studies.

• Gap 2: Lack of replication guidelines: There is a need to work on the guidelines
and methodologies to support replicating the studies [36].

• Gap 3: Lack of replications in specific subject areas: Software testing as a sub-
ject area has been highlighted as an area lacking replication studies [38]. Ac-
cording to Da Silva et al. [38] the majority of replication studies focuses on soft-
ware construction and software requirements. Despite a well-researched area,
the number of replication studies in software testing is at the lowest than other
software engineering research areas according to Magalhães et al. [36].

• Gap 4: Lack of studies on artefact-based investigations: Only a few repli-
cated studies focused on artefact-based investigations [38]. That is, the majority
of studies focused on experiments and case studies involving human subjects.
Artefact-based replications are of a particular interest as they require to build
and run scripts for data collection (e.g., solution implementation and logging),
and at the same time compile and run the software systems, which are the subject
of study.

Considering the gaps stated above, we formulate the following research goal:

196

Goal: To replicate an artefact-based study in the area of software testing,
with a focus on reflecting on the replication process and the ability to repli-
cate the findings of the original study.

To achieve our research goal, we present the results of our replication experiment in
which we evaluated an IR-based test case prioritization technique proposed by Kwon
et al. [26]. The authors introduced a linear regression model to prioritize the test cases
targeting infrequently tested code. The inputs for the model are calculated using term
frequency (TF), inverse document frequency (IDF), and code coverage information
[26]. TF and IDF are the weighing scheme used with information retrieval methods
[55]. The original study's authors used open-source data sets (including SIR artefacts)
to evaluate the proposed technique. We attempted to evaluate the technique using four
software programs to see if the replication confirms the original study's findings. We
selected two software programs from the original study and two new cases to test the
technique's applicability on different software programs.

Our research goal is achieved through the following:

1. Objective 1: Studying the extent to which the technique is replicable. Studying
the extent to which the technique is replicable and documenting the detail of all
steps will help draw valuable lessons. Hence, contributing with guidance for
future artefact-based replications (Gap 2, Gap 4).

2. Objective 2: Evaluating the results of the original study [26]. Evaluating the
results through the replication provides an assessment of the validity and the
robustness of the results of the original study. Overall, we contribute to the gen-
erally limited number of replication studies (Gap 1) in general, and replication
studies focused on software testing in particular (Gap 3).

The organization of the rest of the paper is as follows: Section 6.2 provides a brief
introduction to the concepts relevant to this study. Section 6.3 presents a brief discus-
sion of some replications carried out for test case prioritization techniques. Along with
the research questions and summary of the concepts used in the original study, Section
6.4 describes the methodologies we have used to select the original study and conduct
the replication. Threats to the validity of the replication experiment are discussed in
Section 6.4.6. Section 6.5 presents the findings of this study, Section 6.6 provides the
discussion on the findings of replication study, and Section 6.7 concludes the study.

197

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

6.2 Background

This section provides a discussion on the topics related to our investigation.

6.2.1 Regression testing

Regression testing is a retest activity to ensure that system changes do not affect other
parts of the system negatively and that the unchanged parts are still working as they did
before a change [7, 21]. It is essential but expensive and challenging testing activity
[19]. Various authors have highlighted that testing consumes 50% of the project cost,
and regression testing consumes 80% of the total testing cost [4, 5, 19, 25]. Research
reports that regression testing may consume more than 33% of the cumulative software
cost [12]. Regression testing aims to validate that modifications have not affected the
previously working code [21, 42].

Systems and Software Engineering–Vocabulary [23], defines regression testing as:

1. “Selective retesting of a system or component to verify that modifica-
tions have not caused unintended effects and that the system or component
still complies with its specified requirements.”
2. “Testing required to determine that a change to a system component has
not adversely affected functionality, reliability or performance and has not
introduced additional defects.”

For larger systems, it is expensive to execute regression test suites in full [21]. To
cope with this, one of the suggested solutions is test case prioritization. It helps to
prioritize and run the critical test cases early in the regression testing process. The goal
of test case prioritization is to increase the test suite's rate of fault detection [24].

A reasonable number of systematic literature reviews and mapping studies on var-
ious aspects of regression testing provides evidence that regression testing is a well-
researched area [1–15]. Despite a large number of regression testing techniques pro-
posed in the literature, the adoption of these techniques in the industry is low [16–19].
The reasons are that the results of these techniques are not accessible for practitioners
due to the discrepancies in terminology between industry and academia [11, 19, 20].
There is a lack of mechanisms to guide the practitioners in translating, analyzing, and
comparing the regression testing techniques. Furthermore, various authors use con-
trolled experiments for their empirical investigations, and in most cases, it is hard to
assess that these experiments are repeatable and could fit in an industrial setting [11].
Replication of empirical studies could lead us to the desired solution, as it can help to
confirm the validity and adaptability of these experiments [46].

198

6.2.2 Replication

Replication is a means to validate experimental results and examine if the results are
reproducible. It can also help to see if the results were produced by chance or if the
results are the outcome of any feigned act [32]. An effectively conducted replication
study helps in solidifying and extending knowledge. In principle, replication provides
a way forward to create, evolve, break, and replace theoretical paradigms [37, 46].
Replication could be of two types 1) internal replication –a replication study carried out
by the authors of the original study themselves, 2) external replication –a replication
study carried out by researchers other than the authors of the original study [31, 37].

In software engineering research, the number of internal replications is much higher
than external replications [35, 38]. Da Silva et al. [38] reported in their mapping study
that out of 133 included replication studies, 55% of the studies are internal replica-
tions, 30% are external replications, and 15% are the mix of internal and external.
Furthermore, the results of 82% of the internal replications are confirmatory, and the
results of 26% of external replications conform to the original studies [38]. From the
empirical software engineering perspective, Shull et al. [46] classify replications as ex-
act and conceptual replication. In an exact replication, the replicators closely follow
the procedures of the original experiment, whereas, in a conceptual replication, the
research questions of the original study are evaluated using a different experimental
setup. Concerning exact replication, if the replicators keep the conditions in the repli-
cation experiment the same as the actual experiment, it would be categorized as exact
dependent replication. If replicators deliberately change the underlying conditions of
the original experiment, it would be referred to as exact independent replication. Exact
dependent and exact independent replications could respectively be mapped to strict
and differentiated replications. A strict replication compels the researchers to replicate
a prior study as precisely as possible. In contrast, in a differentiated replication, re-
searchers could intentionally alter the aspects of a previous study to test the limits of
the study's conclusions. In most cases, strict replication is used for both internal and
external replications [37].

6.2.3 Information retrieval

IR-based techniques are used to retrieve the user's information needs from an unstruc-
tured document collection. The information needs are represented as queries [29, 30].
An information retrieval (IR) system is categorized by its retrieval model because its
effectiveness and utility are based on the underlying retrieval model [56]. Therefore, a
retrieval model is the core component of any IR system.

Amati [56] defines the information retrieval model as:

199

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

“A model of information retrieval (IR) selects and ranks the relevant doc-
uments with respect to a user's query. The texts of the documents and the
queries are represented in the same way, so that document selection and
ranking can be formalized by a matching function that returns a retrieval
status value (RSV) for each document in the collection. Most of the IR
systems represent document contents by a set of descriptors, called terms,
belonging to a vocabulary V.”

Some of the retrieval models are the vector space model (VSM), probabilistic rel-
evance framework (PRF), binary independence retrieval (BIR), best match version 25
(BM 25), and language modeling (LM). VSM is among the popular models in in-
formation retrieval systems. It uses TF-IDF (term frequency and inverse document
frequency) as a weighing scheme [55].

Since the technique [26] we are replicating in this study uses the concepts of TF-
IDF weighing scheme, we briefly present TF and IDF.

Term frequency (TF) and inverse document frequency (IDF) are statistics that indi-
cate the significance of each word in the document or query. TF represents how many
times a word appears in the document or query. IDF is an inverse of document fre-
quency (DF). The DF of a word indicates the number of documents in the collection
containing the word. Therefore a high IDF score of any word means that the word is
relatively unique and it appeared in fewer documents [30].

6.3 Related work
Most of the replication studies on test case prioritization were conducted by the same
group of authors, who primarily re-validated/extended the results of their previously
conducted experiments (see [39, 40, 42]). Below we discuss studies that are closely
related to our topic (i.e., test case prioritization).

Do et al. [39] conducted a replication study to test the effectiveness of the test
case prioritization techniques originally proposed for C programs on different Java
programs using the JUnit testing framework. The authors' objective was to test whether
the techniques proposed for C programs could be generalized to other programming
and testing paradigms. The authors who conducted the replication study were part of
the original studies, so by definition, it could be referred to as an internal replication.
However, concerning the implementation perspective, the replication study would be
regarded as differentiated replication.

Do and Rothermel [40] conducted an internal replication study to replicate one of
their studies on test case prioritization. The original study used hand-seeded faults. In

200

the replication study, the authors conducted two experiments. In the first experiment,
the authors considered mutation faults. The goal was to assess whether prioritization
results obtained from hand-seeded faults differ from the results obtained by mutation
faults. The authors used the same software programs and versions used in the original
study. They also replicated the experimental design according to the original study.
To further strengthen the findings, later in the second experiment, the authors repli-
cated the first experiment with two additional Java programs with different types of
test suites.

Ouriques et al. [43] conducted an internal replication study of their own experiment
concerning the test case prioritization techniques. In the original study, the authors
experimented with software programs closer to the industrial context. The objective
of the replication study was to repeat the conditions evaluated in the original study but
with more techniques and industrial systems as objects of study. Although the authors
worked with the test case prioritization techniques, they clearly stated that the methods
examined in their research use a straightforward operation of adding one test case at
a time in the prioritized set. They do not use any data from the test case execution
history, and hence, regression test prioritization is not in the scope of their study.

Hasnain et al. [44] conducted a replication study to investigate the regression anal-
ysis for classification in test case prioritization. The authors' objective to replicate the
original study was to confirm whether or not the regression model used in the origi-
nal study accurately produced the same results as the replicated study. Along with the
program and data set used in the original study, the authors also used an additional
open-source Java-based program to extend the original study's findings. It is an ex-
ternal replication study as all authors of the replication study are different from that
of the original study. The authors of the replicated study validated the results of the
original study on an additional data-set other than the one used in the original study,
the replication is not strict.

In the above discussion of related studies, we learned that most replication studies
conducted for test case prioritization are primarily internal replications. We could only
find a single external replication study [44]. The authors of this study conducted the
replication of a classification-based test case prioritization using regression analysis.
Our study is similar to this study based on the following factors, 1) our study is an
external replication, 2) we also use two software artefacts from the original study and
two additional artefact. In many ways, our study is unique; for example, 1) we are
replicating a technique that focuses on less tested code, whereas Husnain et al. repli-
cated a technique that is based on fault classification and non-faulty modules, 2) we
have provided a step by step guide to support future replications, and 3) we provide
automated scripts to execute the complete replication study.

201

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

6.4 Methodology
For reporting the replication steps, we followed the guideline proposal provided by
Carver [45]. It suggests reporting the following for a replication study:

1. Information about the original study (Section 6.4.2)

2. Information about the replication (Section 6.4.3)

3. Comparison of results to the original study (Section 6.5.2)

4. Drawing conclusions across studies (Section 6.7)

6.4.1 Research questions
In the presence of the constraint regarding experimental setup and data, we have to rely
on the information presented in the original study (see Section (6.4.2). We decided not
to tweak the original study's approach and followed the steps proposed by the authors
and executed the technique on one of the artefacts used by the authors. The differential
aspects of the replication experiment are the mutants and the automation of the major
steps of the technique. According to the classification provided by Shull et al. [46], our
work can be classified as exact independent replication of the test case prioritization
technique presented in [26].

To achieve the objectives of the study we asked the following two research ques-
tions:

RQ1. To what degree is the study replication feasible given the information
provided?

RQ1.1 To what degree is the study replicable with the software pro-
grams used in the original study?

RQ1.2 What is the possibility to replicate the study with the additional
software programs?

The answer to RQ1 corresponds to Objective 1. While answering
RQ1, the motive was to see the possibility to replicate the technique
presented in the original study using different software programs.

RQ2. Does the replication confirm the findings of the original study? The
answer to RQ2 corresponds to Objective 2. The motive of RQ2 was
to see if the replication results conform to the finding of the original
study. To ensure that there should be no conscious deviation from the
basic technique, we followed the steps and used the tools mentioned

202

in the original study. Finally, we evaluated the replication results
using the average percentage of fault detection (APFD) as suggested
by the original study's authors.

6.4.2 Information about the original study

Selection of target study

Selection of a target study for replication is a difficult process, and often it is prone to
biases due to various reasons [57]. For example, clinical psychology research reports
that authors tend to choose targets that are easy to set up and execute [57]. The selection
of target must be purpose-based, either by following systematic criteria (see, e.g., [57])
or other justifiable reasons. In our case, the selection of the target is based on the needs
identified from our interaction with industry partners [11, 20, 21] and reported facts in
the related literature [7, 9].

For the selection of the target study, our first constraint was test case prioritization,
whereas the underlying criteria were to search for a technique that can help control
fault slippage and increase the fault detection rate. During our investigations [21], we
identified that test case prioritization is among the primary challenges for practitioners,
and they are interested in finding techniques that can overcome their challenges and
help them follow their goals (see also [20]). Increasing the test suite's rate of fault de-
tection is a common goal of regression test prioritization techniques [14, 58], whereas
controlling fault slip through is among the goals of the practitioners [20, 21].

Our next constraint was selecting a study where authors used the SIR system to
evaluate their technique(s). [9] reported that out of 65 papers selected for their sys-
tematic reviews on regression test prioritization 50% are using SIR systems. [7] also
reported that most of the authors evaluate their techniques using SIR artefacts. They
highlight that use of SIR systems allows replication studies.

The final constraint was to select a target study that uses IR methods for the prior-
itization technique. Recent studies report that test case prioritization techniques based
on IR concepts could perform better than the traditional coverage-based regression test
prioritization techniques [27, 28].

We searched Google Scholar with the keywords “regression testing”, “test case
prioritization”, “information retrieval (IR)”, “software infrastructure repository (SIR)”.
Our searches returned 340 papers. After scanning the abstracts, we learned that there is
not a single technique that explicitly states controlling fault slippage as its goal. How-
ever, the technique presented in [26] focused on less tested code, and the goal was to
increase the fault detection rate of coverage-based techniques using IR methods. Ig-
nored or less tested code could be among the causes of fault slippage. Therefore we

203

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

considered the technique by Kwon et al. [26] for further evaluation. We evaluated this
technique using the rigor criteria as suggested by Ivarsson et al. [59]. The authors
suggest evaluating the rigor of empirical studies based on context, design, and valid-
ity threats. After considering all the factors mentioned above and applying the rigor
rubrics, the study presented in [26] was used as a target for replication.

Describing the original study

Kwon et al. [26] intended to improve the effectiveness of test case prioritization by fo-
cusing on infrequently tested code. They argued that test case prioritization techniques
based on code coverage might lack fault detection capability. They suggested that us-
ing the IR-based technique could help overcome the limitation of coverage-based test
case prioritization techniques. Considering the frequency at which code elements have
been tested, the technique uses a linear regression model to determine the fault detec-
tion capability of the test cases. Similarity score and code coverage information of test
cases are used as input for the linear regression model. Kwon et al. [26] stated that the
technique they proposed is the first of its type that considers less tested code and uses
TF-IDF in IR for test case prioritization. The authors claimed that their approach is
also first in using linear regression to weigh the significance of each feature regarding
fault-finding. They divided the process into three phases, i.e., validation, training, and
testing, and suggested using the previous fault detection history or mutation faults as
validation and training data.

Kwon et al. [26] suggested the following steps to implement the proposed tech-
nique:

1. Coverage of each test case

2. Set IDF threshold with validation data (previous or mutation faults)

3. Calculate TF/IDF scores of each test case

4. Use coverage and sum of TF/IDF of a test case as predictor values in the
training data

5. Use previous (mutation) faults as response values in the training data

6. Estimate the regression coefficients (weight of each feature) with the training
data

7. Assign predictor values (coverage and TF/IDF scores) to the model to decide
the test schedule

8. Run the scheduled test cases

204

To evaluate the proposed test case prioritization technique based on information
retrieval and coverage information (IRCOV), Kwon et al. [26] used four open-source
Java programs XML-Security (XSE), Commons-CLI (CCL), Commons-Collections
(CCN), and Joda-Time (JOD). Kwon et al. [26] highlighted that the fault information of
the software programs was not sufficiently available, and they were unable to evaluate
their approach using available information. Therefore, the authors simulated the faults
using mutation. To generate the mutants, they used the mutation framework MAJOR
[53, 54]. To reduce the researcher's bias and achieve reliable results, they applied ten-
fold validation and divided the mutation faults into ten subsets and assigned each subset
to training, validation, and test data.

Concepts used in the original study

The original study [26] makes use of IR concepts. It views a “document” as a test
case, “words” as elements covered (e.g., branches, lines, and methods), and “query”
as coverage elements in the updated files. TF and IDF scores of the covered elements
determine their significance to a test case. The number of times a test case exercises
a code element is counted as a TF value. The document frequency (DF) represents
the number of test cases exercising an element. IDF is used to find the unique code
elements as it is the inverse of DF.

Since the focus of the proposed technique was on less-tested code, the IDF score
has more significance, and it is required to minimize the impact of TF. To minimize
the impact of TF score on the test case prioritization, they used Boolean values for TF
(i.e., T F = 1 if a test case covers the code element, T F = 0 otherwise). To assign an
IDF score to a code element the IDF threshold is used. Kwon et al. [26] define the IDF
threshold as:

IDF threshold: “The maximum number of test cases considered when assigning an
IDF score to a code element.”

The IDF threshold is decided by the validation data that consists of faults and related
test cases from the previous test execution history or mutation faults.

Finally, the authors used the similarity score between a test case (document) and
the changed element (query) to indicate the test cases related to modifications. The
similarity score is measured using the sum of TF-IDF scores of common elements in
the query.

205

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

Key findings of the original study

Using four open-source Java programs, the authors compared their technique with
random ordering and standard code-coverage-based methods (i.e., line, branch, and
method coverage). They measured the effectiveness using Average Percentage of Fault
Detection (APFD).

The authors concluded that their technique is more effective as it increased the fault
detection rate by 4.7% compared to random ordering and traditional code coverage-
based approaches.

6.4.3 Information about the replication
In this section, we present contextual information, i.e. data availability, roles involved,
and replication steps.

