
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 16th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2022, Helsinki,
18-23 September 2022..

Citation for the original published paper:

Vieira, R., Mesquita, D., Mattos, C L., Britto, R., Rocha, L. et al. (2022)
Bayesian Analysis of Bug-Fixing Time using Report Data
In: Madeiral F., Lassenius C., Conte T., Mannisto T. (ed.), International Symposium
on Empirical Software Engineering and Measurement (pp. 57-68). IEEE Computer
Society
International Symposium on Empirical Software Engineering and Measurement
https://doi.org/10.1145/3544902.3546256

N.B. When citing this work, cite the original published paper.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-23858

Bayesian Analysis of Bug-Fixing Time using Report Data
Renan Vieira Diego Mesquita César Lincoln Mattos

Federal University of Ceará Getulio Vargas Foundation Federal University of Ceará
Fortaleza, Ceará, Brazil Rio de Janeiro, Rio de Janeiro, Brazil Fortaleza, Ceará, Brazil
renan.vieira@alu.ufc.br diego.mesquita@fgv.br cesarlincoln@dc.ufc.br

Ricardo Britto Lincoln Rocha João Gomes
Ericsson / Blekinge Institute of Federal University of Ceará Federal University of Ceará

Technology Fortaleza, Ceará, Brazil Fortaleza, Ceará, Brazil
Karlskrona, Sweden lincoln@dc.ufc.br jpaulo@dc.ufc.br

ricardo.britto@ericsson.com

ABSTRACT
Background: Bug-fxing is the crux of software maintenance. It
entails tending to heaps of bug reports using limited resources.
Using historical data, we can ask questions that contribute to better-
informed allocation heuristics. The caveat here is that often there
is not enough data to provide a sound response. This issue is es-
pecially prominent for young projects. Also, answers may vary
from project to project. Consequently, it is impossible to generalize
results without assuming a notion of relatedness between projects.
Aims: Evaluate the independent impact of three report features in
the bug-fxing time (BFT), generalizing results from many projects:
bug priority, code-churn size in bug fxing commits, and existence of
links to other reports (e.g., depends on or blocks other bug reports).
Method: We analyze 55 projects from the Apache ecosystem using
Bayesian statistics. Similar to standard random efects methodology,
we assume each project’s average BFT is a dispersed version of a
global average BFT that we want to assess. We split the data based
on feature values/range (e.g., with or without links). For each split,
we compute a posterior distribution over its respective global BFT.
Finally, we compare the posteriors to establish the feature’s efect
on the BFT. We run independent analyses for each feature.
Results: Our results show that the existence of links and higher
code-churn values lead to BFTs that are at least twice as long. On
the other hand, considering three levels of priority (low, medium,
and high), we observe no diference in the BFT.
Conclusion: To the best of our knowledge, this is the frst study us-
ing hierarchical Bayes to extrapolate results from multiple projects
and assess the global efect of diferent attributes on the BFT. We
use this methodology to gain insight on how links, priority, and
code-churn size impact the BFT. On top of that, our posteriors can
be used as a prior to analyze novel projects, potentially young and
scarce on data. We also believe our methodology can be reused for
other generalization studies in empirical software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
General and reference → Empirical studies; • Mathematics
of computing → Bayesian computation.

KEYWORDS
Bug Reports, Bayesian Modeling, Open-Source, Bug Fixing Time

ACM Reference Format:
Renan Vieira, Diego Mesquita, César Lincoln Mattos, Ricardo Britto, Lincoln
Rocha, and João Gomes. 2022. Bayesian Analysis of Bug-Fixing Time using
Report Data. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Catolino et al. [7] highlights that back in 2017, there was a percep-
tion that bugs were “eating the world”. Once the software systems
grow in size and complexity, and developers need to work under
frequent and tight deadlines, the introduction of bugs cannot be
seen as an unexpected phenomenon. Therefore, bug fxing becomes
a very resource-consuming activity, leading to costs by order of
billions per year. Finding, reporting, and fxing bugs consumes 50%
of the software developers’ time (on average) [6].

Nowadays, software development teams frequently rely on Issue
Tracking Systems (ITS) to control changes in a project and manage
backlogs of issues1 to be addressed [4, 25, 28]. There are several
available ITS, such as Bugzilla, YouTrack, and Jira, which are widely
adopted in both commercial and open-source projects.

A bug report must provide a textual description showing the
steps needed to reproduce the failure being reported. The informa-
tion available in an ITS varies from one product to another. The
Jira tool, for instance, provides information in diferent dimensions,
such as: importance-related as Priority; the text-related as Summary
and Description; person-related as Assignee and Reporter; and
link-related as Outward and Inward that describes how a bug report
afects or is afected by another bug report inside Jira. Addition-
ally, an ITS also records the bug report opening and closing times,
making it possible to compute the bug-fxing time (BTF).

It is worth noticing that information available in a bug report is
essential to support the following tasks: (i) the bug triage (who will
be assigned to fx a bug); (ii) the bug fxing scheduling (prioritization

1An issue could represent a feature, an enhancement, a bug, a doubt, a user story, a
task, or another concern in the project.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
Ricardo Britto

mailto:permissions@acm.org
mailto:ricardo.britto@ericsson.com

Conference’17, July 2017, Washington, DC, USA

of which bugs will be fxed in a given period of time); and (iii) the
bug correction itself. Understanding how the attributes of a bug
report impact the overall bug fxing process is essential to build
reliable estimation models to optimize resource allocation.

Many studies explored information on bug reports available on
diferent ITS, focusing on aspects such as: “was this bug already
registered?” [9, 22], “who is the best person to fx this bug?” [15, 30],
“is this a real bug?” [18], “is this report good, and does it have enough
information?” [46], “what is its priority?” [33], and “how much time
is necessary to fx this bug?” [2, 16, 44]. These (and other) existing
studies provide helpful evidence to improve the bug-fxing process.

The typical approach used to understand how the information of
bug reports impacts other independent variables (e.g., BFT) relies
on some statistical framework. de Oliveira Neto et al. [8] reports
that frequentist statistical approaches became the standard tool
to provide this kind of insight in Empirical Software Engineering.
However, the Bayesian framework is another option that some-
times is overlooked at frst because it does not ofer out-of-the-box
solutions like the statistical tests of the frequentist framework.
Recent studies [10, 12] have been advocating for the use of the
Bayesian framework as an alternative to the more traditional statis-
tical test. These studies highlight advantages of the Bayesian frame-
work [11, 35]: a fne-grained data model’s building control, better
visual appeal of the results, and the use of additional information
as prior. Additionally, Bayes statistics and posterior distributions
can be a starting point for analyzing younger projects. The model
can be updated to best represents the newly acquired evidence as
new data emerges from the project lifetime.

In this paper, we show the process of using Bayesian statistics
to analyze bug report data. Specifcally, we use Bayesian statistics
to empirically evaluate the relation between the BFT and (i) bug
report priority, (ii) links between reports, and (iii) code-churn size
of bug-fx commits. Our results show that the existence of links
and higher code-churn values lead to BFTs that are at least twice
as long. On the other hand, considering three priority levels (low,
medium, and high), we observe no diference in the BFT.

Our main contributions are two fold. First, our results may
support practitioners during bug triage and scheduling by providing
helpful information concern the BFT based on exiting bug report
data. Second, the methodology can be reused by researchers in
diferent software projects data, as the presented posterior distribu-
tions can be used as priors for analysis in a similar context.

2 BAYESIAN DATA ANALYSIS OVERVIEW
This section briefy introduces core Bayesian data analysis (BDA)
concepts. While we cover the basics of BDA, we refer the reader to,
e.g., Gelman et al. [14] or Kruschke [20] for a thorough presentation
of the subject.

