
Citation: Ahmadi Mehri, V.; Arlos, P.;

Cacalicchio, E. Automated

Context-Aware Vulnerability Risk

Management for Patch Prioritization.

Electronics 2022, 11, 3580. https://

doi.org/10.3390/electronics11213580

Academic Editors: Jheng-Jia Huang,

Ray-Lin Tso and Po-Wen Chi

Received: 6 September 2022

Accepted: 24 October 2022

Published: 2 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Automated Context-Aware Vulnerability Risk Management for
Patch Prioritization
Vida Ahmadi Mehri 1,* , Patrik Arlos 1 and Emiliano Casalicchio 1,2

1 Department of Computer Science, Blekinge Institute of Technology, 37179 Karlskrona, Sweden
2 Department of Computer Science, Sapienza University of Rome, 00168 Rome, Italy
* Correspondence: vida.ahmadi.mehri@bth.se (V.A.M.)

Abstract: The information-security landscape continuously evolves by discovering new vulnera-
bilities daily and sophisticated exploit tools. Vulnerability risk management (VRM) is the most
crucial cyber defense to eliminate attack surfaces in IT environments. VRM is a cyclical practice of
identifying, classifying, evaluating, and remediating vulnerabilities. The evaluation stage of VRM is
neither automated nor cost-effective, as it demands great manual administrative efforts to prioritize
the patch. Therefore, there is an urgent need to improve the VRM procedure by automating the entire
VRM cycle in the context of a given organization. The authors propose automated context-aware
VRM (ACVRM), to address the above challenges. This study defines the criteria to consider in the
evaluation stage of ACVRM to prioritize the patching. Moreover, patch prioritization is customized
in an organization’s context by allowing the organization to select the vulnerability management
mode and weigh the selected criteria. Specifically, this study considers four vulnerability evaluation
cases: (i) evaluation criteria are weighted homogeneously; (ii) attack complexity and availability are
not considered important criteria; (iii) the security score is the only important criteria considered; and
(iv) criteria are weighted based on the organization’s risk appetite. The result verifies the proposed
solution’s efficiency compared with the Rudder vulnerability management tool (CVE-plugin). While
Rudder produces a ranking independent from the scenario, ACVRM can sort vulnerabilities accord-
ing to the organization’s criteria and context. Moreover, while Rudder randomly sorts vulnerabilities
with the same patch score, ACVRM sorts them according to their age, giving a higher security score
to older publicly known vulnerabilities.

Keywords: vulnerability management; risk management; security management; patch prioritization

1. Introduction

Vulnerability risk management (VRM) is one of the critical aspects of information se-
curity. Many of today’s cyberattacks exploit systems’ vulnerabilities (e.g., CVE-2021-40444,
CVE-2021-44228, CVE-2021-3156) [1]. Unpatched vulnerabilities caused 60% of known
data breaches, according to [2]. Hence, VRM is a fundamental part of information-security
management in every organization. It consists of identifying, classifying, evaluating, and
remediating vulnerabilities.

According to [3], the identification of vulnerabilities by vulnerability scanner tools
(such as OpenVAS [4] and Nessus [5]) is only a small part of the VRM process. Security
experts use these scanners to inspect their systems regularly. In addition, security experts’
knowledge of an organization is crucial to evaluating the risk of exploits and prioritizing
the order of patches. The evaluation and prioritizing of remediation are the challenging
parts of the VRM process. The requirement to involve security experts and the dramatic
increase inof known vulnerabilities in the last five years (+26%) (2016–2021) have made the
VRM process time-consuming and expensive. The research question is, therefore: how to
make the VRM process time efficient, cost effective, and organization oriented?

Electronics 2022, 11, 3580. https://doi.org/10.3390/electronics11213580 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213580
https://doi.org/10.3390/electronics11213580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0128-4127
https://orcid.org/0000-0003-4494-9851
https://orcid.org/0000-0002-3118-5058
https://doi.org/10.3390/electronics11213580
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213580?type=check_update&version=1

Electronics 2022, 11, 3580 2 of 22

To answer the above research question, we introduced the concept of automated
context-aware vulnerability risk management (ACVRM) [6,7]. ACVRM facilitates the cus-
tomization of the VRM process for a given organization by learning about the organization’s
assets and the vulnerabilities that affect these assets. ACVRM automates the VRM process
by applying predefined decision criteria and related activities, thus saving time and cost.

In our previous studies [6,7], we identified that the selection of what vulnerability
database (VD) to use plays an essential role in the VRM procedure and the information on
an organization’s assets should support VD choice. Indeed, the vulnerability severity score
comes from a VD, and there are several types of VD, from national [8] to vendor [9,10], and
even application-specific [11]. Vendors’ VD, such as RedHat [9], usually list their affected
releases, severity score in their environments, and patch instructions for the vulnerabilities
that affect their products. In contrast, national VD’s provide general information about the
vulnerability and a severity score. Unfortunately, existing vulnerability scanner tools do not
allow the selection of the VD to use. Moreover, all of them rely on a single VD. In addition,
scanners do not know the system architecture and an organization’s configuration policy
to identify the actual exposure of the vulnerability in the organization. Therefore, security
experts should define criteria in the evaluation step in VRM to prioritize the remediation
of the vulnerabilities. This research enhances our previous work [6,7] focusing on the
VD-selection problem and on the challenge of defining evaluation criteria for context-aware
patch prioritization. Our contribution is summarized as follows:

• We present the prioritization-phase workflow of the ACVRM framework, describing
the details of the filter, evaluation, and patch prioritization stages.

• We define a patch-score criteria to prioritize patching which could be adapted to an organi-
zation’s context. The criteria build on security experts’ interviews and a literature study.

• We implement a proof of concept (PoC) of the ACVRM framework.
• We validate the ACVRM PoC against the prioritization obtained using the Rudder

tool. In the evaluation, we consider four case studies for the organizational context
that impact the Patch Score. Results show the capability of ACVRM in customizing
patch prioritization.

Figure 1 shows the relationship between our previous work and the current work. The
initial idea for ACVRM was presented in [6], and in that study, the focus was on calculating
a normalized vulnerability score based on multiple vulnerabilities. This work was then
augmented in [7], where we investigated the impact that the selection of VD or VDs has
on the obtained score. These two works are centered around the first phase, retrieval
and pre-processing in the ACVRM, see Figure 2. This work focuses on the second phase,
prioritization. The third phase, patch management is left out for the moment, as most
organizations use tools to apply patches.

Figure 1. Relationship between our current work (phase 2) and previous work (phase 1), and how
they address the ACVRM phases.

The paper is organized as follows. Section 2 provides background on VRM and ana-
lyzes the related literature. Section 3 introduces the ACVRM framework, and Section 4 de-
scribes the ACVRM’s prioritization phase, where the paper’s core contribution is. Section 5
presents the selection of the evaluation criteria and the definition of the patch score.
Section 5 describes the design and implementation of a proof of concept for the priori-
tization phase. Experiments and results are reported in Sections 7 and 8 , respectively.
Section 9 concludes the paper.

Electronics 2022, 11, 3580 3 of 22

Figure 2. The ACVRM phases.

2. Related Work

Continuous VRM is in the top-10 critical security controls defined by the Center of
Internet Security (CIS) [12]. VRM is one of the vital criteria to guarantee system compliance.
Most information security standards (e.g., ISO 27002, PCI, SOC2) and legislation (e.g., EU
Cybersecurity act [13], EU Cybersecurity Certificate (EUCS) [14], USA homeland security
act [15]) include VRM as a critical control. Hence, organizations must establish a VRM
process to remediate the identified vulnerabilities.

Keeping up with assessing hundreds of vulnerabilities daily is a big challenge for the
security teams in every organization. It is impossible to patch all detected vulnerabilities
due to resources and time limitations. Therefore, most tools and security analysts prioritize
remediation based on severity score. The severity score can be calculated using the Common
Vulnerability Scoring System (CVSS). CVSS is an open framework which transfers the
vulnerability characteristic to a numeric score [16]. The score obtained from CVSS is
static, and the numeric value of each metric does not change over time. To overcome
this problem, researchers proposed a methodology to change the numeric value of impact

Electronics 2022, 11, 3580 4 of 22

metrics (i.e., confidentiality, integrity, and availability (CIA)) in the CVSS version 2.0 in favor
of improving the CVSS scoring [17]. The authors found that the violation of confidentiality
is more severe than integrity and availability, and, hence, should not be weighted equally.
Another approach proposed to improve patch prioritization in the VRM process is to add
temporal and environmental metrics to the CVSS score [18]. Rather than adding new
metrics to the CVSS or changing CVSS information over time, we propose to feed the VRM
process with the Organization Context (OC) data. Indeed, in ACVRM, the organization
context data complements the CVSS information in evaluating the vulnerability ranking.
The OC is the set of data that defines the assets the organization intends to protect, and the
rules. The OC data we propose to use in ACVRM are described in Sections 4.1 and 4.2.

