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ABSTRACT 
Background: Bug-fxing is the crux of software maintenance. It 
entails tending to heaps of bug reports using limited resources. 
Using historical data, we can ask questions that contribute to better-
informed allocation heuristics. The caveat here is that often there 
is not enough data to provide a sound response. This issue is es-
pecially prominent for young projects. Also, answers may vary 
from project to project. Consequently, it is impossible to generalize 
results without assuming a notion of relatedness between projects. 
Aims: Evaluate the independent impact of three report features in 
the bug-fxing time (BFT), generalizing results from many projects: 
bug priority, code-churn size in bug fxing commits, and existence of 
links to other reports (e.g., depends on or blocks other bug reports). 
Method: We analyze 55 projects from the Apache ecosystem using 
Bayesian statistics. Similar to standard random efects methodology, 
we assume each project’s average BFT is a dispersed version of a 
global average BFT that we want to assess. We split the data based 
on feature values/range (e.g., with or without links). For each split, 
we compute a posterior distribution over its respective global BFT. 
Finally, we compare the posteriors to establish the feature’s efect 
on the BFT. We run independent analyses for each feature. 
Results: Our results show that the existence of links and higher 
code-churn values lead to BFTs that are at least twice as long. On 
the other hand, considering three levels of priority (low, medium, 
and high), we observe no diference in the BFT. 
Conclusion: To the best of our knowledge, this is the frst study us-
ing hierarchical Bayes to extrapolate results from multiple projects 
and assess the global efect of diferent attributes on the BFT. We 
use this methodology to gain insight on how links, priority, and 
code-churn size impact the BFT. On top of that, our posteriors can 
be used as a prior to analyze novel projects, potentially young and 
scarce on data. We also believe our methodology can be reused for 
other generalization studies in empirical software engineering. 
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1 INTRODUCTION 
Catolino et al. [7] highlights that back in 2017, there was a percep-
tion that bugs were “eating the world”. Once the software systems 
grow in size and complexity, and developers need to work under 
frequent and tight deadlines, the introduction of bugs cannot be 
seen as an unexpected phenomenon. Therefore, bug fxing becomes 
a very resource-consuming activity, leading to costs by order of 
billions per year. Finding, reporting, and fxing bugs consumes 50% 
of the software developers’ time (on average) [6]. 

Nowadays, software development teams frequently rely on Issue 
Tracking Systems (ITS) to control changes in a project and manage 
backlogs of issues1 to be addressed [4, 25, 28]. There are several 
available ITS, such as Bugzilla, YouTrack, and Jira, which are widely 
adopted in both commercial and open-source projects. 

A bug report must provide a textual description showing the 
steps needed to reproduce the failure being reported. The informa-
tion available in an ITS varies from one product to another. The 
Jira tool, for instance, provides information in diferent dimensions, 
such as: importance-related as Priority; the text-related as Summary 
and Description; person-related as Assignee and Reporter; and 
link-related as Outward and Inward that describes how a bug report 
afects or is afected by another bug report inside Jira. Addition-
ally, an ITS also records the bug report opening and closing times, 
making it possible to compute the bug-fxing time (BTF). 

It is worth noticing that information available in a bug report is 
essential to support the following tasks: (i) the bug triage (who will 
be assigned to fx a bug); (ii) the bug fxing scheduling (prioritization 

1An issue could represent a feature, an enhancement, a bug, a doubt, a user story, a 
task, or another concern in the project. 
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of which bugs will be fxed in a given period of time); and (iii) the 
bug correction itself. Understanding how the attributes of a bug 
report impact the overall bug fxing process is essential to build 
reliable estimation models to optimize resource allocation. 

Many studies explored information on bug reports available on 
diferent ITS, focusing on aspects such as: “was this bug already 
registered?” [9, 22], “who is the best person to fx this bug?” [15, 30], 
“is this a real bug?” [18], “is this report good, and does it have enough 
information?” [46], “what is its priority?” [33], and “how much time 
is necessary to fx this bug?” [2, 16, 44]. These (and other) existing 
studies provide helpful evidence to improve the bug-fxing process. 

The typical approach used to understand how the information of 
bug reports impacts other independent variables (e.g., BFT) relies 
on some statistical framework. de Oliveira Neto et al. [8] reports 
that frequentist statistical approaches became the standard tool 
to provide this kind of insight in Empirical Software Engineering. 
However, the Bayesian framework is another option that some-
times is overlooked at frst because it does not ofer out-of-the-box 
solutions like the statistical tests of the frequentist framework. 
Recent studies [10, 12] have been advocating for the use of the 
Bayesian framework as an alternative to the more traditional statis-
tical test. These studies highlight advantages of the Bayesian frame-
work [11, 35]: a fne-grained data model’s building control, better 
visual appeal of the results, and the use of additional information 
as prior. Additionally, Bayes statistics and posterior distributions 
can be a starting point for analyzing younger projects. The model 
can be updated to best represents the newly acquired evidence as 
new data emerges from the project lifetime. 

In this paper, we show the process of using Bayesian statistics 
to analyze bug report data. Specifcally, we use Bayesian statistics 
to empirically evaluate the relation between the BFT and (i) bug 
report priority, (ii) links between reports, and (iii) code-churn size 
of bug-fx commits. Our results show that the existence of links 
and higher code-churn values lead to BFTs that are at least twice 
as long. On the other hand, considering three priority levels (low, 
medium, and high), we observe no diference in the BFT. 

Our main contributions are two fold. First, our results may 
support practitioners during bug triage and scheduling by providing 
helpful information concern the BFT based on exiting bug report 
data. Second, the methodology can be reused by researchers in 
diferent software projects data, as the presented posterior distribu-
tions can be used as priors for analysis in a similar context. 

2 BAYESIAN DATA ANALYSIS OVERVIEW 
This section briefy introduces core Bayesian data analysis (BDA) 
concepts. While we cover the basics of BDA, we refer the reader to, 
e.g., Gelman et al. [14] or Kruschke [20] for a thorough presentation 
of the subject. 

