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Abstract 

Network anomaly detection for critical infrastructure supervisory control and data 
acquisition (SCADA) systems is the first line of defense against cyber-attacks. Often 
hybrid methods, such as machine learning with signature-based intrusion detection 
methods, are employed to improve the detection results. Here an attempt is made to 
enhance the support vector-based outlier detection method by leveraging behav-
ioural attribute extension of the network nodes. The network nodes are modeled as 
graph vertices to construct related attributes that enhance network characterisation 
and potentially improve unsupervised anomaly detection ability for SCADA network. 
IEC 104 SCADA protocol communication data with good domain fidelity is utilised for 
empirical testing. The results demonstrate that the proposed approach achieves signifi-
cant improvements over the baseline approach (average F1 score increased from 0.6 to 
0.9, and Matthews correlation coefficient (MCC) from 0.3 to 0.8). The achieved outcome 
also surpasses the unsupervised scores of related literature. For critical networks, the 
identification of attacks is indispensable. The result shows an insignificant missed-alert 
rate ( 0.3% on average), the lowest among related works. The gathered results show 
that the proposed approach can expose rouge SCADA nodes reasonably and assist in 
further pruning the identified unusual instances.

Keywords: Supervisory control and data acquisition, Network intrusion detection, 
Machine learning, IEC 60870-5-104, Attribute extension

Introduction
Critical infrastructure is under constant threat (Tariq et al. 2019). A critical infrastruc-
ture (CI) is a system or part of a system that maintains vital societal functions. Examples 
of CI sectors include; energy, oil and gas, water and waste treatment, and transportation. 
The disruption or destruction of such a system would result in failure for the society to 
function and can negatively affect its economy and safety.

CIs widely rely on supervisory control and data acquisition (SCADA) systems to 
manage and control CI operations (Tariq et  al. 2019). For example, the SCADA sys-
tem in the energy power grid would be responsible for the transmission and distribu-
tion of electricity. A SCADA system performs centralised monitoring and control for 
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geographically distributed remote units, often scattered over thousands of square kilom-
eters. The gathered data results in automated or operator-driven supervisory commands 
for the field units, e.g., open and close valves/breakers, share sensor data or monitor the 
local environment for alarm conditions (Zhu et al. 2011). Since the SCADA system is an 
essential element within the CI, it becomes vital to protect it from the threats that exist 
in the cyber-landscape. As Industrial Control System (ICS) / SCADA system security 
experts warn, “it is not a matter of if it (ICS/SCADA system) will fail, but when it will 
fail” (Assante and Lee 2015).

SCADA systems usually are zoned out from the external cyber-threats through air-
gapping, intrusion detection, and prevention systems, and firewalls (Pliatsios et  al. 
2020). However, by exploiting SCADA-specific protocol vulnerabilities and launching 
a successful malware attempt, the intruder can bypass the security measures and gain 
unauthorised access to the critical network (Assante and Lee 2015; Pliatsios et al. 2020). 
Stuxnet and BlackEnergy attacks on control systems highlighted the lack of awareness 
of the security of these systems. It showed that the hacker could passively listen to the 
SCADA communication and deliver the attack successfully once inside the network 
(Assante and Lee 2015).

On the one hand, the SCADA systems have become intelligent, real-time, and inter-
connected with the integration of the Internet of Things and Cloud. On the other hand, 
these advancements have made the SCADA system more prone to network vulner-
abilities (Tariq et al. 2019). It is, therefore, imperative to detect anomalies proactively in 
SCADA networks and meet the growing security challenges. Thus, continuous effort is 
required by industry and academia alike to monitor and safeguard SCADA networks.

Generally, SCADA intrusion detection systems rely on the network traffic data, the 
host process data, or the data related to the physical event or operation. The approaches 
to intrusion detection include signature-based detection, machine learning-based anom-
aly detection, and deep learning-based anomaly detection. Suricata is an example of sig-
nature-based detection that utilises SCADA network traffic data to detect cyberattacks 
(Wong et  al. 2017). In Robles-Durazno et  al. (2018), various machine learning-based 
anomaly detection methods are applied to classify signal deviations in a water supply sys-
tem. Whereas, in Gaggero et al. (2020), the undesired working conditions of the distrib-
uted energy control system are identified using a deep learning-based anomaly detection 
technique. We also find a hybrid intrusion detection approach that applies both network 
protocol traffic data and physical behaviour characteristics to isolate SCADA network 
anomalies (Yang et al. 2016). Our work focusses on SCADA network traffic data and the 
application of a machine learning-based anomaly detection approach.