Data availability

Kwon et al. [26] did not provide detail on the experimental setup and raw data. Fur-
thermore, they did not publish the automation scripts and data in any open source
repository. We contacted them and asked if they could share the experimental package
with us. One of them informed us that they had lost the data and did not have any
backups related to this study. .

Roles involved

The selection of candidate study for replication was a done through consensus among
the authors. Whereas in the subsequent steps every author had a specified role. The first
author conceptualized the whole replication process, including the logical assessment
of the study to be replicated. The second author who is an industry practitioner wrote
the automation scripts and sat up the environment according to the requirements of the
software programs. Both the first and second authors jointly performed the replication
steps. The first author provided his input for every step, while the second author carried
out the actual implementation. The third and fourth authors reviewed study design and
implementation steps.

Replication steps

We aimed to make an exact replication of the original study, and therefore we followed
the procedure strictly as presented in the original study [26]. The original study IRCOV
was built using line, branch, and method coverage. Therefore we also used the line,

206

branch, and method coverage to replicate the IRCOV model. The sequence of events
followed in the replication experiment is shown in Figure 6.1.

Using training data
calculate coverage of

each test case

Partition the mutants into
training, validation, and test
sets (10%, 10%, & 80%).

Generate mutants*
using tool

Set IDF threshold
using validation data

(mutation faults)

Using training data and IDF
threshold set IDF scores,

also set TF scores

Using TF-IDF scores
calculate similarity scores

Estimate the regression
coefficients

Assign predictor values (Coverage and
similarity scores) along with the coefficients

to the model to decide the test schedule

Run the scheduled test cases

10 Folds
completed? Stop

YesNo

* Mutants are required if
previous faults are not

available

Classes of the
programs to be

 tested
Start

Figure 6.1: Steps followed to replicate the original study

Replication objects: We attempted to test the replication of the IRCOV with six
software programs, using four software programs from the original study and two ad-
ditional software programs. Table 6.1 presents the details of the software programs
used in the replication of IRCOV. The software programs are Common CLI, XML Se-

207

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

curity, Commons-Collections (CCN), Joda-Time (JOD), Commons-Email, and Log4j.
We were able to implement IRCOV with Commons-CLI, but due to various constraints
discussed in Section 6.5, we failed to replicate IRCOV with XML Security, Commons-
Collections (CCN), and Joda-Time (JOD), Commons-Email, and Log4j.

Table 6.1: Software programs used in replication

Program Version LOC Test
Classes

Used in Kwon et
al. [26]

Repository

Commons-CLI 1.1, 1.2 13210 23 Yes SIR & GitHub
XML Security 2.2.3 21315 172 Yes SIR & GitHub
Commons-
Collections

v4.3 128907 490 Yes GitHub

Joda-Time v2.10.10 147025 240 Yes GitHub
Commons-Email fd6b6**c35a 83154 20 No GitHub
Log4j b956**8b969 169646 63 No SIR & GitHub

Commons-CLI1 is a library providing an API parsing of command-line arguments.
XML-Security2 for Java is a component library implementing XML signature and en-
cryption standards. Commons-Collections 3 provides java data structures. Joda-Time
4 provides a quality replacement for the Java date and time classes.

To see if the technique (IRCOV) is replicable with other software programs, we
selected Commons-Email and Log4j. Commons-Email5 is built on top of the JavaMail
API, and it aims to provide an API for sending email.

Log4j6 is a Java based logging utility. Log4j 2 was released in 2014 to overcome
the limitations of its predecessor version Log4j 1. We obtained the software programs
from GitHub and used the test suites provided with the programs.

Mutant generation: The fault information of the software programs was not avail-
able, and therefore we used mutation faults instead. In the original study, Kwon
et al. [26] used mutation faults as well. For the mutation, we used the tool (MA-
JOR) [53, 54].

Partitioning mutants into training, validation, and test sets: As per the description
in the original study, we classified the mutants into training, validation, and test sets
(10%, 10%, and 80%, respectively). To classify the data, we used an online random

1https://commons.apache.org/proper/commons-cli/
2http://santuario.apache.org/javaindex.html
3https://commons.apache.org/proper/commons-collections/
4https://www.joda.org/joda-time/
5https://commons.apache.org/proper/commons-email/
6https://logging.apache.org/log4j/2.x/

208

generator7. We applied the ten-fold validation technique to ensure the reliability of the
results and avoid any bias. To create ten folds of each data set (i.e., training, validation,
and test sets), we wrote automation scripts [51].

IDF threshold: The purpose of setting up an IDF threshold is to ensure that prior-
itized test cases should detect faults in less tested code elements. The IDF threshold
is decided using validation data containing information of faults and of test cases de-
tecting the faults. To calculate the IDF threshold the authors of the original study [26]
suggested using a ratio from 0.1 to 1.0 in Equation 6.1.

IDF T hreshold = no o f test cases× ratio (6.1)

We trained the regression model with each threshold using validation data and selected
the ratio that led to the minimum training error for the IDF threshold. Based on the
minimum training error, Table 6.2 presents the chosen values for the IDF threshold of
all ten folds of Commons-CLI. We assigned IDF values to only those code elements
whose DF was not above the IDF threshold.

Calculating TF and IDF score: As suggested in the original study [26], we use
Boolean values for TF (i.e., T F = 1 if the test case covers the element, T F = 0 other-
wise). The purpose to fix the TF values as 0 or 1 was to ensure that only test case would
be prioritized that are targeting less tested code. The IDF score is more significant in
this regard. As suggested in the original study [26], we used Equation 6.2 to calculate
the IDF score.

IDF = 1+ log
(

o f test cases
o f test cases covering the element

)
(6.2)

Similarity score: The similarity score directly contributes to the IRCOV model. In
the regression model (see Equation 6.4), x2 refers to the similarity score of each test
case. We have calculated the similarity scores using Equation 6.3 as suggested in [26].

Similarity Score(t,q) = ∑
e∈t∩q

t f − id f e,t (6.3)

Since TF values are 1 or 0 (i.e., if a test case excises a code element, then TF is 1; oth-
erwise, it is 0), practically similarity scores are the sum of IDF scores of the elements
covered by a particular test case.

7https://approsto.com/random-line-picker/

209

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

Coverage information: The coverage measure is aslo used in the regression model.
In Equation 6.4, x1 refers to the coverage size of each test case. To measure code size
(line of code) and coverage of each test case, we used JaCoCo8.

IRCOV model: We used Equation 6.4 for the linear regression model as suggested
in the original study [26].

y = θ0 +θ1x1 +θ2x2 (6.4)

In Equation 6.4, x1 is the size of the coverage data for each test case, and x2 refers
to the similarity score of each test case. The value of y represents each test case's fault
detection capability, which is proportional to the number of previous faults detected by
the test case. In the regression model, three coefficients need to be calculated (i.e., θ0,
θ1, & θ2). Here θ0 represents the intersect, whereas, to calculate θ1 and θ2 Kwon et
al. [26] suggested using Equation 6.5, which uses y value and respective values of x1
and x2. Here y could be calculated using Equation 6.6, where as x1 and x2 respectively
represent the size of coverage and similarity scores of each test case.

theta = (XT X)−1XT y⃗ (6.5)

y =
n

∑
n=1

f i

log(t i)+1
(6.6)

Prioritization based on fault detection capability: After having the values of coef-
ficients and variables of regression model (i.e., θ0, θ1, θ2, x1, and x2), we determined
the fault detection capability of each test case using the IRCOV model (see Equation
6.4). Finally, we arranged the test cases in the descending order of the calculated fault
detection capability.

Evaluating the technique: After having a prioritized set of test cases, we ran them
on the 50 faulty versions of each fold we created using test data set of mutants. To
evaluate the results, we used the average percentage of fault detection (APFD) (see
Equation 6.7).

APFD = 1− T F1 +T F2 ++T FN

nm
+

1
2n

(6.7)

8https://www.eclemma.org/jacoco/

210

6.4.4 Analysis of the replication results
We implemented IRCOV for line, branch, and method coverage. As described above,
for all coverage types, we calculated the APFD values for each fold, and we also cap-
tured the intermediate results (see Table 6.2).

To compare the replication and the original study results, we translated the APFD
values for Commons-CLI from the original study. Then we plotted the APFD values of
the original and replication study in the box plot, a statistical tool to visually summarize
and compare the results of two or more groups [42, 49]. Box plot of APFD values
enabled us to visually compare the replication and original study results.

To triangulate our conclusions, we applied hypothesis testing. We used Wilcoxon
signed-rank test to compare the results of IRCOV original and IRCOV replication re-
sults. Also in the original study Kwon et al. [26] used Wilcoxon signed-rank test to
compare the IRCOV results with the baseline methods. Wilcoxon signed-rank test is
suitable for paired samples where data is the outcome of before and after treatment. It
measures the difference between the median values of paired samples [50]. In our case,
we were interested in measuring the difference between the median APFD values of
IRCOV original and IRCOV replication. Therefore, the appropriate choice to test our
results was Wilcoxon signed-rank test.

We tested the following hypothesis:

H0LC: There is no significant difference in the median APFD values of orig-
inal and replication study using line coverage.

H0BC: There is no significant difference in the median APFD values of orig-
inal and replication study using branch coverage.

H0MC: There is no significant difference in the median APFD values of orig-
inal and replication study using method coverage.

6.4.5 Automation of replication
The replication was implemented using Python scripts. They are available in [51]. Fig-
ure 6.2 presents the details of automation steps for the replication of IRCOV. The orig-
inal study's authors proposed that ten-fold-based execution is needed (when historical
data is not available) to evaluate their original technique. Therefore, our implementa-
tion (fold_generator) [51] generates ten folds of the object program at the first stage.
Thereafter, it generates fifty faulty versions of each fold, whereas each version con-
tains 5-15 mutants (faults). After generating the faulty versions, the script makes the
corresponding changes in the code. Finally, the tests are executed, and their results are
extracted. Later, using the test results, we calculate the APFD values of each fold. The

211

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

Figure 6.2: Steps to automate the replication of IRCOV

212

calculation of APFD values is the only step not handled in our script. We used excel
sheets to calculate APFD values.

6.4.6 Threats to validity
Internal validity

Internal validity refers to the analysis of causal relations of independent and dependent
variables. In our case, we have to see if the different conditions affect the performance
of IRCOV. IRCOV depends upon two inputs, coverage of each test case and a similarity
score calculated based on TF-IDF. We used the test cases available within the software
programs. Therefore, we do not have any control over the coverage of these test cases.
However, the choices of mutants can impact the similarity score. To avoid any bias, we
generated the mutants using a tool and used a random generator to select the mutants
for different faulty versions of the software programs. Furthermore, we trained IRCOV
sufficiently before applying it to test data by following the ten-fold validation rule.
Since we measured the performance of IRCOV using the APFD measure, the results
of the successful case were not significantly different from the original study's results.
Therefore we can argue that our treatment did not affect the outcome of IRCOV. Hence
minimized the threats to the internal validity.

Construct validity

Construct validity is concerned with the underlying operational measures of the study.
In our case, since it is a replication study and we followed the philosophy of exact
replication [46]. Therefore, if the original study suffers of any aspects of construct
validity, the replication may do so. For instance, the use of mutation faults could be a
potential threat to the construct validity because of the following two reasons

• Mutation faults may not be representative of real faults.

• Possible researchers' bias concerning the nature of mutation faults.

Concerning the first reason, the use of mutation faults to replace the real faults is an
established practice and researchers claim that mutation faults produce reliable results
and hence can replace the real faults [40, 41]. To avoid any bias, we used an auto-
mated mutation tool to generate the mutants. Also to select the mutants for validation,
training, and test set we used an automated random selector. Hence no human inter-
vention was made during the whole process. Furthermore, we discussed the strengths
and weaknesses of different tools.

213

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

External validity

External validity is the ability to “generalize the results of an experiment to indus-
trial practice” [48]. The software programs used in the replication study are small and
medium-sized Java programs. Therefore, we can not claim the generalizability of re-
sults to large-scale industrial projects. The results produced in replication align well
with the results of the original study. However, we could not demonstrate the use of
the technique on the additional software programs.

6.5 Results
This section presents the findings from the replication. The results are organized ac-
cording to research questions listed in Section 6.4.

6.5.1 RQ1. Degree to which the replication is feasible to imple-
ment.

The first goal was to see the possibility to replicate the IRCOV technique with the four
software programs described in the original study [26] (RQ1.1) and with two additional
software programs (RQ1.2).

Concerning RQ1.1, out of four software programs used in the original study, we
could completely replicate the IRCOV technique with only one software program
Commons-CLI. Whereas, with the other three software programs, (i) XML Security,
(ii) Commons-Collections (CCN), and (iii) Joda-Time (JOD), the replication was par-
tially successful or unsuccessful. Concerning RQ1.2, we attempted to replicate IRCOV
with two software programs, (i) Commons-Email and (ii) Log 4j, but we were unable
successfully to replicate the IRCOV with these additional software programs as well.
The detail of completely successful, partially successful and unsuccessful cases are
discussed in the subsequent paragraphs. Successful replication implementation: We
successfully replicated IRCOV with Commons-CLI. After going through the steps pre-
sented in Section 6.4.3, for every fold, we were able to calculate the respective coverage
information and similarity score of each test case. Table 6.2 presents the intermediate
results for the replication of IRCOV with Commons-CLI. These include, training er-
ror, chosen value of IDF threshold, regression coefficient θ0, coverage weight θ1, and
weight for similarity score θ2).

To evaluate the performance of IRCOV, we have calculated APFD values for all
ten folds of each coverage type (branch, line, and method) (see Table 6.3). For branch
coverage, the APFD value ranges from 0.548 to 0.874, whereas the average APFD

214

Table 6.2: Simulation parameters for Commons-CLI. (MC = Method coverage, LC =
Line coverage, & BC = Branch coverage)

Fold
Name

Coverage
Type

Training Error IDF Threshold θ0 θ1 θ2

Fold1
MC 1.0694 7 -0.3478 0.0187 0.1426
LC 0.9770 2 0 0 0
BC 0.8876 2 0 0 0

Fold2
MC 0.3195 5 -0.7976 0.0323 -0.1472
LC 0.3533 6 -0.6084 0.0088 -0.1343
BC 0.3567 5 -0.3386 0.0178 -0.2095

Fold3
MC 0.6411 6 -0.0286 0.0008 0.0796
LC 0.6404 6 -0.0498 0.0004 0.0736
BC 0.6405 6 -0.0380 0.0008 0.0736

Fold4
MC 0.4783 6 -0.0687 0.0097 0.1677
LC 0.4551 6 -0.1086 0.0032 0.1365
BC 0.4947 6 0.1240 0.0045 0.1683

Fold5
MC 0.1838 5 0.0309 0.0068 0.0558
LC 0.1856 4 0.0859 0.0018 0.0612
BC 0.1876 4 0.1406 0.0038 0.0516

Fold6
MC 0.2247 2 -0.5284 0.0194 0.3548
LC 0.1795 2 -0.4869 0.0052 0.3470
BC 0.1549 2 -0.3978 0.0119 0.3149

Fold7
MC 0.1382 10 -0.1479 0.0115 -0.0141
LC 0.1364 10 -0.0833 0.0030 -0.0234
BC 0.1390 10 0.0028 0.0065 -0.0235

Fold8
MC 0.2020 6 0.4389 -0.0024 0.0839
LC 0.2046 6 0.3401 -0.0001 0.0715
BC 0.2046 6 0.3286 -0.00001 0.0694

Fold9
MC 0.1490 6 0.1652 -0.0032 0.1473
LC 0.1532 6 0.0540 -0.0002 0.1344
BC 0.1517 6 0.0862 -0.0012 0.1434

Fold10
MC 0.0339 10 -0.1253 0.0017 0.0267
LC 0.0339 10 -0.1127 0.0004 0.0261
BC 0.0343 10 -0.0920 0.0007 0.0278

value for branch coverage is 0.747. The APFD values for line coverage range from
0.610 to 0.874, and the average APFD value for line coverage is 0.809. Finally, the
APFD value for method coverage ranges from 0.585 to 0.865, and the average APFD
for method coverage is 0.772. These results show that the IRCOV model performed
best for the line coverage as the mean APFD for line coverage is highest among all.

Partial or unsuccessful replication: Our first unsuccessful replication was concern-
ing XML Security. We did not find all the program versions used in the original study
(Study [26]). Therefore, we decided to use the versions that have slightly similar ma-

215

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

jor/minor release versions. We downloaded available XML Security versions 1, 1.5 and
2.2.3. The first two downloaded versions (version 1 and version 1.5) were not compil-
ing due to the unavailability of various dependencies. The logs from the compilation
failures are placed in folder “LogsXmlSecurit” available at [52].

We were able compile the third XML Security version 2.2.3, but we could not
continue with it, because this version contained several failing test cases (see [52]).
With already failing test cases it was difficult to train the model correctly and get the
appropriate list of prioritized test cases.

The second and third attempts were made on Commons-Collection and Joda-Time.
Compared to other projects used in replication experiment these projects contain more
test classes (see Table 6.1). The mutants were generated for each of these projects. Out
of fifty faulty versions, the first faulty version of Commons-Collection (Fold1) took 40
minutes in execution, and similarly, the first faulty version of Joda-Time (Fold1) took
36 minutes in execution. This was a limitation since, to train the model, we had to
use ten folds, and for each fold, we had to execute 50 faulty versions containing five to
fifteen faults in each faulty version. Our estimate shows that it would take 2000 minutes
to train Commons-Collection and 1810 minutes to train Joda-Time. It would take 64
hours (approx) before we get the final results of these two programs – provided that the
Internet connection remains stable and working. Furthermore, parsing and analyzing
the data of many test classes is also a time-consuming task. Due to these technical and
resource limitations, we abandoned the replications for these two projects. We have
provided further discussion on these issues in Section 6.6.

The fourth unsuccessful replication attempt was executed on Commons-Email.
This time the replication was unsuccessful because of faulty mutants generated by the
mutant software. For instance, it suggested replacing variable names with ‘null’ (see
Listing 1 & 2). The actual code was this.name = null; while after mutant injection, the
code turned to this.null = null.

Listing 6.1: Faulty mutant generated by the tool

3 5 :EVR: < IDENTIFIER (j a v a . l a n g . S t r i n g) >: <DEFAULT>: org . apache . commons . ma i l .
ByteArrayDataSource@setName (j a v a . l a n g . S t r i n g) : 2 1 4 : name |== > n u l l

Listing 6.2: Code generated after the insertion of faulty mutant

p u b l i c vo id setName (f i n a l S t r i n g name)
{
/ / t h i s . name = n u l l ;

t h i s . n u l l = n u l l ; }

216

Another type of faulty instances were when MAJOR suggested to modify a line
in the code that resulted in Java compilation errors (such as “unreachable statement”).
There were several such faulty mutants that made the program fail to compile, and
hence no further processing was possible. The detail of all faulty mutants is available
in the folder “CommonsEmail” at [52].