According to the Ponemon Institute [2], 32% of a survey’s participants made a reme-
diation decision based on the CVSS score. A total of 59% of participants in the survey
disclosed that their organizations were not performing the complete VRM’s life cycle. A gap
in the VRM life cycle is seen as an opportunity for adversaries to leverage vulnerabilities.
The 2021 Check Point Cyber Security Report [19] reveals that 80% of attacks in 2020 took
advantage of vulnerabilities reported in 2017 or earlier. Furthermore, around 50% of the
participants in the Ponemon survey [2] recognized that automation is a key to responding
to a vulnerability promptly. To address the above-mentioned issue, we designed ACVRM
to adapt its behavior based on the organization context to prioritize remediation.

Many studies have applied machine-learning-based solutions to predict remediation
decisions and classify the type of vulnerability in different domains such as power grid
and software development. For example, authors in [20] built their decision tree based on
data of the asset and vulnerability features for a power grid and reached 97% accuracy.
However, their solution is domain-specific and requires manual verification on the small
prediction portion to reduce false negatives. On the contrary, in ACVRM, we propose to
improve patch prioritization over time based on the historical organizational data from the
feedback loop.

Vulnerability categorization is also helpful in automating VRM and in the software
development life cycle. In [21], the authors propose using multiple machine-learning algo-
rithms to classify vulnerabilities into vulnerability categories, as understanding vulnerabil-
ity types is crucial in the software development life cycle. Similarly, a machine-learning al-
gorithm allows the classification of vulnerability types in a security patching of open-source
software [22]. In our solution, we foresee to apply, as future work, a machine-learning
algorithm to improve patch prioritization based on the patch verification feedback.

In [23], the authors proposed the automated CVSS-based vulnerability prioritization.
Their solution uses only the vulnerability scanner report of the environment and prioritizes
the patch based on the confidentiality, integrity, and availability score. The authors con-
cluded that using a CVSS-based score is insufficient, and they should consider other metrics
in a prioritization step in the future. SmartPatch is a patch-prioritization method for Indus-
trial Control Systems [24]. SmartPatch uses the network topology of environments and the
vulnerability scanner report to address patch sequencing in an interdependent and complex
network. SmartPatch proposed a security metric called Residual Impact Score (RIS) by
utilizing the score of the impact metrics and exploitability metrics of CVSS exported from
the National VD (NVD). The authors in [25] used a mathematical approach to select the
vulnerability from the scan report for remediation concerning the available experts. They
used the CVSS score from NVD, the available hours of security experts, the vulnerability’s
age, and its persistence in the monthly scan in their approach. They concluded that the
number of unpatched vulnerabilities was the lowest using multiple attributes. In [26],
the authors proposed a machine-learning-based method to address the inconsistency of
CVSS scores across multiple VDs. They trained their algorithm with a different version of
CVSS scores in NVD and validated their result with crawled vulnerability reports from
SecurityFocus. Then, they implemented the case study in cyber–physical systems to assess
the severity of the vulnerability. The result of their case study indicated the diversity of vul-
nerability scores on different data sources which mislead the experts in patch prioritization.

Electronics 2022, 11, 3580 5 of 22

Compared to the above research work ([23–26]), ACVRM facilitates patch prioritization for
organizations independently of the domain. It utilized multiple VDs, host inventory, and
scan reports to detect existing vulnerabilities. ACVRM also customized the VRM procedure
for the organization by enabling them to select the vulnerability management mode (VMM)
and to weigh the criteria used in patch prioritization.

Table 1 summarizes the comparison between our solution and the most recent state-
of-the-art works on vulnerability prioritization. The comparison is performed according
to the following features: the VD used as reference (Reference VD), the vulnerability
identification approach, the vulnerability evaluation criteria, and the contribution provided.
The comparison highlights the following: our solution is the only one that allows multiple
VDs as input for vulnerability identification; there is a shared consensus on using multiple
sources of information to identify vulnerabilities and using multiple evaluation criteria.
Concerning evaluation criteria, while the majority of the proposed solutions use the security
score (SC), confidentiality (C), integrity (I), and availability (A), ACVRM also adopts the
attack vector (AV) and attack complexity (AC) along with the access level (internal or
external AUS) metrics. The complexity of attacks is also addressed by other works using
the exploitation rate (ER) or collateral damage potential (CDP) metrics.

Table 1. Comparison of our approach to most recent related work. For acronyms, cf. Section 5 and
the Abbreviations section.

Reference VD Identification
Approach

Evaluation
Criteria Contribution

Walkowski
et al. [23] NVD Vulnerability scan SC, C, I, A, CDP

Proposed VRM improvement by
prioritizing the patch based on
the CDP value for monitored IT
sources and the ratio of detected
vulnerabilities to the number of
monitored resources

Yadav
et al. [24] NVD

Vulnerability scan
and network topol-
ogy

SC, C, I, A, ER, func-
tional and topologi-
cal dependencies

Defined security metric Residual Im-
pact Score (RIS) used to prioritise
the patch based on cost of defence,
cost of attack, and impact of attack

Jiang
et al. [26]

NVD and security-
Focus

Vulnerability scan
and system config-
uration

SC

Proposed machine-learning-based
structure to correlate SC from mul-
tiple sources to overcome inconsis-
tency in CVSS score

Shah
et al. [25] NVD Vulnerability scan SC, age, and persis-

tence

Defined mathematical model for op-
timizing remediation priority with
respect to evaluation criteria

Our work NVD, DSA, RHSA,
and USN

Vulnerability scan,
asset inventory, and
VDs data

SC, C, I, A, AV, AC,
and Access level

Proposed the criteria for patch prior-
itization and customised the patch
in the organization’s context

3. Automated Context-Aware Vulnerability Risk Management (ACVRM)

ACVRM aims to improve the VRM as follows: (1) it uses multiple VDs for retrieving
common vulnerabilities and exposures (CVE) [27] data; (2) it automates the classification of
vulnerabilities and the patch-prioritization process based on an organization’s requirements.
ACVRM is structured into three phases, as shown in Figure 2. Phase 1 has been addressed
in our previous works [6,7], phase 2 design and implementation is the main contribution of
this paper; and phase 3 is considered to be future work.

During phase 1, ACVRM retrieves CVE data from multiple VDs. From each VD, we
collect CVE-IDs, their publication date, description, severity score, affected releases, and

Electronics 2022, 11, 3580 6 of 22

safe version. We also store a timestamp to know when we collected or updated the data
in our local database. To keep the local database updated, ACVRM periodically checks
for changes in the source VD. If changes are detected, the local database is updated while
keeping the old version of CVE-ID data in an archive for future reference. The pre-process
stage converts the quantitative severity score of CVE-ID (if any) to an internal numeric
score using the conversion algorithm described in [7]. Our internal score is based on the
CVSS 3.x score. The pre-process stage makes the CVE-ID data ready for the normalization
stage. The main task in the normalization stage is calculating a severity score for each
CVE-ID. ACVRM offers three VMM: basic, standard, and restrictive. These are in-line
with the three assurance levels proposed by EUCS[14]. A basic VMM is the minimum
acceptable baseline for a VRM process suggested for an organization with a limited risk of
exploitation (e.g., an organization with a limited system exposed to the Internet). Standard
VMM is suitable to serve an organization with medium-to-high-security risks. At the same
time, the restrictive VMM should be used in compliant organizations (i.e., an organization
or governmental agency that should comply with local and international regulations or
standards and critical infrastructure). The normalization stage calculates the normalized
score for each CVE-ID by averaging the severity scores concerning VMM mode.

In phase 2, ACVRM determines the patch prioritization for an organization’s needs,
specified by the organization’s context. Phase 2 is the core part of ACVRM and is described
in detail in Section 4.

In the third phase, patch management, ACVRM patches the detected vulnerabilities
and verifies that the system functionalities are not compromised.

In the first stage of patch management, the automated patching component executes
patch prioritization on vulnerable hosts. Then, ACVRM verifies if the patch was successful.
If an error occurs for an item in the patch-prioritization list, it will jump to the next item
in the list and record the one encountered in an error state. If an error appears due to the
patch order (e.g., patching a microcode vulnerability in Ubuntu requires the kernel to be
patched in advance), it will re-execute the patch at the end. For persistent errors, the report
with the error state will submit to the patch-prioritization stage in phase 2 for review. The
final stage in phase 3, verification, consists of evaluating the impact of the patch on the
application/unit/service’s (AUS) functionality. The functional tests refer to the series of
predefined tests by experts to investigate the health of AUS. In case of unexpected behavior,
the issue is reported to the experts.

4. Prioritization

Prioritization is the second phase of ACVRM, which determines the order of CVE-IDs
to be patched in each host. Figure 3 shows the stages in the prioritization phase. In the
following sections, we will briefly describe these stages.

Figure 3. The phase 2—prioritization process.

4.1. Filter

The task of the filter stage is to identify vulnerabilities that affect the organization’s
assets (i.e., application, software, servers). The inputs are the data from the normalization

Electronics 2022, 11, 3580 7 of 22

stage, the host inventory, and the vulnerability scan reports provided with the OC, cf.
Figure 3. The output is the list of vulnerabilities affecting the organization’s assets. The
list includes CVE-IDs, hostname, name of vulnerable AUS, and normalized score. In more
detail, the OC data used in the filter stage are:

• Host inventory (HI): consisting of the hosts and assets belonging to the organization.
The host inventory provides the list of hosts, hardware specifications, and installed
software. Examples are asset-management tools (e.g., Device42, NinjaRRM, Solar-
winds) or custom tools.