2.1 Bayes in a Nutshell 
Bayes 101. Bayesian inference is a statistical framework that 

allows us to update our subjective belief on the value of a variable 
of interest � —or an efect— when faced with new data �. We start 
of by expressing our belief as a prior distribution � (� ) over the set 
Θ of possible values for � . Then, we assume an observation model 
� (� |� ), and consequently a likelihood function that we can use to 
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re-evaluate our opinion on � . We refer to our updated belief as the 
posterior distribution and compute it using the Bayes’ rule: 

� (� )� (� |� )
� (� |�) = ∫ . (1)

� (�,�)� (�) d� Θ 

The frst step in Bayesian modeling is to choose likelihood func-
tion � (� |� ), i.e., an observation model. Choosing an appropriate 
likelihood requires analyzing the nature of the data �. For instance, 
if our observations are numbers of system failures in a given time 
interval, � (·|� ) should have non-negative integer support — the 
most common choice for count being Poisson distribution ���� (�), 
governed by the parameter �. Then, we must choose a prior . In the 
case of a likelihood ���� (�), we must choose a prior � (�), which 
means the plausibility of the values that � can assume before the 
data is observed. 

Ideally, we can use previous analyzes and observations or specifc 
domain knowledge to defne informative priors. In cases where it is 
impossible to provide informative priors, we must at least ensure 
that the priors cover a reasonable value range or, conversely, rule 
out unusual value ranges as highly unlikely [10]. These types of 
priors are called weak or weakly informative. We can test several 
priors and perform a sensitivity analysis to check which one best 
fts our data [14]. 

Computational methods. Once we have a model, the next step is 
making the inference. We must ft the model, which means that we 
have to compute the posterior distribution � (� |�). However, doing 
so analytically is often challenging since it requires computing the 
denominator of Bayes’ rule, which is usually intractable. For sim-
ple cases with a small number of parameters, one can use grid or 
quadratic approximation to calculate the posterior [23]. Nonethe-
less, the weapon of choice for most Bayesians are Markov chain 
Monte Carlo (MCMC) sampling methods, such as sequential Monte 
Carlo and Hamiltonian Monte Carlo [14]. In this paper, we evaluate 
models that are computed using MCMC. 

Hypothesis testing. The posterior distribution encapsulates all 
information we have gathered on � , subjective or not, and we can 
use it to probe any hypothesis. For instance, we can evaluate the 
probability that � > � taking the expected value of the indicator 
function 1 [· > �], i.e.: ∫ 

� (� > �) = 1 [� > �]� (� |�) d� . 
� ∈Θ 

Unfortunately, computing exact integrals over the posterior are 
often intractable. However, given a set of MCMC samples S = 
{� (�=1) }� , we can approximate the expected value of any function 
� of � as: ∫ Õ1 � � � 

E� (� |�) [�(� )] = �(� )� (� |�) d� ≈ � � (�) . 
� ∈Θ � 

�=1 

Simulating novel data. We can easily simulate novel data with 
the posterior samples in our hands. We do so by sampling from: ∫ 

� (�★, � |�) = � (�★ |� )� (� |�) d�, 
� ∈Θ 
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which using MCMC samples resumes to repeating the following 
process: i) pick a sample � (�) from S; ii) sample from our observa-
tion model conditioned on � (�) , i.e., � (�★ |� (�) ). Once the simulated 
data is drawn for a model that describes well our data’s generative 
process, it should look similar to the observed data [13], as any dis-
crepancy between the sample data and the observed data indicates 
potential failings in the proposed model. 

2.2 Hierarchical Models 
The structure of data in a specifc domain can indicate some relation 
or connection between the parameters of the model [13]. Consider 
the example of our selected dataset composed of 55 open source 
projects, all coming from the Apache Ecosystem, with all reports 
mined from JIRA ITS. For instance, it might be reasonable to expect 
that these projects, coming from the same source, may present 
similar behavior in terms of types of bugs or the time to fx them, 
among other similarities. In this case, we can defne in our model 
that the estimates of the parameter �� , representing the average 
time to fx a bug in a project � , are drawn from a prior distribution 
(conditioned by a parameter �0), also representing the average time 
to fx a bug, but considering all projects behavior. 

The advantage of this kind of approach, called Hierarchical or 
Multi-level models, is that they are less inclined to underft or 
overft the data when compared to single-level models, dealing 
better with the imbalance in sampling and better modeling between 
variance among groups and individuals [23]. From an intuitive 
point of view, this mechanism allows for transferring information 
between diferent projects. This also will enable projects with fewer 
data to borrow strength from inferences in more mature projects. 
Besides allowing us to estimate the parameters � of each project, 
hierarchical modeling also provides us with a distribution over the 
global parameter �0 — in our case, the global average BFT —, which 
is more suitable for generalization results. 

2.3 Motivation to use Bayesian Data Analysis 
The workfow to understand how specifc bug report characteris-
tics are related to others that signifcantly impact the bug triage 
process (e.g., bug-fxing time, priority, or report quality) generally 
would use some statistical framework. For example, frequentist 
statistical approaches have been the standard tool to provide this 
kind of insight in empirical software engineering studies [35]. How-
ever, the Bayesian framework is another option that is sometimes 
over-viewed because it does not ofer out-of-the-box solutions as 
the statistical tests of the frequentist framework. In addition, some 
works have advocated using the Bayesian framework as an alterna-
tive to the more traditional statistical test use. In general, the BDA 
workfow is more informative about the data and the outcome of 
the analysis when compared to frequentist approaches [14]. 

The Bayesian Data Analysis characteristics come with a cost: 
while frequentist statistical approaches provide a group of tests 
covering several data scenarios, the Bayesian framework requires 
more detailed attention as we have to build our models from the 
bottom up. There are a few steps and attention to details to cover, 
and there are some literary works that describe the process at length 
Gelman et al. [14], McElreath [23]. In contrast, others have been 
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more active in highlighting the advantages of using the BDA in 
empirical software engineering [11, 35]. 