We also made unsuccessful attempts to change the mutant generator to rectify this
problem. However, each mutant generator presented a new set of problems. The
lessons learnt from usage of different mutant generators are described in next section.

The fifth replication attempt was executed on Log4j. We followed all the steps
(using our automated scripts) proposed by the authors of the original study. We suc-
cessfully generated the mutants for this program. However, the replication was stopped
at the point when the steps to train the model failed. The proposed approach in the orig-
inal study is based on the coverage information of each code class and test-class. This
time the issue was caused by the low coverage of the test cases. During the training of
the model, we realized that because of low coverage of the test cases, we were unable
to calculate the values of regression coefficients, and as a result, we could not gener-
ate the prioritized set of test cases. We developed a Jupyter notebook to describe each
steps of this partially successful replication (see [51]). Compared to the other software
programs selected in this study, with 169646 LOC, Log4j is a large program. Thus, a
lot of time was needed to train the model for Log4j. For all ten folds, with fifty faulty
versions of each fold and with five to fifteen faults in each faulty version, it required
approximately 60 hours to train the model.

Key findings: Concerning RQ1, the replication was only feasible in one of
four cases; the key reasons are listed below.

1. The inability to use the system under test was caused by compatibility
issues (unavailability of system versions and dependencies).

2. Already failing test cases made the replication fail.

3. Mutant generators created issues in running the replication,
workarounds were difficult to implement.

4. Test cases require a certain level of coverage to train the model.

5. More effort is required to train the model for large-sized software
programs.

217

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

Table 6.3: APFD values for all ten folds of each coverage type

Folds Branch
Coverage

Line Cov-
erage

Method
Coverage

Fold 1 0.874 0.874 0.865
Fold 2 0.816 0.866 0.790
Fold 3 0.646 0.643 0.613
Fold 4 0.757 0.816 0.755
Fold 5 0.725 0.715 0.721
Fold 6 0.796 0.829 0.829
Fold 7 0.841 0.839 0.839
Fold 8 0.610 0.610 0.585
Fold 9 0.548 0.622 0.594

Fold 10 0.736 0.803 0.803

6.5.2 RQ2. Comparison of the results to the original study.

Figure 6.3 presents the APFD boxplots of the original and replication study for Commons-
CLI. Boxplots with blue patterns represent the original study results, and boxplots with
gray patterns represent the replication study results. We can see that in all cases, the
APFD values of the original study are slightly better compared to the values of the
replication. We applied statistical tests to detect whether the results of the replication
and the original study differ.

To compare the replication results for branch, line, and method coverage of Commons-
CLI with the original study's results, we applied Wilcoxon singed-rank test. The results
are significant if the p-value is less than the level of significance [47]. In our case, the
difference between the two implementations would be significant if the p-value is less
than 0.05.

Table 6.4 presents the results of statistical test. The p-value for branch coverage
is 0.475, which is greater than 0.05 (significance level). Therefore, we can not reject
the null hypothesis. That means we can not show a significant difference in the APFD
values for branch coverage of Commons-CLI between the replication and the original
study.

Similarly, the p-value for line coverage is 0.415, greater than the set significance
level. Based on the statistical results, we can not reject the null hypothesis. This implies
that we can not show a significant difference in the APFD values for the line coverage
of Commons-CLI between the replication and the original study.

Finally, the p-value for method coverage is 0.103, based on this result, we can not
reject the null hypothesis. Therefore no significant difference in the APFD values for
the method coverage of Commons-CLI between the replication and the original study.

218

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

IRCBO IRCBR IRCLO IRCLR IRCMO IRCMR

Figure 6.3: APFD boxplots for IRCOV Original vs IRCOV replication

IRCBO= IRCOV branch coverage original, IRCBR= IRCOV branch coverage
replication
IRCLO= IRCOV line coverage original, IRCLR= IRCOV line coverage replication
IRCMO= IRCOV method coverage original, IRCMR=IRCOV method coverage
replication

Table 6.4: Statistical results of replication compared to the original study for
Commons-CLI.

Coverage α p-value 95% Conf. Int.

Branch 0.05 0.475 0.646 - 0.816
Line 0.05 0.415 0.668 - 0.845
Method 0.05 0.103 0.652 - 0.827

219

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

From the t-test results, we can conclude that for all three coverage types (branch,
line, and method), we did not find any significant difference between the replication
and the original study. Therefore, we can state that the replication experiment did
not deviate from the original result to a degree that would lead to the test detecting a
significant difference.

Key findings: Concerning RQ2, we compared the replication results of
the successful case (i.e., Commons-CLI) with the original study's results.
Below are the key findings for RQ2.

1. The statistical test did not detect a significant difference in the APFD
values of the replication and the original study concerning the three
coverage measures investigated.

2. We conclude that the results of the original study are verifiable for
Commons-CLI.

6.6 Discussion

6.6.1 Lessons learned of replicating artefact-based studies in soft-
ware testing

We replicated the study presented in [26] with the intent of promoting artefact-based
replication studies in software engineering, validating the correctness of the original
study, and exploring the possibilities to adopt regression testing research in the industry.

Overall, it is essential to capture and document assumptions and constraints con-
cerning the techniques that are replicated, as well as the conditions for being able to
run a replication. We highlight several factors of relevance that were observed.

Conditions concerning System under Test (SuT) complexity: From the replication
results, we learned that besides the various constraints, the technique (IRCOV) pre-
sented in [26] is replicable for small and medium software programs provided the
availability of context information. The technique with its current guidelines is dif-
ficult to implement with large-size software programs because it requires a significant
amount of effort to train the model. The restriction of 10-folds, fifty faulty versions
for every fold, and 5 to 15 faults in every faulty version would require a substantial
effort. For example, while attempting to replicate the original study with Commons-
Collection and Joda-Time, we estimated that it would take approximately 67 hours to
train the model for each of these software programs. This limitation can be managed by

220

reducing the number of faulty versions for each fold, but this may degrade the accuracy
and increase the training error.

Conditions concerning the characteristics of the test suite: Test cases available
with Log4j have low coverage, limiting the chance of correctly training the model
and generating a reasonable prioritization order of the test cases. Coverage is one of
the primary inputs required for the test case prioritization using the IRCOV model.
Another problem we encountered was the presence of already failing test cases in one
of the versions of XML Security. Test cases are used to calculate the coverage score
and similarity scores of the project. If a handful of test cases fail (as in XML Security
version 2.2.3), wrong coverage information and similarity scores are calculated. This
results in the wrong prioritization of test cases as well faulty training of the model
(which is used to identify prioritized test cases). Another drawback with failing test
cases concerns the use of mutations. If tests are already failing and when mutants are
introduced, then the effectiveness is unreliable as tests are already failing because of
other issues. Further conditions may be of relevance in studies focusing on different
aspects of software testing. Here, we would highlight how important it is to look
for these conditions and document them. This is also of relevance for practice, as it
demonstrates under which conditions a technique may or may not be successful in
practice.

Availability of experimental data for artefact-based test replications: One of the
constraints regarding the replicability of the IRCOV technique is the availability of
experimental data. For example, the authors of the original study [26] stated that they
used in-house built tools to conduct the experiment but, they did not provide any source
of these tools, also not including details of the automation tools. Therefore, it took a
significant effort to set up the environment to replicate IRCOV with the first program.
There are various limitations concerning the data sets and tools required to work with
the recommended steps. Regarding data sets, we have recorded the findings in Section
3.4. These include the compatibility of SIR artefacts. For example, because of various
dependencies, we faced difficulties while working with XML Security version 1. While
working with version 2.2.3 of XML Security, we encountered errors in the version.
Therefore, we could not collect the coverage information. Ultimately, we were unable
to replicate the technique with any of the versions of XML Security.

Reflections on mutant generators: In the absence of failure data, the authors of the
original study suggested using mutation faults, and they used the MAJOR mutation
tool to generate the mutants. In one of our cases (Commons-Email), the mutation tool
(MAJOR) generated inappropriate mutants that led to the build failure. Therefore, no
further progress was possible with this case. One option could be to remove the faulty
mutants and include only correct mutants. In our opinion, removing faulty mutants may
bring different results from the original study, thus limiting the validity of replication.

221

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

Table 6.5: Comparison of mutant generators

No Mutation
Tool

Benefits Challenges

1 MAJOR9 (i) Easy to use. (ii)
Most commonly used mu-
tant generator.

(i) Faulty mutant generated. (ii) Needs up-
grade to latest Java versions (iii) Documen-
tation needs improvement.

2 µJava10 (i) IDE plugin available
(ii) User decides what
types of mutants can be
generated.

(i) Exporting mutants separately is not sup-
ported (ii) Does not support latest Java ver-
sions (iii) GUI crashes often while generat-
ing mutants.

3 Jester11 Two types of Jester ver-
sions, a complete version
and a simple version.

Latest update is more than 10 years ago. We
were unable to generate mutations or start
the program despite of following all steps.

4 Jumble12 (i) Support recent Java ver-
sions. (ii) Integration with
IDE Supported.

Unable to generate mutants despite follow-
ing examples. Latest update was 6 years ago.

5 PIT13 The most recent and com-
plete mutant generator.
Mutants are generated
and tests are executed. A
report is generated for the
user.

(i) Unable to export the mutants. (ii) Lack of
diversity in the mutants. (iii) Each execution
produced exact same mutants.

To overcome the difficulty with replication of project 3 (Commons-Email), we tried
different open-source mutation generators available. Each of these presented various
benefits and challenges that are documented in Table 6.5. After trying out different
mutation tools, we learned that among the available options, MAJOR is an appropriate
tool for Java programs, as it generates the mutants dynamically.

Reflections on the requirements of the experimental setup:
We faced limitations while attempting the replication of technique with larger soft-

ware programs. The time required to train the model with larger programs was much
longer. We do not know whether the original authors experienced similar problems

9https://mutation-testing.org/
10https://cs.gmu.edu/ offutt/mujava/
11http://jester.sourceforge.net/
12http://jumble.sourceforge.net/
13https://pitest.org/

222

since the original study did not discuss similar issues. We suggest that original studies
explicitly report any special requirements (e.g., hardware, software, etc.) concerning
experimental setup. A collaboration between the original authors and replicators may
help resolve such issues. However, as mentioned in the earlier sections, we could not
establish a collaboration with the authors of the original study.

Reflections on the IRCOV technique: Besides the various limitations highlighted
earlier, the IRCOV technique is replicable for smaller software programs provided the
availability of required information. The replication results of the successful case show
that, at least for Commons-CLI, the original authors' claim about the performance of
the IRCOV technique was verifiable. The technique needs to be modified, though, to
decrease the time required for programs with many test classes. Then, the technique
presented in the original study can be valuable from an industry perspective because
it focuses on prioritizing test cases detecting faults in less tested code while taking
coverage of test cases into account during the prioritization process. Besides increasing
the test suite's rate of fault detection, it can help the practitioners work with one of their
goals (e.g., controlled fault slippage). Looking at regression testing in practice, the
practitioners recognize and measure the coverage metric [21]. The only information
that needs to be maintained in the companies is failure history. In the presence of actual
failure data, we do not need to use the mutants to train the IRCOV model extensively,
and we can reduce the number of faulty versions for each fold and the number of folds.

Overall, pursuing the first research question (RQ1) provided us with a deeper in-
sight into the various aspects and challenges related to external replication. The lessons
learned in this pursuit are interesting and to provide recommendations in the context of
replication studies in software engineering. From the existing literature, it was revealed
that the trend of replication studies in software engineering is not encouraging [33, 38].
The studies report that the number of internal replications is much higher than external
replications [35, 38]. While searching the related work, we observed that in the soft-
ware testing domain, compared to the internal replications, external replications are few
in numbers. There could be several reasons for the overall lower number of replication
studies in software engineering, but we can reflect on our experiences concerning the
external replications as we have undergone an external replication experiment.

One issue we would like to highlight is the substantial effort needed to implement
the replication. Replication effort can be substantially reduced with more detailed doc-
umentation of the original studies, the availability of appropriate system versions and
their dependencies, and the knowledge about prerequisites and assumptions. Better
documentation and awareness of conditions may facilitate a higher number of replica-
tions in the future.

223

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

6.6.2 General lessons learned for artefact-based replications

Table 6.6 provides an overview of challenges we encountered during the replications.
It lists the possible impact of each challenge on the results of replication, and the table
also presents a list of recommendations for researchers. The following provides a brief
discussion on the lessons learned in this study.

Table 6.6: Recommendations drawn from the challenges/lessons learned

Challenge Impact Recommendation

Documentation of original
experimental setup

Replicators have to invest addi-
tional effort to understand the
context of the study.

Original authors need to main-
tain/publish a comprehensive
documentation of experimental
setup.

Collaboration with the au-
thors of original studies

In the absence of experimental
data and support from original
authors can make the replica-
tion process more complicated.

In the event of request from
the replicators the authors of
the original study provide as-
sistance in the form of essential
information regarding the orig-
inal experiment.

Issues with the open-
source data sets

Replication experiments may
fail due to these issues.

open-source repositories need
to maintained and be up to date.

System under Test (SuT)
and tools compatibility is-
sues

Any compatibility issue of the
tools required to replicate the
original experiment can create
a bottleneck for the replication.

Such tools (e.g., Mutation tools
in our case) need to be main-
tained to make them com-
patible with new development
frameworks. The same applies
to the system under test.

Documenting the original experiment: The authors of the original studies need to
maintain and provide comprehensive documentation concerning the actual experiment.
The availability of such documents will help the independent replicators understand
the original study's context. In the absence of such documentation, the replicators need
to invest more effort to understand the original study's context. In this regard, we
suggest using open-source repositories to store and publish the documentation. The
documentation may contain the detail of the experimental setup, including the tools
used to aid the original experiment, automation scripts (if used/developed any), and
the internal and final results of the study. Furthermore, the authors can also include
detail about any special requirements or considerations that need to be fulfilled for the
successful execution of the experiment.

224

Collaboration with the original authors: Because of page limits posed by the jour-
nals and conferences, every aspect of the study can not be reported in the research
paper. Sometimes, the replicators need assistance from the original authors regarding
any missing aspect of the study. Therefore, it is essential that in case of any such query
from the replicators, the original study's authors should be able to assist them. Such co-
operation can promote replication studies in software engineering. In our opinion, lack
of collaboration is one reason for fewer replication studies in software engineering.
However, it is important to still conduct the replications as independently as possible
due to possible biases (i.e., avoiding to turn an external replication into an internal one).

Maintaining open-source repositories: Open-source repositories (one example be-
ing SIR) provide an excellent opportunity for researchers to use the data sets while
conducting software engineering experiments. A large number of researchers have
benefited from these data sets. We learned that some of the data sets available in
repositories are outdated and need to be maintained. Such data sets are not helpful,
and studies conducted using these data sets would be complex to adopt/replicate. It is
therefore essential that authors explicitly state the versions they used in their own stud-
ies. In addition, we recommend that authors of original studies as well as replications
ensure that the dependencies or external libraries are stored to facilitate the replications
of system under test.

Tools compatibility: In many cases, the authors need to use open-source tools to
assist the execution of their experiment. Such tools need to be well maintained and
updated. In case of compatibility issues, these tools can hinder the replication process.
For example, the study we replicated uses a mutation tool (MAJOR). Although it is one
of the best available options, the tool generated inappropriate mutants for one of our
cases due to some compatibility issues. Ultimately, after a significant effort, we had to
abandon the replication process for that case. Here, we also would like to highlight that
one should document the versions of the tools and libraries used (also including scripts
written by the researchers - e.g., in python).

Documenting successes and failures in replications: Besides the significance of
documenting every aspect of the original experiment, recording every single event of
replication (success & failure) is critical for promoting future replications and industry
adoptions of research. We recommend storing the replication setups and data in open-
source repositories and providing the relevant links in the published versions of the
articles.

Automation of replication: A key lesson learned during the replication of the orig-
inal study is that the documentation of the setup and execution of replication could be
automated with the help of modern tools and programming languages. This automa-
tion will help in reproducing the original results and analysis for researchers reviewing
or producing the results from the studies. We have provided programming scripts that

225

Chapter 6. Lessons learned from replicating a study on information-retrieval based
test case prioritization

describe and document all the steps (and the consequences of these steps).

6.7 Conclusions
This study reports the results of a replication experiment to evaluate a test case pri-
oritization technique using information retrieval (IR) concepts proposed initially by
Kwon et al. [26]. We attempted to replicate the original study using six Java programs:
Commons-CLI, XML Security, Commons-Collection, Joda-Time, Commons-Email,
and Log4j. In the first research question (RQ1), the aim was to see if the technique is
replicable, and in the second research question (RQ2), we aimed to see if the replication
results conform to the ones presented in the original study.

We have faced various challenges while pursing RQ1, these challenges are related
to the availability of original experimental setup, collaboration with the original au-
thors, system under test, test suites, and compatibility of support tools. We were able
to replicate the technique only with Commons-CLI, which is a smaller program. Based
on our experience we can conclude that the technique is replicable for small software
programs (such as Commons-CLI) subject to the availability of required information.
However, it is hard to implement the technique with the larger software programs be-
cause it requires a substantial effort to implement it for a larger program. Concerning
RQ1, the important concluding point is that it is not feasible to externally replicate an
experiment when context information and relevant data are not available. Furthermore,
without the support of the original authors, it becomes a challenging task.

To verify the original study's results (RQ2), we compared the replication results for
Commons-CLI with the ones presented in the original study. These results validated
the original study's findings as the statistical test confirms no significant difference
between the APFD values of the replication and the actual experiment. However, we
may say that our results partially conformed with the original study because we could
not replicate the technique with all selected artefacts due to missing dependencies,
broken test suites, and other reasons highlighted earlier.

The technique can be helpful in the industrial context as it prioritizes the test cases
that target the less tested code. It can help the practitioners to control fault slippage.
However, it needs some improvements in training and validation aspects to scale the
technique to the industry context. To support the future replications/adoption of IR-
COV, we have automated the IRCOV steps using Python (Jupyter notebook).

We plan to work with more artefacts with actual faults to test the technique's (IR-
COV) effectiveness in the future, and we plan to see the possibilities of scaling it up for
larger projects. In addition to that, we want to evaluate our proposed guidelines (under
lessons learned) using different studies from industrial contexts.

226

6.8 References
[1] R. H. Rosero, O. S. Gómez, and G. D. R. Rafael, “15 years of software regression testing

techniques - A survey,” Int. J. Software Eng. Knowl. Eng., vol. 26, no. 5, pp. 675–690,
2016.