2.1 Bayes in a Nutshell
Bayes 101. Bayesian inference is a statistical framework that

allows us to update our subjective belief on the value of a variable
of interest � —or an efect— when faced with new data �. We start
of by expressing our belief as a prior distribution � (�) over the set
Θ of possible values for � . Then, we assume an observation model
� (� |�), and consequently a likelihood function that we can use to

Vieira et al.

re-evaluate our opinion on � . We refer to our updated belief as the
posterior distribution and compute it using the Bayes’ rule:

� (�)� (� |�)
� (� |�) = ∫ . (1)

� (�,�)� (�) d� Θ

The frst step in Bayesian modeling is to choose likelihood func-
tion � (� |�), i.e., an observation model. Choosing an appropriate
likelihood requires analyzing the nature of the data �. For instance,
if our observations are numbers of system failures in a given time
interval, � (·|�) should have non-negative integer support — the
most common choice for count being Poisson distribution ���� (�),
governed by the parameter �. Then, we must choose a prior . In the
case of a likelihood ���� (�), we must choose a prior � (�), which
means the plausibility of the values that � can assume before the
data is observed.

Ideally, we can use previous analyzes and observations or specifc
domain knowledge to defne informative priors. In cases where it is
impossible to provide informative priors, we must at least ensure
that the priors cover a reasonable value range or, conversely, rule
out unusual value ranges as highly unlikely [10]. These types of
priors are called weak or weakly informative. We can test several
priors and perform a sensitivity analysis to check which one best
fts our data [14].

Computational methods. Once we have a model, the next step is
making the inference. We must ft the model, which means that we
have to compute the posterior distribution � (� |�). However, doing
so analytically is often challenging since it requires computing the
denominator of Bayes’ rule, which is usually intractable. For sim-
ple cases with a small number of parameters, one can use grid or
quadratic approximation to calculate the posterior [23]. Nonethe-
less, the weapon of choice for most Bayesians are Markov chain
Monte Carlo (MCMC) sampling methods, such as sequential Monte
Carlo and Hamiltonian Monte Carlo [14]. In this paper, we evaluate
models that are computed using MCMC.

Hypothesis testing. The posterior distribution encapsulates all
information we have gathered on � , subjective or not, and we can
use it to probe any hypothesis. For instance, we can evaluate the
probability that � > � taking the expected value of the indicator
function 1 [· > �], i.e.: ∫

� (� > �) = 1 [� > �]� (� |�) d� .
� ∈Θ

Unfortunately, computing exact integrals over the posterior are
often intractable. However, given a set of MCMC samples S =
{� (�=1) }� , we can approximate the expected value of any function
� of � as: ∫ Õ1 � � �

E� (� |�) [�(�)] = �(�)� (� |�) d� ≈ � � (�) .
� ∈Θ �

�=1

Simulating novel data. We can easily simulate novel data with
the posterior samples in our hands. We do so by sampling from: ∫

� (�★, � |�) = � (�★ |�)� (� |�) d�,
� ∈Θ

Ricardo Britto

Ricardo Britto

Bayesian Analysis of Bug-Fixing Time using Report Data

which using MCMC samples resumes to repeating the following
process: i) pick a sample � (�) from S; ii) sample from our observa-
tion model conditioned on � (�) , i.e., � (�★ |� (�)). Once the simulated
data is drawn for a model that describes well our data’s generative
process, it should look similar to the observed data [13], as any dis-
crepancy between the sample data and the observed data indicates
potential failings in the proposed model.

2.2 Hierarchical Models
The structure of data in a specifc domain can indicate some relation
or connection between the parameters of the model [13]. Consider
the example of our selected dataset composed of 55 open source
projects, all coming from the Apache Ecosystem, with all reports
mined from JIRA ITS. For instance, it might be reasonable to expect
that these projects, coming from the same source, may present
similar behavior in terms of types of bugs or the time to fx them,
among other similarities. In this case, we can defne in our model
that the estimates of the parameter �� , representing the average
time to fx a bug in a project � , are drawn from a prior distribution
(conditioned by a parameter �0), also representing the average time
to fx a bug, but considering all projects behavior.

The advantage of this kind of approach, called Hierarchical or
Multi-level models, is that they are less inclined to underft or
overft the data when compared to single-level models, dealing
better with the imbalance in sampling and better modeling between
variance among groups and individuals [23]. From an intuitive
point of view, this mechanism allows for transferring information
between diferent projects. This also will enable projects with fewer
data to borrow strength from inferences in more mature projects.
Besides allowing us to estimate the parameters � of each project,
hierarchical modeling also provides us with a distribution over the
global parameter �0 — in our case, the global average BFT —, which
is more suitable for generalization results.

2.3 Motivation to use Bayesian Data Analysis
The workfow to understand how specifc bug report characteris-
tics are related to others that signifcantly impact the bug triage
process (e.g., bug-fxing time, priority, or report quality) generally
would use some statistical framework. For example, frequentist
statistical approaches have been the standard tool to provide this
kind of insight in empirical software engineering studies [35]. How-
ever, the Bayesian framework is another option that is sometimes
over-viewed because it does not ofer out-of-the-box solutions as
the statistical tests of the frequentist framework. In addition, some
works have advocated using the Bayesian framework as an alterna-
tive to the more traditional statistical test use. In general, the BDA
workfow is more informative about the data and the outcome of
the analysis when compared to frequentist approaches [14].

The Bayesian Data Analysis characteristics come with a cost:
while frequentist statistical approaches provide a group of tests
covering several data scenarios, the Bayesian framework requires
more detailed attention as we have to build our models from the
bottom up. There are a few steps and attention to details to cover,
and there are some literary works that describe the process at length
Gelman et al. [14], McElreath [23]. In contrast, others have been

Conference’17, July 2017, Washington, DC, USA

more active in highlighting the advantages of using the BDA in
empirical software engineering [11, 35].

Besides all the highlights provided by some researchers, one
more specifc objective point was crucial to adopting the Bayesian
approach in this paper: we have multiple data sources in the dataset.
As we intended to provide conclusions about all projects, hierar-
chical models are a potent tool provided by BDA that helps test
hypotheses about the data more generalistic. The counterpoint in
the frequentist statistical approaches is to combine p-values from
diferent statistical test results from diferent data sources [17]. As
covered by [11], there is not a uniform view about when and how
the adjustment of p-values from diferent statistical tests. In the
same work, the authors show the impact of using diferent tech-
niques to adjust p-values and how the diferent techniques impact
the fnal conclusions regarding the analysis.

It is important to notice that both frequentist and bayesian anal-
ysis provides similar conclusions when correctly applied [39], but
BDA provides a few particularities that we consider more appealing
than the frequentist framework. We summarize the motivation to
apply BDA in the following paragraphs.

Flexibility to Create Models. Due to BDA framework fexibility,
we have total control of the assumptions regarding the model and
data. As we describe every aspect of the model, this provides a
better comprehension of the whole modeling process, allowing a
more detailed review and criticism from peers abroad.

Hierarchical Models. We have data mined from several projects,
each one with its particularities. Hierarchical models provide ways
to summarize data from diferent sources to give us a more general
picture of a similar behavior underlying their idiosyncratic. The
use of hierarchical models serves us as an alternative to possible
pitfalls of selection p-values adjustments and combinations.

Posterior Distributions as Results. The outcome of every BDA are
posterior and predictive distributions. These posterior distributions
describe our models’ parameters based on our assumptions and
data. However, the use of prior is an inherent characteristic of BDA.
For future works that perform similar analysis on other bug reports
data, the obtained posterior distributions in this research can be
used as priors in their models, creating a chain of knowledge of the
same domain [11, 23].

3 STUDY DESIGN

3.1 Goal and Research Questions
Our study explores the usage of Bayesian statistics to analyze the im-
pact of bug report priority, links, and code-churn size on bug fxing-
time. We analyzed a dataset with 10 years of bug-fxing records
from 55 projects from the Apache ecosystem (see Section 3.2).

Our investigation answers the following research questions:

RQ1: How does the existence of links in bug reports impacts the BFT?
It is not rare to fnd relationship between bug reports. For ex-

ample, a relationship can indicate if a bug report A is blocked by
another bug report B. Answering RQ1 will allow us understand if
the existence of such relations impacts the bug-fxing time (BFT).

RQ2: How does the priority level of a bug report impacts the BFT?