Besides all the highlights provided by some researchers, one 
more specifc objective point was crucial to adopting the Bayesian 
approach in this paper: we have multiple data sources in the dataset. 
As we intended to provide conclusions about all projects, hierar-
chical models are a potent tool provided by BDA that helps test 
hypotheses about the data more generalistic. The counterpoint in 
the frequentist statistical approaches is to combine p-values from 
diferent statistical test results from diferent data sources [17]. As 
covered by [11], there is not a uniform view about when and how 
the adjustment of p-values from diferent statistical tests. In the 
same work, the authors show the impact of using diferent tech-
niques to adjust p-values and how the diferent techniques impact 
the fnal conclusions regarding the analysis. 

It is important to notice that both frequentist and bayesian anal-
ysis provides similar conclusions when correctly applied [39], but 
BDA provides a few particularities that we consider more appealing 
than the frequentist framework. We summarize the motivation to 
apply BDA in the following paragraphs. 

Flexibility to Create Models. Due to BDA framework fexibility, 
we have total control of the assumptions regarding the model and 
data. As we describe every aspect of the model, this provides a 
better comprehension of the whole modeling process, allowing a 
more detailed review and criticism from peers abroad. 

Hierarchical Models. We have data mined from several projects, 
each one with its particularities. Hierarchical models provide ways 
to summarize data from diferent sources to give us a more general 
picture of a similar behavior underlying their idiosyncratic. The 
use of hierarchical models serves us as an alternative to possible 
pitfalls of selection p-values adjustments and combinations. 

Posterior Distributions as Results. The outcome of every BDA are 
posterior and predictive distributions. These posterior distributions 
describe our models’ parameters based on our assumptions and 
data. However, the use of prior is an inherent characteristic of BDA. 
For future works that perform similar analysis on other bug reports 
data, the obtained posterior distributions in this research can be 
used as priors in their models, creating a chain of knowledge of the 
same domain [11, 23]. 

3 STUDY DESIGN 

3.1 Goal and Research Questions 
Our study explores the usage of Bayesian statistics to analyze the im-
pact of bug report priority, links, and code-churn size on bug fxing-
time. We analyzed a dataset with 10 years of bug-fxing records 
from 55 projects from the Apache ecosystem (see Section 3.2). 

Our investigation answers the following research questions: 

RQ1: How does the existence of links in bug reports impacts the BFT? 
It is not rare to fnd relationship between bug reports. For ex-

ample, a relationship can indicate if a bug report A is blocked by 
another bug report B. Answering RQ1 will allow us understand if 
the existence of such relations impacts the bug-fxing time (BFT). 

RQ2: How does the priority level of a bug report impacts the BFT? 

Ricardo Britto
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42 SPAAK·694 Reference:SPARK·668 
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Every bug report has an associated priority value, which may 
indicate urgency or severity. Existing studies [3, 33, 38] have inves-
tigated the role of priority in the bug fxing process. In this paper, 
we focus on the impact of priority on the BFT. 
RQ3: How does the code-churn size of fxing commits relates to the 
BFT? 

Bug-fx commits are those bringing the changes that fx a re-
ported bug. Thus, it is possible to compute the code-churn size 
related to a fx commit. To answer this research question, we frst 
group the bug reports into two categories: (i) reports with low 
code-churn values and (ii) reports with high code-churn values 
(the threshold is the project’s code-churn median value). Next, we 
evaluate if the average BFT of both groups is signifcantly diferent. 

3.2 Dataset Characterization 
We use the Vieira et al. [40] dataset as the source to answer our 
research questions. The dataset comprises bug report information 
regarding 55 open-source projects from the Apache ecosystem 
with diferent levels of maturity and categories (e.g., big-data, web-
framework, database, and cloud). All bugs reported in the dataset 
were identifed and fxed between 2009 and 2018. 

We use seven features available in the dataset: (i) the link-related 
felds InwardIssueLinks and OutwardIssueLinks; (ii) bug report Pri-
ority; (iii) the time-related felds CreationDate and ResolutionDate, 
to estipulate the BFT - the bug report lifespan, calculated as the dif-
ference between the report data resolution and creation; AddLines 
and DelLines, representing, respectively, the number of added and 
deleted lines in the reported bug source code fle, which was fxed 
by a commit defned in the dataset. 

In the following paragraphs, we detail the felds mentioned above, 
showing how they are represented in the dataset, and why we 
choose them to use in our investigation. 

Bug Report Links. The relations between bug reports are recorded 
in InwardIssueLinks and OutwardIssueLinks felds. As the names 
suggest, given an issue report �� with an inward link that refers to 
another issue report � � , this indicates that somehow, � � relates to �� . 
Similarly, given an issue report �� with an outward link that refers 
to another issue report � � , this indicates that somehow, �� relates to 
� � . In short, the bug reports can be seen as vertices of a graph and 
the links between them as oriented edges of this graph. 

The link-related felds are string felds in the dataset. If it is 
empty (NaN or 0), it indicates no link of the specifc feld (inward 
or outward) type. If not empty, the feld contains a string of unique 
Keys separated by a line break (if there is more than one). The 
keys in Jira follow the format {project}-{number}. Hence, given the 
project Spark, examples of keys would be SPARK-213 and SPARK-
481. 

Figure 1 shows the possible scenarios around links between bug 
reports. It shows seven bug reports of the Spark project in fve 
columns, in order: (i) the Pandas Dataframe2 index; (ii) the bug 
report unique key; (iii) the inward links references; (iv) the outward 
links references; (v) the total report number of links. 