• Vulnerability scanner report (VSR): a source used by security specialists for patch
prioritization. The best security practices for the cloud, such as C5 [28], suggest
monthly vulnerability scanning, which leads to thirty days of patch planning.

• Vulnerability management mode (VMM): defines in which mode ACVRM should
operate. The organization sets a default VMM mode for the whole organization,
but this can be overriden with host-based VMM, e.g., VMM basic for host A, VMM
restricted for host B, while the default is standard.

The filter identifies the CVE-IDs that impact the organization by comparing the vulner-
able software and their existence in the HI and VSR. For example, a vulnerability scanner
might report faulty configurations with no CVE-ID reference (i.e., Nessus ID 153953: SSH
server configured to allow weak key exchange algorithms). We might also find vulnerable
software installed in the hosts in the organization’s environment but not detected by the
vulnerability scanner (i.e., the vulnerability in sudo before 1.9.5p2 (CVE-2021-3156) that the
Nessus scanner did not discover in our test environment). Therefore, we obtain better cov-
erage of the potential vulnerabilities by considering both the HI and VSR. Let C represent
all collected vulnerabilities; then, the filter will produce a list of vulnerabilities (VULN)
that are affected by the VSR and/or HI

VULN = (C ∩ CVSR) ∪Λ(C, HI)

where CVSR is the set of vulnerabilities contained in the VSR; and Λ(C, HI) is a filter
function that returns only the vulnerabilities that affect the hosts.

4.2. Evaluation

The task in the evaluation stage is to examine the risk of each vulnerability and
provide the patch prioritization. The input for the evaluation stage is the list of affected
vulnerabilities from the filter stage, the access policy and group host-based services, and
the weight from the OC.

The access policy and group-based services describe conceptual information to enforce
business requirements. It defines access to applications/services based on the host group,
locations, and time. The access policy provides information on how accessible different
AUS are, i.e., AUS exposed to the public are probably more likely to be compromised than
AUS that are not. The group-based services simplify the patch process as the same patching
and verification instructions will apply.

In the evaluation stage, we divide the list of affected vulnerabilities based on the access
policy into external and internal groups. The external refers to the AUS being exposed to
the Internet, and, thus, having a higher risk of exploitation. On the other hand, internal
indicates the AUS with limited access levels, i.e., authorized users with defined IP addresses
in the access control list (ACL).

In this stage, we also check the criteria that impacted the patch sequence. The organi-
zation could customize the criteria by weighting them based on the impact on its business,
cf. Section 5.

4.3. Sort

The task for the sort stage is to update the order of the CVE in each evaluated list (i.e.,
external list). The inputs are the output from the evaluation stage and the service policy.

Electronics 2022, 11, 3580 8 of 22

The service policy is optional information to influence the order of the patch list for the vital
services for the organization. The services listed in service priority are granted a higher
position in the patch list. If the organization does not provide service priority, the sort will
be based on the PS score, cf. Section 5.4. The outputs are two sorted lists of vulnerabilities
for internal and external AUS. Each list includes CVE-IDs, hostname, name of vulnerable
AUS, PS, and priority number.

4.4. Patching Prioritization

The main task for patching prioritization is to adjust the patch order based on learning.
This stage receives the error feedback from patch verification. It builds the knowledge
to map situations to actions over time. The patch prioritization input is the sort stage
output and the feedback loop from the phase 3 of ACVRM. In the first round, the patch-
prioritization stage provides the same output as the sort stage, as it is not yet received any
feedback from phase 3.

5. Evaluation Criteria and Patch Score

Finding a suitable criteria for evaluating vulnerabilities is a challenge, as demonstrated
by the multiple research studies on this subject [18,23,24,29–38]. As we mentioned earlier in
Section 1, the evaluation stage depends on expert and organizational knowledge. Automat-
ing the vulnerability evaluation procedure is crucial for each organization because some
vulnerabilities might remain unpatched in a system due to there being many vulnerabilities
and a limited number of available security experts. We applied the following methods
to define evaluation criteria and automate the evaluation stage to address the challenges
mentioned earlier:

1. We reviewed the scientific papers on vulnerability patch prioritization to find evalua-
tion criteria for ranking the vulnerabilities.

2. We interviewed security experts with different seniority levels in VRM to manually
rank the criteria they are using to prioritize the vulnerability patch.

3. We analyzed the obtained criteria from items 1 and 2 to introduce a patch score(PS).
PS is a mathematical approach to calculating the priority of each vulnerability from
the evaluation criteria and their weight based on the organizational context.

In this section, we described our methods of finding the criteria in detail and how we can
customize the PS in the organization’s context.

5.1. Analysis of Vulnerability Evaluation Criteria in the Literature

We conducted our search in Google Scholar because it is a comprehensive academic
search engine with 389 million records [39]. The selected search string “vulnerability patch
priority” was applied to identify the patch-prioritization criteria in the relevant literature.
The search query indicates that the string should include the title and abstract of a peer-
reviewed publication. Then, we excluded the papers that were not relevant to the goal of
this paper based on the title and abstract. Finally, we performed a full-text assessment of
fifteen selected papers.

From these fifteen papers, we identified nine criteria, reported in Table 2: a Xsign
means the criterion is considered in the paper. The related work review shows that the
severity score is a common criterion. In addition, ten of fifteen (66.7%) studies recognize the
CVSS impact metrics, confidentiality, integrity, and availability as critical metrics in priority
decisions. We also observed that eleven of fifteen (73.3%) papers identify the exploitation
rate (similar to attack complexity in CVSS v3) as an essential criterion. The considered
criteria in the related papers are described as follows:

• Severity score (SC) is a transferring of the vulnerability characteristics to a numeric
score between 0 to 10.

• Confidentiality (C) measures the impact of the disclosure of the information to an
unauthorized party due to a successfully exploited vulnerability.

Electronics 2022, 11, 3580 9 of 22

• Integrity (I) refers to the impact of altering information by an unauthorized user on
the trustworthiness of data due to a successfully exploited vulnerability.

• Availability (A) measures the impact of a successfully exploited vulnerability on the
system and data accessibility.

• Age/time is a time difference between the CVE-ID published date and the current date.
• Common configuration enumeration (CCE) [40] is a unique identifier for system

configuration issues and provides accurate configuration data across multiple tools
and sources of information. CCE serves as a configuration best practice.

• Collateral damage potential (CDP) is an environmental metric in CVSS V2 and refers
to loss of life, physical assets, productivity, or revenue. Modified base metrics replaced
CDP in CVSS V3 to reduce the impact of successfully exploiting the vulnerability by
enforcing a change in the default configuration of a vulnerable component.

• Exploitation rate (ER) provides the rate of how likely the vulnerability is to be ex-
ploited. CVSS V3 addresses ER in the attack complexity (AC) metric, which evaluates
the amount of effort required to exploit the vulnerable component.

• Vulnerability type (VT) refers to the attacker’s activity as a result of successfully
exploiting vulnerabilities such as denial of services (DoS), code execution, privilege
escalation, and buffer overflow.

Table 2. The evaluation criteria in related work.

Literature Severity Score C I A Age/Time CCE CDP ER VT

Al-Ayed et al. [29] X X X

Walkowski et al. [23] X X X X X

Kamongi et al. [30] X X X X X X

Araujo and Taylor [31] X X X X

Fruhwirth and Mannisto [18] X X X X X

Patil and Modi [32] X X X X X X

Lee et al. [33] X X X X X X

Angelini et al. [34] X X X

Lin et al. [35] X X X X X X

Li et al. [36] X X X X X

Torkura et al. [37] X X

Yadav et al. [24] X X X X X

Olswang et al. [38] X X X

Jiang et al. [26] X X X X X X

Shah et al. [25] X X X X X X

5.2. Experts’ Interview

We interviewed nine vulnerability-management experts from governmental and pri-
vate sectors located in the USA and EU. The experts who participated in the study worked
in the information-technology domain with different levels of experience; (a) three juniors
who have less than two years of experience in VRM; (b) three middle-level employees
who have from two to five years of experience in VRM; and (c) three seniors who have
more than five years of experience in VRM. We chose three different seniority levels as
the response depends on knowledge and experience level [41]. The interview included
two parts. In the first part, we interviewed the experts regarding the process they used to
evaluate patch prioritization in their organization. In the second part, we asked the experts
to rank the metrics in CVSS V3 and the accessibility level of the vulnerable AUS. The VRM
experts ranked the following criteria in the second part of the interview:

Electronics 2022, 11, 3580 10 of 22

• Attack vector (AV) is a CVSS V3 exploitability metric which refers to the context of the
possibility of vulnerability exploitation (i.e., exploit vulnerability component from a
network or locally)

• Attack complexity (AC) is a CVSS V3 exploitability metric which defines the condi-
tion that must exist in the environment to exploit the vulnerability. For example, if
any security controls do not protect the vulnerable component, the attacker could
successfully exploit the vulnerability with less effort.

• Privilege requirements (PR) is a CVSS V3 exploitability metric which describes the
level of privilege an attacker must have to exploit the vulnerability successfully.

• User interaction (UI) is a CVSS V3 exploitability metric which expresses the human
intervention in the successful comprise of the vulnerable component.

• Confidentiality (C) is a CVSS V3 impact metric which measures the impact on the
confidentiality of the source after a successful attack.