Canonical data-driven approaches for CI can detect new anomalies at the cost of a 
high error rate (Rakas et al. 2020; Panagiotis et al. 2021). This is because of the overlap-
ping nature of the normal and anomalous communication packets, making it difficult for 
the detector to separate the network anomalies effectively. To reduce machine learning-
based network anomaly detection errors, we approach the issue by extending the input 
set (or attribute set) of a standard SCADA communication protocol.

We see the application of composing advanced attributes for IEC 61870 SCADA pro-
tocol in Linda et al. (2009), where the authors propose neural networks to extract the 
trends in network communication to perform intrusion detection. In Mantere et  al. 
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(2013), an analysis of IP traffic traces in SCADA is presented, and an intrusion detec-
tion system using machine learning-based techniques is suggested as future work. To 
the best of our knowledge, attribute extension has not been investigated for anomaly 
detection in the IEC 60870-5-104 (or IEC 104) SCADA protocol. Hence, in this study, we 
investigate the possibility of analysing the SCADA network through topological behav-
iour and extending the attribute space for improving anomaly detection performance.

The intuition behind attribute extension is to represent the SCADA network behav-
ior by modeling the relationship between interacting SCADA nodes. We perform the 
detection of attacks for IEC 60870-5-104 communication protocol, both with and with-
out attribute extension. IEC 104 is a widely implemented telecontrolling protocol and is 
prone to vulnerabilities (György and Holczer 2020). In this study, we focus on IEC 104 
SCADA protocol and derive new attributes to improve one-class SVM anomaly detec-
tion performance.

One-class support vector machine (SVM) algorithm is a popular machine learning 
intrusion detection algorithm (Tsai et al. 2009; Thakkar and Lohiya 2021). The learning 
algorithm is also an acknowledged choice for intrusion detection in the SCADA net-
work (Rakas et al. 2020). Furthermore, recent works on standard SCADA-specific pro-
tocol (IEC 104) relayed the algorithm’s stable performance for detecting different attacks 
(Egger et al. 2020; Anwar et al. 2021). Egger et al. (2020) compared intrusion detection 
of the signature-based method with machine learning methods. Supervised and semi-
supervised (with one-class SVM) learning performed better intrusion detection, while 
Snort signature-based gave worse (Egger et al. 2020). The same protocol dataset is sys-
tematically evaluated with other learning algorithms in Anwar et  al. (2021). Mahwish 
et  al. evaluated the SCADA network intrusion detection ability of distance-based, 
density-based, and kernel-based learning methods in an unsupervised setting for IEC 
104 communication protocol. The comparison of detection methods revealed that on 
average one-class SVM method performs steadily for the given SCADA protocol data 
in reference to other candidate learning methods. In the current work, we draw a com-
parison with study (Anwar et al. 2021). Realising the predictable and steady performance 
of one-class SVM for SCADA protocol and its ability to segregate communication net-
work data, we intend to amplify the outlier detection capability of one-class SVM for the 
IEC 104 protocol. Briefly, we explore the following research question: To what extent can 
attribute extension improve one-class SVM anomaly detection in IEC 104 protocol com-
munication within SCADA network?

More explicitly, we make the following contributions:

• A method for extending the attributes to project the SCADA network behaviour is 
presented.

• The impact of the extended attribute set is evaluated using machine learning-based 
anomaly detection technique with the Support Vector Machine algorithm. The study 
describes the improved machine learning model design and implementation; and 
compares the performance with the baseline results and previous research.
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Background and related work
Introduction to SCADA system

SCADA system (Fig. 1) is instilled in critical infrastructure architecture. It is a process 
monitoring and controlling system that perform geographically distributed operations. 
One of the system’s main components is the remote terminal unit (RTU). The RTU is 
an intermediate node between field devices and a master unit that connects with the 
SCADA human machine interface. RTU exchanges sensory data with the master unit 
and sends specified control commands to the field devices. The human machine inter-
face (HMI) sits between the SCADA operator and RTUs. The master unit gathers the 
data, which the HMI translates to enable interaction with the operator. The operator 
monitors the system via SCADA HMI, troubleshoots alerts, and performs the necessary 
control operations. The operator can access the SCADA HMI remotely, or through the 
Internet (Zhu et al. 2011).