Bug Report Priority. The bug report priority has been the sub-
ject of several studies with diferent purposes. The majority of 
2https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html 
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Figure 1: Example of links in Spark’s bug reports. All links 
are associated with a type (e.g., duplicate or reference). While 
some reports may not present any link (SPARK-585), others 
only present one type of reference (SPARK-684 and SPARK-
1825), and others may present several links, even with refer-
ences to a diferent project issue report (SPARK-1493). 

them deals with proposals to automatically assign priority to bug 
reports [36, 37, 43]. Other studies try to characterize why a bug 
report priority would change [3]. A few studies use the priority 
information, along side other bug reports features, as criteria to 
understand software quality and bug report quality [19, 21]. 

The priority brings an idea of bug urgency and defnes the cate-
gory of how important it is to fx a specifc bug when compared to 
others. This concept is strengthened when we list, in crescent order 
of importance, the feld default values in Jira: trivial, minor, major, 
critical, and blocker. Out of the 55 projects present in the dataset, 54 
use the default Jira priority values. The exception is the Cassandra 
project, that has only 3 priority levels: low, normal, and urgent. 

Figure 2 uses all projects (except Cassandra) to present some 
priority information. The visualization on the left shows the abso-
lute number of the report with each priority. The projects have a 
diferent number of bug reports and distinct lifespans. For example, 
some of them have more than 16 years of development (e.g., Hadoop 
and HBase), while others have less than six years of development 
(e.g., SystemML and MADlibr). Thus, looking only at the absolute 
values could present a biased behavior from the older projects. We 
create another visualization displayed on the right. The visualiza-
tion shows the average proportion for each priority of all projects. 
The vertical line presents the standard deviation. 

The majority of the reports present the minor or major priority. It 
is important to notice that major is the default value priority when 
a report is created, which may explain the high number of reports 
with this priority. The visualization on the right presents a similar 
behavior when compared to the one on the left. Still, it shows that 
the trivial, critical, and blocker can present smaller values, close to 
0% in some projects. 

Bug Report Code-Churn Size. Code churn measures the changes 
made to a component over a period of time [24]. In our study, 
we compute the code-churn size of the fles changed by a bug-fx 
commit. There are diferent ways to compute code churn [24, 29], 
and the choice of how to compute it depends on the available data 
and the objective of the analysis. In this work, we defne the code-
churn as the sum of added and removed lines. In general, the reports 
have an associated bug-fx commit, which has a given number of 
added and removed lines. 

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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Figure 2: Bug Reports Priority Distribution. On the left, it is 
presented the absolute number of bug reports with a given 
priority for all projects. On the right, it is presented the av-
erage proportion of a given priority in a project. Both visu-
alizations consider 54 projects from the dataset. Most bug 
reports present priority values as minor or major. 

There are cases where no such commit exists in our dataset. The 
reasons may vary: the report represents an already previously fxed 
bug, document a duplicated bug, or the bug is fxed in a commit 
of a diferent but. In these cases, we discard these reports from 
the code-churn analysis, only using the reports with associated 
commits. 

3.3 Data Pre-processing Details 
Given a project, for each feature’s i) links, ii) priority and iii) code-
churn, we create groups of reports based on the specifc criteria of 
the selected feature values: 

• For ‘links’, we split the data into two groups: the group of 
reports with links (��� ) and the group with no links (��� ). 
As presented in Subsection 3.2, there are several scenarios of 
links in the reports. However, for this frst round of analysis, 
we choose only to consider the existence or not of some link. 

• For ‘priority’, we split the data into three groups: the group 
of reports with trivial-minor priority (low priority, ��� ), the 
group with major priority (medium priority, ��� ) and the 
group with critical-blocker priority (high priority, �ℎ� ). This 
grouping of the lower and higher priority is justifed for 
two major reasons: the Cassandra project uses three levels of 
priority (low, normal, and urgent), and some smaller projects 
do not contain examples of reports with all priority. With this 
approach, we can deal with all the projects simultaneously. 

• For ‘code-churn’, we split the data into two groups: reports 
with higher code-churn values (�ℎ�� ) and reports with lower 
code-churn size (���� ). Given a project, the threshold to split 
both groups is the median code-churn of its bug reports. 

We justify the interest in studying the relation between bug 
fx time with each one of the features as follows. The relation 
(links) between issue reports seems to be overlooked by papers 
that study bug reports. For instance, with a quick search for papers 
with keywords as ‘bug reports’, ‘links’, ‘relationship’, ‘Jira reports’, 
we only could fnd three papers that deal explicitly with links in 
bug reports [5, 32, 34]. Also, we have not found any proposal that 
uses machine learning techniques to estimate the BFT and consider 
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the relationship between reports as features. Links can represent 
several types of relation, as presented in Figure 1. It is reasonable 
to believe that a blocked report one will only be fxed after the 
blocker report is resolved, implying some interference of a report 
over another. Other types of relationships, as duplicated, are also 
an indication that fxing one can impact considerably other ones. 

On the other hand, the priority is an objective of the study in 
several papers that deal with similar data and are almost used in all 
predictive models as features. However, it is never clear how a bug 
report priority is directly related to a bug fxing time. An argument 
that the priority is a measure of importance or urgency, hence asks 
for more attention and rapid responses. However, priority carries 
no information about the complexity of the bug (i.e., a minor bug 
may be more complex than a simple but blocker bug). With this 
analysis, we intend to bring some light to the matter. 

Code-churn is a widespread metric in software engineering re-
search. However, it is post-bug fx information: it is only known 
after the bug resolution. However, we argue that once the bug is 
located in a class, function, or fle, one could use prior information 
about the code-churn values in this specifc bug location to esti-
mate (along with the report information) the time to fx the bug. 
For instance, if a bug is located in a class that, based on historical 
data, demands higher patch code-churn values, this could indicate 
that this bug will also take a higher BFT. 