• Integrity (I) is a CVSS V3 impact metric which measures the impact on the integrity of
the source after a successful attack.

• Availability (A) is a CVSS V3 impact metric which measures the impact on the avail-
ability of the source after successful exploitation.

• Severity score (SC) is an output of CVSS which captures the technical characteristics
of a component to a numeric score indicating the severity of the vulnerability.

• Internal AUS refers to the services that are not exposed to the public.
• External AUS refers to the services that are exposed to the public.

The interview was conducted in a virtual session on Microsoft Teams for around 60 min.
Naturally, the number of experts in any domain is limited, which affects the number of
available expert participants. Therefore, experts’ participation in any study is lower than
non-expert participants. Isenberg et al. [42] found the median number of expert participants
in the study is nine in a survey of 113 papers.

The interviewees’ ranked the criteria from one to five, where one is the lowest and
five is the highest. From the interview, we calculated the statistics, including the minimum,
maximum, average, and standard deviation of the expert’s score in Table 3. In Figure 4, we
show the individual experts’ feedback. Looking at the statistics, we see that external AUS
is the criterion with the highest average rating of 4.67. However, C, AV, I, A, and SC are
also rated above 4.

Table 3. Statistics of the criteria ranked by security experts

Internal External
Statistics AV AC PR UI C I A SC AUS AUS

Minimum 3 3 2 2 4 4 3 3 1 4

Maximum 5 4 3 4 5 5 5 5 3 5

Average 4.56 3.33 2.78 2.89 4.67 4.44 4.33 4.33 2.11 4.78

Standard deviation 0.68 0.47 0.42 0.74 0.47 0.50 0.67 0.67 0.57 0.42

Electronics 2022, 11, 3580 11 of 22

Figure 4. Ranking of the criteria by security experts.

5.3. Selected Criteria

We analyzed the related work and expert interview results to identify criteria with an
average score above 3 (e.g., above 60% of maximum scores by experts and above 60% of
literature). Based on the results in Tables 2 and 3, we chose the SC, C, I, A, AV, AC, and
external AUS. The selected criteria, except external AUS, have defined metrics in the CVSS
framework. Therefore, we can retrieve these from the CVSS vector or the vulnerability
description reported by VDs. Some VDs, such as NVD and RHSA, report the CVSS vector,
and some, such as USN and DSA, use similar keywords in the vulnerability description. In
this study, we use the CVSSv3.1 vector to retrieve the score of selected criteria and calculate
the patch score, cf. Section 5.4. The external AUS information the OC provides in access
policy and group-based services.

5.4. Patch Score (PS)

ACVRM uses a patch score (PS) to determine the patch priority. PS is a scaling factor
which can amplify the severity score of each CVE, and it is a function of the evaluation
criteria as defined in Equation (1)

PSk =
n

∑
i=1

wiFk,i +

2 for AV = N and AC = L
1 for AV = N and AC = H
0 otherwise

(1)

where: PSk is the PS for vulnerability k; n is the number of evaluation criteria considered;
wi is a weight such that wi ∈ [0, 1], and ∑n

i=1 wi = 1; Fk = [Fk,1, . . . , Fk,n] is the impact vector
for vulnerability k. In this paper, we use n = 6 and Fk = [SCk, AVk, ACk, Ck, Ik, Ak]. Fk can
be easily expanded or reduced depending on the criteria considered.

Equation (1) amplifies the PS for the vulnerabilities that could be exploited from
network AVk = N. The PSk increases by additive factor +2 for vulnerability k with a low

Electronics 2022, 11, 3580 12 of 22

complexity (ACk = L). The PSk raises by the additive factor +1 when the ACk = H is high.
In all the other cases, i.e., the attack is not exposed to a network, no amplification is added.

To calculate a PS, we need to retrieve the weight vector from OC and the criteria vector
from the CVSS vector in our local record. The organization could weigh each criterion
based on its importance and influence the PS value. The CVSS vector has been available
since 2000 in NVD, and the chance of not having CVSS vector information is negligible.
CVSS vector is a data string that captures the corresponding value for each CVSS metric.
The CVSS vector, e.g.,

CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N
starts with CVSS as a key and the version of CVSS (here: 3.1) as a value. The forward slash
is a delimiter between each metric. The abbreviation of each base metric is used as a key
and separated from the abbreviated metric’s value with a colon.

Table 4 presents the metrics’ name and metrics’ value and their abbreviation from
CVSS v3.1 document [16]. The CVSS base metric groups consist of AV, AC, PR, UI, Scope
(S), C, I, and A. We excluded the PR, UI, and S metrics as they were not selected to consider
in this study.

By expanding Equation (1) into the form used in this paper, we obtain:

PSk = w1SCk + w2 AVk + w3 ACk + w4Ck + w5 Ik + w6 Ak +

2 for AVk = N and ACk = L
1 for AVk = N and ACk = H
0 otherwise

(2)

The PS value will be between 0 and 12. The maximum PS value could be achieved when
SC = 10 and w1 = 1 and AV = N and AC = L. The PS score could be zero when the
highest weight is given to the metric, which happens to be none.

Table 4. CVSS v3.1 metric and the value used in ACVRM patch score [16].

Metric Name Metric Value Numeric Value

Attack Vector (AV)

Network (N) 0.85

Adjacent (A) 0.62

Local (L) 0.55

Physical (P) 0.2

Attack complexity (AC)
Low (N) 0.77

High (H) 0.44

Confidentiality (C)

None (N) 0

Low (L) 0.22

High (H) 0.56

Integrity (I)

None (N) 0

Low (L) 0.22

High (H) 0.56

Availability (A)

None (N) 0

Low (L) 0.22

High (H) 0.56

6. Design and Implementation

This section describes the implementation of a PoC for the prioritization phase
(phase 2) of ACVRM, shown in Figure 5. It is designed as a group of functions split
into four modules. Each module represents the implementation of each stage in phase 2,

Electronics 2022, 11, 3580 13 of 22

and the output of each module is the input for the next one. We chose JSON as the internal
data representation in this implementation since it is a supported format for most VDs and
inventory tools.

Phase 1 PoC was described in [7]; hence, we do not repeat it here. The output from it
is a file NF_output.json. This contains the CVE-ID, normalized scores for CVE, name of
vulnerable AUS, safe version of AUS, and the severity score from one or multiple VDs.

The filter module matches the name of vulnerable AUS in the NF_output.json and
the AUS information in the host inventory (host_inventory.json) to detect the organiza-
tion’s vulnerabilities. It also adds the vulnerabilities reported by the vulnerability scanner
(vunerability_scanner_report.json) if that is not already identified in host_inventory.json.
The organization could set a VMM in the VMM file as a default. The host-based VMM is an
alternative for the organization if needed, and the VMM value should be added to the host
inventory. The output of the filter stage is the filter.json, which consists of CVE-ID, a
normalized score for the CVE-ID, hosts name, and the vulnerable AUS.

The evaluation module assesses each entry (i.e., CVE-ID) in the filter.json based on
the access policy and group host-based services to separate internal AUS and external AUS.
Then, we implement the check on the selected criteria and their weight to calculate the PS for
each CVE-ID. If the organization does not provide the weight vector, ACVRM will weigh all
criteria equally. The evaluation output is the external_lst.json and internal_lst.json,
which refer to the vulnerabilities affecting internal and external AUS. Each list provides the
CVE-ID, normalization score, CVSS vector, PS, host name and group (if applicable), the
name of AUS, and the original severity score from VDs for each CVE-ID.

The sort module provides patch prioritization influenced by service priority. The
servicepriority.json is a list of critical services for an organization’s business. Hence,
vulnerability remediation on those services should receive the highest priority. If the
organization does not have preferences, the patch prioritization will be based on the PS
value computed from Equation (1).

The output of phase 2 of ACVRM is the patch priority for each host in the inventory.
The internal and external AUS are sorted separately, as the patch time might differ for each
group. This output feeds into the patch-management tool in phase 3 of ACVRM.

Figure 5. High-level software architecture of phase 2—prioritization.

7. Experimental Validation of PoC

The setup of the experimental environment to deploy and validate the ACVRM’s PoC
is organized into four parts.

First, we collect the CVE-IDs data from VDs corresponding to phase 1, described in
Section 7.1. In the second stage, we create a virtual company. This company’s organizational
environment is characterized by a network of virtual servers deployed on a public cloud
platform. This setup is shown in Figure 6; it consists of nine virtual servers (Ubuntu1-3,
Debian1-3, CentOS1-3), one storage node (local storage), one Rudder node, and one Nessus
node. All nodes are connected to a switch. The servers are organized into three groups of
three nodes each, where each group runs a different Linux distribution. Rudder node is
a host running the Rudder.io manager version 6.2 [43] as an inventory tool. The Rudder

Electronics 2022, 11, 3580 14 of 22

manager receives the nodes’ data through the installed Rudder agent on the nine virtual
servers. The Nessus node is a host running the Nessus [5] vulnerability scanner community
edition, version 8.14.0-ubuntu110_amd64. The community edition of Nessus does not
provide the CVE-ID of the detected vulnerabilities but instead reports the vulnerability
with the Nessus ID. The report is generated in a limited format, such as HTML and CSV, and
does not support Rest API. The report should be converted to JSON with the corresponding
CVE-ID.