SCADA network communication protocols are adopted to facilitate continuous and 
reliable communication within the SCADA system. These communication protocols 
consider the processing capabilities of SCADA nodes and the communication require-
ments of industrial applications. Standard protocols used in electrical applications and 
power system automation for remote control and monitoring include a set of IEC 60870 

Fig. 1 Abstraction of SCADA system (Zhu et al. 2011; Maynard et al. 2018)
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protocols, Modbus and DNP3 (more common outside of Europe) (Zhu et al. 2011; Pli-
atsios et al. 2020). IEC 60870-5-104 (part of the IEC 60870 standard) is a widely adopted 
protocol for telecontrol in European power transmission, distribution, and control sys-
tems, despite its security vulnerabilities, which include lack of authentication, integrity 
checking, and encryption (Matousek 2017; Radoglou-Grammatikis et al. 2019; György 
and Holczer 2020). Due to the widespread interconnectivity and complexity of IEC 
60870-5-104 (or IEC 104), the vendors and utility operators are reluctant to roll-out its 
successor IEC 62351, which is more secure than IEC 104.

Here we focus on the IEC 104 protocol. IEC 104 operates using the client-server com-
munication model. Under the protocol, every node in the network is either a controlling 
station (master) or a controlled station (slave) (Matousek 2017). The transmission hap-
pens in the monitor direction, i.e., from the controlled station (typically an RTU) to the 
controlling station (e.g., SCADA HMI). Or the control direction, i.e., from the control-
ling station to the controlled station (Matousek 2017).

The IEC 104 protocol defines the Application layer of the OSI model and uses Ethernet 
technology for the link layer. IEC 104 enables the communication between the control-
ling node and the controlled nodes via a TCP/IP communication network. The IEC 104 
protocol data transmits in either of the following three frame formats: (i) format-U is for 
the control functions, e.g., the controlling node issues START and STOP commands to 
control the data transfer from a controlled node. (ii) format-S is for supervisory com-
mands, e.g., to indicate time-out in case of longer data transmission. (iii) format-I is 
to transfer information in both directions, e.g., interrogation command in the control 
direction or to send measured value in the monitor direction (Matousek 2017).

Anomaly detection in SCADA communication network

It is common for SCADA system operators to protect the SCADA communication net-
work by gathering and parsing the communication protocol packets, e.g., from SCADA 
nodes, and forward them to the intrusion detection system (IDS). The IDS takes parsed 
SCADA protocol packets (i.e., packets where key fields from the protocol frames have 
been identified and dissected, e.g., payload length, IP address, port, etc.) and performs 
monitoring and detection based on the predefined signatures. In the case of a flag, 
the filtering of the protocol packet is performed. Such IDSs perform active monitor-
ing and deep packet inspection often on the edge due to high processing requirements, 
thus, limiting the scope to external threats (Pliatsios et al. 2020). However, the internal 
SCADA network goes unchecked. Similarly, firewalls and anti-virus software shield the 
critical SCADA system only partially from security threats (ENISA 2017).

The European Union Agency for Cybersecurity (ENISA) emphasises the need to moni-
tor the internal and external SCADA communications in the following words, “with-
out active network monitoring, it is very difficult to detect suspicious activity, identify 
potential threats, and quickly react to cyber attacks” (ENISA 2017). An adversary in the 
past accessed the SCADA system by sending an email with malware to an authorised 
SCADA user. The malware helped the attackers to listen to SCADA communication, 
plot and execute the attack and create a backdoor. The attack caused an outage of 6 h 
and affected over 200,000 customers (CISA 2016). Similar other incidents (Assante and 
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Lee 2015; Pliatsios et al. 2020) stresses the need to monitor the internal SCADA protocol 
communication traffic regularly.

Regular analysis of the internal SCADA communication can enrich the operators to 
get visibility of the SCADA traffic which in turn can aid in understanding the routine 
network behavior, thus, enabling outlier identification (Mahmood et al. 2010; Matousek 
et al. 2019). A SCADA architecture to monitor inside and outside network traffic is pre-
sented in Mahmood et  al. (2010). A similar course of action is proposed in Matousek 
et al. (2019) where the research highlights gaining visibility of the network characteris-
tics and operations (such as transmission data, connected nodes, malfunctioning nodes, 
etc.) through analysing network traffic. The authors later extended their work by pro-
posing an anomaly detection approach based on an analysis of SCADA protocol com-
munication to point resource scanning, rogue devices, and unusual traffic (Matousek 
et al. 2020). They employ finite state automata to infer the IEC 104 communication flow 
profile of two SCADA nodes. If the probability of the candidate nodes is lower than the 
defined threshold, the detector will flag it as an unknown communication sequence 
(Matousek et al. 2020).