3.4 Modeling Process and Models Description 
The analysis starts with two proposed models as hypothesis to 
explain the generative data process. Given a feature, we ft both 
models for each one of its groups. After that, we compare the 
adverse groups’ � posterior distribution to draw our conclusions. 
For instance, for the ‘links’ analysis, we frst ft a model using ��� 
data and then another model using the ��� data. Then we use each 
model’s � posterior distribution to verify the diference between 
both groups. 

We frst defne some sets, distributions, and variables that we 
use to describe the models: 

• days / d: The time to fx the bugs in days, as non-negative 
real numbers. For all models, we considerer ���(����) ∼ 
N(�, �2), as days can not assume negative numbers. 

• G: the groups of bug fxing time in days. The groups of data 
are G = {��� , ��� , ��� , ��� , �ℎ� , ���� , �ℎ�� }, as presented in 
subsection 3.3. 

• P: The set of all projects. P = {�1, ..., �55}, each �� being one 
of the projects presented in the dataset presented in [40]. 

• N ∼ (�, �2): The Normal distribution, defned the parame-
ters mean � and variance �2. 

• Inv-Gamma(�, �) / Γ−1: The Inverse Gamma distribution, 
defned by parameters � and � . Usually, the Inverse Gamma 
is used as prior for the variance in BDA. 

The frst model is a single-level model, where we ft using only 
one project data at a time. We use a weakly informative prior for 
all parameters. The following model is presented in equation (2), 
and we call it ‘specifc-model’. 
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� ∼ N (0, 2) , 
�2 ∼ Inv-Gamma (3, 3) , (2)� � 
log(days) ∼ N �, �2 . 

Using this representation, we ft a total of 385 models: 110 for 
links (for each of the 55 projects, we ft a model using ��� data 
and another using ��� data), 110 for code-churn (for each of the 
55 projects, we ft a model using ���� data and another using �ℎ�� 
data) and 165 for priority (for each of the 55 projects, we ft a model 
using ��� data, another using ��� and another using �ℎ� ). 

The second model is a Hierarchical Model (HM), where we ft 
all projects data at once. We also use a weakly informative prior 
for all proposed models. We have a �0 representing the parameter 
to estimate for all projects population, while we have one �� to 
describe each project �� . The following model is called ‘HM-AP’ 
(Hierarchical Model-All Projects) and it is described in equation (3). 

�0 ∼ N (0, 2) , �0
2 ∼ Inv-Gamma (3, 3) , 

�2 ∼ Inv-Gamma (3, 3) , ∀�� ∈ P,� � � 
�� ∼ N �0, �0

2 , ∀�� ∈ P, 
(3) � � 

log(days� ) ∼ N �� , �
2 , ∀� ∈ P .� 

Using the HM-AP, we ft a total of seven models: two for links 
(one using ��� data of all projects and another using ��� data of all 
projects), two for code-churn (one using ���� and another using ���� 
data of all projects) and three for priority (same logic as previous, 
��� , ��� , and �ℎ� data of all projects). The proposed hierarchical 
model intends to capture the global bug report behavior based on 
the particular data of each project. ‘HM-AP’ assumes that there 
is no other similarity aspect between the projects besides they all 
have bug reports. 

4 RESULTS 
With all models defned, we use Stan, specifcally PyStan3 which 
is a Python interface to Stan, a package for Bayesian inference. 
Stan is a state-of-the-art platform for statistical modeling and high-
performance statistical computation. The computation goes as pre-
sented in Section 2: we compute the posterior distribution � (�, �2)
using MCMC for each model, given the data presented in G. After 
that, we compare the opposite � posterior distributions for each 
feature group using fve summarizations: the Maximum a Posteriori 
�̂��� estimator (the most plausible value for the estimator �); the 
Lower (��� ) and Upper (��� ) value of the 95% Confdence Interval 
(CI, also known as Uncertainty, Credible, or Compatibility Interval); 
the expected value of the diference between both BFT groups (4); 
and the probability of a group having a greater average fxing-time 
than the other (5), as presented in the following equations 

�1 (�, �) : � − �,∫ ∫∞ ∞ (4)
� [�1 (�, �)] = �1 (�, �)� (�)� (�) d� d�, 

−∞ −∞ 

3https://pystan.readthedocs.io/en/latest/ 
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�2 (�, �) : 1 if � > �, 0 otherwise,∫ ∫∞ ∞ (5)
� [�2 (�, �)] = �2 (�, �)� (�)� (�) d� d�. 

−∞ −∞ 

We present the results visually through the � marginal posterior 
distributions for each data group, the ���� represented by a dotted 
line, and the CI by the flled area under the curve. We also present 
the numeric values with an associated table for each proposed 
model, the summarization tables, along with the values obtained 
using the equations 4 and 5. The results are grouped by RQ and 
presented in the following subsections in a similar manner. First, 
we show the results using the ‘specifc-model’ of four projects to 
show some divergent scenarios regarding the possible conclusions 
about the diference between the groups of features. The complete 
posterior distribution visualizations and summarization tables for 
all 55 projects can be found in the replication package4. 

4.1 RQ1. How does the existence of links in 
bug reports impacts the BFT? 

Answer to RQ1: Considering the marginal posterior dis-
tribution of � for groups of bug reports with and without links, 
along with their summarization, we found that bugs with links 
tend to need 2.4 more times, on average, to be fxed than bugs 
with no links. 

Figure 3 shows four projects ‘specifc-models’ marginal � posterior 
distributions, while Table 1 the distribution summarization. 
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Figure 3: � Marginal Posterior Distributions, specifc-
models. The average bug fxing time of reports with no links 
vs. the ones with links. The conclusions diverge depending 
on the selected project. 

4https://doi.org/10.6084/m9.fgshare.20315076 
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Table 1: � Posterior Distribution Summary, using ‘specifc-
models’ and ‘links’ data groups. 