The nodes are created using the OS image provided by the cloud provider and then
updated to the latest stable version. Table 5 describes the nodes’ specifications.

In the third stage, we deploy the prioritization stage of ACVRM in our test environ-
ments to obtain the patch-priority list for a given organization with four cases; each has
different weight vectors. Finally, the fourth stage compares the output of the ACVRM
prioritization of each case with the Rudder.io’s CVE plugin [44] results. CVE plugin is
a VRM software developed by Rudder.io to identify and prioritize the vulnerabilities in
installed software on each node managed by Rudder.

Figure 6. The test environments

Table 5. The specifications for the virtual servers in the test environment.

Specification Ubuntu Debian Centos Rudder Nessus Storage

CPU 2 8 4 4

RAM 2 GB 16 GB 4 GB 4 GB

Storage 20 GB 50 GB 20 GB 1 TB

Distribution 18.04.4 LTS 9.1.1 8.1.1911 18.04.4 LTS 18.04.4 LTS 18.04.4 LTS

Kernel 4.15.0-158-generic 4.9.272-2 4.18.0-305.10.2.el8_4 4.15.0-158-generic 4.15.0-158-generic 4.15.0-158-generic

Nodes 3 3 3 1 1 1

7.1. Phase 1: Data Collection and Pre-Processing

We collect CVE-IDs data from the four VDs described below, this is based on the
existing OS in our experiment, and we add NVD as a reference:

• RedHat Security Advisory (RHSA) [9] is a subject-specific VD that provides the
severity score based on the base and environmental metrics of CVSS v3.x. RHSA
records the severity score for the CVE-IDs that effects RedHat’s releases. RHSA
reports the quantitative score and the severity rating based on the impact of the
vulnerability in RedHat environments.

• Ubuntu Security Notices (USN) [10] is a subject-specific VD that reports the CVE-IDs
affected by Ubuntu’s releases. USN developed its framework for calculating severity

Electronics 2022, 11, 3580 15 of 22

scores that are not publicly available. USN provides a qualitative severity score for
each CVE-ID.

• Debian Security Advisories (DSA) [45] is a subject-specific VD that records the CVE-IDs
affected by Debian’s releases. DSA delivers a qualitative severity score, which relies on
the NVD score. It is not clear which version of CVSS is applied to the DSA score.

• National Vulnerability Database (NVD) [8] provides a severity score based on a base
metric of the CVSS v2.0 and v3.x framework. NVD is a generic VD and does not
consider the environmental metrics in severity scores. NVD is one of the largest VD
that records almost all existing CVE-IDs.

The data collected from the four VDs mentioned above are related to the CVEs affecting
Linux distributions from 2017 to 2021 for this study. These raw data are kept in our storage
node in the JSON format as a reference. The data is collected daily and archived in our
local storage node, independent of other stages. This study is based on the information
collected in June 2022.

7.2. Phase 2: Prioritization

Phase 2 implements the identification, classification, and evaluation processes of VRM.
This phase automatically processed the data from phase 1 of ACVRM regarding OC. In
our experiment, the Rudder node provides host inventory data, and the Nessus node
generates the vulnerability scan report of the nine virtual servers. Then, we create a group
of host-based services for the organization regarding the operating systems. One host from
each host group is configured as an external AUS and exposed to the Internet. The rest
of the virtual servers are set up as internal AUS. Finally, we assign public IP addresses to
the external AUS and configured an SMTP server on them. Our test organization does not
prioritize services and operates on standard VMM but with four different weight vectors.
After preparing our test organization, we update all nine virtual servers to patch all existing
vulnerabilities via the Rudder CVE plugin. We scan with Nessus and run the CVE plugin
in check mode to validate that vulnerabilities are successfully patched in servers.

We randomly selected 24 CVE-IDs (relevant to our virtual servers) and installed the
vulnerable version on our nine virtual servers (Ubuntu1-3, Debian1-3, and CentOS1-3).
Table 6 shows the selected CVE-IDs, the name of AUS, the severity score in each selected
VD in our experiment, the CVSS vector for each CVE-ID, and the normalized score for
each CVE-ID with standard VMM. We started our experiment by manually executing the
Rudder and Nessus to determine the detected installed vulnerabilities. Then, we run the
code for phase 2 PoC. The stages in phase 2 are implemented in Python and comprise
a group of functions. The functions’ execution should be in order according to Figure 5
because the output of each stage is an input for the next one in the group. We keep the
state of the virtual servers (e.g., with 24 installed vulnerabilities) unchanged and review the
patch-prioritization list provided by our tool for each case. We repeated the execution with
standard VMM 50 times to verify that our codes gave an identical result. The execution time
for phase 2 PoC was 7 min in our test environment. However, our focus in this experiment
was on the accuracy of the patch prioritization rather than the execution time. In the future,
we will investigate the relationship between execution time and the number of nodes.

Electronics 2022, 11, 3580 16 of 22

Table 6. The sample of vulnerabilities that affect our test environments.

CVE-ID AUS Name SC RHSA SC DSA SC USN SC NVD CVSS Vector Normalized Score

CVE-2021-33574 glibc 5.9 high low 9.8 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 6.4125

CVE-2021-3796 vim 7.3 medium medium 7.3 CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:L/A:H 6.7500

CVE-2021-4192 vim 7.8 medium medium 7.8 CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 6.6250

CVE-2021-3778 vim 7.8 medium medium 7.8 CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H 6.6250

CVE-2021-22555 kernel 7.8 medium high 7.8 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 7.2500

CVE-2020-28374 kernel 8.1 medium high 8.1 CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N 7.4000

CVE-2021-4034 polkit 7.8 high high 7.8 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 7.2500

CVE-2021-22946 curl 7.5 medium medium 7.5 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N 7.1000

CVE-2021-3712 openssl 7.4 medium medium 7.4 CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:H 6.4250

CVE-2021-3449 openssl 5.9 medium high 5.9 CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H 6.3000

CVE-2021-41617 openssh 7.0 medium low 7.0 CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H 5.3625

CVE-2020-13776 systemd 6.7 medium low 6.7 CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H 5.2125

CVE-2021-33910 systemd 5.5 medium high 5.5 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H 5.2375

CVE-2020-14308 grub2 6.4 medium high 6.4 CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H 6.5500

CVE-2021-30465 runc 7.5 medium high 8.5 CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H 7.3500

CVE-2021-20277 libldb 7.1 medium high 7.5 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H 7.0000

CVE-2020-8831 apport None low high 5.5 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N 5.1500

CVE-2020-8794 openSMTPD None high high 9.8 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.5667

CVE-2021-3177 python 5.9 high medium 9.8 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 7.2750

CVE-2021-20179 dogtag-pki 8.1 medium high 8.1 CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N 7.4000

CVE-2021-27135 xterm 9.6 high medium 9.8 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.2000

CVE-2021-3156 sudo 7.8 high high 7.8 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H 7.8750

CVE-2020-11651 salt 9.8 high medium 9.8 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H 8.2500

CVE-2021-32760 containerd 5.5 medium high 6.3 CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L 6.3000

8. Results and Discussion

This section analyzes the patch-prioritization result generated by our tool for each
case and Rudder CVE-Plugin. We used the PS value to prioritize the patch order. As
described in Section 5.4, the PS value captures the important criteria in ranking the vul-
nerabilities. The organization could weigh the criteria based on risk appetite to customize
patch prioritization. This study considers four cases with different weighting criteria to
study patch prioritization with different risk appetites. Table 7 represents the numeric
value of each criterion involved in our PS calculation. The SC column is the normalized
score for each CVE-ID where the VMM is standard. The Add Factor column in Table 7
represents the additive value in Equation (1). The PS1-4 in Table 7 are the PS value for the
case 1–4 respectively. The corresponding value of AV, AC, C, I, and A are from CVSS v3.1
and has two decimals. The result of our calculation, including SC, PS1, PS2, PS3, and PS4,
are rounded to four decimals.

• Case 1: in this case, the organization weighs the criteria homogeneously in PS cal-
culation as all six items are equally important for its business, i.e., wi = 1/N, ∀i.
Equation (3) is expanded from Equation (2) for each CVE-ID, i.e., k.

PSk = 0.1667(SCk + AVk + ACk + Ck + Ik + Ak) +

2 for AVk = N and ACk = L
1 for AVk = N and ACk = H
0 otherwise

(3)

For example, the PS for k = CVE− 2021− 33574 is calculated as:

PSCVE−2021−33574 = 0.1667(6.4125 + 0.85 + 0.77 + 0.56 + 0.56 + 0.56) + 2

Electronics 2022, 11, 3580 17 of 22

The PS1 column in Table 7 shows the result for case 1 by ACVRM for each CVE-ID
that affected our test environments.

• Case 2: The organization does not consider AC and A as important criteria in this
case. Hence, w3 = w6 = 0. However, the organization weighs the rest of criteria
homogeneously in PS calculation, i.e., w1 = w2 = w4 = w5 = w6 = 0.25 and
∑6

i=1 wi = 1. Equation (4) is derived from Equation (2) for each CVE-ID, i.e., k, in
case 2.