[2] M. Felderer and E. Fourneret, “A systematic classification of security regression testing
approaches,” International Journal on Software Tools for Technology Transfer, vol. 17,
no. 3, pp. 305–319, 2015.

[3] A. Zarrad, “A systematic review on regression testing for web-based applications,” JSW,
vol. 10, no. 8, pp. 971–990, 2015.

[4] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression test se-
lection techniques,” Information & Software Technology, vol. 52, no. 1, pp. 14–30, 2010.

[5] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression test case
selection: A systematic literature review,” ACM Comput. Surv., vol. 50, no. 2, pp. 29:1–
29:32, 2017.

[6] C. Catal, “On the application of genetic algorithms for test case prioritization: a system-
atic literature review,” in Proceedings of the 2nd international workshop on Evidential
assessment of software technologies. ACM, 2012, pp. 9–14.

[7] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a
survey,” Softw. Test., Verif. Reliab., vol. 22, no. 2, pp. 67–120, 2012.

[8] D. Qiu, B. Li, S. Ji, and H. K. N. Leung, “Regression testing of web service: A systematic
mapping study,” ACM Comput. Surv., vol. 47, no. 2, pp. 21:1–21:46, 2014.

[9] Y. Singh, A. Kaur, B. Suri, and S. Singhal, “Systematic literature review on regression
test prioritization techniques,” Informatica (Slovenia), vol. 36, no. 4, pp. 379–408, 2012.

[10] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping study,” Software
Quality Journal, vol. 21, no. 3, pp. 445–478, 2013.

[11] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas, D. Helgesson,
S. Kunze, and M. Varshosaz, “On the search for industry-relevant regression testing re-
search,” Empirical Software Engineering, pp. 1–36, 2019.

[12] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, “Test case prioritization ap-
proaches in regression testing: A systematic literature review,” Information and Software
Technology, vol. 93, pp. 74–93, 2018.

[13] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case prioritization
using genetic algorithms,” IEEE Access, vol. 7, pp. 126 355–126 375, 2019.

[14] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in continuous integration envi-
ronments: A systematic mapping study,” Information and Software Technology, vol. 121,
p. 106268, 2020.

227

REFERENCES

[15] O. Dahiya and K. Solanki, “A systematic literature study of regression test case prioriti-
zation approaches,” International Journal of Engineering & Technology, vol. 7, no. 4, pp.
2184–2191, 2018.

[16] A. Rainer, D. Jagielska, and T. Hall, “Software engineering practice versus evidence-
based software engineering research,” in Proceedings of the ACM Workshop on Realising
evidence-based software engineering (REBSE ’05), 2005, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083177

[17] A. Rainer and S. Beecham, “A follow-up empirical evaluation of evidence based soft-
ware engineering by undergraduate students,” in Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, 2008, pp. 78–87.

[18] E. D. Ekelund and E. Engström, “Efficient regression testing based on test history: An in-
dustrial evaluation,” in Proceedings of IEEE International Conference on Software Main-
tenance and Evolution, ICSME, 2015, pp. 449–457.

[19] E. Engström and P. Runeson, “A qualitative survey of regression testing practices,” in
Proceedings of the 11th International Conference on Product-Focused Software Process
Improvement PROFES, 2010, pp. 3–16.

[20] N. M. Minhas, K. Petersen, N. Ali, and K. Wnuk, “Regression testing goals-view of prac-
titioners and researchers,” in 24th Asia-Pacific Software Engineering Conference Work-
shops (APSECW). IEEE, 2017, pp. 25–32.

[21] N. M. Minhas, K. Petersen, J. Börstler, and K. Wnuk, “Regression testing for large-scale
embedded software development – exploring the state of practice,” Information and Soft-
ware Technology, vol. 120, p. 106254, 2020.

[22] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact,” Empirical Software Engineering,
vol. 10, no. 4, pp. 405–435, 2005.

[23] ISO/IEC/IEEE, “International standard - systems and software engineering–vocabulary,”
ISO/IEC/IEEE 24765:2017(E), pp. 1–541, Aug 2017.

[24] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family of
empirical studies,” IEEE transactions on software engineering, vol. 28, no. 2, pp. 159–
182, 2002.

[25] M. J. Harrold and A. Orso, “Retesting software during development and maintenance,” in
Proceedings of the Frontiers of Software Maintenance Conference, 2008, pp. 99–108.

[26] J.-H. Kwon, I.-Y. Ko, G. Rothermel, and M. Staats, “Test case prioritization based on
information retrieval concepts,” in 2014 21st Asia-Pacific Software Engineering Confer-
ence, vol. 1. IEEE, 2014, pp. 19–26.

[27] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing ir-based test-case
prioritization,” in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 324–336.

228

[28] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information retrieval approach for
regression test prioritization based on program changes,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 268–279.

[29] S. Yadla, J. H. Hayes, and A. Dekhtyar, “Tracing requirements to defect reports: an ap-
plication of information retrieval techniques,” Innovations in Systems and Software Engi-
neering, vol. 1, no. 2, pp. 116–124, 2005.

[30] H. Fang, T. Tao, and C. Zhai, “A formal study of information retrieval heuristics,” in
Proceedings of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, 2004, pp. 49–56.

[31] M. Shepperd, N. Ajienka, and S. Counsell, “The role and value of replication in empirical
software engineering results,” Information and Software Technology, vol. 99, pp. 120–
132, 2018.

[32] N. Juristo and O. S. Gómez, Replication of Software Engineering Experiments.
Springer Berlin Heidelberg, 2012, pp. 60–88. [Online]. Available: https://doi.org/10.
1007/978-3-642-25231-0_2

[33] M. Cruz, B. Bernárdez, A. Durán, J. A. Galindo, and A. Ruiz-Cortés, “Replication of
studies in empirical software engineering: A systematic mapping study, from 2013 to
2018,” IEEE Access, vol. 8, pp. 26 773–26 791, 2019.

[34] A. Santos, S. Vegas, M. Oivo, and N. Juristo, “Comparing the results of replications in
software engineering,” Empirical Software Engineering, vol. 26, no. 2, pp. 1–41, 2021.

[35] R. M. Bezerra, F. Q. da Silva, A. M. Santana, C. V. Magalhaes, and R. E. Santos, “Repli-
cation of empirical studies in software engineering: An update of a systematic mapping
study,” in 2015 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2015, pp. 1–4.

[36] C. V. de Magalhães, F. Q. da Silva, R. E. Santos, and M. Suassuna, “Investigations about
replication of empirical studies in software engineering: A systematic mapping study,”
Information and Software Technology, vol. 64, pp. 76–101, 2015.

[37] J. L. Krein and C. D. Knutson, “A case for replication: synthesizing research method-
ologies in software engineering,” in RESER2010: proceedings of the 1st international
workshop on replication in empirical software engineering research. Citeseer, 2010, pp.
1–10.

[38] F. Q. Da Silva, M. Suassuna, A. C. C. França, A. M. Grubb, T. B. Gouveia, C. V. Monteiro,
and I. E. dos Santos, “Replication of empirical studies in software engineering research: a
systematic mapping study,” Empirical Software Engineering, vol. 19, no. 3, pp. 501–557,
2014.

[39] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case prioritization in a
junit testing environment,” in 15th international symposium on software reliability engi-
neering. IEEE, 2004, pp. 113–124.

229

REFERENCES

[40] H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments of
test case prioritization techniques,” IEEE Transactions on Software Engineering, vol. 32,
no. 9, pp. 733–752, 2006.

[41] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing
experiments?” in Proceedings of the 27th international conference on Software engineer-
ing, 2005, pp. 402–411.

[42] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of time constraints
on test case prioritization: A series of controlled experiments,” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 593–617, 2010.

[43] J. F. S. Ouriques, E. G. Cartaxo, and P. D. Machado, “Test case prioritization techniques
for model-based testing: a replicated study,” Software Quality Journal, vol. 26, no. 4, pp.
1451–1482, 2018.

[44] M. Hasnain, I. Ghani, M. F. Pasha, I. H. Malik, and S. Malik, “Investigating the regression
analysis results for classification in test case prioritization: A replicated study,” Interna-
tional Journal of Internet, Broadcasting and Communication, vol. 11, no. 2, pp. 1–10,
2019.

[45] J. C. Carver, “Towards reporting guidelines for experimental replications: A proposal,”
in 1st international workshop on replication in empirical software engineering, vol. 1.
Citeseer, 2010, pp. 1–4.

[46] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in empirical
software engineering,” Empirical software engineering, vol. 13, no. 2, pp. 211–218, 2008.

[47] J.-B. Du Prel, G. Hommel, B. Röhrig, and M. Blettner, “Confidence interval or p-value?:
part 4 of a series on evaluation of scientific publications,” Deutsches Ärzteblatt Interna-
tional, vol. 106, no. 19, p. 335, 2009.

[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

[49] D. F. Williamson, R. A. Parker, and J. S. Kendrick, “The box plot: a simple visual method
to interpret data,” Annals of internal medicine, vol. 110, no. 11, pp. 916–921, 1989.

[50] J. D. Gibbons, “Location tests for single and paired samples (sign test and wilcoxon signed
rank test),” 1993.

[51] M. Irshad, “Automation scripts to replicate ircov,” https://github.com/MohsinIr84/
replicationStudy/, 2021.

[52] N. M. Minhas and M. Irshad, “Data set used in the replication of an ir based test case
prioritization techniques (ircov),” https://data.mendeley.com/drafts/ccnzpxng54, 2021.

[53] R. Just, F. Schweiggert, and G. M. Kapfhammer, “Major: An efficient and extensible
tool for mutation analysis in a java compiler,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE, 2011, pp. 612–615.

230

[54] R. Just, “The major mutation framework: Efficient and scalable mutation analysis for
java,” in Proceedings of the 2014 international symposium on software testing and anal-
ysis, 2014, pp. 433–436.

[55] T. Roelleke, “Information retrieval models: Foundations and relationships,” Synthesis
Lectures on Information Concepts, Retrieval, and Services, vol. 5, no. 3, pp. 1–163, 2013.

[56] G. Amati, Information Retrieval Models. Springer, New York, NY, 2009, pp.
1523–1528. [Online]. Available: https://doi.org/10.1007/978-1-4614-8265-9_916

[57] M.-M. Pittelkow, R. Hoekstra, J. Karsten, and D. van Ravenzwaaij, “Replication target
selection in clinical psychology: A bayesian and qualitative reevaluation.” Clinical Psy-
chology: Science and Practice, vol. 28, no. 2, p. 210, 2021.

[58] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection and prioriti-
zation using machine learning: a systematic literature review,” Empirical Software Engi-
neering, vol. 27, no. 2, pp. 1–43, 2022.

[59] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial relevance of
technology evaluations,” Empirical Software Engineering, vol. 16, no. 3, pp. 365–395,
2011.

231

REFERENCES

232

Chapter 7

Checklists to support decision
making in regression testing

7.1 Introduction
Practitioners working in large-scale software development face many challenges in their regres-
sion testing activities [20]. They have to choose between full regression testing (re-test all) and
selective regression testing. Furthermore, in selective regression testing, test case selection is a
complex decision-making activity [20, 31]. There are various factors that testers need to con-
sider while selecting a subset of tests from a large test suite [24]. In selective regression testing,
the goal is to maximize the coverage and fault detection ratio with a selected regression test set.
While releasing a product, practitioners want to control the fault slippage and to be confident
that they have tested enough, there are no critical faults in the release, and they have achieved the
desired quality [23, 24, 32, 33]. Achieving these goals requires support from organizational test-
ing process. During the analysis of various embedded systems and windows application-based
projects, Kasoju et al. [1] reported a lack of a structured testing process in organizations.

In our recent industrial studies [23, 24], we have identified the goals and challenges of regres-
sion testing in large-scale embedded software development companies. The identified challenges
could be divided into two groups; process related challenges and technical challenges. The pri-
mary cause of the identified challenges is the absence of a well structured regression testing
process. Instead of having a structured testing process for various testing activities, practitioners
rely on expert judgment [20, 24].

However, evaluating or making a judgment without a structured mechanism symbolizes ad-
hocism and may negatively impact the outcomes [4]. There is a possibility that even the expe-
rienced practitioners may overlook some essential aspects while making assessments and judg-
ments [4]. Similarly, it is hard for the new team members to make good guesses with limited

233

Chapter 7. Checklists to support decision making in regression testing

knowledge about the product. Especially on what activities need to be considered before the start
of regression testing and when they can decide to stop regression testing. To complement the ex-
pert judgments, checklist-based guidelines co-designed with expert practitioners could be a step
towards potential solutions. Such checklists could help document and reuse the best testing prac-
tices and help cope with various regression testing challenges that practitioners face. It would be
easy for the team members to grasp the organizational testing policies/activities quickly in such
a case. They can benefit from checklists and become familiar with usual team practices. Without
a checklist, it is highly likely that a new practitioner, for instance, can omit a necessary test or
violate any team policy [7]. However, it is essential that checklists should be designed based on
practitioners’ needs and should be aligned with the teams’ current practices. Checklists prepared
without involving practitioners could be misused or ignored [10].

This study aims to assist practitioners in improving regression testing by
1. identifying regression testing activities considered essential in practice and
2. introducing regression testing checklists based on essential activities.

The proposed checklists will help the managers to assess the readiness of team/team members.
The practitioners will use checklists to keep track of essential activities, and they would not
miss any necessary steps while performing regression testing. We worked with 25 senior testing
practitioners of 12 companies to identify the essential regression testing activities and to design
the regression testing checklists. Later, 23 practitioners of 10 companies participated in the
evolution and evaluation of the proposed checklists.

The organization of the rest of the paper is as follows: Section 7.2 provides a brief intro-
duction to checklists in software engineering practice and research. Along with the research
questions, Section 7.3 provides a summary of methods opted in this study. Threats to the valid-
ity of this study and mitigation strategies to minimize the threats are discussed in Section 7.4.
Section 7.5 presents the findings of this study, Section 7.6 provides the discussion on the process
and outcomes of this study, and Section 7.7 concludes the study.

7.2 Background and related work
7.2.1 Significance of checklists
Practitioners of various disciplines use checklists as a cognitive aid to ensure the correct com-
pletion of any task.

“If the knowledge exists and is not applied correctly, it is difficult not to be infuri-
ated.”(Gawande [34] The Checklist Manifesto)

A checklist is a standardized tool that enlists the required process criteria for the practitioners
performing a specific activity. It provides support in recording the presence or absence of the
essential process tasks [12].

234

“Checklists seem able to defend anyone, even the experienced, against failure in many
more tasks than we realized. They provide a cognitive net. They catch mental flaws
inherent in all of us—flaws of memory and attention and thoroughness.”(Gawande [34]
The Checklist Manifesto)

Two popular uses of checklists are, using checklists as mnemonic systems or as evaluation
tools. The first is used as a reminder system to help practitioners avoid omitting any essential
task. It also assures that practitioners follow the organizational framework and utilize best prac-
tices. Such checklists help minimize human error and improve overall performance. In contrast,
the evaluative checklists can aid in the standardization of evaluation by providing assessment
guidelines and ultimately improving the evaluation process 's credibility [12].

Using a checklist to document any process is not a new concept. For example, in the aviation
industry since the 1930s, it has been a standard operating procedure for the pilots and other
aviators to use checklists [5]. Pilots are using the checklists before, during, and after the flight
[11]. In medicine, checklists are used as a decision aid to identify a medical condition and decide
on an appropriate course of treatment. In comparison, surgical checklists are recommended as a
safety measure to reduce the margin of human error, and any adverse effects during surgery [13].

Social and behavioral scientists are using self-reporting questionnaires as an assessment
mechanism. Usually, such questionnaires include checklist items that enable the goal-based
assessment of a phenomenon [6].

Software engineers are using checklists in various tasks, including the audit of requiremen-
t/design specifications and code inspection [4]. Checklists can help make a process repeatable,
and the practitioners can use various checklists in the software development life cycle. For in-
stance, they can use release checklists to assure that no essential steps are skipped. At the start,
a checklist does not have to be exhaustive. If some items are missing, we can add the missing
or new items later. Improvising a checklist is always helpful in adding future goals [7]. In the
subsequent sections, we present some related work regarding checklists in software engineering
research and practice.

7.2.2 Use of checklists in software engineering
Perry [2] provided generic checklists to aid software testing teams in different phases of their
work. The author does not provide any checklist specific to regression testing. However, the
checklists presented in this book can be taken as inspiration to introduce any testing-related
checklists.

Based on their experience with a project, Heroux and Willenbring [7] advocate using check-
lists to make processes repeatable. They suggest using checklists at various stages of a project.
For instance, release checklists, developer checklists, and commit checklists. The authors
stressed that checklists help practitioners remember essential but easily omitted steps. The
checklists can help new team members to get familiar with the team practices. Heroux and

235

Chapter 7. Checklists to support decision making in regression testing

Willenbring suggest that starting with simple checklists and improving them through iterations
will help improve the related processes.

Brykczynski [8] surveyed 117 software inspection checklists from 24 sources. The author
suggests that checklists help the reviewers in a software inspection process by providing rec-
ommendations to find the defects. Brykczynski further recommends that checklists should be
updated regularly. These should not be longer than a page and should be based on relevant items
based on questions. The author classified the existing checklists according to their application
type, including requirements, design, code, testing, documentation, and process.

Brito and Dias-Neto [9] conducted empirical studies to evaluate their checklist based tech-
nique (TestCheck). TestCheck is used to inspect the software testing artefacts. TestCheck con-
sists of three separate checklists for assessing the test plan, test case, and test procedure. The au-
thors aimed to evaluate and improve their technique through a series of evaluations in this study.
They believe that their approach needs to undergo the evaluation process further, and there is a
need to provide the tool support for the smooth transition of the technique to the industry.

Usman et al. [4] proposed checklists to improve the software effort estimation. The authors
revealed that expert judgment is the most common practice for effort estimation that could lead
to wrong estimates in the absence of any process support. Usman et al. proposed a process
to develop and evolve the estimation checklists. They started with understanding the current
estimation process and identifying the relevant checklist factors from the existing literature. The
authors developed and improved the checklist in different iterations based on the findings. They
validated the proposed checklist in two steps (i.e., statically (a trial use) and dynamically (a real
use). The authors claimed that the use of checklists could increase practitioners’ confidence in
their estimates.