No Links (a) 
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)] 
Derby 
Lang 

Mapreduce 
Oozie 

7.24 
6.87 
10.92 
18.97 

11.35 
15.10 
14.35 
25.04 

8.86 
9.88 
12.44 
21.60 

-16.93 
-0.68 
-2.55 
8.07 

0.00 
0.46 
0.04 
1.00 

W/ Links (b) 
Project ��� ��� ���� E[F1(b,a)] E[F2(b,a)] 
Derby 
Lang 

Mapreduce 
Oozie 

21.55 
5.52 
13.01 
10.79 

31.08 
19.45 
17.45 
17.29 

25.46 
9.08 
14.85 
13.27 

16.93 
0.68 
2.55 
-8.07 

1.00 
0.54 
0.96 
0.00 

The conclusions difer based on the project we analyze. For Derby, 
is evident the diference between the both groups, with the reports 
with links taking more time to be fxed than those with no links. In 
Hadoop MapReduce, we also see a similar behavior but with some 
superposition of both distributions. In Oozie, we see an inverse 
behavior: reports with no links present higher BFT than those with 
links. Finally, the Lang project presents no diference between both 
groups. While most of the projects show a behavior similar to Derby 
and Hadoop Mapreduce, it is hard to conclude the real impact of 
links in the report BFT, taking each project individually. The results 
give us a general picture of each project’s behavior but do not help 
us to verify a bug reports global behavior. 

As the project’s individual analysis does not help to answer 
our research question, this justifes using hierarchical models to 
summarize the population’s behavior of bug reports. We present the 
marginal � − 0 posterior distributions obtained using the ‘HM-AP’ 
in Figure 4 and the summarization in Table 2. 
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Figure 4: �0 Marginal Posterior distributions, ‘HM-AP’, 
‘links’ data groups. 

The results show a signifcant diference between both average 
BFTs, where reports with links (group ‘a’) need more time to be 
fxed than reports with no link (group ‘b’). The expected diference 
between both groups is 9.76 days, suggesting that bugs with links 
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Table 2: �0 Posterior Distribution Summary, ‘HM-AP’, ‘links’ 
data groups 

No Links (a) 
��� ��� �0��� E[F1(a,b)] E[F2(a,b)] 
5.63 8.41 6.78 -9.76 0.00 

W/ Links (b) 
��� ��� �0��� E[F1(a,b)] E[F2(a,b)] 
13.20 20.59 16.25 9.76 1.00 

tend to take 2.4 more times to be fxed than those with no links. 
The probability of group ‘b’ is more signifcant than group ‘a’ is 1. 

4.2 RQ2. How does the priority level of a bug 
report impacts the BFT? 

Answer to RQ2: Considering the marginal posterior distri-
bution of �0 for groups of reports with low, medium, and high 
priority, along with their summarization, we found that bug 
priority does not have a signifcant impact on the bug-fxing 
time. 

The Figure 5 shows four projects ‘specifc-models’ marginal � pos-
terior distributions, while Table 3 the distributions summarization. 
Once again, as presented in the results for links, we selected four 
diferent scenarious of possible conclusions. 
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Figure 5: � Marginal Posterior Distributions, ‘specifc-
models’. The average bug fxing time of reports diference 
levels of priority. The conclusions diverge depending on the 
selected project. 

Depending on the selected project, the conclusions diverge. For 
Zookeeper, the distributions are majority overlapped, an indication 
of a small signifcant diference between the three groups. The data 
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Table 3: � Posterior Distribution summary, ‘specifc-models’, 
using priority data groups 

Low Priority (a) 
Project ��� ��� ���� E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)] 
HBase 2.85 3.61 3.20 -0.84 -2.46 0.00 0.00 
HDFS 3.85 5.42 4.55 -4.11 -4.65 0.00 0.00 
Oozie 7.78 15.64 11.01 -11.84 1.18 0.00 0.67 

Zookeeper 16.45 30.69 21.79 1.21 -2.51 0.60 0.31 

Medium Priority (b) 
Project ��� ��� ���� E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)] 
HBase 3.78 4.36 4.06 0.84 -1.62 1.00 0.00 
HDFS 7.87 9.62 8.62 4.11 -0.54 1.00 0.29 
Oozie 20.11 26.27 22.72 11.84 13.01 1.00 1.00 

Zookeeper 17.64 26.38 21.16 -1.21 -3.73 0.40 0.19 

High Priority (c) 
Project ��� ��� ���� E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)] 
Hbase 5.01 6.43 5.63 2.46 1.62 1.00 1.00 
HDFS 7.72 10.93 9.06 4.65 0.54 1.00 0.71 
Oozier 6.71 14.64 9.49 -1.18 -13.01 0.33 0.00 

Zookeeper 18.97 33.31 24.73 2.51 3.73 0.69 0.80 

from HBase presents a very distinct behavior for each group, with 
the order of bug fxing average time being low, medium, and high 
priority. For both HDFS and Oozie, only one group presents a more 
distinct behavior when compared with the other two. In Hadoop 
HDFS, bugs with low priority take less time than bugs with medium 
and high priority, both presenting very similar estimators values 
for �. With Ozzie, we also notice a similarity between bugs with 
low and high priority, while reports with medium priority take 
more bug-fxing time. As presented in the results with links, it is 
hard to conclude the real impact of priority in the report bug fxing 
time, taking each project individually. 

We use the hierarchical ‘HM-AP’ to draw conclusions for the pri-
ority groups. The �0 bug reports population posterior distributions 
is presented in Figure 6 and its summarization in Table 4. 
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Table 4: �0 Posterior Distribution Summary, ‘HM-AP’, ‘prior-
ity’ data groups 

Low Priority (a) 
��� ��� �0��� E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)] 
6.53 10.04 8.03 -0.37 -0.12 0.39 0.47 

Medium Priority (b) 
��� ��� �0��� E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)] 
6.93 10.50 8.31 0.37 0.25 0.61 0.58 

High Priority (c) 
��� ��� �0��� E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)] 
6.41 10.57 7.92 0.12 -0.25 0.53 0.42 

4.3 RQ3. How does the code-churn size of 
fxing commits relates to the BFT? 

Answer to RQ3: Considering the marginal posterior dis-
tribution of � for groups of reports with higher and lower 
co/de-churn values, along with their summarization, we found 
that bug patches with greater code-churn values tend to need 
5 more days (2 times more) to be fxed than bug patches with 
smaller code-churn values. 