The sequence attacks in IEC 104 protocol are detected with the use of Discrete-time 
Markov Chains in Ferling et al. (2018). To identify malicious IEC 104 communications 
in SCADA networks a signature-based method is given in Yang et al. (2013), where the 
authors propose inspection of the incoming communication packets based on the cus-
tomised rules and correlations between different protocol fields that represent usual 
SCADA communication flow. Robert Udd et  al. (2016) suggest a hybrid approach for 
anomaly detection, where initially, the SCADA protocol packet passes through allowlists 
(node pairs, TCP control, etc.). If no alert is issued from the initial step, a statistical anal-
ysis of the packet’s timing characteristics is executed. Their work resulted in anomaly 
detection for IEC 104 zero-day attacks. The use of spontaneous packet analysis for IEC 
104 SCADA protocol is utilised for anomaly detection in Lin and Nadjm-Tehrani (2019), 
where the authors investigate the inter-arrival time of the packet. If the inter-arrival time 
value is outside the training interval boundary, an alarm is raised, and the second detec-
tion phase begins. The time-interval flags for individual SCADA nodes are correlated 
to create a time-series in the second phase. The system labels the corresponding node 
anomalous if the threshold exceeds the warning-threshold. This approach is more suit-
able for intermittent anomalies.

An IEC 104 intrusion detection approach similar to Udd et al. (2016) can be seen in a 
recent publication (Grammatikis et al. 2020). In the latest work, an access control mech-
anism is enforced initially to filter unknown ports, Internet Protocol, and Media Access 
Control addresses. Afterward, based on 7 aggregated features (e.g., total packets in the 
forward direction, the total size of the packets in the backward direction, standard devi-
ation size of the packets in the forward direction, etc.) based on different flow intervals, 
outlier analysis is discharged. At higher flow intervals, F1 score slightly increases. In the 
absence of outlier ratio and error rates, it is ambiguous to contextualise the detector’s 
true capability.

Anomaly detection for IEC 104 protocol with supervised machine learning methods, 
such as Decision Tree, Nearest-neighbour, etc., is given in Hodo et  al. (2017). Egger 
et al. compared Snort-based intrusion detection with machine learning-based intrusion 
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detection methods (Egger et  al. 2020). The supervised and semi-supervised machine 
learning methods for IEC 104 SCADA protocol outperformed signature-based intrusion 
detection, and unsupervised learning (Egger et al. 2020). Later, systematic performance 
evaluation of IEC 104 anomaly detection with unsupervised learning approaches was 
accomplished in Anwar et al. (2021). Both studies (Egger et al. 2020; Anwar et al. 2021), 
utilised the same IEC 104 dataset. However, the dataset lacks multiple SCADA nodes; 
therefore, additional exploration is required to assess the performance of the unsuper-
vised learning approach and, if required enhance the outcome. In the present research, 
we address the same knowledge gap.

Evaluations from Egger et  al. (2020); Anwar et  al. (2021); Grammatikis et  al. (2020) 
reveal that for IEC 104 protocol communication, the Support Vector Machine method 
offers stable results for unsupervised anomaly detection. Accordingly, we focus on 
improving SVM unsupervised anomaly detection performance for IEC 104 SCADA 
protocol.

Attribute processing

Machine learning-based network anomaly detection solutions (Tsai et  al. 2009) often 
manipulate the attributes to make better predictions and sometimes to reduce compu-
tational costs of processing large datasets (Flach 2012; Thakkar and Lohiya 2021). To 
underline the need for attribute processing, we diverge it into four modus operandi 
(Fig.  2). Peter Flach defines the observations or instance space as a set of all possible 
objects of interest in machine learning. The instance space can be inconceivably expan-
sive; therefore, a fraction of instances commonly formulate a dataset. Since each instance 
in the dataset is described by a fixed number of attributes, we refer to it as attribute set 
(Flach 2012).

