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ABSTRACT 

Synthetic aperture radars (SAR) data plays an important role 
in remote sensing applications. It is common knowledge that 
SAR image amplitude pixels can be approximately modeled 
by the Rayleigh distribution. However, this model is contin-
uous and does not accommodate points with non-zero prob-
ability, such as a null pixel amplitude value. Thus, in this 
paper, we propose an infated Rayleigh distribution for SAR 
image modeling that is based on a mixed continuous-discrete 
distribution and can be used to ft signals with observed values 
on [0, ∞). The maximum likelihood approach is considered 
to estimate the parameters of the proposed distribution. An 
empirical experiment with a SAR image is also presented and 
discussed. 

Index Terms— Maximum likelihood estimation, Null 
amplitude value, Rayleigh distribution, SAR images 

1. INTRODUCTION 

The Earth environment understanding with respect to land 
cover changes, land use, and conservation/exploration of nat-
ural sources is of paramount importance. It is also crucial 
for government actions towards a sustainable development, 
including quality of life improvement without degrading the 
environment. In this regard, remote sensing is an important 
mean to collect the relevant essential information in global 
scale [1]. In particular, synthetic aperture radars (SAR) has 
been widely employed in remote sensing applications, due 
to its capability of providing suitable visual information, in-
dependent of weather and illumination conditions, associated 
with a wide terrain coverage in a short observation of time [2, 
3]. 

Common applications of SAR are detection and classi-
fcation of distinct land types [4] and change detection [5], 
which usually require statistical tools. As discussed in [6], 
statistical tools are commonly used to treat image processing 
problems, describing image pixels because of their stochastic 
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nature [1]. Particularly, statistical inference methods usu-
ally applied in signal and image modeling are under the 
assumptions of Gaussianity and/or maximum likelihood ap-
proaches [7, 8]. However, magnitude SAR image pixels gen-
erally have non-Gaussian properties. In practice, they follow 
asymmetrical distributions, and assume positive values [3]. 
According to [3], the amplitude pixel values of a SAR image 
are Rayleigh distributed. Indeed, the Rayleigh distribution 
is known to well ft SAR data homogeneous regions [3, 9]. 
Although the Rayleigh distribution has its support in the 
continuous probability, it does not accommodate points with 
non-zero probability, e.g., signals that contain zero observed 
value. This is due to the fact that the area under the curve at 
a single point, is zero. In SAR images delivered from e.g., 
ICEYE, a zero amplitude pixel value may be related to a 
weak signal and sampled as a zero. 

This paper has the goal to propose an infated model, 
which is a mixed continuous-discrete distribution and here is 
called as infated Rayleigh distribution. The derived model 
uses a continuous distribution on (0, ∞) and a degenerate 
distribution that assigns non-negative probability to zero— 
the Bernoulli distribution—for observed values equal to zero. 
The same approach has been applied in the beta and Ku-
maraswamy distributions [10, 11]. To demonstrate the appli-
cability of the proposed model, an experiment considering a 
SAR image from the ICEYE radar is conducted, showing the 
promising performance of the derived distribution in mod-
eling three different regions with different noise and clutter 
characteristics. 

2. THE INFLATED RAYLEIGH DISTRIBUTION 

The Rayleigh density is commonly governed by the parame-
ter σ; however, the mean-based distribution models the mean 
of the observed signal and consequently, has a more direct in-
terpretation [12]. The mean-based Rayleigh distribution has 
been proposed recently in [13] and can be defned as follows. 
Let Y be a Rayleigh distributed random variable with mean 
parameter µ > 0. The cumulative distribution function (CDF) 
and the probability density function (PDF) of the mean-based 



Rayleigh distribution are � � 
πy2 

FY (y; µ) =1 − exp − ,
4µ2 � � 

πy πy2 

fY (y; µ) = exp − ,
2µ2 4µ2 

respectively, where y > 0 is the observed signal value. The 
mean and variance of Y are given, respectively, by 

E(Y ) =µ, � � 
42Var(Y ) =µ − 1 . 
π 

In practical situations, the signal may include zeros, and the 
Rayleigh distribution presented above is not suitable for these 
situations. If a signal contains zero, then a modeling approach 
is to use a mixture of two distributions, the infated Rayleigh 
distribution, which is obtained by considering the Rayleigh 
distribution and a degenerate distribution in zero. The cu-
mulative distribution function of the mixture distribution is 
defned as 

F̄Y (y; λ, µ) = λ10(y) + (1 − λ)FY (y; µ), (1) 

where 0 < λ < 1 is the mixture parameter and 10(y) is an 
indicator function that is equal to (i) 1, if y = 0 and (ii) 0, 
if y > 0. Let Y be a random variable with CDF given by (1). 
Its PDF is written as ( 

λ, if y = 0,
f̄Y (y; λ, µ) = (2)

(1 − λ)fy(y; µ), if y > 0. 