PSk = 0.25(SCk + AVk) + 0 ∗ ACk + 0.25(Ck + Ik) + 0 ∗ Ak +

2 for AVk = N and ACk = L
1 for AVk = N and ACk = H
0 otherwise

(4)

For example, the PS for CVE-2021-33574 is calculated as:

PSCVE−2021−33574 = 0.25(6.4125 + 0.85) + 0 ∗ 0.77 + 0.25(0.56 + 0.56) + 0 ∗ 0.56 + 2

The result for case 2 by ACVRM is preseted in the PS2 column in Table 7.
• Case 3: the organization only considers the SC value for prioritizing the patch. Hence,

the weight is distributed as w1 = 1 and w2 = w3 = w4 = w5 = w6 = 0. Equation (5)
is obtained from Equation (2) for each CVE-ID, i.e., k, in case 3.

PSk = 1 ∗ SCk + 0 ∗ (AVk + ACk + Ck + Ik + Ak) +

2 for AVk = N and ACk = L
1 for AVk = N and ACk = H
0 otherwise

(5)

For example, the PS for k = CVE− 2021− 33574 is calculated as:

PSCVE−2021−33574 = 1 ∗ 6.4125 + 0 ∗ (0.85 + 0.77 + 0.56 + 0.56 + 0.56) + 2

Table 7 shows the outcome of case 3 for each CVE-ID in the PS3 column.
• Case 4: in this case, the organization weights all criteria based on its risk appetite. The

weight is distributed as w1 = 0.35, w2 = 0.2, w3 = w4 = w6 = 0.1, and w5 = 0.15 in
the PS calculation. Equation (6) is derived from Equation (2) for each CVE-ID, i.e., k, in
case 4.

PSk = 0.35 ∗ SCk + 0.2 ∗ AVk + 0.1(ACk + Ck) + 0.15 ∗ Ik + 0.1 ∗ Ak +

2 for AVk = N and ACk = L
1 for AVk = N and ACk = H
0 otherwise

(6)

For example, the PS for k = CVE− 2021− 33574 is calculated as:

PSCVE−2021−33574 = 0.35 ∗ 6.4125 + 0.2 ∗ 0.85 + 0.1(0.77 + 0.56) + 0.15 ∗ 0.56 + 0.1 ∗ 0.56 + 2

The result of PS for case 4 is presented in column PS4 in Table 7 for the CVE-IDs that
affected our test environments.

Analysing the Patch Prioritization

In this section, we compare the patch prioritization offered by Rudder’s CVE-plugin
and four cases of ACVRM. Table 8 presents the patch order for different cases. Rudder
CVE-plugin provided patch prioritization based on the SC from general purpose VD and
NVD and does not reflect the organization’s context.

We define ∆ as the difference between the position in patch priority (Pk,*) between
Rudder and ACVRM cases as:

∆k = Pk,rudder − Pk,ACVRM (7)

Electronics 2022, 11, 3580 18 of 22

where k is CVE-ID. The ∆ column after each case in Table 8 shows the changes in the
CVE-ID position compared with the Rudder CVE-plugin. For example, CVE-2021-33574
has a priority 1 by Rudder while it becomes priority seven in case 1 and priority eight in
case 2. The ∆ value with a negative sign means the position of the CVE-ID moves down
(lower priority). In contrast, the positive value means the place of CVE-ID moves up (higher
priority) in the priority list. The ∆ is zero when the position of the CVE-ID is the same in
the priority list provided by Rudder and ACVRM case. The CVE-ID with priority one will
be patched first, and the CVE-ID with priority twenty-four in our list will be the last to
be patched.

We observed that the CVE-IDs that could be exploited from networks with a low attack
complexity gain higher priority (e.g., priority 1–11) by ACVRM compared with Rudder
(e.g., priority 1–21). The priority position in Table 8 shows that only five CVE-IDs (e.g.,
CVE-2020-8794, CVE-2020-11651, CVE-2021-27135, CVE-2021-3449, CVE-2021-41617) were
of the same priority in ACVRM cases.

After reviewing the ∆ value, we found that CVE-2020-8831 obtains priority twenty-
four in Rudder and ACVRM cases 1, 3, and 4. Case 2 of ACVRM does not have any similar
priority position compared with Rudder. We also noticed that thirteen CVE-IDs achieved
a lower priority position in Case 2 of ACVRM, while the number of CVE-IDs is eleven in
other cases. In addition, we visualized the change in each vulnerability position for all cases
in Figure 7. As shown in Figure 7, the position of five vulnerabilities (e.g., CVE-2021-33574,
CVE-2021-27135, CVE-2020-8794, CVE-2021-4034, CVE-2020-14308) rise for all four cases
where three of them (e.g., CVE-2021-33574, CVE-2021-27135, CVE-2020-14308) increased to
the same order. We also observed that the position of six vulnerabilities (e.g., CVE-2021-
3177, CVE-2021-3156, CVE-2021-22946, CVE-2021-20277, CVE-2021-41617, CVE-2021-32760)
decreased in the priority list in all four cases while two of them (e.g., CVE-2021-32760,
CVE-2021-3177) dropped to exactly the same order.

Table 7. Comparing the PS values in different cases with Rudder

CVE-ID Rudder SC AV AC C I A Add Factor PS 1 PS 2 PS 3 PS 4

CVE-2021-33574 9.8 6.4125 0.85 0.77 0.56 0.56 0.56 2 3.6191 4.0956 8.4125 4.6874

CVE-2021-27135 9.8 8.2000 0.85 0.77 0.56 0.56 0.56 2 3.9171 4.5425 10.2000 5.3130

CVE-2021-3177 9.8 7.2750 0.85 0.77 0.56 0.56 0.56 2 3.7629 4.3113 9.2750 4.9893

CVE-2020-11651 9.8 8.2500 0.85 0.77 0.56 0.56 0.56 2 3.9254 4.5550 10.2500 5.3305

CVE-2020-8794 9.8 8.5667 0.85 0.77 0.56 0.56 0.56 2 3.9782 4.6342 10.5667 5.4413

CVE-2021-3796 8.8 6.7500 0.55 0.77 0.56 0.22 0.56 0 1.5686 2.0200 6.7500 2.6945

CVE-2021-30465 8.5 7.3500 0.85 0.44 0.56 0.56 0.56 1 2.7203 3.3300 8.3500 3.9825

CVE-2021-20179 8.1 7.4000 0.85 0.77 0.56 0.56 0 2 3.6903 4.3425 9.4000 4.9770

CVE-2020-28374 8.1 7.4000 0.85 0.77 0.56 0.56 0 0 3.6903 4.3425 9.4000 4.9770

CVE-2021-22555 7.8 7.2500 0.55 0.77 0.56 0.56 0.56 0 1.7087 2.2300 7.2500 2.9205

CVE-2021-4192 7.8 6.6250 0.55 0.77 0.56 0.56 0.56 0 1.6045 2.0738 6.6250 2.7018

CVE-2021-4034 7.8 7.2500 0.55 0.77 0.56 0.56 0.56 0 1.7087 2.2300 7.2500 2.9205

CVE-2021-3778 7.8 6.6250 0.55 0.77 0.56 0.56 0.56 0 1.6045 2.0738 6.6250 2.7018

CVE-2021-3156 7.8 7.8750 0.55 0.77 0.56 0.56 0.56 0 1.8129 2.3863 7.8750 3.1393

CVE-2021-22946 7.5 7.1000 0.85 0.77 0.56 0 0 2 3.5470 4.1275 9.1000 4.7880

CVE-2021-20277 7.5 7.0000 0.85 0.77 0 0 0.56 2 3.5303 3.9625 9.0000 4.7530

CVE-2021-3712 7.4 6.4250 0.85 0.44 0.56 0 0.56 1 2.4728 1.9588 7.4250 3.5748

CVE-2021-41617 7 5.3625 0.55 0.44 0.56 0.56 0.56 0 1.3390 1.7581 5.3625 2.2269

CVE-2020-13776 6.7 5.2125 0.55 0.44 0.56 0.56 0.56 0 1.3140 1.7206 5.2125 2.1744

CVE-2020-14308 6.4 6.5500 0.55 0.44 0.56 0.56 0.56 0 1.5370 2.0550 6.5500 2.6425

CVE-2021-32760 6.3 6.3000 0.85 0.77 0.22 0.22 0.22 2 3.4303 3.8975 8.3000 4.5290

CVE-2021-3449 5.9 6.3000 0.85 0.44 0 0 0.56 0 1.3586 1.7875 6.3000 2.4750

CVE-2021-33910 5.5 5.2375 0.55 0.77 0 0 0.56 0 1.1865 1.4469 5.2375 2.0761

CVE-2020-8831 5.5 5.1500 0.55 0.77 0 0.56 0 0 1.1719 1.5650 5.1500 2.0735

Electronics 2022, 11, 3580 19 of 22

Table 8. Patch priority list in test environments by Rudder CVE-plugin and ACVRM.