The attributes in the attribute set can be manipulated or processed in one or a 
few of the following methods. Attribute decomposition enables the creation of new 

Fig. 2 Modus operandi of attribute processing in machine learning network anomaly detection
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attributes that are linear combinations of available attributes, e.g., through princi-
pal component analysis (Flach 2012). The same projection method is named dif-
ferently in Thakkar and Lohiya (2021), but both explain the notion of projecting 
higher-dimensional or sparse attribute space to a lower-dimensional attribute space. 
Attribute transformation includes various mechanisms with which the attribute kind 
is transformed. For example, thresholding transforms a quantitative attribute into 
a Boolean attribute by finding a split threshold value. Discretisation transforms a 
continuous attribute into an ordinal attribute kind. The transformation mechanisms, 
generally, are required to scale the attribute values, indicate the presence of a certain 
attribute, or make the attribute meaningful for prediction task (Flach 2012). Attrib-
ute reduction mainly involves attribute selection (Flach 2012; Thakkar and Lohiya 
2021), for example based on attribute importance or relevance. It also includes 
dropping redundant attributes based on correlation analysis. We append a fourth 
method to the list called Attribute extension, which forms the basis of improving the 
machine learning prediction ability of one-class SVM within the context of the IEC 
104 protocol. We define it as a method to construct new attributes based on domain 
knowledge to enrich the available attribute set with more representative attributes.

Topological attribute extension

Graph-based anomaly detection approaches are a branch of data mining and 
machine learning techniques that capture and analyse the interactions between data 
objects of a network or graph to detect potential anomalies (Pourhabibi et al. 2020). 
Such approaches can analyse the connectivity patterns and graph object behaviour 
in communication networks to flag suspicious graph nodes, irregular connectivity 
between nodes, or unusual subgraphs by drawing intra-graph comparisons (Pourha-
bibi et al. 2020). Our approach to model SCADA networks resembles the structural-
based graph method, as described in Pourhabibi et  al. (2020), where we exploit 
topological graph structure and characterise the SCADA network nodes with node 
and edge attributes, thus extending the attribute space.

In Akoglu et  al. (2010) the authors exploit graph node and node-neighbourhood 
characteristics to model the egonet laws and to identify nodes violating the laws. 
Topological and temporal graph attributes are measured in Henderson et al. (2010) 
to analyse volatile network behaviour. The work uses a multi-level approach, where 
the network is analysed from a topological global-level, such that if an unusual event 
is discovered, the analysis moves to the next level (node-level). Application of graph 
node characteristics to group similar nodes was put-forth in Henderson et al. (2012), 
where the nodes with similar degrees and edges were unified under a single role. The 
role assigned to each node can be utilised to find strange nodes within a network.

We exploit the structural attribute discovery for the SCADA network nodes par-
ticipating in the communication network. The characterisation of the SCADA nodes 
and node neighbours yields additional attributes—attribute extension—that enrich 
the attribute space.
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Method
This section describes the research process undertaken (Fig. 3), starting from the extrac-
tion of the original IEC 104 protocol attributes through the machine learning experi-
ment’s design choices. We describe the reconstruction of IEC 104 attribute set and the 
application of the single-class SVM learning algorithm to cluster anomalous exchanges 
in the SCADA protocol communication (step 1 through 11).

Step 1: Data extraction

We extract IEC 104 instances from a simulated IEC 104 protocol communication (May-
nard et al. 2018). The authors in Maynard et al. (2018) generate the protocol communi-
cation data from their standard compliant implementation of testbed framework that 
mimics a real SCADA system. Furthermore, they simulate attacks and make the com-
plete dataset openly available. The log file of the packet capture encapsulates IEC 104 
attributes, including the application layer fields. Due to these strengths, the authors in 
Maynard et al. (2018) recommend using the provided dataset to verify the effectiveness 
of a network-based intrusion detection for SCADA networks, thus, making the dataset 
suitable for our study.

Other than comprehensiveness and imitation of real-world deployment of SCADA 
networks, the chosen dataset is suited for the work since the SCADA network protocol, 
IEC 104, adheres to a shared network master-slave topology (Maynard et al. 2018), mak-
ing it possible to apply the approach and attributes to other IEC 104 datasets and with-
out prior network details.

The initial protocol attribute set (Table 1) is elicited from previous work (Egger et al. 
2020) and knowledge gathered from the domain experts.