It is obvious that, with probability λ, Y follows a degener-
ate distribution at 0, whereas, with probability 1 − λ, Y fol-
lows fY (y; µ). Consequently, the mean and variance of Y are 
given, respectively, by 

E(Y ) =(1 − λ)µ,� � �� 
42Var(Y ) =(1 − λ) µ . 
π 

2.1. Parameter Estimation Process 

Let y[1], y[2], . . . , y[N ] be N independent random samples, 
where each sample y[n] follows the infated Rayleigh den-
sity defned in (2). The estimated parameters of the infated 
Rayleigh distribution can be performed by the maximum like-
lihood method. The likelihood function for γ = (λ, µ)⊤ 

based on y[n] is defned as 

NY 
¯L(γ; y[n]) = fY (y[n]; λ, µ)=L1(λ; y[n]) × L2(µ; y[n]), 

n=1 

where 

NY 
λ10 (y[n])(1 − λ)1−10(y[n])L1(λ; y[n]) = 

n=1 

NX PN 

= λ10 (y[n])(1 − λ)n− n=1 10(y[n]), 
n=1 

NY 
L2(µ; y[n]) = fY (y[n]; µ). 

n=1 
y[n]>0 

The maximum likelihood estimates are given by γb, which is 
the argument that maximizes the log-likelihood function of 
the parameters for the observed signal, defned as 

NX 
ℓ(γ) = log(L(γ; y[n])) = ℓ[n](λ, µ; y[n]) 

n=1 

=ℓ1(λ; y[n]) + ℓ2(µ; y[n]), 

where 

NX 
ℓ1(λ; y[n]) = log(λ) 10(y[n]) + log(1 − λ) " 

n=1 # 
NX 

× N − 10(y[n]) , 
n=1 

NX � �π πy[n]2 

ℓ2(µ; y[n]) = log + log(y[n])−log(µ 2) − . 
2 4µ2 

n=1 
y[n]>0 

The score function, which is obtained by differentiating the 
log-likelihood, denoted by U(γ) = [Uλ, Uµ], and can be de-
fned as 

NXd ℓ1(λ; y[n]) 1 1 
Uλ = = 10(y[n]) − 

d λ λ 1 − λ " 
n=1# 

NX 
× N − 10(y[n]) , 

n=1 PN
d ℓ2(µ; y[n]) π 2 n=1 y[n]

2 

Uµ = = − . 
d µ 2Nµ3 µ 

The maximum likelihood estimators (MLE) for the infated 
Rayleigh distribution parameters are obtained by solving the 
following nonlinear system U(γ) = 0, where 0 is a two-
dimensional vector of zeros. The MLE of λ (λb) and of µ (µb) 
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Fig. 1. ICEYE SAR data considered in our study. Regions 
A, B, and C are related to urban, forest, and sea area, respec-
tively. The three evaluated regions are related to a null ampli-
tude pixel value, which their image positions are highlighted. 

are given, respectively, by " #XN NX1 1 
10(y[n]) − N − 10(y[n]) = 0 

λb 1 − λb 
n=1 n=1PN 

10(y[n])n=1∴ λb = , PN 
N 

π 2 n=1 y[n]
2 

− = 0 
2µb3 µb s PN 

n=1 y[n]
2 

∴ µb =
1 π

,
2 N 

i.e., the maximum likelihood estimator of λ is the proportion 
of observation values that are equal to 0. 

3. SAR IMAGE MODELING 

This section presents the modeling results of the proposed dis-
tribution in a SAR image. In particular, the SAR data con-
sidered in this study uses an image over Karlskrona, Sweden, 
from the ICEYE radar [14]. The radar is operating in spotlight 
high mode with approximate resolutions of 0.25 m, 0.3 m, 
and 15 m at X-band. Figure 1 shows the amplitude data of 
the 25728 × 7808 SAR image associated to the VV polar-
ization channel. The ground scene of the evaluated image is 
dominated by ocean (dark-blue ground—bottom part of the 
image); forest (light-blue); and urban area (light ground— 
central image region). The three evaluated regions in this 
study have a pixel assuming amplitude value equal to zero. 
The areas are shown in Figure 1, highlighting the image po-
sition of the evaluated null amplitude pixel value. In particu-
lar, regions A, B, and C are related to urban, forest, and sea 
ground types, respectively. In the total, the considered SAR 
image contains 22319 pixels assuming a null pixel value. 

To evaluate the proposed distribution modeling perfor-
mance, we obtained the amplitude pixel probability his-
tograms of the three tested regions and the ftted probability 
densities curves. For that, a window of 10 × 10 pixels around 
the null pixel magnitude in each analyzed region (highlighted 
in Figure 1) was considered. For comparison purpose, we 
also ftted the Gaussian distribution to the tested regions. As 
discussed in [1], the Gaussian distribution has been granted as 
a default SAR data model, since it is frequently used to model 
image pixels. Under certain mild conditions, the Gaussian 
distribution has the advantage that the sum of many random 
contributions tends to became a random variable governed 
by a Gaussian law, and it is used in different computational 
methods [1]. 

Figure 2 shows the probability histogram of the three eval-
uated ground types and the ftted infated Rayleigh distribu-
tion (red curve) and Gaussian (blue curve) probability densi-
ties. The asymmetric behavior of the data in the three tested 
regions can be easily modeled by the Rayleigh distribution, 
excepted for the null pixel value. In this case, it is not pos-
sible to ft the usual Rayleigh distribution and the proposed 
model can be used as a venue for addressing such a problem. 
Visually, Figure 2 shows that the proposed infated Rayleigh 
distribution displays a good ft for the three evaluated regions 
and also can model the pixels with amplitude value equal to 
zero. The both models display a good ftting performance; 
however, the derived approach captures better the data asym-
metry in the three tested regions, demonstrating the advantage 
of the derived tool to model asymmetrical data. 

4. CONCLUSIONS 

This paper proposed a new distribution model for signals as-
suming values on [0, ∞), such as amplitude pixel values of 
SAR data. The introduced infated Rayleigh distribution as-
sumes that the mean of the Rayleigh distributed signal can 
be modeled by a mixed continuous-discrete distributions. An 
empirical application considering a SAR image with null am-
plitude value was presented. This new distribution arises as 
a tool for several remote sensing applications, such as target 
detection or ground type classifcation. 
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