Rudder Case 1 Case 2 Case 3 Case 4

Priority CVE-ID CVE-ID ∆ CVE-ID ∆ CVE-ID ∆ CVE-ID ∆

1 CVE-2021-33574 CVE-2020-8794 4 CVE-2020-8794 4 CVE-2020-8794 4 CVE-2020-8794 4

2 CVE-2021-27135 CVE-2020-11651 2 CVE-2020-11651 2 CVE-2020-11651 2 CVE-2020-11651 2

3 CVE-2021-3177 CVE-2021-27135 −1 CVE-2021-27135 −1 CVE-2021-27135 −1 CVE-2021-27135 −1

4 CVE-2020-11651 CVE-2021-3177 −1 CVE-2020-28374 5 CVE-2020-28374 5 CVE-2021-3177 −1

5 CVE-2020-8794 CVE-2020-28374 4 CVE-2021-20179 3 CVE-2021-20179 3 CVE-2020-28374 4

6 CVE-2021-3796 CVE-2021-20179 2 CVE-2021-3177 −3 CVE-2021-3177 −3 CVE-2021-20179 2

7 CVE-2021-30465 CVE-2021-33574 −6 CVE-2021-22946 8 CVE-2021-22946 8 CVE-2021-22946 8

8 CVE-2021-20179 CVE-2021-22946 7 CVE-2021-33574 −7 CVE-2021-20277 8 CVE-2021-20277 8

9 CVE-2020-28374 CVE-2021-20277 7 CVE-2021-20277 7 CVE-2021-33574 −8 CVE-2021-33574 −8

10 CVE-2021-22555 CVE-2021-32760 11 CVE-2021-32760 11 CVE-2021-30465 −3 CVE-2021-32760 11

11 CVE-2021-4192 CVE-2021-30465 −4 CVE-2021-30465 −4 CVE-2021-32760 10 CVE-2021-30465 −4

12 CVE-2021-4034 CVE-2021-3712 5 CVE-2021-3156 2 CVE-2021-3156 2 CVE-2021-3712 5

13 CVE-2021-3778 CVE-2021-3156 1 CVE-2021-4034 −1 CVE-2021-3712 4 CVE-2021-3156 1

14 CVE-2021-3156 CVE-2021-4034 −2 CVE-2021-22555 −4 CVE-2021-4034 −2 CVE-2021-4034 −2

15 CVE-2021-22946 CVE-2021-22555 −5 CVE-2021-3778 −2 CVE-2021-22555 −5 CVE-2021-22555 −5

16 CVE-2021-20277 CVE-2021-3778 −3 CVE-2021-4192 −5 CVE-2021-3796 −10 CVE-2021-3778 −3

17 CVE-2021-3712 CVE-2021-4192 −6 CVE-2020-14308 3 CVE-2021-3778 −4 CVE-2021-4192 −6

18 CVE-2021-41617 CVE-2021-3796 −12 CVE-2021-3796 −12 CVE-2021-4192 −7 CVE-2021-3796 −12

19 CVE-2020-13776 CVE-2020-14308 1 CVE-2021-3712 −2 CVE-2020-14308 1 CVE-2020-14308 1

20 CVE-2020-14308 CVE-2021-3449 2 CVE-2021-3449 2 CVE-2021-3449 2 CVE-2021-3449 2

21 CVE-2021-32760 CVE-2021-41617 −3 CVE-2021-41617 −3 CVE-2021-41617 −3 CVE-2021-41617 −3

22 CVE-2021-3449 CVE-2020-13776 −3 CVE-2020-13776 −3 CVE-2021-33910 1 CVE-2020-13776 −3

23 CVE-2021-33910 CVE-2021-33910 0 CVE-2020-8831 1 CVE-2020-13776 −4 CVE-2021-33910 0

24 CVE-2020-8831 CVE-2020-8831 0 CVE-2021-33910 −1 CVE-2020-8831 0 CVE-2020-8831 0

Figure 7. The ∆ value of patch-priority orders in Rudder CVE-plugin and Case 1-4 of ACVRM.

We also noticed that Rudder listed the CVE-IDs with the same SC randomly (e.g.,
priority 1 to 5 have a SC = 9.8, and the position is not related to the age of the CVE-IDs).
However, ACVRM considered the age of the CVE-IDs in prioritization when the PS value is

Electronics 2022, 11, 3580 20 of 22

equal (e.g., CVE-2020-28374 and CVE-2021-20179 in case 1 have the same PS value but the
CVE-2020-28374 gains the higher priority as it has been known publicly for a longer time).

9. Conclusions

The increasing number of publicly known vulnerabilities introduces a challenge to
VRM as classification and evaluation phases need experts’ intervention. Security experts
should evaluate the vulnerability risk for organizations and define patch prioritization,
which is time-consuming and resource-intensive. Therefore, we need to improve VRM to
address the challenges mentioned earlier. We introduce ACVRM to automate the VRM
procedure and reduce experts’ intervention. Hence, we need to learn how experts evaluate
and prioritize patching. In this study, we focus on the classification and evaluation process
of VRM in the context of a given organization. We performed an analysis in three phases
as follows:

1. We conducted a literature study and expert interviews to learn which criteria play a
role in patch prioritization. We defined the selected criteria for patch prioritization
based on the result obtained in our study. We found that the security score, attack vec-
tor, attack complexity, confidentiality, integrity, and availability values and exposure
level of the AUS are essential in deciding the patch order. Therefore, we define the
PS based on the selected criteria and the possibility of weighting each criterion in the
organization’s context.

2. We designed and implemented phase 2 of ACVRM, which consists of four modules:
filter, evaluation, sort, and patch prioritization. We created the environments of the
test organization in the public cloud. The experiment was executed for four cases
where each case’s criteria were weighted differently.

3. We verified the result of our phase 2 implementation by analyzing the outcome of
each case. We also compared the patch prioritization of our tool with the Rudder
CVE-plugin. Our result shows that the ACVRM could adjust the patch prioritization
for each organization with less effort from security experts. The security experts only
set the VMM and weigh the selected criteria. Our solution also allows the security
experts to add more criteria to the evaluation module if needed.

Our study showed how an organization could customize patch priority based on its
context by selecting VMM mode and weighting the criteria. We presented the improvement
in the VRM procedure by reducing evaluation time and experts’ intervention. The execution
time of the phase 2 was seven minutes in our test environment, including four modules
(e.g., filter, evaluation, sort, and patch prioritization). However, the execution time needs to
be studied further.

In the future, we want to continue the implementation of phase 3 of ACVRM and
address the challenges in patch management, including the automated validation of the
patch deployment, verification of the side effects of patching vulnerabilities, and possibility
of a generalized verification process. Another possible future direction could be using a
machine-learning algorithm to improve patch prioritization based on the patch verification
feedback. Finally, we could investigate the time efficiency of our solution and compare
the patch prioritization of our proposed solution with the recently published state-of-the-
art approaches.

Author Contributions: Conceptualization, V.A.M., P.A. and E.C.; methodology, V.A.M., P.A. and
E.C.; software, V.A.M.; validation, V.A.M., P.A. and E.C.; formal analysis, V.A.M., P.A. and E.C.;
investigation, V.A.M.; resources, E.C.; data curation, V.A.M; writing—original draft preparation,
V.A.M., P.A. and E.C.; writing—review and editing, V.A.M., P.A. and E.C.; visualization, V.A.M., P.A.
and E.C.; supervision, E.C. and P.A.. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Electronics 2022, 11, 3580 21 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A Availability
AC Attack complexity
ACVRM Automated context-aware vulnerability risk management
AUS Application/unit/service
AV Attack vector
C Confidentiality
CIS Center of internet security
CVE Common vulnerabilities and exposures
CVSS Common vulnerability scoring system
DSA Debian Security Advisories
I Integrity
NVD Natinal Vulnerability Database
OC Organization context
PoC Proof of concept
PS Patch score
RHSA RedHat Security Advisory
SC Severity score
USN Ubuntu Security Notice
VD Vulnerability database
VMM Vulnerability management mode
VRM Vulnerability risk management

References
1. Top Routinely Exploited Vulnerabilities. Available online: https://www.cisa.gov/uscert/ncas/alerts/aa22-117a (accessed on

12 June 2022).
2. Costs and Consequences of Gaps in Vulnerability Response. Available online: https://www.servicenow.com/lpayr/ponemon-

vulnerability-survey.html (accessed on 26 August 2022).
3. Vulnerability and Threat Trends Report 2021; Technical Report; SkyBox Security, 2021. Available online: https://www.skyboxsecurity.

com/resource-library/?resource_search=&resource_type[]=report (accessed on 18 October 2022).
4. Open Vulnerability Assessment Scanner (OpenVAS). Available online: https://www.openvas.org/ (accessed on 18 October 2022).
5. Nessus Vulnerability Scanner. Available online: https://www.tenable.com/products/nessus (accessed on 18 October-2022).
6. Ahmadi, V.; Arlos, P.; Casalicchio, E. Normalization of Severity Rating for Automated Context-aware Vulnerability Risk

Management. In Proceedings of the 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems
Companion (ACSOS-C), Washington, DC, USA, 17–21 August 2020.

7. Ahmadi, V.; Arlos, P.; Casalicchio, E. Normalization Framework for Vulnerability Risk Management in Cloud. In Proceedings of
the 2021 IEEE International Conference on Future Internet of Things and Cloud (FiCloud), Rome, Italy, 9 November 2021.