Ricardo Britto

Key lnwardlssuellnks Outwardlssuellnks Totatlinks

1 SPAAK-585

42 SPAAK·694 Reference:SPARK·668

208 SPAAK-1190 Duplicate:SPAAK-1067 Relerence:SPARK-3782

212 SPARK-1199
Duplicate:SPAAK- Reference:SPARK-

1836\nDuplicate:SPARK-2330\nRe ... 2452\nAegression:SPARK-2576

312 SPARK-1493 Aeference:CALCITE-746

425 SPARK-1828
Duplicate:SPARK-

1802\nDuplicate:HIVE-5733

422 SPARK-1825
Duplicate:SPAAK-

5164\nAeference:YARN-2929

Conference’17, July 2017, Washington, DC, USA

Every bug report has an associated priority value, which may
indicate urgency or severity. Existing studies [3, 33, 38] have inves-
tigated the role of priority in the bug fxing process. In this paper,
we focus on the impact of priority on the BFT.
RQ3: How does the code-churn size of fxing commits relates to the
BFT?

Bug-fx commits are those bringing the changes that fx a re-
ported bug. Thus, it is possible to compute the code-churn size
related to a fx commit. To answer this research question, we frst
group the bug reports into two categories: (i) reports with low
code-churn values and (ii) reports with high code-churn values
(the threshold is the project’s code-churn median value). Next, we
evaluate if the average BFT of both groups is signifcantly diferent.

3.2 Dataset Characterization
We use the Vieira et al. [40] dataset as the source to answer our
research questions. The dataset comprises bug report information
regarding 55 open-source projects from the Apache ecosystem
with diferent levels of maturity and categories (e.g., big-data, web-
framework, database, and cloud). All bugs reported in the dataset
were identifed and fxed between 2009 and 2018.

We use seven features available in the dataset: (i) the link-related
felds InwardIssueLinks and OutwardIssueLinks; (ii) bug report Pri-
ority; (iii) the time-related felds CreationDate and ResolutionDate,
to estipulate the BFT - the bug report lifespan, calculated as the dif-
ference between the report data resolution and creation; AddLines
and DelLines, representing, respectively, the number of added and
deleted lines in the reported bug source code fle, which was fxed
by a commit defned in the dataset.

In the following paragraphs, we detail the felds mentioned above,
showing how they are represented in the dataset, and why we
choose them to use in our investigation.

Bug Report Links. The relations between bug reports are recorded
in InwardIssueLinks and OutwardIssueLinks felds. As the names
suggest, given an issue report �� with an inward link that refers to
another issue report � � , this indicates that somehow, � � relates to �� .
Similarly, given an issue report �� with an outward link that refers
to another issue report � � , this indicates that somehow, �� relates to
� � . In short, the bug reports can be seen as vertices of a graph and
the links between them as oriented edges of this graph.

The link-related felds are string felds in the dataset. If it is
empty (NaN or 0), it indicates no link of the specifc feld (inward
or outward) type. If not empty, the feld contains a string of unique
Keys separated by a line break (if there is more than one). The
keys in Jira follow the format {project}-{number}. Hence, given the
project Spark, examples of keys would be SPARK-213 and SPARK-
481.

Figure 1 shows the possible scenarios around links between bug
reports. It shows seven bug reports of the Spark project in fve
columns, in order: (i) the Pandas Dataframe2 index; (ii) the bug
report unique key; (iii) the inward links references; (iv) the outward
links references; (v) the total report number of links.

Bug Report Priority. The bug report priority has been the sub-
ject of several studies with diferent purposes. The majority of
2https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Vieira et al.

Figure 1: Example of links in Spark’s bug reports. All links
are associated with a type (e.g., duplicate or reference). While
some reports may not present any link (SPARK-585), others
only present one type of reference (SPARK-684 and SPARK-
1825), and others may present several links, even with refer-
ences to a diferent project issue report (SPARK-1493).

them deals with proposals to automatically assign priority to bug
reports [36, 37, 43]. Other studies try to characterize why a bug
report priority would change [3]. A few studies use the priority
information, along side other bug reports features, as criteria to
understand software quality and bug report quality [19, 21].

The priority brings an idea of bug urgency and defnes the cate-
gory of how important it is to fx a specifc bug when compared to
others. This concept is strengthened when we list, in crescent order
of importance, the feld default values in Jira: trivial, minor, major,
critical, and blocker. Out of the 55 projects present in the dataset, 54
use the default Jira priority values. The exception is the Cassandra
project, that has only 3 priority levels: low, normal, and urgent.

Figure 2 uses all projects (except Cassandra) to present some
priority information. The visualization on the left shows the abso-
lute number of the report with each priority. The projects have a
diferent number of bug reports and distinct lifespans. For example,
some of them have more than 16 years of development (e.g., Hadoop
and HBase), while others have less than six years of development
(e.g., SystemML and MADlibr). Thus, looking only at the absolute
values could present a biased behavior from the older projects. We
create another visualization displayed on the right. The visualiza-
tion shows the average proportion for each priority of all projects.
The vertical line presents the standard deviation.

The majority of the reports present the minor or major priority. It
is important to notice that major is the default value priority when
a report is created, which may explain the high number of reports
with this priority. The visualization on the right presents a similar
behavior when compared to the one on the left. Still, it shows that
the trivial, critical, and blocker can present smaller values, close to
0% in some projects.

Bug Report Code-Churn Size. Code churn measures the changes
made to a component over a period of time [24]. In our study,
we compute the code-churn size of the fles changed by a bug-fx
commit. There are diferent ways to compute code churn [24, 29],
and the choice of how to compute it depends on the available data
and the objective of the analysis. In this work, we defne the code-
churn as the sum of added and removed lines. In general, the reports
have an associated bug-fx commit, which has a given number of
added and removed lines.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
Ricardo Britto

Bayesian Analysis of Bug-Fixing Time using Report Data

Trivial Minor Major Critical Blocker
0

10000

20000

30000

40000

No
. o

f R
ep

or
ts

Absolute Values

Trivial Minor Major Critical Blocker
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Pr
op

or
tio

n

Priority Proportion Average

Figure 2: Bug Reports Priority Distribution. On the left, it is
presented the absolute number of bug reports with a given
priority for all projects. On the right, it is presented the av-
erage proportion of a given priority in a project. Both visu-
alizations consider 54 projects from the dataset. Most bug
reports present priority values as minor or major.

There are cases where no such commit exists in our dataset. The
reasons may vary: the report represents an already previously fxed
bug, document a duplicated bug, or the bug is fxed in a commit
of a diferent but. In these cases, we discard these reports from
the code-churn analysis, only using the reports with associated
commits.

3.3 Data Pre-processing Details
Given a project, for each feature’s i) links, ii) priority and iii) code-
churn, we create groups of reports based on the specifc criteria of
the selected feature values:

• For ‘links’, we split the data into two groups: the group of
reports with links (���) and the group with no links (���).
As presented in Subsection 3.2, there are several scenarios of
links in the reports. However, for this frst round of analysis,
we choose only to consider the existence or not of some link.

• For ‘priority’, we split the data into three groups: the group
of reports with trivial-minor priority (low priority, ���), the
group with major priority (medium priority, ���) and the
group with critical-blocker priority (high priority, �ℎ�). This
grouping of the lower and higher priority is justifed for
two major reasons: the Cassandra project uses three levels of
priority (low, normal, and urgent), and some smaller projects
do not contain examples of reports with all priority. With this
approach, we can deal with all the projects simultaneously.

• For ‘code-churn’, we split the data into two groups: reports
with higher code-churn values (�ℎ��) and reports with lower
code-churn size (����). Given a project, the threshold to split
both groups is the median code-churn of its bug reports.

We justify the interest in studying the relation between bug
fx time with each one of the features as follows. The relation
(links) between issue reports seems to be overlooked by papers
that study bug reports. For instance, with a quick search for papers
with keywords as ‘bug reports’, ‘links’, ‘relationship’, ‘Jira reports’,
we only could fnd three papers that deal explicitly with links in
bug reports [5, 32, 34]. Also, we have not found any proposal that
uses machine learning techniques to estimate the BFT and consider

Conference’17, July 2017, Washington, DC, USA

the relationship between reports as features. Links can represent
several types of relation, as presented in Figure 1. It is reasonable
to believe that a blocked report one will only be fxed after the
blocker report is resolved, implying some interference of a report
over another. Other types of relationships, as duplicated, are also
an indication that fxing one can impact considerably other ones.