Madaio et al. [10] designed a checklist to understand organizational challenges and oppor-
tunities around fairness in AI. The authors conducted semi-structured interviews and co-design
workshops with 48 practitioners of 12 companies to understand the needs and concerns of prac-
titioners and develop the AI fairness checklists. Madaio et al. concluded that checklists could
help formalize the ad-hoc process and empower individual advocates. They were hopeful that
their proposal could support the practitioners in addressing AI ethics issues. Although Madaio
et al. [10] did not evaluate their checklist, however, in future, they are planning to conduct pilot
studies with different teams.

Petersen et al. [3] proposed a context checklist for industrial software engineering research
and practice. They have listed three primary purposes of the proposed checklist, i) to help record
the experience in projects in an industrial setting, ii) to help decide between the use of past
decisions vs experience and knowledge, and iii) to support researchers in deciding the contextual
information to report in primary studies and information to extract in secondary studies. The
authors evaluated the proposed checklists with the practitioners and researchers using interviews
and questionnaires. Based on the feedback, Petersen et al. revised the checklists to overcome the
deficiencies identified by the practitioners and researchers.

Molléri et al. [16] presented a checklist to support the survey research in software engineer-
ing. Using 12 methodological studies, the authors identified stages and recommended practices
of the survey process. They used thematic analysis and vote-counting methods to aggregate

236

knowledge from the existing selected studies. The authors evaluated the checklist by apply-
ing it to the existing surveys and analyzing the results. Later the authors collected the experts’
feedback on the proposed checklist and improved the checklist.

Höst and Runeson [14] proposed two separate checklists to support the software engineering
researchers and reviewers for conducting and reviewing case studies. The authors conducted
a literature survey to identify the existing checklists in the first stage. They merged all the
checklists found in the literature into a single checklist and classified the items according to
different case study phases. Later, the authors reduced the size of the checklist by grouping
similar items. After validating the checklist with the PhD students, the authors updated it to
accommodate the validation feedback.

Kitchenham et al. [15] merged two checklists into a single checklist to evaluate the quality
of software engineering experiments. The authors constructed the checklist using the findings of
two studies [17, 18]. The authors performed a two-step validation of their proposed checklist by
applying the checklist criteria to the selected papers from human-centric software engineering
experiments.

7.2.3 Summary
From the review of the related literature, we learned that use of checklists in software engineer-
ing research and practice is evident. The checklists in software engineering research are used
to assess the quality of adopted empirical research and provide guidelines to conduct empirical
studies systematically. Software engineering professionals use checklists to assess activities, in-
cluding effort estimation, code reviews, and testing. However, to the best of our knowledge, no
checklists are available explicitly designed for regression testing. We are introducing regression
testing checklists to support practitioners in decision-making and keeping track of essential re-
gression testing activities. We considered industry context while designing the checklists and
designed them with the input of senior testing practitioners. The proposed checklists will open a
way forward for assessing and improving regression testing.

7.3 Methodology
The primary objective of this study is to support practitioners in structuring the regression testing
process by introducing regression testing checklists. We followed an iterative approach to design,
evolve, and evaluate the regression testing checklists. We intended to find the answer to the
following research questions to fulfil the study’s objective.

RQ1 What activities do practitioners consider while planning, performing and as-
sessing regression testing?

RQ2 What checklists and checklist items can be helpful for practitioners while
planning, performing and assessing regression testing?

RQ3 What is the perspective of practitioners about the proposed checklists?

237

Chapter 7. Checklists to support decision making in regression testing

7.3.1 Research approach
Figure 7.1 presents the overview of the approach we followed to design and evolve the regres-
sion testing checklists. We involved the practitioners in our process, from checklists’ activities
identification to checklists’ verification. We conducted individual and group interviews with se-
nior testing practitioners to identify the activities that should be considered during the overall
regression testing process. Based on the input from practitioners, we mapped the practitioners’
decisions with the goals and respective activities. This mapping provided us with a basis for the
regression testing checklists. We handed over the initial draft of checklists to the practitioners
and asked them to assess each checklist item to see if the item is relevant. Based on their feed-
back, we made improvements to the checklists. Finally, the industry practitioners evaluated the
proposed checklists. They assessed checklists concerning comprehensiveness, usefulness, and
relevance to their context.

Research team

Practitioners

RT Checklists
V1.x

Identifying
regression

testing activities
(1)

RT Checklists
V1.0

Analyze
checklists

(3)

Evolve
checklists

(4)

Sent in
operation with

selected
practitioners

(5)

Mapping
activities to
checklists

(2)

Research team

Practitioners

Checklist Creation

Checklist Evolution

Evolution feedback

Figure 7.1: Overview of the approach used to design and evolve the regression testing
(RT) checklists.

7.3.2 Selection of participants
We followed a snowball sampling approach [25] to select the participants for our study. Since
we were interested in recruiting senior testing practitioners, we imposed a constraint that partic-
ipating practitioners must have five years or more of experience in software testing.

238

We contacted seven senior testing practitioners from three large Swedish companies, two
of whom had already participated in our previous studies on regression testing [22–24]. We re-
ceived responses from five practitioners. We conducted introductory workshops with them to
present the study idea and to finalize the operational aspects of the study. Also, we requested
them to provide us with the contacts of senior testing practitioners from their companies or con-
tact network. All five practitioners consented to participate in the study and introduced us to
a few more practitioners who fulfilled the criteria of the required experience. Along with con-
tacting the practitioners from the companies we had already worked with, we also sent various
requests through Linked In. We conducted introductory workshops with willing practitioners,
one workshop for each company regardless of the number of participants. We continued with
this approach and stopped after getting the consent of 25 senior testing practitioners from 12
companies.

7.3.3 Study participants
Our goal was to suggest checklists that could be useful and fit in the industry context. We
designed the checklists in an iterative process and involved the industry participants in all phases
(i.e., checklist design, evolution, and evaluation). Our findings represent the perspective of senior
testing practitioners. The participants’ experience ranges from five to twenty-three years, and
their average experience is twelve years. The participants’ organizational roles are test engineer,
senior test engineer, test lead, QA manager, senior SQA manager, test architect, and head QA
unit (see Table 7.1).

Further, most participants work in large-scale environments. The size of a company can be
classified based on the number of professionals working in it, and the volume of projects [40].
A large company will have more than 250 practitioners working [39]. In our sample, only two
companies, C6 and C8, have less than 250 practitioners working. These companies use agile
methodologies, including scrum, CI/CD, and DevOps. The domains represented in our study
are financial, banking, healthcare, transport, surveillance and security, telecommunication, AI
solutions, and security systems. For more detail on contextual information of the companies
represented by the participants, please see Table 7.2.

7.3.4 Data collection
We used multiple data collection methods to introduce our research goals to the prospective par-
ticipants, collect data on regression testing practice, evolve checklists, and verify the checklists.

Introductory workshops

Our study required to involve senior testing practitioners in all phases, and we needed a long-term
commitment from them. We conducted 12 online workshops to introduce our research idea of
working on regression testing checklists to prospective participants. The example of the content
used in these workshops is presented in Appendix C.2. Apart from the short introduction, the

239

Chapter 7. Checklists to support decision making in regression testing

Table 7.1: List of practitioners who participated in checklist design and evolution.

Participant ID Role Experience in years

P1 Manager SQA 15
P2 Test Lead 10
P3 Test Lead 11
P4 Senior Test Lead 12
P5 Test Lead 10
P6 Senior Manager QA 17
P7 Test Architect 8
P8 Test Lead 23
P9 Tech Lead 16

P10 Senior Test Engineer 20
P11 Senior SQA Engineer 11
P12 SQA Eengineer 6
P13 Senior SQA Engineer 9
P14 Test Lead 11
P15 Senior SQA Engineer 7
P16 Test Manager 9
P17 Test Engineer 8
P18 Test Engineer 6
P19 Test Manager 15
P20 Test Engineer 5
P21 Test Engineer 6
P22 Test Lead 12
P23 QA Lead 22
P24 Head SW QA 20
P25 Test Engineer 15

workshops were mainly Q/A-based discussions. These workshops aimed to ensure senior testing
practitioners’ informed and consented participation.

Interviews (checklists creation)

In the second phase, we conducted seven individual and five group interviews to collect data on
regression testing practice. The average duration for individual interviews was 60 minutes, and
for group interviews, it was 75 minutes. We followed the guidelines by Runeson and Höst [26]
while designing the interview questionnaire and conducting the interviews. To create the regres-
sion testing checklists, we were primarily interested to know the activities considered essential
for regression testing in the companies. In this regard, we collected the opinion of senior testing
practitioners using semi-structured interviews. In semi-structured interviews, the investigators
do not need to follow a fixed pattern (e.g., order of questions) with every participant, and by
following the discussion, the investigators can improvise the interview questions [26]. The in-
terview questions were open-ended, and we improvised them, given the participants’ context.

240

Table 7.2: Contextual information of the companies represented by the participants
(size classification: “small < 50, large > 250” [39]).

CID Employees Size Leading Par-
ticipant

Product
domain

Approach Test
Team
Size

Participants

C1 3000 Large Manager
IT/SQA

Financial Agile 18 P1, P2, P3

C2 500 Large Senior QA
Lead

Financial Agile,
Scrum

18 P4, P5, P6

C3 8000 Large Test lead Transport Agile,
DevOps

20 P7

C4 4000 Large Tech lead Surveillance
/ Security

Agile 17 P8

C5 10000 Large Senior Tester Charging
System

Agile,
DevOPs

50 P10

C6 150 Medium Senior SQA
Engineer

Healthcare Agile,
Scrum

10 P11, P12, P13,
P14

C7 5000 Large Senior SQA
Engineer

Telecom Agile,
CI-CD
Pipelines

10 P15, P16, P17,
P18

C8 200 Medium Test Manager Telecom Agile,
DevOps

10 P19, P20, P21

C9 3000 Large Test Lead AI Solu-
tions

Agile 75 P22

C10 20000 Large Test Manager Security
Systems

Agile 10 P23

C11 13000 Large Head SQA Banking Agile 25 P24
C12 1000 Large Test Engineer Hardware

& Software
Agile,
Scrum

12 P25

During these interviews, we asked questions to understand the regression testing practice in
the companies, for example, what regression testing activities are considered essential, and what
stopping criteria the testing practitioners use. The detailed interview questionnaire is available in
Appendix C.3. To ensure the quality of the interview instrument, we underwent expert reviews.
A senior practitioner (reviewer 1) with ten years of research and development experience in soft-
ware testing and an academic researcher (reviewer 2) with sixteen years experience in software
engineering research evaluated the interview instrument. Reviewer 1 agreed with the instrument
and did not suggest adding or updating anything in the instrument. However, reviewer 2, who
also has experience developing checklists, suggested some changes, including adding a question
about the product domain and changing the phrasing of Question 10. The interview instrument
in Appendix C.3 represents the version after incorporating reviewers’ feedback.

241

Chapter 7. Checklists to support decision making in regression testing

Workshops (checklists evolution)

Workshops provide a practical approach to designing, evaluating, or co-creating any artefact of
interest [36]. We conducted online workshops for checklists evolution. We designed an evolution
tool to evolve the checklists generated based on interview results. Along with the initial draft
of checklists, we shared the evolution tool with the practitioners who participated in the study’s
second phase (i.e., interviews). The first author participated in five workshops conducted with
the participants of companies C1, C2, C6, C7, and C8. The participants from C3, C4, C9, C11,
and C12 conducted the evolution of the checklists on their own. The participants from C5 and
C10 could not participate in the evolution phase.

The participants reflected on each item of the checklist, and for every item, they rated the
checklist items based on the question given below.

• Is the checklist item relevant? Yes, no, don’t know

If practitioners considered the checklist item to be relevant, they chose “yes”, if they did not
find it relevant, the option chosen would be “no”. If they were indecisive, they reported it as
“Do not know”. We asked the participants to suggest additional items if they thought we had
missed any. In case of suggesting a new item, the practitioners needed to specify the checklist
for which item was proposed, and they could also provide additional comments to motivate their
suggestion. The tool for evolving checklists is described in Appendix C.4.

Survey (checklists evaluation)

After having the checklists finalized, we requested the practitioners to provide us their feedback
based on checklists’ trial run and team discussion. We used an online survey for checklists
evaluation. To design the survey questionnaire, we followed the guidelines by Kitchenham and
Pfleeger [28]. We created evaluation questionnaire using Google forms and sent it to all the
participants. The evaluation questionnaire was created on the following parameters:

• comprehensiveness,

• usefulness,

• customizability, and

• adoptability

We also added a question to ask if the participants’ companies are willing to use the checklists.
The complete evaluation questionnaire is provided in Appendix C.5.

7.3.5 Data analysis
Detailed analysis was required for the qualitative data, whereas summaries and graphs were re-
quired for the data collected during the checklist evolution workshops and survey (i.e., evaluation
of checklists). We followed thematic analysis to analyze the qualitative data and took inspiration
from the methods described in [37, 38]. Figure 7.2 presents the detail of the steps carried out for
the data analysis, whereas the steps are outlined in the following subsections.

242

Audio recordings Auto-generated
transcripts Interview notes

Transcribing

Labeling

Mapping activities
to checklists Member checking

Verifying interview
transcripts

Interview
transcripts

Structuring Structured
sheets

Labeled activities

Data source Process Outcome

Checklists

Figure 7.2: Data analysis steps.

Transcribing

All interviews were conducted using online meeting tools and recorded with the participants’
consent. During the interviews, we enabled the automated transcription facility provided by
the online meeting tool, and one note taker took notes. We finalized the interview transcripts
using auto-generated transcripts, interview notes, and audio recordings. We ensured to transcribe
participants verbatim to avoid any bias and misinterpretation. On average, we invested four
hours in transcribing an interview. Later, with the help of an independent volunteer, the first
author verified the transcripts by comparing them with sources to ensure we did not miss any
vital information.

Structuring

Lacey [38] suggests organizing the data into easily retrievable sections after finalizing the tran-
scripts. We converted the transcripts into a structured excel sheet (see Table 7.3). We extracted
the information under column headings which were derived from interview questions. However,
finding desired information against the relevant questions was not straightforward. We often
needed to scan the answers to multiple questions to find the relevant information. This step
helped us familiarize ourselves with the data. We used colour coding to differentiate between
emerging themes and to add more clarity.

243

Chapter 7. Checklists to support decision making in regression testing

Table 7.3: Structure of transcription sheet – RT (regression testing).

Heading Description

CID ID for the Participants’ companies.
State of RT How regression testing is performed in the case companies?
Significance of RT How significant RT is for the case companies?
Frequency Frequency of releases.
Significant activities RT activities that are significant for the participating companies.
Essential aspects before RT The aspects that practitioners suggest to consider before the start of RT.
Essential aspects after RT The aspects that practitioners suggest to consider after RT.
RT goals The goals that practitioners set for RT.
RT CL If the participants already using any checklists for RT?
CL Usefulness The perception of practitioners about the usefulness of prospective RT

checklists.

Labeling

We have reported participants’ original statements regarding the state of regression testing prac-
tice and essential activities in Appendix C.1 (Table C.1). After having interview results in a
structured form with appropriate colour codes the next step was to have appropriate labels for
similar themes. We used labels for the activities considered essential in the companies before and
after regression testing. We followed the philosophy of axial coding while assigning the labels to
activities [35] and assigned appropriate labels by grouping similar statements. For example, we
grouped the following three statements: i. selecting a smaller but effective subset of test cases,
ii. selecting the right test cases, and iii. good knowledge of test cases helps in selecting right
test cases. We labelled the mentioned group of statements as “selection of right test cases”. In
assigning a label to a group of similar statements, we ensured that we used a label that reflected
the perspective of the practitioners involved. We continued this exercise until we grouped all
similar statements and labelled appropriately.

Member checking

Along with the participants’ original statements regarding the state of regression testing practice
and essential activities, we sent the labelled activities to the participants. We asked them to verify
if we had interpreted their perspectives correctly. However, we did not receive any corrections
from them. Maybe this was because we did not deviate from participants’ statements while
defining the labels for the activities.

Mapping

Once having the lists of activities considered essential in the companies, the next step was to
create checklists’ items based on these activities. We took inspiration from [2] while creating
checklists’ items from the activities identified in step 3 (labelling). We divided activities into

244

Key activity

Sub-activity 1

Sub-activity 2

Sub-activity n

Corresponding
Checklist item 1

Corresponding
Checklist item 2

Corresponding
Checklist item n

Figure 7.3: Mapping regression testing activities to checklist items

sub-activities (where possible) and then mapped the sub-activities to the checklist items. Figure
7.3 presents the procedure of how regression testing activities mapped to the checklist items.
For example, the regression testing activity labeled in the previous step selection of right test
cases was divided into three sub-activities 1) Identifying test cases related to changes, and 2)
Identifying test cases related to impacted modules. Later these activities were mapped to the
following checklist items.

• Have the test cases associated to changed parts been identified?

• Have the test cases associated to impacted module been identified?

7.4 Validity threats
This study's results are based on industry practitioners’ experiences and perceptions. We opted
for workshops, semi-structured interviews, and online questionnaires as data collection methods.
There are various aspects related to this study that can pose threats to its validity. In the following,
we have discussed potential validity threats and the strategies we opted to mitigate these threats.
In our discussion of threats to validity, we follow the guidelines by Runeson and Höst [26] and
Wohlin et al. [27].

Construct validity: This aspect of validity could be associated with the choice of treatment
for the study and its expected outcomes. In our study, we can link it to the creating the data
collection instruments and the process of selecting participants. We used well-known guidelines
and followed the established procedures to minimize this threat to validity. While designing
the data collection instruments, we followed the guidelines by Runeson and Höst [26] for the

245

Chapter 7. Checklists to support decision making in regression testing

interview questionnaire, and Kitchenham and Pfleeger [28] for the design of survey question-
naires. To avoid inconsistency and bias, we involved a senior researcher and a practitioner to
review the instruments. Based on their feedback, we augmented our data collection instruments.
Concerning the selection of participants, we used snowball sampling to reach the senior testing
practitioners. Another threat could be the validity of our study's outcome (i.e. regression testing
checklists). We went through a systematic procedure to design regression testing checklists (see
Section 7.3.1).

Internal validity: This aspect of validity is crucial if causal relationships are examined in
the study. Generally, internal validity refers to the study's credibility concerning underlying data
collection, interpretation, and analysis methods since these can impact the validity of obtained
results. Here are some of the measures that we took to mitigate threats to internal validity of
our study. We selected the interview participants based on their experience and interest in the
regression testing. Concerning data collection, with the prior consent of the participants, we
recorded all interviews. We generated the structured transcription sheets using recordings, in-
terview transcripts, and notes taken during the interviews. We also validated our interpretations
from the interview participants. For the survey questionnaire, we used multiple-choice ques-
tions. To avoid the researchers’ bias, we also provided the option for the free-text response in
the evolution instrument (see Appendix C.4).