The main limitation with IEC 104 dataset in Egger et  al. (2020) is that it does not 
define the direction of the transmission of IEC 104 packets, nor does it provide Ethernet 
address information of the nodes in the SCADA network. IEC 104 communication logs 
include these data and are deemed helpful by domain experts when designing a network 
anomaly detector. Thus, to build our dataset, we consider the transmission direction 
along with the time difference between two transmitted packets, source, and destination 
Ethernet addresses.

Fig. 3 Process flow
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Step 2: Instance labelling

The emulated IEC 104 protocol communication includes two attack simulations: Man-
in-the-Middle (MITM) and Reconnaissance (Maynard et  al. 2018). The protocol logs 
represent 150 min of IEC 104 communication (44373 packets) between 8 nodes: 1x Con-
trolling Node; 5x Controlled Nodes; and 2x Attackers.

Since Maynard et al. (2018) described the attacks, we are able to label the individual 
frames: Label 0: normal; Label 1: MITM intrusion, and Label 2: Reconnaissance intru-
sion. However, the main objective is to segregate normal IEC 104 packets from anom-
alous frames for anomaly detection. Therefore, all attack instances are regrouped as 
anomalous.

After manual labelling of the packets, the dataset contains 41948 normal IEC 104 pro-
tocol packets and 2425 packets with anomalies (Table 2).

Step 3: Attribute reduction

Our IEC 104 dataset has both categorical and continuous data. For missing categorical 
values (TypeID and CauseTx), ’none’ is substituted. It indicates the transmission does not 
have a format-I frame. There are no missing continuous attributes.

We perform correlation analysis for non-categorical attributes, and find Length and 
tcpPduSize have near-perfect correlation. Hence, only Length is retained. Also, this anal-
ysis reveals, ipTtl and tcpHdrLen have no coorelation with any other attribute nor with 
the target class. Further exploration indicates that values for both, ipTtl and tcpHdrLen, 
are constant throughout the simulation, and therefore, are dropped.

Table 1 IEC 104 attributes

Attribute Description

Destination Destination Ethernet address

Source Source Ethernet address

dirFrame Transmission direction of frame

deltaTime Time difference between 2 consecutive frames

Length Ethernet frame length

ipTtl Time to live

tcpHdrLen TCP header length

tcpWinSize TCP window size

tcpPduSize TCP frame size

ipFlag Indicates don’t fragment bit

Type Format type of frame—U, S, I

TypeID Type Identification number of format-I telegram

CauseTx Cause of the Transmission of format-I telegram

Table 2 Dataset class composition

Class No. of 
IEC 104 
packets

Normal 41,948

Anomalous 2425



Page 11 of 22Anwar et al. Energy Informatics            (2022) 5:69  

Step 4: Attribute transformation

The remaining continuous attributes (Length, tcpWinSize and deltaTime) are discritised 
using ordinal uniform binning. The process transforms the attribute values into ordinal 
values, such that each ordinal value or bin corresponds to an interval of the actual quan-
titative values. All the attributes are encoded as dummy variables before implementing 
the next steps.

Step 5: Cross‑validation

The dataset is sliced into two parts: train and test sets to measure the machine learn-
ing models’ detection ability. The first set is used to fit the detection solution, while the 
second set is used to realise if the model will function on new or unseen data. To cir-
cumvent over-fitting, we split the entire dataset 10-times using 5-fold cross-validation. 
We summarise the working of 5-fold cross-validation in the following steps: (i) the entire 
dataset is resampled into 5-folds (Fig. 4), where one fold becomes the test fold and the 
remaining folds are used for training one-class SVM anomaly detection model. (ii) the 
detection performance on each test fold is calculated. For endline approach the extended 
features obtained from the training set are used when classifying the test set instances. 
When new nodes appear in the test set, we assign a default value of zero to the respec-
tive attribute. (iii) after cross-validating 5 test folds, the dataset is again split into 5-folds. 
We perform k-fold cross-validation 10 times, where k is equal to 5. This process is also 
known as 10x5 fold cross-validation.

Evaluating performance on the test folds indicates if the built models will generalise. 
We enforce the class composition in all the split folds to retain the normal to anomalous 
ratio.