On the other hand, the priority is an objective of the study in
several papers that deal with similar data and are almost used in all
predictive models as features. However, it is never clear how a bug
report priority is directly related to a bug fxing time. An argument
that the priority is a measure of importance or urgency, hence asks
for more attention and rapid responses. However, priority carries
no information about the complexity of the bug (i.e., a minor bug
may be more complex than a simple but blocker bug). With this
analysis, we intend to bring some light to the matter.

Code-churn is a widespread metric in software engineering re-
search. However, it is post-bug fx information: it is only known
after the bug resolution. However, we argue that once the bug is
located in a class, function, or fle, one could use prior information
about the code-churn values in this specifc bug location to esti-
mate (along with the report information) the time to fx the bug.
For instance, if a bug is located in a class that, based on historical
data, demands higher patch code-churn values, this could indicate
that this bug will also take a higher BFT.

3.4 Modeling Process and Models Description
The analysis starts with two proposed models as hypothesis to
explain the generative data process. Given a feature, we ft both
models for each one of its groups. After that, we compare the
adverse groups’ � posterior distribution to draw our conclusions.
For instance, for the ‘links’ analysis, we frst ft a model using ���
data and then another model using the ��� data. Then we use each
model’s � posterior distribution to verify the diference between
both groups.

We frst defne some sets, distributions, and variables that we
use to describe the models:

• days / d: The time to fx the bugs in days, as non-negative
real numbers. For all models, we considerer ���(����) ∼
N(�, �2), as days can not assume negative numbers.

• G: the groups of bug fxing time in days. The groups of data
are G = {��� , ��� , ��� , ��� , �ℎ� , ���� , �ℎ�� }, as presented in
subsection 3.3.

• P: The set of all projects. P = {�1, ..., �55}, each �� being one
of the projects presented in the dataset presented in [40].

• N ∼ (�, �2): The Normal distribution, defned the parame-
ters mean � and variance �2.

• Inv-Gamma(�, �) / Γ−1: The Inverse Gamma distribution,
defned by parameters � and � . Usually, the Inverse Gamma
is used as prior for the variance in BDA.

The frst model is a single-level model, where we ft using only
one project data at a time. We use a weakly informative prior for
all parameters. The following model is presented in equation (2),
and we call it ‘specifc-model’.

Ricardo Britto

µ

Conference’17, July 2017, Washington, DC, USA

� ∼ N (0, 2) ,
�2 ∼ Inv-Gamma (3, 3) , (2)� �
log(days) ∼ N �, �2 .

Using this representation, we ft a total of 385 models: 110 for
links (for each of the 55 projects, we ft a model using ��� data
and another using ��� data), 110 for code-churn (for each of the
55 projects, we ft a model using ���� data and another using �ℎ��
data) and 165 for priority (for each of the 55 projects, we ft a model
using ��� data, another using ��� and another using �ℎ�).

The second model is a Hierarchical Model (HM), where we ft
all projects data at once. We also use a weakly informative prior
for all proposed models. We have a �0 representing the parameter
to estimate for all projects population, while we have one �� to
describe each project �� . The following model is called ‘HM-AP’
(Hierarchical Model-All Projects) and it is described in equation (3).

�0 ∼ N (0, 2) , �0
2 ∼ Inv-Gamma (3, 3) ,

�2 ∼ Inv-Gamma (3, 3) , ∀�� ∈ P,� � �
�� ∼ N �0, �0

2 , ∀�� ∈ P,
(3) � �

log(days�) ∼ N �� , �
2 , ∀� ∈ P .�

Using the HM-AP, we ft a total of seven models: two for links
(one using ��� data of all projects and another using ��� data of all
projects), two for code-churn (one using ���� and another using ����
data of all projects) and three for priority (same logic as previous,
��� , ��� , and �ℎ� data of all projects). The proposed hierarchical
model intends to capture the global bug report behavior based on
the particular data of each project. ‘HM-AP’ assumes that there
is no other similarity aspect between the projects besides they all
have bug reports.

4 RESULTS
With all models defned, we use Stan, specifcally PyStan3 which
is a Python interface to Stan, a package for Bayesian inference.
Stan is a state-of-the-art platform for statistical modeling and high-
performance statistical computation. The computation goes as pre-
sented in Section 2: we compute the posterior distribution � (�, �2)
using MCMC for each model, given the data presented in G. After
that, we compare the opposite � posterior distributions for each
feature group using fve summarizations: the Maximum a Posteriori
�̂��� estimator (the most plausible value for the estimator �); the
Lower (���) and Upper (���) value of the 95% Confdence Interval
(CI, also known as Uncertainty, Credible, or Compatibility Interval);
the expected value of the diference between both BFT groups (4);
and the probability of a group having a greater average fxing-time
than the other (5), as presented in the following equations

�1 (�, �) : � − �,∫ ∫∞ ∞ (4)
� [�1 (�, �)] = �1 (�, �)� (�)� (�) d� d�,

−∞ −∞

3https://pystan.readthedocs.io/en/latest/

Vieira et al.

�2 (�, �) : 1 if � > �, 0 otherwise,∫ ∫∞ ∞ (5)
� [�2 (�, �)] = �2 (�, �)� (�)� (�) d� d�.

−∞ −∞

We present the results visually through the � marginal posterior
distributions for each data group, the ���� represented by a dotted
line, and the CI by the flled area under the curve. We also present
the numeric values with an associated table for each proposed
model, the summarization tables, along with the values obtained
using the equations 4 and 5. The results are grouped by RQ and
presented in the following subsections in a similar manner. First,
we show the results using the ‘specifc-model’ of four projects to
show some divergent scenarios regarding the possible conclusions
about the diference between the groups of features. The complete
posterior distribution visualizations and summarization tables for
all 55 projects can be found in the replication package4.

4.1 RQ1. How does the existence of links in
bug reports impacts the BFT?

Answer to RQ1: Considering the marginal posterior dis-
tribution of � for groups of bug reports with and without links,
along with their summarization, we found that bugs with links
tend to need 2.4 more times, on average, to be fxed than bugs
with no links.

Figure 3 shows four projects ‘specifc-models’ marginal � posterior
distributions, while Table 1 the distribution summarization.

5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Derby

10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

Hadoop Mapreduce

10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

Oozie

0 5 10 15 20 25 30
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Lang

p()

De
ns

ity

No Links W/ Links

Figure 3: � Marginal Posterior Distributions, specifc-
models. The average bug fxing time of reports with no links
vs. the ones with links. The conclusions diverge depending
on the selected project.

4https://doi.org/10.6084/m9.fgshare.20315076

https://doi.org/10.6084/m9.figshare.20315076
Ricardo Britto

I I I I I

I I I I

I I I I

I I I I I

µ µ

Bayesian Analysis of Bug-Fixing Time using Report Data

Table 1: � Posterior Distribution Summary, using ‘specifc-
models’ and ‘links’ data groups.

No Links (a)
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)]
Derby
Lang

Mapreduce
Oozie

7.24
6.87
10.92
18.97

11.35
15.10
14.35
25.04

8.86
9.88
12.44
21.60

-16.93
-0.68
-2.55
8.07

0.00
0.46
0.04
1.00

W/ Links (b)
Project ��� ��� ���� E[F1(b,a)] E[F2(b,a)]
Derby
Lang

Mapreduce
Oozie

21.55
5.52
13.01
10.79

31.08
19.45
17.45
17.29

25.46
9.08
14.85
13.27

16.93
0.68
2.55
-8.07

1.00
0.54
0.96
0.00

The conclusions difer based on the project we analyze. For Derby,
is evident the diference between the both groups, with the reports
with links taking more time to be fxed than those with no links. In
Hadoop MapReduce, we also see a similar behavior but with some
superposition of both distributions. In Oozie, we see an inverse
behavior: reports with no links present higher BFT than those with
links. Finally, the Lang project presents no diference between both
groups. While most of the projects show a behavior similar to Derby
and Hadoop Mapreduce, it is hard to conclude the real impact of
links in the report BFT, taking each project individually. The results
give us a general picture of each project’s behavior but do not help
us to verify a bug reports global behavior.