External validity: The external validity threats refer to the concept of generalization of the
results. Although, we did not claim the generalizability of our checklists. However, the sim-
ilarity in views of practitioners from 12 different companies working on diversified domains
indicates the possible generalizability of the proposed checklists. We have provided the con-
textual information of the participants’ companies. We have also provided the detail of data
collection instruments (See Appendices C.3, C.4, & C.5). This may help generalize the context
and replicate the study in future.

Reliability : This aspect concerns the extent to which the data and analysis depend on the spe-
cific researchers. The results are reliable if they are free of biases, and independent researchers
can reproduce them using similar methods. We took various measures to minimize the threats
to the reliability of the study. We have explained all aspects of data collection, analysis, and
reporting in Section 7.3. Data collection instruments are also available in the study. Further, the
study participants reviewed and validated all the results generated in this study.

7.5 Results

7.5.1 State of regression testing practice in companies
Table C.1 (Appendix C.1) provides a summary of how regression testing (RT) is performed in
the participants’ companies. Eleven of 12 participating companies consider regression testing

246

an unavoidable activity. Participants from one company said that they use regression testing
based on the nature of changes. They only choose to perform regression testing if changes are in
critical areas. They skip regression testing for simple changes and perform exploratory testing.
Participants of three companies (C3, C10, & C12) said that they perform exploratory testing after
regression testing to ensure all risk areas are working correctly. Participants from C7 said that
they use smoke testing before regression testing to check if the build is stable. The frequency of
regression testing varies among the companies, and it mainly depends on the domain and criti-
cality of the product/module under test. Testing practitioners set regression testing goals, 10 of
12 do it informally, and only two have a defined mechanism for setting and assessing the goals.
The participant from C4 stated that “Regression testing goals are significant for our organiza-
tion. We take these as a challenge and are continuously working on them. The test team can
decide to stop regression testing once goals are achieved.”. All companies’ participants said that
test managers/leads decide to stop regression testing based on their judgement. The considered
information includes all test cases in regression suite executed, pass/fail ratio, pass rate above
threshold (e.g. 90% or above), and bug severity. Participants from C2 decide to stop regression
testing when fewer bugs appear or they witness bug repetition. Three companies (C3, C5, C9)
have transitioned from manual to fully automated regression testing and introduced the CI/CD
pipelines. The scope of regression testing is defined based on the changes and their impact. In all
companies, regression testing is performed with a selected set of test cases whenever a change
occurs (adding a new feature or fixing a bug). Near the release, they prefer to run the complete
regression suite. The participant from C11 revealed that their regression suites are huge, and
running all tests is costly. To cope with the cost, thet are experimenting with running all tests
for the most commonly used features instead of running all tests in the regression suite – the
participant suggested a slogan for it “running all those tests that matter”. Concerning the regres-
sion test plan, the majority consider it as a part of the test plan, and they do not have a separate
regression test plan. In three companies (C7, C8, C10), the regression plan is part of the sprint
planning meeting. During every sprint, they take the essential decisions about regression testing.
For example, what are the new fixes (tickets), what do they have to test, and how much they
should test?

7.5.2 Regression testing activities (RQ1)
Table 7.4 outlines the activities considered essential for regression testing in the participating
companies. Practitioners consider selecting the right test cases (e.g., more coverage with fewer
test cases) as a key to their success. This could only be possible if they have good domain
knowledge, understand the system specifications, and know the changes and their impact. To
understand the impact of changes, the practitioners need to know the dependencies among the
modules/subsystems. All changes must have been tested sufficiently, and all tickets/changes
must be checked in (code freeze) before the start of regression testing. Availability of the re-
quired test environment and data are also essential to start the regression testing. In the end,
the practitioners ensure to run the planned regression tests completely. They generate the test
reports, analyze the results, and decide subsequent actions based on the test results. They look

247

Chapter 7. Checklists to support decision making in regression testing

at the pass vs failure test cases and decide to release the product if the pass percentage is above
the defined threshold. They can decide to release the product with the medium severity bugs,
and fixing bugs will be part of the next release. However, in case of severe faults, they must stop
the release. In many cases, the teams decide on the goals before the start of regression testing,
and they assess the achievement of their goals after finishing the regression testing activity. A
complete and company-wise summary of regression testing activities considered essential in the
participants’ companies is presented Table C.2 (Appendix C.1).

Table 7.4: Activities considered essential for regression testing (RT) in the companies.

A# Activities before RT Companies

1. Acquiring domain knowledge C1, C2, C5, C6, C7, C8, C9, C11,
C12

2. Ensuring communication of changes C1, C3, C5, C6, C12
3. Knowing new features/Changes C3, C4, C5, C6, C7, C8, C9,C10,

C12
4. Ensure that changes are freezed C3, C6, C10, C11, C12
5. Ensure changes have been tested C2, C4, C7, C9, C10, C12
7. Identifying impact of changes C1, C2, C4, C5, C6, C7, C9, C10,

C12
8. RT scope is decided C1, C2, C4, C8, C12
9. Selection of right test cases C1, C2, C3, C4, C5, C6, C7, C8,

C9, C10, C11, C12
10. Having required test environment C10, C11
11. Organizing test data C2, C6, C7, C8, C10, C11, C12
12. Defining regression testing goals C1, C2, C3, C4, C12
13. Making regression test plan C7, C8, C10
14. Assigning responsibilities C2,C8
15. Test suite maintenance C1, C6, C7, C9, C11

A# Activities after RT Companies

1. Having the planned regression test suite exe-
cuted

C1, C3, C5, C6, C8, C9, C10, C12

2. Creating test reports C2, C6, C7, C10, C11, C12
3. Analyzing test results C1, C2, C3, C5, C6, C7, C8, C9,

C10, C11, C12
4. Assessing goals achievement C1, C3, C4, C5, C6, C7, C9, C11
5. Assessing ratio of pass vs fail C1, C4, C5, C6, C7, C9, C11, C12
6. Ensure pass percentage is above threshold C2, C5, C6, C7, C9, C11, C12
7. Critical bugs have been identified and re-

solved
C1, C2, C3, C4, C8, C10, C11, C12

248

7.5.3 Practitioners’ opinion on prospective regression testing check-
lists (RQ2)

During the interviews, we asked the practitioners’ opinions on the regression testing checklists.
Most participants were convinced about the usefulness of regression testing checklists, provided
these checklists cover essential aspects only. They pointed out that checklists can help add
structure to regression testing practice, and practitioners will not skip any essential step while
performing regression testing.

Checklists can help in adding formalism to practice. Although we have a well-managed
plan, there are still things that we miss. If we have a small checklist that can add
value.(Senior SQA Engineer)

A guideline could be an asset for any tester that can help him do essential things before
regression testing. It will reduce the impact of team members leaving and new members
being added. (Test Engineer)

It will help streamline the practice. However, it should be a short checklist not
to hinder the job. We would be interested in using the proposed checklists. (Head QA
unit)

Some form of regression testing checklists are in place in a couple of companies (e.g., C3,
C4). However, these checklists are application-specific.

We are already using the checklists, but our checklists are product-specific. During my
experience, I have worked with waterfall, agile, and now DevOps. In waterfall, we had
too many checklists, but in our current environment, we have only essential checklists. I
think checklists are helpful since they help the practitioners not forget to do any essential
activity. (Test Lead)

The participants from these companies voiced the usefulness of generic checklists that can
guide the practitioners to stick to the plan and not miss any essential steps. Some of the partic-
ipants highlighted that they do not use any formal checklists. However, they informally follow
the lists of essential items. For example, at C2, senior test leaders informally assess the readiness
of their team members by asking random questions.

249

Chapter 7. Checklists to support decision making in regression testing

We are doing something similar to checklists informally, but we are not using any pre-
defined checklists. We assign regression testing of different modules to the practitioners
based on their relevant knowledge of modules. So informally, we gauge the readiness of
the team members. However, we do it using our first-hand knowledge. Being an expe-
rienced manager, I know the skills of my team member. When we induct a new member,
we provide a chance to get on board and help him gain the domain knowledge. We
check the readiness through informal chats. (Senior Manager QA)

Some participants were reluctant to give their opinions before seeing the actual checklists.
For example:

I would like to see what checklists emerge, and then I will decide about their usefulness.
If it is helpful for my context, then it is useful. Generally, I agree that checklists are a
useful thing for any environment. (Senior Tester)

While responding to our question about the types of prospective checklists, most practition-
ers suggested checklists to assist practitioners before and after regression testing. There was a
divided opinion on the checklists types before regression testing. Some participants suggested
using a single checklist, and the others proposed having two checklists (one for individual testers
and another for team activities) before regression testing. Table 7.5 provides a summary of prac-
titioners’ opinion about checklists types.

Table 7.5: Types of regression testing (RT) checklists suggested by participants.

Checklist type Suggested By

Checklists to track the activities before regression
testing (Individual)

C1, C4, C6, C7, C9, C10, C12

Checklists to track the activities before regression
testing (Team)

C1, C4, C6, C7, C9, C10, C12

Checklists to track the activities before regression
testing (Combined)

C2, C3, C8, C11

Checklists to track the activities after regression test-
ing (Exit criteria)

C1, C2, C3, C4, C7, C8, C11, C12

RT Checklists creation and evolution

Checklists creation: Based on the input form the participants about the checklist types pre-
sented in Table 7.5, we decided to opt for the following three checklists.

250

1. Checklist to track the activities before regression testing (Individual)

2. Checklist to track the activities before regression testing (Team)

3. Checklist to track the activities after regression testing (Exit criteria)

To decide the checklists’ items we considered the regression testing activities identified by
practitioners (See Table 7.4). For each activity we created relevant checklist items and mapped
the individual items to the respective checklists, in the result of this exercises we created the
checklists presented in Tables 7.6, 7.7. & 7.8. To check the readiness of the teams members,
test manager can ask them to fill the checklist provided in Table 7.6. Later, to ensure team 's
readiness, after collecting the individual checklists test manager can fill the checklist presented
in Table 7.7. Finally, while stopping regression tests, test manager together with team members
can fill in the checklist presented in Table 7.8. In every checklist table, we have provided two
additional columns “status” and “comments”. Using the status column, the stakeholders can
report the status concerning the checklist item. For example, for the checklist item “ Are you
aware of dependencies among the subsystems?”, the concerned stakeholder can fill in “Yes I
am aware”, “Yes, but not 100%”, ‘‘No, it is not applicable”. In the comments column, the
stakeholders can further explain the status. For example, if a stakeholder chooses “Yes, but not
100%”, the further explanation can be added in the comments column as “I am in the phase of
acquiring knowledge of dependencies”.

Table 7.6: Checklist to assess the readiness of testers to be filled by test team members
(CL1 – V1.0).

CLI Checklist item Status Comments
1 Are you aware of the team 's regression testing goals?
2 Do you have essential knowledge of system specifications?
3 Are you aware of dependencies among the subsystems?
4 Are you aware of new changes in the system?
5 Have you analyzed the impact of changes on the unchanged parts of the

system?
6 Are you confident of performing regression testing on your own?
7 Have you been trained for the tools used for regression testing within

the team/organization?
8 Are you aware of the criticality of the subsystems to be tested?
9 Do you have access to test data?

Checklists evolution During the checklists’ evolution phase, the participants were asked to
give their opinion on the relevance of checklists and the individual items. We shared the initial
draft of checklists and evolution forms with the practitioners who participated in the study’s first
phase. The practitioners evaluated checklist items and provided their opinion.

Tables 7.9, 7.10, and 7.11 presents the summary of feedback from the study participants.
Concerning the relevance of all three checklists, we received “Yes” from all participants. How-
ever, on the individual items, a few participants chose the options of “No”, and “Do not know”.

251

Chapter 7. Checklists to support decision making in regression testing

Table 7.7: Checklist to determine the team 's readiness to be filled by test manger (CL2
– V1.0).

CLI Checklist item Status Comments
1 Have the regression testing goals been defined?
2 Are the test team members aware of system specifications?
3 All the changes been checked in?
4 Have the changes been communicated to the test team?
5 Have the changes been tested in isolation?
6 Has the change impact been determined?
7 Is the regression test suite up to date?
8 Have the test cases associated to changed parts been identified?
9 Have the test cases associated to impacted module been identified?

10 Has the regression testing scope been determined?
11 Has the regression testing been incorporated in the test plan?
12 Has the regression test plan been developed?
13 Are the required resources available?
14 Has the decision been taken between manual vs automated regression

testing?
15 Have clear responsibilities assigned to team members?
16 Is the testing team agreed to start regression testing?

Table 7.8: Checklist to determine exit criteria of regression testing to be filled by test
manager together with team members (CL3 – V1.0).

CLI Checklist item Status Comments
1 Have the regression testing test suites been executed completely?
2 Has the pass rate of regression testing suites reached the threshold?
3 Have all severe /critical defects been resolved?
4 Have all medium severity defects been closed?
5 Have all metrics been collected?
6 Have defined regression testing goals been achieved?
7 Is the test team agreed to test closure?

For instance in the checklist presented in Table 7.9 the checklist item # 6 “Are you confident
of performing regression testing on your own?” was rejected by four respondents, three chose
“Do not know”, and three considered this item relevant. Whereas most respondents considered
all other items of this checklist relevant. In the checklist presented in Table 7.10 checklist item
11, 12, & 16 received less recommendations. Here item # 11 was recommended by 5 respon-
dents, three rejected it and two chose “Do not know”. Item # 12 received six recommendations,
two rejections, whereas two respondents chose “Do not know”. Item # 16 received six rec-
ommendations, two rejections, and two respondents chose “Do not know”. Most respondents
recommended all items of the checklist presented in Table 7.11, except item # 4 & 5. One re-
spondent rejected the item #4 and two chose “Do not know”. For item #5 non of the respondents

252

rejected it, however, four chose “Do not know”.
Based on the respondents’ feedback for the checklists’ version 1.1, we suggest removing

item #6 from the checklist presented in Table 7.9. Also we suggest considering inclusion of item
5 in Table 7.10 and item # 4 in Table 7.11 in the final version. We leave the choice to the
practitioners about the usage of items # 11, 12, & 16 of the checklist presented in table 7.10 and
5 of the checklist presented in Table 7.11.

Table 7.9: Evolution of checklist to know the readiness of testers to be filled by test
team members (CL1 – V1.1).

CLI Is the checklist item relevant? Yes No Don’t
Know

1 Are you aware of the team 's regression testing goals? 9 1 0
2 Do you have essential knowledge of system specifications? 9 0 1

3* Are you aware of dependencies among the subsystems? 10 0 0
4* Are you aware of new changes in the system? 10 0 0
5 Have you analyzed the impact of changes on the unchanged parts of the

system?
8 1 0

6 Are you confident of performing regression testing on your own? 3 4 3
7 Have you been trained for the tools used for regression testing within

the team/organization?
10 0 0

8 Are you aware of the criticality of the subsystems to be tested? 9 0 1
9 Do you have access to test data? 8 0 2

Suggestions by respondents: Test team lead of C4 has reflected on some of the items in-
cluded the checklists (i.e., item # 3 & 4 in Table 7.9, item # 1 & 16 in Table 7.10). The participant
voted yes for these items but argued that the inclusion of these items would depend upon the situ-
ation. In this regard, the participant provided an example of item #16 in Table 7.10 and suggested
that the team should have to be agreed to start regression testing in most cases. Still, there could
be exceptions in this regard. If needed for the project, the product owner can decide on an early
start.

Senior QA lead of C2 suggested the following items be included in checklists (Table 7.11):

• Is QA sign-off document ready?

• Are the stakeholders agree on QA sign-off?

The test manager of C8 suggested the following items be included in the checklists (Table 7.10):

• Do we need to add new test cases in the regression suite?

• What is the trade-off between manual vs automated testing?

• Have we discussed the scope of regression testing in the sprint planning meeting?

253

Chapter 7. Checklists to support decision making in regression testing

Table 7.10: Evolution of checklist to know the readiness of test team to be filled by
test manager (CL2 – V1.1).

CLI Is the checklist item relevant? Yes No Don’t
Know

1* Have the regression testing goals been defined? 9 1 0
2 Are the test team members aware of system specifications? 9 0 1
3 All the changes have been checked in? 8 1 1
4 Have the changes been communicated to the test team? 9 0 1
5 Have the changes been tested in isolation? 7 1 2
6 Has the change impact been determined? 8 0 2
7 Is the regression test suite up to date? 9 0 1
8 Have the test cases associated with changed parts been identified? 10 0 0
9 Have the test cases associated with the impacted module been identi-

fied?
9 0 1

10 Has the regression testing scope been determined? 10 0 0
11 Has the regression testing been incorporated into the test plan? 5 3 2
12 Has the regression test plan been developed? 6 2 2
13 Are the required resources available? 9 0 1
14 Has the decision been taken between manual vs automated regression

testing?
8 1 1

15 Have clear responsibilities been assigned to team members? 9 1 0
16* Is the testing team agreed to start regression testing? 6 2 2

Table 7.11: Evolution of checklist to determine exit criteria of regression testing (RT)
to be filled by test manager together with team members (CL3 – V1.1).

CLI Is the checklist item relevant? Yes No Don’t
Know

1 Have the regression testing test suites been executed completely? 10 0 0
2 Has the pass rate of regression testing suites reached the threshold? 9 0 1
3 Have all severe /critical defects been resolved? 10 0 0
4 Have all medium severity defects been closed? 7 1 2
5 Have all metrics been collected? 6 0 4
6 Have defined regression testing goals been achieved? 10 0 0
7 Is the test team agreed to test closure? 9 0 1

QA unit head of C11 suggested the following two items to be included in the checklists.

• Are there any pending changes that will be deployed during RT cycle? (Table 7.10)

• Has the regression test report been consolidated and shared? (Table 7.11)

We have provided our reflection on these suggestions in Section 7.6 (discussion).

254

7.5.4 Checklists evaluation (RQ3)
We evolved the checklists in two iterations since the practitioners approved most of the items
included in the first version of checklists except for a couple of cases mentioned in the preceding
section. Therefore, we did not iterate the checklists further. We sent the second version (version
1.1) of the checklists and an evaluation questionnaire to the practitioners and asked them to
provide feedback on the following questions:

Q1 Do you think the proposed checklists cover all essential aspects that must be considered
before and after regression testing?

Q2 The proposed regression testing checklists are helpful in your team/organization context?

Q3 The proposed regression testing checklists are customizable for your team/organization
context?

Q4 Do you think checklists are easy to adopt in your organization 's context?

Q5 Are you willing to use the proposed checklists in your team/organization?