The Figure 7 shows four projects ‘specifc-models’ marginal � poste-
rior distributions, using the code-churn data groups, while Table 5 
shows the distributions summarization. Once again, as presented in 
the results for previous features, we selected four diferent scenario 
of possible conclusions. 
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Figure 6: �0 Marginal Posterior distributions, ‘HM-AP’, ‘pri-
ority’ data groups. 

The results suggest that the diference between the groups of 
reports with distinct priority is unclear. However, there are diferent 
levels of uncertainty interval across the �0 distributions, but the 

values are very similar. Finally, we highlight the average �0��� 

diference time between the groups (E[F1] values) of all groups: all 
of them are unrepresentative. 

Figure 7: � Marginal Posterior Distributions, ‘specifc-
models’. The average bug fxing time of reports diference 
two groups of code-churn values. The conclusions diverge 
depending on the selected project. 

The code-churn results present similar behavior as presented 
in the links results. Flink and Crunch results show that patches 
with higher code churn take more time to fx than those with lower 
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Table 5: �0 Marginal Posterior Distribution Summary, 
‘specifc-models’, ‘code-churn’ data groups. 

Lower Code Churn (a) 
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)] 
Buildr 
Crunch 
Flink 
Maven 

4.10 
1.03 
4.04 
4.56 

14.08 
2.11 
5.12 
10.30 

6.82 
1.43 
4.54 
6.52 

-0.26 
-0.44 
-3.60 
3.95 

0.47 
0.14 
0.00 
1.00 

Higher Code Churn (b) 
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)] 
Buildr 
Crunch 
Flink 
Maven 

4.24 
1.42 
7.31 
2.10 

14.28 
2.60 
9.07 
4.40 

7.24 
1.91 
8.13 
2.98 

0.26 
0.44 
3.60 
-3.95 

0.53 
0.86 
1.00 
0.00 

code-churn sizes. However, in Flink, the diference is evident, while 
Crunch presents a signifcant overlap. Maven project presents an 
inverse behavior, with patches with higher values of code-churn 
taking less time to be fxed than the lower ones. In Buildr, the values 
for estimator � are almost identical. Once again, the particular 
nature of each project shows dissonant conclusions. 

With code-churn data groups, we ft another ‘HM-AP’ to draw 
our conclusions for code-churn group. The marginal �0 bug reports 
population posterior distributions of is presented in Figure 8 and 
the summarization in Table 6. 
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Figure 8: �0 Marginal Posterior Distributions, ‘HM-AP’, 
‘code-churn’ data groups. 

The results show a signifcant diference between both average 
bug fxing time, where reports patches with higher code-churn 
values (group ‘a’) need more time to be fxed than reports patches 
with lower code-churn values (group ‘b’). The expected diference 
between both groups are 4.78 days, suggesting that bugs of group 
‘b’ take, approximately, double the time be fxed than those of group 
‘a’. The probability of group ‘b’ being greater than group ‘a’ is 1. 
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Table 6: �0 Posterior Distribution Summary, ‘HM-AP’, ‘code-
churn’ data groups. 

Lower Code Churn 

��� ��� �0��� E[F1(a,b)] E[F2(a,b)] 
4.20 6.31 5.09 -4.78 0.00 

Higher Code Churn 

��� ��� �0��� E[F1(a,b)] E[F1(a,c)] 
7.89 12.42 9.83 4.78 1.00 

5 DISCUSSION 
This paper presents an analysis of the interplay between the three 
bug reports features - links, priority, and bug-fxing code churn 
size - and the bug-fxing time. To the best of our knowledge, this is 
the frst study using hierarchical Bayes to extrapolate results from 
multiple projects and assess the global efect of diferent attributes 
on the BFT. 

Regarding the results, we highlight a few points. First, the re-
lationship between bug reports seems to be overlooked, which 
appears to be wasted potential for deeper analysis and predictive 
models. We look to use Graph Neural Network [45] to verify how 
these relations can improve the state-of-art estimation results in 
future works. The results regarding code-churn can also be an ex-
citing addition to BFT estimation when used with bug localization 
strategies. To conclude the analysis of the results, the priority not 
having much evidence of being impactful on the BFT may not dis-
card it entirely from being used in predictive models, as it can be 
related with other features. The priority seems to provide some 
contextual information about the situation of an open bug com-
pared to other ones. Priority may play a role when the context of 
the specifc report is known, which is rarely the case in several 
papers. For instance, a newly reported high-priority bug (blocker, 
critical) can take more time to be fxed if it competes for resources 
with several other high-priority bugs. The same report could be 
fxed early in a scenario of several low-priority bugs. Also, it can 
be related to other responses in the platform as response-time from 
other developers, the number of comments and watches, or the time 
to review proposed patches. This also seems to be an interesting 
path to understand the priority role in the bug fxing process. 