As the project’s individual analysis does not help to answer
our research question, this justifes using hierarchical models to
summarize the population’s behavior of bug reports. We present the
marginal � − 0 posterior distributions obtained using the ‘HM-AP’
in Figure 4 and the summarization in Table 2.

5 10 15 20 25
p(0)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

No Links
W/ Links

Figure 4: �0 Marginal Posterior distributions, ‘HM-AP’,
‘links’ data groups.

The results show a signifcant diference between both average
BFTs, where reports with links (group ‘a’) need more time to be
fxed than reports with no link (group ‘b’). The expected diference
between both groups is 9.76 days, suggesting that bugs with links

Conference’17, July 2017, Washington, DC, USA

Table 2: �0 Posterior Distribution Summary, ‘HM-AP’, ‘links’
data groups

No Links (a)
��� ��� �0��� E[F1(a,b)] E[F2(a,b)]
5.63 8.41 6.78 -9.76 0.00

W/ Links (b)
��� ��� �0��� E[F1(a,b)] E[F2(a,b)]
13.20 20.59 16.25 9.76 1.00

tend to take 2.4 more times to be fxed than those with no links.
The probability of group ‘b’ is more signifcant than group ‘a’ is 1.

4.2 RQ2. How does the priority level of a bug
report impacts the BFT?

Answer to RQ2: Considering the marginal posterior distri-
bution of �0 for groups of reports with low, medium, and high
priority, along with their summarization, we found that bug
priority does not have a signifcant impact on the bug-fxing
time.

The Figure 5 shows four projects ‘specifc-models’ marginal � pos-
terior distributions, while Table 3 the distributions summarization.
Once again, as presented in the results for links, we selected four
diferent scenarious of possible conclusions.

10 15 20 25 30 35 40 45
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Zookeeper

3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

HBase

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0
Hadoop HDFS

5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

Oozie

p()

De
ns

ity

Low Prio. Medium Prio. High Prio.

Figure 5: � Marginal Posterior Distributions, ‘specifc-
models’. The average bug fxing time of reports diference
levels of priority. The conclusions diverge depending on the
selected project.

Depending on the selected project, the conclusions diverge. For
Zookeeper, the distributions are majority overlapped, an indication
of a small signifcant diference between the three groups. The data

Ricardo Britto

I I I I I I I

I I I I I I I

I I I I I I I

µ µ

Conference’17, July 2017, Washington, DC, USA

Table 3: � Posterior Distribution summary, ‘specifc-models’,
using priority data groups

Low Priority (a)
Project ��� ��� ���� E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
HBase 2.85 3.61 3.20 -0.84 -2.46 0.00 0.00
HDFS 3.85 5.42 4.55 -4.11 -4.65 0.00 0.00
Oozie 7.78 15.64 11.01 -11.84 1.18 0.00 0.67

Zookeeper 16.45 30.69 21.79 1.21 -2.51 0.60 0.31

Medium Priority (b)
Project ��� ��� ���� E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)]
HBase 3.78 4.36 4.06 0.84 -1.62 1.00 0.00
HDFS 7.87 9.62 8.62 4.11 -0.54 1.00 0.29
Oozie 20.11 26.27 22.72 11.84 13.01 1.00 1.00

Zookeeper 17.64 26.38 21.16 -1.21 -3.73 0.40 0.19

High Priority (c)
Project ��� ��� ���� E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
Hbase 5.01 6.43 5.63 2.46 1.62 1.00 1.00
HDFS 7.72 10.93 9.06 4.65 0.54 1.00 0.71
Oozier 6.71 14.64 9.49 -1.18 -13.01 0.33 0.00

Zookeeper 18.97 33.31 24.73 2.51 3.73 0.69 0.80

from HBase presents a very distinct behavior for each group, with
the order of bug fxing average time being low, medium, and high
priority. For both HDFS and Oozie, only one group presents a more
distinct behavior when compared with the other two. In Hadoop
HDFS, bugs with low priority take less time than bugs with medium
and high priority, both presenting very similar estimators values
for �. With Ozzie, we also notice a similarity between bugs with
low and high priority, while reports with medium priority take
more bug-fxing time. As presented in the results with links, it is
hard to conclude the real impact of priority in the report bug fxing
time, taking each project individually.

We use the hierarchical ‘HM-AP’ to draw conclusions for the pri-
ority groups. The �0 bug reports population posterior distributions
is presented in Figure 6 and its summarization in Table 4.

4 6 8 10 12 14
p(0)

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Low Prio.
Medium Prio.
High Prio.

Vieira et al.

Table 4: �0 Posterior Distribution Summary, ‘HM-AP’, ‘prior-
ity’ data groups

Low Priority (a)
��� ��� �0��� E[F1(a,b)] E[F1(a,c)] E[F2(a,b)] E[F2(a,c)]
6.53 10.04 8.03 -0.37 -0.12 0.39 0.47

Medium Priority (b)
��� ��� �0��� E[F1(b,a)] E[F1(b,c)] E[F2(b,a)] E[F2(b,c)]
6.93 10.50 8.31 0.37 0.25 0.61 0.58

High Priority (c)
��� ��� �0��� E[F1(c,a)] E[F1(c,b)] E[F2(c,a)] E[F2(c,b)]
6.41 10.57 7.92 0.12 -0.25 0.53 0.42

4.3 RQ3. How does the code-churn size of
fxing commits relates to the BFT?

Answer to RQ3: Considering the marginal posterior dis-
tribution of � for groups of reports with higher and lower
co/de-churn values, along with their summarization, we found
that bug patches with greater code-churn values tend to need
5 more days (2 times more) to be fxed than bug patches with
smaller code-churn values.

The Figure 7 shows four projects ‘specifc-models’ marginal � poste-
rior distributions, using the code-churn data groups, while Table 5
shows the distributions summarization. Once again, as presented in
the results for previous features, we selected four diferent scenario
of possible conclusions.

4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Flink

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Crunch

2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maven

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Buildr

p()

De
ns

ity

Lower CC Higher CC

Figure 6: �0 Marginal Posterior distributions, ‘HM-AP’, ‘pri-
ority’ data groups.

The results suggest that the diference between the groups of
reports with distinct priority is unclear. However, there are diferent
levels of uncertainty interval across the �0 distributions, but the

values are very similar. Finally, we highlight the average �0���

diference time between the groups (E[F1] values) of all groups: all
of them are unrepresentative.

Figure 7: � Marginal Posterior Distributions, ‘specifc-
models’. The average bug fxing time of reports diference
two groups of code-churn values. The conclusions diverge
depending on the selected project.

The code-churn results present similar behavior as presented
in the links results. Flink and Crunch results show that patches
with higher code churn take more time to fx than those with lower

Ricardo Britto

I I I I I

I I I

I I I

I I I I I

µ

Bayesian Analysis of Bug-Fixing Time using Report Data

Table 5: �0 Marginal Posterior Distribution Summary,
‘specifc-models’, ‘code-churn’ data groups.

Lower Code Churn (a)
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)]
Buildr
Crunch
Flink
Maven

4.10
1.03
4.04
4.56

14.08
2.11
5.12
10.30

6.82
1.43
4.54
6.52

-0.26
-0.44
-3.60
3.95

0.47
0.14
0.00
1.00

Higher Code Churn (b)
Project ��� ��� ���� E[F1(a,b)] E[F2(a,b)]
Buildr
Crunch
Flink
Maven

4.24
1.42
7.31
2.10

14.28
2.60
9.07
4.40

7.24
1.91
8.13
2.98

0.26
0.44
3.60
-3.95

0.53
0.86
1.00
0.00

code-churn sizes. However, in Flink, the diference is evident, while
Crunch presents a signifcant overlap. Maven project presents an
inverse behavior, with patches with higher values of code-churn
taking less time to be fxed than the lower ones. In Buildr, the values
for estimator � are almost identical. Once again, the particular
nature of each project shows dissonant conclusions.

With code-churn data groups, we ft another ‘HM-AP’ to draw
our conclusions for code-churn group. The marginal �0 bug reports
population posterior distributions of is presented in Figure 8 and
the summarization in Table 6.

0 2 4 6 8 10 12 14
p(0)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Lower CC
Higher CC

Figure 8: �0 Marginal Posterior Distributions, ‘HM-AP’,
‘code-churn’ data groups.