Figure 7.4 provides the detailed evaluation feedback provided by the study participants. Con-
cerning Q1 (i.e., completeness), five of ten respondents chose “strongly agree”, three “agree”,
one “disagree”, and one chose to remain neutral. For Q2 (i.e., utility), four out of ten respondents
chose "strongly agree", six chose "agree", and none of the respondents denied the usefulness of
our proposed checklists. Similarly against Q3 (i.e. customizable) we received three “strongly
agree”, seven “agree”, no one voted against it. For Q4 (i.e., easy to adopt) one respondent opted
“strongly agree”, two “agree”, six “neutral”, and one opted “disagree”. Finally, for Q5 (i.e.,
willing to use) three respondents chose “strongly agree”, three “agree”, three “neutral”, and one
chose “disagree”.

Overall the feedback was hopeful, except for Q4 (i.e., easy to adopt). We expected this
response because, during the interviews, many of the participants highlighted the fact that even
if they want to adopt the checklists or any other process improvement tool, maybe they will get
a negative response from higher management of the companies.

7.6 Discussion
We conducted this study to support testing practitioners in formalizing and improving the re-
gression testing practice by introducing regression testing checklists. We opted for a multi-step
co-design approach and involved 25 practitioners of 12 companies in first two phases and 23
practitioners from 10 companies in last two phases of our study. Most participants represented
large-size companies, and the average experience of the participants was 12 years. Therefore,
we can say that the findings of this study represent the perspective of senior testing practition-
ers working in large-scale development environments. We started our process with workshops
where we presented our research idea to the prospective participants and discussed the modal-
ities of their participation in the study. In the subsequent steps, we built our understanding of

255

Chapter 7. Checklists to support decision making in regression testing

1

1

1

3

6

7

2

3

5

4

3

1

3

Cover all essential aspects

Useful

Customizable

Easy to adopt

Willing to use

Strongly disagree Disagree Netural Agree Strongly Agree

Figure 7.4: Evaluation feedback from the participants on the final version of regression
testing checklists.

the current state of regression testing practice in the participants’ companies, investigated the re-
gression testing activities considered essential by the participants, and investigated their opinion
on regression testing checklists.

During the data collection phases, we observed that practitioners not only recognize the
significance of checklists, but some are also using some form of regression testing checklists.
However, they pointed out that their checklists are application-specific and cannot be generalized.
They emphasized the need for checklists to help practitioners to keep track of essential regression
testing activities.

7.6.1 Regression testing activities
We identified regression testing activities directly from the practitioners by following a bottom-
up approach. Using the same interview structure, we conducted group and individual interviews
with the testing practitioners. However, the group interviews allowed the participants to build
argument-based discussions on our questions. The participating practitioners reflected on their
team perspectives; they sometimes complemented the points their fellow team members raised,
and in some cases, they built the arguments against a raised point. The group interviews took
more time compared to the individual interviews. One possible limitation of our investigations
could be the different perspectives of the practitioners working in different companies. We did
not see many variations in this regard. The practitioners working in different companies consider
many of the identified regression testing activities equally important. This commonality allowed
us to group similar activities under a single label, and we did so using thematic analysis. We
verified our interpretations of regression testing activities from the participants To ensure that
participants agreed to our themes, we get validated these from the participants. We classified

256

the identified regression testing activities as “activities considered before regression testing” and
“activities considered after regression testing”. Some of the activities identified in this study are
also available in empirical studies on regression testing. We have provided a few examples in
Table 7.12. However, presenting activities concerning applicability is a unique contribution to
our knowledge. Furthermore, while investigating the essential regression testing activities, the
aim was to make the investigation more representative by incorporating the views of practitioners
working in diverse environments and development domains.

Table 7.12: Regression testing activities identified from selected studies

Factor identified from literature Ref Identified in our study

Understanding requirements speci-
fications

[19, 20, 22, 24] Acquiring domain knowledge

Understanding Changes [19–22, 24] Knowing new feature/changes
Identification of affected areas (De-
pendencies)

[20, 22, 24] Identifying impact of changes

Modules to be tested [20] Deciding RT scope
Selection of right test cases [19, 20, 24] Selection of right test cases
Collaborate with developers [24] Communicating changes
Preparing test reports [20, 22, 24] Creating test reports
Analyzing test results [20, 22, 24] Analyzing test results

7.6.2 Checklists creation and evolution
We followed a systematic approach for the checklist creation and evolution (See Figure 7.1).
Using the activities considered essential for regression testing by senior testing practitioners (See
Table 7.4) and input of practitioners about the prospective checklists we created three checklists
(See Tables 7.6, 7.7, & 7.8). These checklists would help remind testing practitioners of the
essential measures to be taken before and after regression testing. Since we evolved the checklists
only for two iterations, we do not claim the comprehensiveness of the proposed checklists. These
checklists provide a basis for structuring the regression testing process, and practitioners can
improvise the checklist during its use. Practitioners working on domains other than represented
in this study can customize these checklists according to their needs.

During the evolution phase a few checklists’ items receive fewer recommendations, we high-
lighted these items in different colours (i.e. red, cyan, and gray). Our interpretation of the colours
is that we exclude them from the checklists if red. If cyan, we suggest inclusion, and if gray,
we leave the choice of inclusion or exclusion to the practitioners. We received suggestions from
three participants concerning including a few items in the checklists, and we have presented
these suggestions in the results. We did not enforce these items to be included in the final check-
lists because we consider that these items are adding further detail to already existing items. For
example, items suggested by the senior QA lead of C2 “Is QA sign-off document ready?” and
“ Are the stakeholders agree on QA sign-off?” are the further interpretation of item #7 of the

257

Chapter 7. Checklists to support decision making in regression testing

checklist presented in Table 7.11. The items suggested by the test manager of C8 “ Do we need
to add new test cases in the regression suite?” could correspond to the checklist item # 7, 8,
& 9, “ What is the trade-off between manual vs automated testing?” is similar to item # 14,
and “Have we discussed the scope of regression testing in the sprint planning meeting?” could
correspond to item # 10 & 12 of the checklists presented in Table 7.10. QA unit head of C11
suggested the inclusion of two items, one “ Are there any pending changes that will be developed
during RT cycle?” in Table 7.10 and the other “Has the regression test report been consolidated
and shared?” in Table 7.11. The item suggested for Table 7.10 is the further interpretation of
item # 3. However, we consider the suggestion of including checklist item “Has the regression
test report been consolidated and shared?” in Table 7.11 to be valuable, and we plan to add it to
the checklist in future evaluations with more practitioners.

Furthermore, if the respective practitioners consider these items essential for their environ-
ment they can additionally include these items to their local checklists.

7.6.3 Checklists evaluation
We opted for an opinion-based evaluation of the proposed checklists by the study participants.
The practitioners’ opinion was based on their experience in testing, a trial run of checklists, and
discussion among the team members. Practitioners from two companies (C5 & C10), who par-
ticipated in the study’s initial phases, could not participate in the study’s evolution and evaluation
phases. In their feedback, 80% of the respondents think checklists are comprehensive, besides
the fact that we only went through two iterations of checklists design and evolution. Considering
the communication and cognitive gap between regression testing research and practice a reported
fact [29, 30], we were a little dubious if the proposed checklists are applicable in varying contexts
of participating companies. However, the evaluations were affirmative beyond our expectations.
100% of our respondents think that the proposed checklists are helpful in their team/organization
context, and 100% responded that the checklists could be customized in their team/organization
context.

We added a question to ask the participants if they were willing to use these checklists. The
participants from six companies showed willingness to use the checklists on an experimental
basis. At this stage we are not including the usage-based feedback of practitioners in the current
study because practitioners could not give us a definite timeline for providing the usage results
of checklists. However, they assured us they would send us their feedback once they completed
at least one usage cycle of the checklists. We plan to publish the usage data of checklists and
improved version of the checklists in our future work.

7.6.4 Implications
This study has its implications for regression testing research and practice. In the following, we
briefly discuss the implications for regression testing practice and the implications for regression
testing research.

258

Implications for practice

During our interactions with the practitioners for our various studies (e.g., [22–24]), we observed
that regression testing practice lacks documented structure. Most regression testing decisions are
based on expert judgement, and activities are ad-hoc. The practitioners are aware of this fact and
realize the need to introduce some structure in the regression testing activities.

The checklists proposed in this study are meant to help practitioners to keep track of re-
gression testing activities. These are easy to adopt as the checklists’ items represent activities
that are considered essential by the practitioners for regression testing. The proposed checklists
will remind practitioners not to miss an activity required for success. These simple checklists
will aid the test managers in making necessary decisions concerning regression testing. For ex-
ample, when to start and when to stop regression testing. Since the checklists are designed in
collaboration with senior testing practitioners from varying contexts, therefore,these are scalable
to the industry context. Using the feedback loop introduced for the design of the checklists, the
practitioners can improvise the checklists by adding, removing, or updating the checklist items.

The proposed checklists will introduce a repeatable process at the team and organizational
levels. Practitioners can reflect on the outcomes of adopted regression testing activities. Repeti-
tive use of successful activities would enable practitioners to define and document the regression
testing process according to their organizational context, which will be an ultimate step toward
improving the regression testing process.

Implications for research

From the research perspective, the study has two kinds of implications 1) Specific implications
for regression testing research and 2) Implications for empirical research.
Implications for regression testing research: Regression testing is a well-researched area, and
many regression testing techniques have been proposed in the literature [21, 22]. However,
supporting regression testing practice in decision-making is an area overlooked by software en-
gineering researchers. In this study, by incorporating the practitioners’ perspectives, we have
proposed checklists to support practitioners in decision-making. The study will open up new
horizons for regression testing researchers. They can work to support regression testing practice,
for example, test management- activities, supporting practitioners in essential regression testing
activities, and improving the regression testing process.
Implications for empirical research: The challenging part of our study was to engage the prac-
titioners for a longer period since we needed to involve them from identifying regression testing
activities to the final evaluation of the checklists. Our experience in this regard can be helpful to
the software engineering researchers involved in empirical research. The following steps helped
us engage practitioners through all phases of our study.

Introductory workshops: A practical approach to engaging practitioners in the studies is
conducting introduction workshops and convincing them about the worth of the idea for practice.

259

Chapter 7. Checklists to support decision making in regression testing

Validate the findings: After the interpretation of the findings, getting validated by the par-
ticipating practitioners will serve two purposes 1) it will increase the investigators’ confidence
in the results, 2) it will give a sense to practitioners concerning the significance of research for
investigators, and 3) it will increase practitioners’ trust in the relevance of the results to their
organizational context. .

Keep them updated: Another way of keeping practitioners’ engagement alive is to keep
them updated about the progress and results.

Communicate the final results: After finalizing the results, communicate these to study
participants. Also, discuss the plan of action with them. It will help for future engagements.

7.7 Conclusion
We conducted a multi-step co-design study to create and evolve regression testing checklists to
help practitioners improve the regression testing activities by keeping track of essential regres-
sion testing activities. Twenty-five practitioners from twelve companies participated in the first
two phases of the study (i.e., until checklists creation). In the latter two phases (i.e., check-
lists evolution and evaluation), twenty-three practitioners from ten companies participated in the
study.
As a result of RQ1, we identified regression testing activities considered essential in the compa-
nies. The identified activities can be classified as 1) activities to be considered before regression
testing, and 2) activities to be considered after regression testing.
In the next step, we transformed the identified activities into the respective regression testing
checklist. Two primary types for the checklists were finalized as a result of RQ2, i.e., i) two
checklists to track the pre-regression testing activities, and ii) one checklist to track the post-
regression testing activities. Later, we evolved the checklists based on the feedback of partici-
pating practitioners.
Finally, the same practitioners evaluated the checklists and provided us with their feedback after
a trial run and discussions among their team members RQ3. The practitioner 's feedback was
positive about the various aspects of the checklists, except one, where we asked them “Do you
think checklists are easy to adopt in your organization 's context?”, 60% of the respondents
chose to stay neutral. The reason not to take a clear stance by the majority was the constraints
of getting support from higher management. 60% of the respondent showed their willingness
to use the checklists at the team level. This shows the practitioners found checklists helpful in
improving their regression testing practice. In the current study, we do not include any data
concerning the usage of checklists. However, in future, we plan to collect the usage data from
the participants who are willingly using the checklists. Further, we aim to evaluate the checklists
from more practitioners other than the ones who participated in this study. Based on this data,
we will see the possibility of improving and generalizing the checklists.

260

7.8 References
[1] A. Kasoju, K. Petersen, and M. V. Mäntylä, “Analyzing an automotive testing process with

evidence-based software engineering,” Information and Software Technology, vol. 55,
no. 7, pp. 1237–1259, 2013.

[2] W. E. Perry, Effective methods for software testing: Includes complete guidelines, check-
lists, and templates. John Wiley & Sons, 2007.

[3] K. Petersen, J. Carlson, E. Papatheocharous, and K. Wnuk, “Context checklist for in-
dustrial software engineering research and practice,” Computer Standards & Interfaces,
vol. 78, p. 103541, 2021.

[4] M. Usman, K. Petersen, J. Börstler, and P. S. Neto, “Developing and using checklists to
improve software effort estimation: A multi-case study,” Journal of Systems and Software,
vol. 146, pp. 286–309, 2018.

[5] W. Y. Higgins and D. J. Boorman, “An analysis of the effectiveness of checklists when
combined with other processes, methods and tools to reduce risk in high hazard activities,”
Boeing Technical Journal, 2016.

[6] R. Van de Schoot, P. Lugtig, and J. Hox, “A checklist for testing measurement invariance,”
European Journal of Developmental Psychology, vol. 9, no. 4, pp. 486–492, 2012.

[7] M. A. Heroux and J. M. Willenbring, “Barely sufficient software engineering: 10 prac-
tices to improve your cse software,” in 2009 ICSE workshop on software engineering for
computational science and engineering. IEEE, 2009, pp. 15–21.

[8] B. Brykczynski, “A survey of software inspection checklists,” ACM SIGSOFT Software
Engineering Notes, vol. 24, no. 1, p. 82, 1999.

[9] J. Brito and A. C. Dias-Neto, “Conducting empirical studies to evaluate a technique to
inspect software testing artifacts,” CLEI Electronic Journal, vol. 16, no. 1, pp. 10–10,
2013.

[10] M. A. Madaio, L. Stark, J. Wortman Vaughan, and H. Wallach, “Co-designing checklists
to understand organizational challenges and opportunities around fairness in ai,” in Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020,
pp. 1–14.

[11] B. M. Hales and P. J. Pronovost, “The checklist—a tool for error management and perfor-
mance improvement,” Journal of critical care, vol. 21, no. 3, pp. 231–235, 2006.

[12] B. Hales, M. Terblanche, R. Fowler, and W. Sibbald, “Development of medical checklists
for improved quality of patient care,” International Journal for Quality in Health Care,
vol. 20, no. 1, pp. 22–30, 2008.

[13] A. Chaparro, J. R. Keebler, E. H. Lazzara, and A. Diamond, “Checklists: A review of their
origins, benefits, and current uses as a cognitive aid in medicine,” ergonomics in design,
vol. 27, no. 2, pp. 21–26, 2019.

261

REFERENCES

[14] M. Host and P. Runeson, “Checklists for software engineering case study research,”
in First international symposium on empirical software engineering and measurement
(ESEM 2007). IEEE, 2007, pp. 479–481.

[15] B. Kitchenham, D. I. Sjøberg, O. P. Brereton, D. Budgen, T. Dybå, M. Höst, D. Pfahl,
and P. Runeson, “Can we evaluate the quality of software engineering experiments?” in
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, 2010, pp. 1–8.

[16] J. S. Molléri, K. Petersen, and E. Mendes, “An empirically evaluated checklist for sur-
veys in software engineering,” Information and Software Technology, vol. 119, p. 106240,
2020.

[17] T. Dybå and T. Dingsøyr, “Strength of evidence in systematic reviews in software engi-
neering,” in Proceedings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, 2008, pp. 178–187.

[18] B. A. Kitchenham, O. P. Brereton, D. Budgen, and Z. Li, “An evaluation of quality
checklist proposals-a participant-observer case study,” in 13th International Conference
on Evaluation and Assessment in Software Engineering (EASE) 13, 2009, pp. 1–10.

[19] M. J. Harrold and A. Orso, “Retesting software during development and maintenance,” in
Proceedings of the Frontiers of Software Maintenance Conference, 2008, pp. 99–108.

[20] E. Engström and P. Runeson, “A qualitative survey of regression testing practices,” in
Proceedings of the International Conference on Product Focused Software Process Im-
provement, 2010, pp. 3–16.

[21] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a
survey,” Software Testing, Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[22] N. bin Ali, E. Engström, M. Taromirad, M. R. Mousavi, N. M. Minhas, D. Helgesson,
S. Kunze, and M. Varshosaz, “On the search for industry-relevant regression testing re-
search,” Empirical Software Engineering, pp. 1–36, 2019.

[23] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk, “Regression testing goals-view of
practitioners and researchers,” in 2017 24th Asia-Pacific Software Engineering Confer-
ence Workshops (APSECW). IEEE, 2017, pp. 25–31.

[24] N. M. Minhas, K. Petersen, J. Börstler, and K. Wnuk, “Regression testing for large-scale
embedded software development–exploring the state of practice,” Information and Soft-
ware Technology, vol. 120, p. 106254, 2020.

[25] B. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 5: populations and
samples,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 5, pp. 17–20, 2002.

[26] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in
software engineering,” Empirical software engineering, vol. 14, no. 2, p. 131, 2009.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in software engineering. Springer Science & Business Media, 2012.

262

[28] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 3: constructing
a survey instrument,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 2, pp.
20–24, 2002.

[29] X. Lin, “Regression testing in research and practice,” Lincoln, NE, USA, Tech. Rep.,
2007.

[30] E. Engström, K. Petersen, N. B. Ali, and E. Bjarnason, “SERP-test: a taxonomy for
supporting industry-academia communication,” Software Quality Journal, vol. 25, no. 4,
pp. 1269–1305, 2017.

[31] S. Dalal, Sudhir, and K. Solanki, “Challenges of regression testing: A pragmatic perspec-
tive,” International Journal of Advanced Research in Computer Science, vol. 9, no. 1, pp.
499–503, 2018.

[32] S. Jafrin, D. Nandi, and S. Mahmood, “Test case prioritization based on fault dependency,”
International Journal of Modern Education and Computer Science, vol. 8, no. 4, p. 33,
2016.

[33] S. Nayak, C. Kumar, and S. Tripathi, “Effectiveness of prioritization of test cases based on
faults,” in 3rd International Conference on Recent Advances in Information Technology
(RAIT), 2016. IEEE, 2016, pp. 657–662.