Step 6: Attribute extension

We examine training sets from cross-validation to capture the extended features. To 
improve the network anomaly detection ability of one-class SVM for IEC 104 proto-
col communication, we extend the original IEC 104 attributes (Table  3). We propose 

Fig. 4 5-Fold cross-validation on IEC 104 dataset
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characterisation of the SCADA communication network such that the topology of the 
participating nodes is represented in the form of extended attributes. The intuition 
of utilising the topological features is founded on the knowledge gained from domain 
experts and the fact that IEC 104 SCADA communication network complies with a 
common master-slave topology (Matousek 2017).

Since the IEC 104 protocol adheres to the standard network master-slave topology, it 
is possible to process other IEC 104 packet capture files without prior network details. 
We automatically extract the graph attributes using the network node’s source and des-
tination Ethernet addresses. A similar approach should be applicable to other IEC 104 
SCADA protocol datasets.

Considering the SCADA network topology knowledge, we regard the SCADA network 
as a graph—a structure composed of connected vertices. The vertices are the nodes in 
the SCADA network. Since two-way communication exists in IEC 104 protocol, a node 
can be a sender and a receiver. Thus, we model each node from the perspective of the 
sender and receiver of the communication packet. We represent each vertex (or node) of 
the graph (or network) by a measure of its neighbouring nodes, attributed as deg (node 
degree). For example, the volume of neighbours for node A when node A is the packet 
receiver is equal to 6 (Fig. 5).

Another attribute that explains the participation of a node within the network is node 
weight. Node weight demonstrates the distinct behavior of the given node in terms of its 

Table 3 Extended IEC 104 attributes

Attribute Description

Degree (deg) Node degree (node neighbours)

Weight (wt) Node weight (node participation)

PairEx Nodes have two-way transmission

Fig. 5 Example SCADA network nodes with corresponding degree attributes
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relative IEC 104 packet frequency. The attribute allows modelling the respective node 
participation with the communication frequency of other nodes in the network. Like 
node degree attribute, each node will be featured as wt (node weight). In IEC 104 proto-
col communication, the slave nodes typically fall under the same frequency interval. For 
example (Fig. 5), weight (wt) of nodes E, F, G and H, ideally, would have less variance.

The logical assumption is to secure the master or the controlling nodes in the SCADA 
network (which also resonates with the domain expert’s preference). We model the 
point-to-point communication between two nodes assuming the receiving node in 
the communication frame is potentially a master or serving node and is vulnerable to 
attacks. Correspondingly, we assume the opposite node in the communication is a slave 
or the client node and is passively gathering network knowledge or actively attempting a 
MITM. In regular circumstances, the IEC 104 network topology would ideally show the 
slave nodes to follow a similar participation behaviour. Thus, distinguishing an unusual 
participating node behaviour could be interesting to isolate. Therefore, we consider the 
source node participation behaviour (wt) and the corresponding node’s neighbourhood 
volume (deg) to complement the communication between a pair. Both these attributes 
will model two-way point-to-point communication between the nodes in the network.

Hundreds of IEC 104 protocol packets are exchanged within the SCADA network 
daily. We capture the evidence of two-way communication between two nodes by adding 
an attribute called pairEx that records the existence of a response packet. For example, 
if node A sends format-I packet to node B, node B sends IEC 104 packet to node A with 
the same type ID, we can establish that pair communication exists. This attribute has 
binary values. Such extended behavioural node attributes characterise the SCADA net-
work’s function, thereby enriching the dimensional space for unary SVM based anomaly 
detection.

Step 7: Extended attribute reduction

After we project the network nodes with extended attributes, the node addresses are dis-
regarded. This is because each node has been modeled with newly constructed behav-
ioural features. In a real SCADA network, where hundreds of nodes are present, such 
reduction would reduce computational costs, besides maintaining the characteristics of 
the respective node.

Afterward, we perform correlation analysis, similar to Step 3. This is done to under-
stand the relationship between newly constructed attributes. The analysis reveals that 
new attributes have a strong linear correlation.

Step 8: Extended attribute transformation

We transform the new node degree attribute using the user-defined threshold (consider-
ing the network architecture knowledge). Consider a SCADA network with one control-
ler node and three monitoring nodes. In an intruder-free example scenario, the node 
degree threshold becomes two. If any node has a degree greater than half of the nodes in 
the network, then it may be anomalous, implying possible master impersonation.