8. NIST National Vulnerability Database. Available online: https://nvd.nist.gov/ (accessed on 15 October 2022).
9. RedHat Security Advisories. Available online: https://access.redhat.com/security/security-updates/#/ (accessed on

10 October 2022).
10. Ubuntu Security Notice. Available online: https://usn.ubuntu.com/ (accessed on 8 September 2022).
11. Apache Security Information. Available online: https://www.apache.org/security/projects.html (accessed on 16 September 2022).
12. CIS Controls . Available online: http://www.cisecurity.org/controls/ (accessed on 10 October 2022).
13. EU Cybersecurity Act. Available online: https://eur-lex.europa.eu/eli/reg/2019/881/oj (accessed on 11 October 2022).
14. European Cybersecurity Certification Scheme for Cloud Services. Available online: https://www.enisa.europa.eu/publications/

eucs-cloud-service-scheme (accessed on 11 October 2022).
15. Homland Security Act 2002. Available online: https://www.dhs.gov/homeland-security-act-2002 (accessed on 15 October 2022).
16. Common Vulnerability Scoring System v3.1: Specification Document. Available online: https://www.first.org/cvss/v3.1

/specification-document (accessed on 15 October 2022).
17. Spanos, G.; Sioziou, A.; Angelis, L. WIVSS: a new methodology for scoring information systems vulnerabilities. In Proceedings

of the 17th Panhellenic Conference on Informatics, Thessaloniki, Greece, 19–21 September 2013.
18. Fruhwirth, C.; Mannisto, T. Improving CVSS-based vulnerability prioritization and response with context information. In

Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista,
FL, USA, 6 November 2009.

https://www.cisa.gov/uscert/ncas/alerts/aa22-117a
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.servicenow.com/lpayr/ponemon-vulnerability-survey.html
https://www.skyboxsecurity.com/resource-library/?resource_search=&resource_type[]=report
https://www.skyboxsecurity.com/resource-library/?resource_search=&resource_type[]=report
https://www.openvas.org/
https://www.tenable.com/products/nessus
https://nvd.nist.gov/
https://access.redhat.com/security/security-updates/#/
https://usn.ubuntu.com/
https://www.apache.org/security/projects.html
http:// www.cisecurity.org/controls/
https://eur-lex.europa.eu/eli/reg/2019/881/oj
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme
https://www.dhs.gov/homeland-security-act-2002
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document

Electronics 2022, 11, 3580 22 of 22

19. Cyber Security Report 2021 by Check Point Research. Available online: https://www.checkpoint.com/downloads/resources/
cyber-security-report-2021.pdf (accessed on 16 October 2022).

20. Zhang, F.; Huff, P.; McClanahan, K.; Li, Q. A Machine Learning-based Approach for Automated Vulnerability Remediation
Analysis. In Proceedings of the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France,
29 June 2020–1 July 2020.

21. Aota, M.; Kanehara, H.; Kubo, M.; Murata, N.; Sun, B.; Takahashi, T. Automation of Vulnerability Classification from its
Description using Machine Learning. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC),
Rennes, France, 7–10 July 2020.

22. Wang, X.; Wang, S.; Sun, K.; Batcheller, A.; Jajodia, S. A Machine Learning Approach to Classify Security Patches into
Vulnerability Types. In Proceedings of the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon,
France, 29 June 2020–1 July 2020.

23. Walkowski, M.; Krakowiak, M.; Jaroszewski, M.; Oko, J.; Sujecki, S. Automatic CVSS-based vulnerability prioritization and
response with context information. In Proceedings of the 2021 International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split, Hvar, Croatia, 23-25 September 2021.

24. Yadav, G.; Gauravaram, P.; Jindal, A.K.; Paul, K. SmartPatch: A patch prioritization framework. Comput. Ind. 2022, 137, 103595.
[CrossRef]

25. Shah, A.; Farris, K.A.; Ganesan, R.; Jajodia, S. Vulnerability selection for remediation: An empirical analysis. J. Def. Model. Simul.
2022, 19. [CrossRef]

26. Jiang, Y.; Atif, Y. Towards automatic discovery and assessment of vulnerability severity in cyber–physical systems. Array 2022,
15, 100209. [CrossRef]

27. Common Vulnerabilities and Exposures (CVE). Available online: https://cve.mitre.org/ (accessed on 18 October 2022).
28. Cloud Computing Compliance Criteria Catalogue (C5). Available online: https://www.bsi.bund.de/EN/Topics/CloudComputing/

Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html (accessed on 18 October 2022).
29. Al-Ayed, A.; Furnell, S.; Zhao, D.; Dowland, P. An automated framework for managing security vulnerabilities. Inf. Manag.

Comput. Secur. 2005, 13, 156–166. [CrossRef]
30. Zhang, F.; Li, Q. Dynamic Risk-Aware Patch Scheduling. In Proceedings of the 2020 IEEE Conference on Communications and

Network Security (CNS), Avignon, France, 29 June 2020–1 July 2020.
31. Araujo, F.; Taylor, T. Improving cybersecurity hygiene through JIT patching. In Proceedings of the Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, New
York, NY, USA, 8–13 November 2020.

32. Patil, R.; Modi, C. Designing an efficient framework for vulnerability assessment and patching (VAP) in virtual environment of
cloud computing. J. Supercomput. 2019, 75, 2862–2889. [CrossRef]

33. Lee, J.H.; Sohn, S.G.; Chang, B.H.; Chung, T.M. PKG-VUL: Security Vulnerability Evaluation and Patch Framework for
Package-Based Systems. ETRI J. 2009, 26. [CrossRef]

34. Angelini, M.; Blasilli, G.; Catarci, T.; Lenti, S.; Santucci, G. Vulnus: Visual vulnerability analysis for network security. IEEE Trans.
Vis. Comput. Graph. 2018 25, 183–192. [CrossRef]

35. Lin, C.H.; Chen, C.H.; Laih, C.S. A study and implementation of vulnerability assessment and misconfiguration detection. In
Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference, Yilan, Taiwan, 9–12 December 2008.

36. Li, Z.; Tang, C.; Hu, J.; Chen, Z. Vulnerabilities Scoring Approach for Cloud SaaS. In Proceedings of the 2015 IEEE 12th
International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic
and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its
Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015.

37. Torkura, K.A.; Cheng, F.; Meinel, C. A proposed framework for proactive vulnerability assessments in cloud deployments. In
Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK,
14–16 December 2015.

38. Olswang, A.; Gonda, T.; Puzis, R.; Shani, G.; Shapira, B.; Tractinsky, N. Prioritizing vulnerability patches in large networks. Expert
Syst. Appl. 2022, 193, 116467. [CrossRef]

39. Gusenbauer, M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic
databases. Scientometrics 2019, 118, 177–214. [CrossRef]

40. Common Configuration Enumeration (CCE). Available online: https://ncp.nist.gov/cce/index (accessed on 8 September 2022).
41. Zhang, D.C.; Wang, Y. An empirical approach to identifying subject matter experts for the development of situational judgment

tests. J. Pers. Psychol. 2021, 20, 151–163. [CrossRef]
42. Isenberg, T.; Isenberg, P.; Chen, J.; Sedlmair, M.; Möller, T. A systematic review on the practice of evaluating visualization. IEEE

Trans. Vis. Comput. Graph. 2013, 19, 2818–2827. [CrossRef] [PubMed]
43. Rudder. Available online: https://www.rudder.io/ (accessed on 2 September 2022).
44. Rudder CVE Plugin. Available online: https://docs.rudder.io/reference/6.2/plugins/cve.html (accessed on 16 October 2022).
45. Debian Security Tracker. Available online: https://www.debian.org/security/#DSAS (accessed on 29 September 2022).

https://www.checkpoint.com/downloads/resources/cyber-security-report-2021.pdf
https://www.checkpoint.com/downloads/resources/cyber-security-report-2021.pdf
http://doi.org/10.1016/j.compind.2021.103595
http://dx.doi.org/10.1177/1548512919874129
http://dx.doi.org/10.1016/j.array.2022.100209
https://cve.mitre.org/
https://www.bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html
https://www.bsi.bund.de/EN/Topics/CloudComputing/Compliance_Criteria_Catalogue/Compliance_Criteria_Catalogue_node.html
http://dx.doi.org/10.1108/09685220510589334
http://dx.doi.org/10.1007/s11227-018-2698-6
http://dx.doi.org/10.4218/etrij.09.0108.0578
http://dx.doi.org/10.1109/TVCG.2018.2865028
http://dx.doi.org/10.1016/j.eswa.2021.116467
http://dx.doi.org/10.1007/s11192-018-2958-5
https://ncp.nist.gov/cce/index
http://dx.doi.org/10.1027/1866-5888/a000279
http://dx.doi.org/10.1109/TVCG.2013.126
http://www.ncbi.nlm.nih.gov/pubmed/24051849
https://www.rudder.io/
https://docs.rudder.io/reference/6.2/plugins/cve.html
https://www.debian.org/security/#DSAS

	Introduction
	Related Work
	Automated Context-Aware Vulnerability Risk Management (ACVRM)
	Prioritization
	Filter
	Evaluation
	Sort
	Patching Prioritization

	Evaluation Criteria and Patch Score
	Analysis of Vulnerability Evaluation Criteria in the Literature
	Experts' Interview
	Selected Criteria
	Patch Score (PS)

	Design and Implementation
	Experimental Validation of PoC
	Phase 1: Data Collection and Pre-Processing
	Phase 2: Prioritization

	Results and Discussion
	Conclusions
	References