The results show a signifcant diference between both average
bug fxing time, where reports patches with higher code-churn
values (group ‘a’) need more time to be fxed than reports patches
with lower code-churn values (group ‘b’). The expected diference
between both groups are 4.78 days, suggesting that bugs of group
‘b’ take, approximately, double the time be fxed than those of group
‘a’. The probability of group ‘b’ being greater than group ‘a’ is 1.

Conference’17, July 2017, Washington, DC, USA

Table 6: �0 Posterior Distribution Summary, ‘HM-AP’, ‘code-
churn’ data groups.

Lower Code Churn

��� ��� �0��� E[F1(a,b)] E[F2(a,b)]
4.20 6.31 5.09 -4.78 0.00

Higher Code Churn

��� ��� �0��� E[F1(a,b)] E[F1(a,c)]
7.89 12.42 9.83 4.78 1.00

5 DISCUSSION
This paper presents an analysis of the interplay between the three
bug reports features - links, priority, and bug-fxing code churn
size - and the bug-fxing time. To the best of our knowledge, this is
the frst study using hierarchical Bayes to extrapolate results from
multiple projects and assess the global efect of diferent attributes
on the BFT.

Regarding the results, we highlight a few points. First, the re-
lationship between bug reports seems to be overlooked, which
appears to be wasted potential for deeper analysis and predictive
models. We look to use Graph Neural Network [45] to verify how
these relations can improve the state-of-art estimation results in
future works. The results regarding code-churn can also be an ex-
citing addition to BFT estimation when used with bug localization
strategies. To conclude the analysis of the results, the priority not
having much evidence of being impactful on the BFT may not dis-
card it entirely from being used in predictive models, as it can be
related with other features. The priority seems to provide some
contextual information about the situation of an open bug com-
pared to other ones. Priority may play a role when the context of
the specifc report is known, which is rarely the case in several
papers. For instance, a newly reported high-priority bug (blocker,
critical) can take more time to be fxed if it competes for resources
with several other high-priority bugs. The same report could be
fxed early in a scenario of several low-priority bugs. Also, it can
be related to other responses in the platform as response-time from
other developers, the number of comments and watches, or the time
to review proposed patches. This also seems to be an interesting
path to understand the priority role in the bug fxing process.

6 THREATS TO VALIDITY
The threats to the validity of our investigation are discussed using
the four threats classifcation (conclusion, construct, internal, and
external validity) presented by Wohlin et al. [42].
Conclusion Validity the main threats to this validity concern the
choices in the modeling process: the weakly prior, the likelihood
function. Regarding the frst choice, Bayesian statistics results ben-
eft from using more representative prior, ideally from a diferent
data source (i.e., bug reports from other projects or posterior from
previous analysis). However, even if we don’t use data from other
projects, we perform a sensitivity analysis to provide a reasonable
prior based on previous studies. Some studies [1, 41] suggest that
bugs are generally fxed in a few days, while other studies show
that some bugs can take months to be considered fxed [26]. We

Ricardo Britto

Conference’17, July 2017, Washington, DC, USA

provide a broad enough prior distribution to consider these cases.
The expected BFT value is close to 2∼3 days (most common cases),
but also allows the model to contemplate instances with hundreds
of days, even they are less plausible. The replication package5 pro-
vides two sensitivity analyses to cover both threats. We show that
the selected parameters and likelihood functions are appropriate:
a predictive analysis of the prior and an analysis of how well a
log-normal ft the log-BFT of most projects.
Internal Validity The existence of other features that can be
highly correlated with the analyzed features and that can be the
actual causal efect of the bug-fxing time. For instance, we show
that reports with links present higher BFT. However, our analysis
does not consider other features (e.g., the number of comments and
the existence of attached patches) that can be highly correlated
with the presence of links and are the actual cause of higher BFT.
We argue that the number of analyzed projects and bug reports —
more than 70.000 reports from 55 projects — mitigate the chances
of these correlations propagating thought all projects.
Construct Validity In the ‘links’ analysis, we had to ignore the
types of relations between reports, only considering the existence
of a link. This simplifes the analysis as we are not able to indicate
which type of links really and how much it impacts the BFT. How-
ever, we had to perform this simplifcation due to the size of a few
projects, as some of them do not have enough data to perform this
level of type-of-links groups granularity.
External Validity All projects are open-source from the Apache
ecosystem, indicating some source of low generalization capability.
However, we argue that the sample contains 55 projects from nine
categories (big-data, database, machine learning, library, to cite
some), with diferent maturity levels, some of them dated from
2002 and others from 2018. We selected this dataset because this
diversity allows us to generalize the results with more certainty.

7 RELATED WORK
Hooimeijer and Weimer [19] discuss the process of modeling bug
reports quality. They present a bug report quality descriptive model
based on 27,000 Mozilla Firefox reports. The analysis shows that
the presence of an attachment tends to lead to higher values of
bug-fxing time, while the comment count suggests that bugs that
receive more attention get fxed faster. The self-reported severity
at the report creation also plays a role in bug fxing.

Zimmermann et al. [46] investigates the quality of bug reports
from the perspective of developers. To fnd out which features
and elements matter the most, they asked several developers from
Apache, Eclipse, and Mozilla projects to perform two tasks: i) a
survey on bug reports important information and ii) rate the qual-
ity of bug reports on a fve-point Likert scale (from very poor to
very good). The analysis of the 466 responses revealed that most
developers consider steps to reproduce, stack traces, and test cases
as helpful. The authors also show that bug reports containing stack
traces get fxed sooner, and those easier to read have lower lifetimes.

The study of Soltani et al. [31] aims to establish the signifcance
of bug report elements. The authors interviewed 35 developers
to gain insights into the importance of various contents in bug
reports, followed by a survey applied to 305 developers. Based on

5https://doi.org/10.6084/m9.fgshare.20315076

Vieira et al.

the acquired data from these moments, the authors conclude that
the essential elements are crash description, reproducing steps or
test cases, and stack traces. They also evaluate the quality of bug
reports of the 250 most popular projects on Github. Their analysis
shows that crash reproducing steps, stack traces, fx suggestions,
and user contents, have a statistically signifcant impact on bug
resolution times between 76% to 33% of the projects.

Sasso et al. [27] describes what makes a satisfcing (a neologism
combining the verbs to satisfy and to sufce) a bug report. Based
on a proposed a questionnaire to an open-source community, the
authors gather the perception of how difcult it is to provide dis-
tinct kinds of information during the bug report record. They also
mined content from Bugzilla and Jira to understand what users
and developers collect and provide during the bug reporting. Based
on more than 650,000 bug reports and the results from the ques-
tionnaire, the authors evaluate how the completeness of standard
and project-specifc attributes in a bug report related to its lifetime,
similar to the BFT concept in our study. Finally, they highlight
that number of words in the description and the summary are the
features that impact the prediction the most.

None of these studies evaluate the relationship between report
links, priority and code-churn size, and the BFT. Also, none of them
use Bayesian statistics or incorporate previous studies results into
their analysis. For instance, the studies [27, 31, 46] applies a similar
methodology when using survey and questionnaire, and [31, 46]
conclude similar things. This is a good example where studies using
data of the same subject, trying to answer similar RQ can be a beneft
of using previous results as priors for their study. For example, if the
results were modeled using Bayes statistics, providing a conclusion
based on posterior distributions, one can continually use previous
results to gather more evidence of previous fndings. Also, none of
the them present numerically the impact of the analyzed features
(i.e. the impact in days of the existence or not of an specifc feature).

8 CONCLUSION AND FUTURE WORK
We presented the use of Bayesian workfow to analyze bug re-
port data and assess the infuence of three features w.r.t. BFT:
links/relation between reports, priority, and bug patch code churn
size. A frst proposed model consider only one project at a time,
capturing the individual behavior of each software; and second one,
a hierarchical model that allows generalizing the results for the
bug reports population, abstracting the specifcities of each project.
Based on inference results, we showed evidence that priority plays
no role in BFT. In contrast, bug reports with higher values of code
churn or bugs reports related to other bugs (with links) need at
least double the time to be fxed compared to their counterparts.