[34] A. Gawande, Checklist manifesto, the (HB). Penguin Books India, 2010.

[35] A. Böhm, Theoretical Coding: Text Analysis in Grounded Theory. Sage London, 2004.

[36] K. Thoring, R. Mueller, and P. Badke-Schaub, “Workshops as a research method: Guide-
lines for designing and evaluating artifacts through workshops,” 2020.

[37] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in software en-
gineering,” in Proceedings of the International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2011, pp. 275–284.

[38] A. Lacey and D. Luff, Qualitative data analysis. Trent focus Sheffield, 2001.

[39] E. Lindgren and J. Münch, “Raising the odds of success: the current state of experimenta-
tion in product development,” Information and Software Technology, vol. 77, pp. 80–91,
2016.

[40] N. M. Minhas and J. Iqbal, “Software process improvement practices–a pakistani perspec-
tive,” in International Workshop on CMMI based Software Process Improvement in Small
and Medium Sized Enterprises, 2011, p. 29.

263

REFERENCES

264

Appendix C

C.1 State of regression testing practice in the case com-
panies

Table C.1: State of regression testing (RT) in the case companies.

CID RT State

C1 The company performs regression testing at the functional level to study the impact of
changes on the other parts of the system. The decision on when to perform regression
testing is based on the changes. Regression testing is mandatory if the changes are in the
leading areas. 80% of the module in the product require regression testing. The team
informally sets some quality goals and tries to keep an eye during the regression testing
if goals are followed. In the end, the senior practitioners review the results and, based on
their experience and knowledge, gauge the achievement of the goals.

C2 The company performs regression testing during every sprint and before every release
cycle. The selection of test cases is based on the areas linked to the changed parts. Change
impact decides the scope of regression testing. The senior QA lead informally assesses
the team 's readiness before the start of regression testing. The testing team focuses on
maximizing coverage and controlling the ripple effect (i.e., ensure including the modules
that are affected by the changes) in the regression testing plan. The team decides to stop
regression testing when fewer bugs appear or they witness the bug repetition.

C3 The company performs regression testing before every release cycle; most regression
tests are automated. Regression testing is mandatory if the changes are in the critical
areas. In some cases, they skip regression testing and perform exploratory testing instead.
The company is following regression testing goals formally, as the goals are part of their
DevOPs chain. The company is using application-specific checklists that help them to
decide on release.

265

Chapter C.

C4 The company representative believes that their regression testing is in perfect shape. They
perform regression testing with selected tests during the day and full suite during the night.
Functional and non-functional tests are used for regression testing and are performed 24/7.
The most critical time is while releasing the product. At the release, the controlled fault-
slippage policy is followed.

C5 The company is transitioning towards automated regression testing, and DevOps pipelines
are used that are defined using Jenkins jobs. The automated regression suite will get
triggered via Jenkins jobs whenever a new commit is checked. Currently, the company
's product is in developing mode. Therefore, whenever there is a new commit, they run
regression testing. Before transitioning to the new technology, they have been using a set
of rules, based on which they decide the scope of regression testing.

C6 At the start of every sprint, the team decides which tickets (changes) would be fixed, and
at the end of the sprint, while performing regression testing, the goal is to cover all the
tickets. The regression suite is created subject to the new fixes and their impact (affected
areas). The affected areas are determined using the information provided by developers.
Testers also use their experience and knowledge of specifications to do so. The modules
with minor changes undergo sanity check instead of regression testing.

C7 The regression testing is performed before every release, and the focus is that core func-
tionality should always work. Besides the regular regression cycle, selective regression
testing is also performed. Test cases are selected based on the knowledge of changes and
impact. Regression testing is performed in three stages i. Development environment, ii.
Staging environment, and iii. Production environment

C8 Regression testing is performed after every release. The scope of regression testing is
decided based on the fixes reported in the release notes. The goal is to ensure that all
dependent areas work correctly after any change. In case of finding any defects, hotfixes
are done. Before the start of regression testing, it is ensured that the build is stable, which
is done through smoke testing.

C9 The company is following agile and has CI/CD pipelines in place. After the functional
testing of any module, regression testing is triggered with a selected scope. Near the
release, regression testing is performed with full scope (running all tests in the regression
suite).

C10 The regression testing philosophy followed in the company is to test what has to work.
Risk areas are identified, and a checklist about what must work is created. Later run re-
gression testing according to the checklist. Exploratory testing is also used to complement
regression testing.

C11 The changes are classified as major and minor. Minor change refers to a change request
that can be handled independently, whereas a major change means upgrading the system
or adding a new module. The policy is all testing for major changes, and sanity tests are
performed for minor changes. Based on the product knowledge, which areas would be
tested are decided. The regression suites are significantly large, and it takes a lot of time
to run all tests. Therefore, the QA team is transitioning from test it all to test all that
matters.

266

C12 The company manufactures automated doors, and regression testing is considered crucial
for the company 's products. They have a three-week sprint, and there are new features
and changes in the product during every sprint. For every new addition, they perform
regression testing with a selected set of test cases. The requirements specification guides
the selection of test cases, and they have good traceability. Sometimes if it is hard to
decide on the set of tests, then exploratory testing is preferred. The company release its
product every three months, and they freeze the software three weeks before the release.
At release, they run all the test cases in the regression suite.

Table C.1: State of regression testing (RT) in the case companies.

267

Chapter C.

Table C.2: Regression testing activities considered essential in the case companies.

CID Before RT During RT After RT

C1 Study impact, Acquire domain
knowledge, Assure that relevant
test cases are updated, Test suites
are maintained and updated, As-
sure relevant specification/change
documents have been delivered to
testers.

Monitor fault detection
and coverage, as these are
primary goals

Assure the completion of
planned regression testing,
Assess the results and de-
termine the quality goals,
Assess the ratio of pass vs
fail cases

C2 Using domain knowledge, assess
the impact of changes, Take mea-
sures to reduce the ripple effect dur-
ing regression testing, Determine
the scope of regression testing, Se-
lect most appropriate test cases, the
goal is to maximize coverage, Talk
to the testers about their readiness,
assigning roles and responsibilities

Monitor coverage and en-
sure damage is minimized

Assess the results (spe-
cially pass percentage) and
ensure reporting the re-
sults to relevant people,

C3 Ensure requirements and changes
have been communicated, Identifi-
cation of critical areas to be tested

See if the goals are being
achieved

Completion of planned
regression tests, goals
achievement, Use the
statistics to assess the
goals

C4 What new features are being de-
veloped now, what are the other
changes, impact of changes, what
have to be tested should be known

Who should be contacted
if any queries, what is the
stage of the release cycle,
how many problems can
be afforded right now

See if the goals are
achieved, Ensure that
fault slippage is controlled
(assess pass vs fail ratio)

C5 Knowing what new features have
been added, Knowing the impact
of the new features, Writing test
cases for new features, Selecting
test cases to test the impact

Monitor the failing cases Analyze the results to see
i. Why tests are failing,
ii. Are these failing due
to code error or any other
reason. If regression suite
is failing then stop the re-
lease.

C6 Make sure that all tickets are fixed
by the developers, What are the
changes and impact of changes, De-
velopers notes are available and
complete, Test suites are main-
tained, Test data is maintained

Make sure that all tickets
are being covered

Analyze test reports, Pass
vs fail test cases, Make
sure that everything is cov-
ered what was planned,
what is pass percentage

268

C7 Domain knowledge (Changes, im-
pact of changes, build to be tested),
Changes have been tested, Build
is stable, Selection of right test
cases, Maintenance of regression
suite, What is to be included in the
test suite, A well manged regression
test plan, Test data availability,

Continuous status updat-
ing (e.g., pass, fail)

Generating comprehensive
test reports, analyzing fail-
ures, decide the subse-
quent steps based on pass
percentage

C8 Clear understanding of require-
ments, understanding of system
flows, What was implemented in
before this release, what is com-
ing in this release, Test data, per-
formance issues, make a regression
testing plan, right people for right
job

Should be able to execute
all planned tests without
any problem

Analyze the results, Are
we delivering the function-
ality according to the re-
quirements, nothing is bro-
ken

C9 Knowledge of product, knowledge
of changes, impact of changes,
changes must be functionally
tested, optimizing regression suites

Monitor the stability and
performance

How much have been cov-
ered, pass and fail ratio,
analyzing failures, stop
based on coverage and
pass fail ratio

C10 RT plan, right test data, right test
environment, what has changed,
impact of change (knowledge of
backward dependencies), all code
changes are checked in, all changes
have been unit tested,RT plan is in
place, scope of regression testing,
what are risk

Monitor the activity to see
the test logs what is failing
and why

Analyze test reports, main-
tain regression testing doc-
umentation, Executed the
planned scope, what issues
are found, mitigated the
identified risk, test reports
have been generated

C11 Domain knowledge, Complete
knowledge of the current mod-
ule, Test data availability, Test
environment, Contingency plan
of resources, all changes have
been freezed, appropriate tracking
mechanism

Monitor the activity and
try to analyze the tests

Planned scope covered,
Analyze the failures,
Pass/fail ratio, assess goals

C12 Do we have a clear regression test-
ing plan, a good knowledge of
requirements specifications, what
new features/changes have been
added, what is the impact, which ar-
eas need to be tested, which test will
be used

Monitoring coverage, en-
sure that all critical areas
have been identified,

generate test reports, an-
alyze results, e.g., how
much covered, what is the
pass percentage

Table C.2: Regression testing activities considered essential in the case companies.

269

Chapter C.

C.2 Introductory workshop
Introduction
The lead investigator (author 1) introduced the research team and the overall purpose of our research on
regression testing. Later, he requested the introduction of participants, their company's environment, and the
testing team.

After the introductory session, the lead investigator presented the study idea based on the following key
elements.

Significance of checklists
Practitioners of various disciplines use checklists as a cognitive aid to ensure the correct completion of
any task. A checklist is a standardized tool that enlists the required process criteria for the practitioners
performing a specific activity. It supports recording the presence or absence of the essential process tasks.
Checklists are not new for software practitioners, some famous checklists used in software industry are code
review and inspection checklists, user stories checklists, sprints checklists, testing checklists, etc. We could
not find an explicit checklist on regression testing.

Regression testing checklists
Regression testing checklists could help document and reuse the best testing practices and help cope with
various regression testing-related challenges that practitioners face. It would be easy for the new members
to grasp the organizational testing policies/activities quickly in such a case. They can benefit from checklists
and become familiar with usual team practices. Without a checklist, it is highly likely that a new practitioner,
for instance, can omit a necessary test or violate any team policy.

Participants' Role
We are aiming to co-design regression testing checklists. The objective is to propose such checklists that
would be easy to adopt yet improve the regression testing process in the companies. In this regard, the input
from testing practitioners is significant. Besides this introductory workshop, your participation would be
required in at least three more phases (i.e., interviews, checklists evolution, and checklists evaluation). In the
next phase, we will conduct interviews and would be interested to know your opinion on various aspects of
regression testing. The role of participants would be critical during the last two phases (checklists evolution
and evaluation). We expect the team discussions and trial runs in the evolution and evaluation phases.

Definition of terms
We would like to describe the terms we will use in the subsequent phases of this study. For instance, we will
be using the terms readiness, essential aspects of regression testing, regression testing goals, and assessment
of regression testing goals. By essential aspects, we mean the steps that should be taken before the regression
testing, during the regression testing, and after the regression testing. Our opinion is that before starting
regression testing, all involved should be ready for that. We would be interested to know the measures
taken to assess the readiness. Concerning regression testing goals, these could correspond to the pre-defined
objectives that a practitioner wants to achieve by applying a regression testing process or technique. By
assessing regression testing goals, we mean to see if the goals have been achieved (maybe by using some
metrics).

270

Study benefit
The outcome of this study would be regression testing checklists that would have been co-designed with and
validated by practitioners. Hence, the checklists will be scalable to the industry context. Our aim is to make
these checklists easy to adopt and benefit the practitioners in the regression testing activity.

Non-disclosure assurance
We will be interested to know about you and your team/organization. We assure you that the outcome of
this study will only be used for research purposes, and we will not reveal the identity of any individual or
company in any publication or presentation.

Questions
We welcome your questions concerning the prospective study, its procedures, our team, etc.

271

Chapter C.

C.3 Interview guide
Participant 's background
Question 1. Could you please tell us about your professional background?

1. Your overall experience?

2. For how long you have been with this organization?

3. How do you describe your current role in the team?

4. What is the size of your team?

5. How will you describe your organization?

(a) The size of your organization

(b) Development environment (e.g., DevOps, CI/CD, etc.)

(c) Product(s) domain

Question 2. Could you please tell us about regression testing within your organizational/team context?

1. How significant is regression testing for your organization/team?

2. Can you please give us a walkthrough of how regression testing is performed at your organiza-
tion/team?

3. How frequently regression testing is performed?

Question 3. What are the essential aspects that need to be considered before the start of regression testing?
Question 4. What are the essential aspects that need to be considered after the regression testing?
Question 5. Do you think we should check the readiness of the individuals and team before starting regres-
sion testing activity?
a. What questions should be relevant to assess the readiness of individual and team?
Question 6. Do you think that the testing team needs to set the regression testing goals before the start of
regression testing?
Question 7. What type of goals/quality parameters you/your team set before the start of regression testing?

Question 8. How would you ensure that you have achieved the regression testing goal(s) Post regression
testing analysis?
Question 9. What is your opinion about the usefulness of regression testing checklists in practice?

1. What type of checklist(s) can add value to the regression testing activity?

2. What are the questions you think we need to ask in this regard?

Question 10. What are the aspects that need to be considered during the regression testing activity?

Question 11. Would you like to add any further points that you think are significant for regression testing?
Maybe we have missed asking?

272

C.4 Checklist evolution
Based on the results obtained from five groups and seven individual interviews with the practitioners of 12
companies, we have created the following checklists:

1. Checklists to track the pre-regression testing activity

(a) Checklist to determine the readiness of an individual tester

(b) Checklist to determine the team’s readiness

2. Checklist to track the post regression testing activities

Guiding note: Please provide feedback on each checklist item. You can rate the included items as
Yes, No, or Do not know. If you agree that the item is relevant, then please check yes. If the item is irrelevant,
then please check No. If you are undecided, you can check Don’t know.

We provided checklists in similar tables as given below. The practitioners were supposed to rate every
item concerning its relevance in the respective checklist. For every checklist we asked the following question:

Is the checklist relevant? Yes No Don’t Know

Checklist evolution form
No. Is the checklist item relevant? Yes No Don’t Know
1
2.
3.
4
5.
.
.

We asked the respondents if they wanted to suggest any new item they could add to the table given
below.

Add new items for checklists
No. New Item? Respective checklists? Comments
1
2.
3.
4
.
.

273

Chapter C.

C.5 Checklist evaluation
Regression testing checklist evaluation practitioners’ feedback

Guiding note: Thank you for participating in the first three phases of our study and helping us de-
signing the regression testing checklists. Now we are interested to know your opinion on the final version
of checklists. We have sent you the copy of checklists earlier. If you did not receive the final version of
checklists please let us know at “nasir.mehmood.minhas@bth.se”. We assure you that your identity will not
be revealed in any of our publication, we are collecting your information just for our analysis purposes. We
expect your feedback based on your experience, a trial run of the checklists, and discussion among the team
members.

Your Name: ——————————————–

Role in the team: ——————————————–

Company: ——————————————–

email: ——————————————–

Question 1: Do you think the proposed checklists cover all essential aspects that must be considered before
and after regression testing?
a. Strongly agree b. Agree c. Disagree d. Strongly disagree

Question 2: The proposed regression testing checklists are helpful in your team/organization context?
a. Strongly agree b. Agree c. Disagree d. Strongly disagree

Question 3: The proposed regression testing checklists are customizable for your team/organization context?
a. Strongly agree b. Agree c. Disagree d. Strongly disagree

Question 4: Do you think checklists are easy to adopt in your organization 's context?
a. Strongly agree b. Agree c. Disagree d. Strongly disagree

Question 5: Are you willing to use the proposed checklists in your team/organization?
a. Strongly agree b. Agree c. Disagree d. Strongly disagree

274

Background. Regression testing is a complex
and challenging activity and consumes a significant
portion of software maintenance costs. Research-
ers are proposing various techniques to deal with
the cost and complexity of regression testing. Yet,
practitioners face various challenges when plan-
ning and executing regression testing. One of the
main reasons is the disparity between research and
practice perspectives on the goals and challenges
of regression testing. In addition, it is difficult for
practitioners to find techniques relevant to their
context, needs, and goals because most proposed
techniques lack contextual information.

Objective. This work aims to understand the
challenges to regression testing practice and find
ways to improve it. To fulfil this aim, we have the
following objectives:

1) understanding the current state of regression
testing practice, goals, and challenges,

2) finding ways to utilize regression testing re-
search in practice, and

3) providing support in structuring and improving
regression testing practice.

Method. We have utilized various research meth-
ods, including literature reviews, workshops, focus
groups, case studies, surveys, and experiments, to
conduct the studies for this thesis.

Results. The results indicate disparities in re-
search and practice perspectives on regression
testing. The practitioners rely on expert judgment
instead of a well-defined regression testing pro-
cess. They face various challenges in regression
testing, such as time to test, test suite mainte-
nance, communication, lack of assessment, and is-
sues in test case selection and prioritization.

We have proposed a GQM model representing
research and practice perspectives on regression
testing goals. The proposed model can help reduce

disparities in research and practice perspectives
and cope with the lack of assessment.

We have created regression testing taxonomies
to guide practitioners in finding techniques suit-
able to their product context, goals, and needs.
Further, based on the experiences of replicating
a regression testing technique, we have provided
guidelines for future replications and adoption of
regression testing techniques.

Finally, we have designed regression testing check-
lists to support practitioners in decision-making
while planning and performing regression testing.
Practitioners who evaluated the checklists report-
ed that the checklists covered essential aspects of
regression testing and were useful and customiza-
ble to their context.

Conclusions. The thesis points out the gap in
research and practice perspectives of regression
testing. The regression testing challenges identified
in this thesis are the evidence that either research
does not consider these challenges or practition-
ers are unaware of how to replicate the regres-
sion testing research into their context. The GQM
model presented in this thesis is a step toward
reducing the research and practice gap in regres-
sion testing. Furthermore, the taxonomies and the
replication experiment provide a way forward to
adopting regression testing research. Finally, the
checklists proposed in this thesis could help im-
prove communication and regression test strategy.
Moreover, the checklists will provide a basis for
structuring and improving regression testing prac-
tice.

2022:07

ISSN: 1653-2090

ISBN: 978-91-7295-444-1

ABSTRACT