6 THREATS TO VALIDITY 
The threats to the validity of our investigation are discussed using 
the four threats classifcation (conclusion, construct, internal, and 
external validity) presented by Wohlin et al. [42]. 
Conclusion Validity the main threats to this validity concern the 
choices in the modeling process: the weakly prior, the likelihood 
function. Regarding the frst choice, Bayesian statistics results ben-
eft from using more representative prior, ideally from a diferent 
data source (i.e., bug reports from other projects or posterior from 
previous analysis). However, even if we don’t use data from other 
projects, we perform a sensitivity analysis to provide a reasonable 
prior based on previous studies. Some studies [1, 41] suggest that 
bugs are generally fxed in a few days, while other studies show 
that some bugs can take months to be considered fxed [26]. We 

Ricardo Britto



Conference’17, July 2017, Washington, DC, USA 

provide a broad enough prior distribution to consider these cases. 
The expected BFT value is close to 2∼3 days (most common cases), 
but also allows the model to contemplate instances with hundreds 
of days, even they are less plausible. The replication package5 pro-
vides two sensitivity analyses to cover both threats. We show that 
the selected parameters and likelihood functions are appropriate: 
a predictive analysis of the prior and an analysis of how well a 
log-normal ft the log-BFT of most projects. 
Internal Validity The existence of other features that can be 
highly correlated with the analyzed features and that can be the 
actual causal efect of the bug-fxing time. For instance, we show 
that reports with links present higher BFT. However, our analysis 
does not consider other features (e.g., the number of comments and 
the existence of attached patches) that can be highly correlated 
with the presence of links and are the actual cause of higher BFT. 
We argue that the number of analyzed projects and bug reports — 
more than 70.000 reports from 55 projects — mitigate the chances 
of these correlations propagating thought all projects. 
Construct Validity In the ‘links’ analysis, we had to ignore the 
types of relations between reports, only considering the existence 
of a link. This simplifes the analysis as we are not able to indicate 
which type of links really and how much it impacts the BFT. How-
ever, we had to perform this simplifcation due to the size of a few 
projects, as some of them do not have enough data to perform this 
level of type-of-links groups granularity. 
External Validity All projects are open-source from the Apache 
ecosystem, indicating some source of low generalization capability. 
However, we argue that the sample contains 55 projects from nine 
categories (big-data, database, machine learning, library, to cite 
some), with diferent maturity levels, some of them dated from 
2002 and others from 2018. We selected this dataset because this 
diversity allows us to generalize the results with more certainty. 

7 RELATED WORK 
Hooimeijer and Weimer [19] discuss the process of modeling bug 
reports quality. They present a bug report quality descriptive model 
based on 27,000 Mozilla Firefox reports. The analysis shows that 
the presence of an attachment tends to lead to higher values of 
bug-fxing time, while the comment count suggests that bugs that 
receive more attention get fxed faster. The self-reported severity 
at the report creation also plays a role in bug fxing. 

Zimmermann et al. [46] investigates the quality of bug reports 
from the perspective of developers. To fnd out which features 
and elements matter the most, they asked several developers from 
Apache, Eclipse, and Mozilla projects to perform two tasks: i) a 
survey on bug reports important information and ii) rate the qual-
ity of bug reports on a fve-point Likert scale (from very poor to 
very good). The analysis of the 466 responses revealed that most 
developers consider steps to reproduce, stack traces, and test cases 
as helpful. The authors also show that bug reports containing stack 
traces get fxed sooner, and those easier to read have lower lifetimes. 

The study of Soltani et al. [31] aims to establish the signifcance 
of bug report elements. The authors interviewed 35 developers 
to gain insights into the importance of various contents in bug 
reports, followed by a survey applied to 305 developers. Based on 
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the acquired data from these moments, the authors conclude that 
the essential elements are crash description, reproducing steps or 
test cases, and stack traces. They also evaluate the quality of bug 
reports of the 250 most popular projects on Github. Their analysis 
shows that crash reproducing steps, stack traces, fx suggestions, 
and user contents, have a statistically signifcant impact on bug 
resolution times between 76% to 33% of the projects. 

Sasso et al. [27] describes what makes a satisfcing (a neologism 
combining the verbs to satisfy and to sufce) a bug report. Based 
on a proposed a questionnaire to an open-source community, the 
authors gather the perception of how difcult it is to provide dis-
tinct kinds of information during the bug report record. They also 
mined content from Bugzilla and Jira to understand what users 
and developers collect and provide during the bug reporting. Based 
on more than 650,000 bug reports and the results from the ques-
tionnaire, the authors evaluate how the completeness of standard 
and project-specifc attributes in a bug report related to its lifetime, 
similar to the BFT concept in our study. Finally, they highlight 
that number of words in the description and the summary are the 
features that impact the prediction the most. 

None of these studies evaluate the relationship between report 
links, priority and code-churn size, and the BFT. Also, none of them 
use Bayesian statistics or incorporate previous studies results into 
their analysis. For instance, the studies [27, 31, 46] applies a similar 
methodology when using survey and questionnaire, and [31, 46] 
conclude similar things. This is a good example where studies using 
data of the same subject, trying to answer similar RQ can be a beneft 
of using previous results as priors for their study. For example, if the 
results were modeled using Bayes statistics, providing a conclusion 
based on posterior distributions, one can continually use previous 
results to gather more evidence of previous fndings. Also, none of 
the them present numerically the impact of the analyzed features 
(i.e. the impact in days of the existence or not of an specifc feature). 

8 CONCLUSION AND FUTURE WORK 
We presented the use of Bayesian workfow to analyze bug re-
port data and assess the infuence of three features w.r.t. BFT: 
links/relation between reports, priority, and bug patch code churn 
size. A frst proposed model consider only one project at a time, 
capturing the individual behavior of each software; and second one, 
a hierarchical model that allows generalizing the results for the 
bug reports population, abstracting the specifcities of each project. 
Based on inference results, we showed evidence that priority plays 
no role in BFT. In contrast, bug reports with higher values of code 
churn or bugs reports related to other bugs (with links) need at 
least double the time to be fxed compared to their counterparts. 

We highlight our two-fold contributions. First, the results may 
support practitioners during bug triage, applying the same method-
ology in their projects to help understand the features that impact 
the BFT the most in their projects. Second, software researchers 
can reuse the presented methodology in diferent data projects, us-
ing the presented posterior distributions as priors for other future 
analysis in a similar context. 

As a future work, a regression analysis can provide a more 
thoughtful view of all features presented in the used dataset, not 
only the ones selected in this paper, and how they relate to the BFT. 

https://doi.org/10.6084/m9.figshare.20315076
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