We highlight our two-fold contributions. First, the results may
support practitioners during bug triage, applying the same method-
ology in their projects to help understand the features that impact
the BFT the most in their projects. Second, software researchers
can reuse the presented methodology in diferent data projects, us-
ing the presented posterior distributions as priors for other future
analysis in a similar context.

As a future work, a regression analysis can provide a more
thoughtful view of all features presented in the used dataset, not
only the ones selected in this paper, and how they relate to the BFT.

https://doi.org/10.6084/m9.figshare.20315076
Ricardo Britto

Bayesian Analysis of Bug-Fixing Time using Report Data Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Shirin Akbarinasaji, Bora Caglayan, and Ayse Bener. 2018. Predicting bug-fxing

time: A replication study using an open source software project. Journal of
Systems and Software 136 (2018), 173 – 186. https://doi.org/10.1016/j.jss.2017.02.
021

[2] Wisam Haitham Abbood Al-Zubaidi, Hoa Khanh Dam, Aditya Ghose, and Xi-
aodong Li. 2017. Multi-Objective Search-Based Approach to Estimate Issue
Resolution Time. In Proceedings of the 13th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering (Toronto, Canada)
(PROMISE). Association for Computing Machinery, New York, NY, USA, 53–62.
https://doi.org/10.1145/3127005.3127011

[3] Raf Almhana, Thiago Ferreira, Marouane Kessentini, and Tushar Sharma. 2020.
Understanding and Characterizing Changes in Bugs Priority: The Practitioners’
Perceptive. In 2020 IEEE 20th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 87–97. https://doi.org/10.1109/SCAM51674.
2020.00015

[4] Olga Baysal, Reid Holmes, and Michael W. Godfrey. 2013. Situational Awareness:
Personalizing Issue Tracking Systems. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE
Press, 1185–1188.

[5] M. Borg, D. Pfahl, and P. Runeson. 2013. Analyzing Networks of Issue Reports.
In 2013 17th European Conference on Software Maintenance and Reengineering.
79–88. https://doi.org/10.1109/CSMR.2013.18

[6] Fiorenza Brady. 2013. Cambridge University report on cost of software faults,
Press release, 2013. http://www.prweb.com/releases/2013/1/prweb10298185.htm).
Accessed: 2020-01-02.

[7] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
Not all bugs are the same: Understanding, Characterizing, and Classifying Bug
Types. Journal of Systems and Software 152 (2019), 165–181. https://doi.org/10.
1016/j.jss.2019.03.002

[8] Francisco Gomes de Oliveira Neto, Richard Torkar, Robert Feldt, Lucas Gren,
Carlo A. Furia, and Ziwei Huang. 2019. Evolution of statistical analysis in
empirical software engineering research: Current state and steps forward. Journal
of Systems and Software 156 (2019), 246–267. https://doi.org/10.1016/j.jss.2019.
07.002

[9] Neda Ebrahimi, Abdelaziz Trabelsi, Md. Shariful Islam, Abdelwahab Hamou-
Lhadj, and Kobra Khanmohammadi. 2019. An HMM-based approach for auto-
matic detection and classifcation of duplicate bug reports. Information and Soft-
ware Technology 113 (2019), 98 – 109. https://doi.org/10.1016/j.infsof.2019.05.007

[10] Carlo Alberto Furia, Robert Feldt, and Richard Torkar. 2019. Bayesian Data
Analysis in Empirical Software Engineering Research. IEEE Transactions on
Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2935974

[11] Carlo A. Furia, Robert Feldt, and Richard Torkar. 2021. Bayesian Data Analysis
in Empirical Software Engineering Research. IEEE Transactions on Software
Engineering 47, 9 (2021), 1786–1810. https://doi.org/10.1109/TSE.2019.2935974

[12] Carlo A. Furia, Richard Torkar, and Robert Feldt. 2022. Applying Bayesian Analy-
sis Guidelines to Empirical Software Engineering Data: The Case of Programming
Languages and Code Quality. ACM Trans. Softw. Eng. Methodol. 31, 3, Article 40
(mar 2022), 38 pages. https://doi.org/10.1145/3490953

[13] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. 2013.
Bayesian Data Analysis, Third Edition. Taylor & Francis. https://books.google.
com.br/books?id=ZXL6AQAAQBAJ

[14] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Car-
penter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and
Martin Modrák. 2020. Bayesian Workfow. arXiv:2011.01808 [stat.ME]

[15] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Mur-
phy. 2011. “Not My Bug!” And Other Reasons for Software Bug Report Reas-
signments. In Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work (Hangzhou, China) (CSCW ’11). Association for Computing Ma-
chinery, New York, NY, USA, 395–404. https://doi.org/10.1145/1958824.1958887

[16] M. Habayeb, S. S. Murtaza, A. Miranskyy, and A. B. Bener. 2018. On the Use of
Hidden Markov Model to Predict the Time to Fix Bugs. IEEE Transactions on
Software Engineering 44, 12 (Dec 2018), 1224–1244. https://doi.org/10.1109/TSE.
2017.2757480

[17] N A Heard and P Rubin-Delanchy. 2018. Choosing between methods
of combining �-values. Biometrika 105, 1 (01 2018), 239–246. https://
doi.org/10.1093/biomet/asx076 arXiv:https://academic.oup.com/biomet/article-
pdf/105/1/239/23884003/asx076.pdf

[18] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s Not a Bug, It’s a Feature:
How Misclassifcation Impacts Bug Prediction. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering (San Francisco, CA, USA) (ICSE ’13).
IEEE Press, 392–401.

[19] Pieter Hooimeijer and Westley Weimer. 2007. Modeling Bug Report Quality. In
Proceedings of the Twenty-Second IEEE/ACM International Conference on Auto-
mated Software Engineering (Atlanta, Georgia, USA) (ASE ’07). Association for
Computing Machinery, New York, NY, USA, 34–43. https://doi.org/10.1145/
1321631.1321639

[20] John Kruschke. 2015. Doing Bayesian Data Analysis (Second Edition). Academic
Press, Boston.

[21] Madhu Kumari, Ananya Misra, Sanjay Misra, Luis Fernandez Sanz, Robertas
Damasevicius, and V.B. Singh. 2019. Quantitative Quality Evaluation of Software
Products by Considering Summary and Comments Entropy of a Reported Bug.
Entropy 21, 1 (2019). https://doi.org/10.3390/e21010091

[22] Alina Lazar, Sarah Ritchey, and Bonita Sharif. 2014. Improving the Accuracy of
Duplicate Bug Report Detection Using Textual Similarity Measures. In Proceedings
of the 11th Working Conference on Mining Software Repositories (Hyderabad, India)
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 308–311.
https://doi.org/10.1145/2597073.2597088

[23] R. McElreath. 2020. Statistical Rethinking: A Bayesian Course with Examples in R
and Stan (2nd ed.). Chapman and Hall/CRC.

[24] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn
Measures to Predict System Defect Density. In Proceedings of the 27th International
Conference on Software Engineering (St. Louis, MO, USA) (ICSE ’05). Association
for Computing Machinery, New York, NY, USA, 284–292. https://doi.org/10.
1145/1062455.1062514

[25] Quentin Perez, Pierre-Antoine Jean, Christelle Urtado, and Sylvain Vauttier.
2021. Bug or not bug? That is the question. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). 47–58. https://doi.org/10.1109/
ICPC52881.2021.00014

[26] Ripon K. Saha, Sarfraz Khurshid, and Dewayne E. Perry. 2014. An empirical study
of long lived bugs. In 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE). 144–153.
https://doi.org/10.1109/CSMR-WCRE.2014.6747164

[27] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. 2016. What Makes a
Satisfcing Bug Report?. In 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS). 164–174. https://doi.org/10.1109/QRS.2016.28

[28] N. Serrano and I. Ciordia. 2005. Bugzilla, ITracker, and other bug trackers. IEEE
Software 22, 2 (2005), 11–13. https://doi.org/10.1109/MS.2005.32

[29] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. 2011.
Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators
of Software Vulnerabilities. IEEE Transactions on Software Engineering 37, 6 (2011),
772–787. https://doi.org/10.1109/TSE.2010.81

[30] Ramin Shokripour, John Anvik, Zarinah M. Kasirun, and Sima Zamani. 2015. A
Time-Based Approach to Automatic Bug Report Assignment. J. Syst. Softw. 102,
C (April 2015), 109–122. https://doi.org/10.1016/j.jss.2014.12.049

[31] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. 2020. The signifcance
of bug report elements. Empirical Software Engineering 25, 6 (01 Nov 2020),
5255–5294. https://doi.org/10.1007/s10664-020-09882-z

[32] C. Albert Thompson, Gail C. Murphy, Marc Palyart, and Marko Gašparic. 2016.
How Software Developers Use Work Breakdown Relationships in Issue Reposito-
ries. In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR). 281–285.

[33] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated Prediction of
Bug Report Priority Using Multi-Factor Analysis. Empirical Software Engineering
20, 5 (Oct. 2015), 1354–1383. https://doi.org/10.1007/s10664-014-9331-y

[34] M. T. Tomova, M. Rath, and P. Mäder. 2018. Poster: Use of Trace Link Types
in Issue Tracking Systems. In 2018 IEEE/ACM 40th International Conference on
Software Engineering: Companion (ICSE-Companion). 181–182.

[35] Richard Torkar, Carlo Alberto Furia, Robert Feldt, Francisco Gomes de
Oliveira Neto, Lucas Gren, Per Lenberg, and Neil A. Ernst. 2021. A Method
to Assess and Argue for Practical Signifcance in Software Engineering. IEEE
Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.
2020.3048991

[36] Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib
Shah. 2017. A survey on bug prioritization. Artifcial Intelligence Review 47, 2 (01
Feb 2017), 145–180. https://doi.org/10.1007/s10462-016-9478-6

[37] Qasim Umer, Hui Liu, and Inam Illahi. 2020. CNN-Based Automatic Prioritization
of Bug Reports. IEEE Transactions on Reliability 69, 4 (2020), 1341–1354. https:
//doi.org/10.1109/TR.2019.2959624

[38] Q. Umer, H. Liu, and Y. Sultan. 2018. Emotion Based Automated Priority Prediction
for Bug Reports. IEEE Access 6 (2018), 35743–35752. https://doi.org/10.1109/
ACCESS.2018.2850910

[39] Noah N. N. van Dongen, Johnny B. van Doorn, Quentin F. Gronau, Don van
Ravenzwaaij, Rink Hoekstra, Matthias N. Haucke, Daniel Lakens, Christian Hen-
nig, Richard D. Morey, Saskia Homer, Andrew Gelman, Jan Sprenger, and Eric-Jan
Wagenmakers. 2019. Multiple Perspectives on Inference for Two Simple Statistical
Scenarios. The American Statistician 73, sup1 (2019), 328–339. https://doi.org/10.
1080/00031305.2019.1565553 arXiv:https://doi.org/10.1080/00031305.2019.1565553

[40] Renan Vieira, Antônio da Silva, Lincoln Rocha, and João Paulo Gomes. 2019. From
Reports to Bug-Fix Commits: A 10 Years Dataset of Bug-Fixing Activity from
55 Apache’s Open Source Projects. In Proceedings of the Fifteenth International
Conference on Predictive Models and Data Analytics in Software Engineering (Recife,
Brazil) (PROMISE’19). ACM, New York, NY, USA, 80–89. https://doi.org/10.1145/
3345629.3345639

https://doi.org/10.1016/j.jss.2017.02.021
https://doi.org/10.1016/j.jss.2017.02.021
https://doi.org/10.1145/3127005.3127011
https://doi.org/10.1109/SCAM51674.2020.00015
https://doi.org/10.1109/SCAM51674.2020.00015
https://doi.org/10.1109/CSMR.2013.18
http://www.prweb.com/releases/2013/1/prweb10298185.htm)
https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1016/j.jss.2019.07.002
https://doi.org/10.1016/j.jss.2019.07.002
https://doi.org/10.1016/j.infsof.2019.05.007
https://doi.org/10.1109/TSE.2019.2935974
https://doi.org/10.1109/TSE.2019.2935974
https://doi.org/10.1145/3490953
https://books.google.com.br/books?id=ZXL6AQAAQBAJ
https://books.google.com.br/books?id=ZXL6AQAAQBAJ
https://arxiv.org/abs/2011.01808
https://doi.org/10.1145/1958824.1958887
https://doi.org/10.1109/TSE.2017.2757480
https://doi.org/10.1109/TSE.2017.2757480
https://doi.org/10.1093/biomet/asx076
https://doi.org/10.1093/biomet/asx076
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/105/1/239/23884003/asx076.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/105/1/239/23884003/asx076.pdf
https://doi.org/10.1145/1321631.1321639
https://doi.org/10.1145/1321631.1321639
https://doi.org/10.3390/e21010091
https://doi.org/10.1145/2597073.2597088
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1109/ICPC52881.2021.00014
https://doi.org/10.1109/ICPC52881.2021.00014
https://doi.org/10.1109/CSMR-WCRE.2014.6747164
https://doi.org/10.1109/QRS.2016.28
https://doi.org/10.1109/MS.2005.32
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1016/j.jss.2014.12.049
https://doi.org/10.1007/s10664-020-09882-z
https://doi.org/10.1007/s10664-014-9331-y
https://doi.org/10.1109/TSE.2020.3048991
https://doi.org/10.1109/TSE.2020.3048991
https://doi.org/10.1007/s10462-016-9478-6
https://doi.org/10.1109/TR.2019.2959624
https://doi.org/10.1109/TR.2019.2959624
https://doi.org/10.1109/ACCESS.2018.2850910
https://doi.org/10.1109/ACCESS.2018.2850910
https://doi.org/10.1080/00031305.2019.1565553
https://doi.org/10.1080/00031305.2019.1565553
https://arxiv.org/abs/https://doi.org/10.1080/00031305.2019.1565553
https://doi.org/10.1145/3345629.3345639
https://doi.org/10.1145/3345629.3345639
Ricardo Britto

Conference’17, July 2017, Washington, DC, USA

[41] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. 2007. How Long Will It Take
to Fix This Bug?. In Fourth International Workshop on Mining Software Repositories
(MSR’07:ICSE Workshops 2007). 1–1. https://doi.org/10.1109/MSR.2007.13

[42] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[43] Xin Xia, David Lo, Ying Ding, Jafar M. Al-Kofahi, Tien N. Nguyen, and Xinyu
Wang. 2017. Improving Automated Bug Triaging with Specialized Topic Model.
IEEE Transactions on Software Engineering 43, 3 (2017), 272–297. https://doi.org/
10.1109/TSE.2016.2576454

Vieira et al.

[44] H. Zhang, L. Gong, and S. Versteeg. 2013. Predicting bug-fxing time: An empirical
study of commercial software projects. In 2013 35th International Conference
on Software Engineering (ICSE). 1042–1051. https://doi.org/10.1109/ICSE.2013.
6606654

[45] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.
CoRR abs/1812.08434 (2018). arXiv:1812.08434 http://arxiv.org/abs/1812.08434

[46] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss.
2010. What Makes a Good Bug Report? IEEE Transactions on Software Engineering
36, 5 (Sep. 2010), 618–643. https://doi.org/10.1109/TSE.2010.63

https://doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/TSE.2016.2576454
https://doi.org/10.1109/TSE.2016.2576454
https://doi.org/10.1109/ICSE.2013.6606654
https://doi.org/10.1109/ICSE.2013.6606654
https://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
https://doi.org/10.1109/TSE.2010.63
Ricardo Britto

	Abstract
	1 Introduction
	2 Bayesian Data Analysis Overview
	2.1 Bayes in a Nutshell
	2.2 Hierarchical Models
	2.3 Motivation to use Bayesian Data Analysis

	3 Study Design
	3.1 Goal and Research Questions
	3.2 Dataset Characterization
	3.3 Data Pre-processing Details
	3.4 Modeling Process and Models Description

	4 Results
	4.1 RQ1. How does the existence of links in bug reports impacts the BFT?
	4.2 RQ2. How does the priority level of a bug report impacts the BFT?
	4.3 RQ3. How does the code-churn size of fixing commits relates to the BFT?

	5 Discussion
	6 Threats To Validity
	7 Related Work
	8 Conclusion and Future Work
	References