The node weight attribute is transformed using a user-defined threshold of the 40th 
percentile. This indicates that if the nodes in the SCADA network have a relative weight 
less than the relative mode weight (weight of the majority of nodes in the network), they 
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should be segmented. More than half of the network nodes ( 60% ) will have relative par-
ticipation of at least threshold node weight in a normal network. At last, the extended 
binary attribute and all the transformed attributes are encoded as dummy variables.

Step 9: One‑class SVM anomaly detection

To identify potential anomalies, we opt for one-class support vector machine (SVM) 
learning algorithm because it has been systematically evaluated to be stable and bet-
ter when classifying anomalies in IEC 104 communication in an unsupervised setting 
(Anwar et  al. 2021). The results (Anwar et  al. 2021) show the potential of the chosen 
algorithm and call for attention to boost its usefulness for the given context.

The algorithm separates the instances by computing the relationship between each pair 
of observations using the Radial Basis Kernel. This function projects the observations in 
a higher dimension and then dissects the projection with a hyperplane (Schölkopf et al. 
1999). The algorithm uses the default parameter settings with PyOD (Zhao et al. 2019).

We execute one-class SVM anomaly detection learning in an unsupervised setting for 
binary prediction; for original and reconstructed IEC 104 protocol attributes.

Step 10: Experimental evaluation

The test folds give detection performance of the 50 candidate one-class SVM anomaly 
detection models resulting from 10x5 cross-validations. Subsequently, we average the 
performance of the candidate models and calculate the standard deviation over all folds. 
We report the evaluation of IEC 104 data on cross-validated test folds with the help of 
below described metrics.

• False negative rate (FNR);
• False positive rate (FPR);
• F1 score;
• Matthews correlation coefficient (MCC);
• AUC score.

False negative rate (FNR) and False positive rate (FPR) indicate the incorrect decisions of 
the anomaly detection approach, also known as costs. Therefore, it is essential to gauge 
the skill of the approach in reference to the errors. Ideally, the anomaly detector should 
have no errors. Due to the criticality of the context, our focus is drawn toward FNR.

False negative rate (FNR) gives an insight into miss-classifications. It is the error ratio 
of the number of packets that are misclassified as normal (FN) to the sum of false nega-
tive and true positive (TP) values (Eq. 1). This is a crucial metric since it tells how well 
the model detects anomalies. FNR close to 0 means the model is good at detecting the 
anomalies.

False positive rate (FPR) also gives insight into positive miss-classifications. It is the ratio 
of the number of packets that are misclassified as anomalous (FP) to the sum of false 
positive and true negative (TN) values (Eq. 2). In other words, it is the rate of normal 
packets that are incorrectly labelled as anomalous. FPR close to 0 is indicative of good 

(1)FNR = FN/(FN + TP)
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detection performance. However, it is common for unsupervised machine learning-
based anomaly detection systems to suffer from high FPR, where often each false posi-
tive case requires human investigation. For our evaluation, FPR lower than 5% and at the 
cost of non-existent missed anomalous packets is considered satisfactory.

Identifying the attack class is crucial in the current context, which is represented by the 
recall—ratio of correctly identified attacks to total (actual) attacks. At the same time, the 
result produced by the detector should reflect the precision—ratio of correctly identified 
attacks to total predicted attacks. To capture a balanced view of recall and precision, we 
rely on the F1  score—harmonic mean of recall and precision (Eq.  3). Considering the 
need to represent the ability of the detector in terms of both classes, we measure the 
F1 score for both classes and then average them (referred to as macro-average F1 score). 
An acceptable macro-average F1  score value for the given context is greater than 0.8 
(where 1 is maximum and worst is 0).

Macro-average F1  score gives equal weight to both classes but ignores true negatives, 
i.e., the correctly separated routine IEC 104 packets. Additionally, its magnitude bents 
toward true positives, i.e., the correctly separated rare IEC 104 packets. To overcome 
this deficiency of macro-average F1 score, we also calculate the Matthews correlation 
coefficient (MCC). MCC is an educative score to evaluate binary classifications as com-
pared to accuracy and F1 score (Chicco and Jurman 2020).

MCC is a correlation coefficient between the actual values and the values the detector 
outputs. To do so, it considers errors (missed classifications) and correct classifications 
as well as the variable composition of classes (Eq. 4). It ranges from +1 to −1 ; where a 
coefficient of +1 indicates perfect classification, a coefficient of 0 indicates average clas-
sification, and −1 indicates worst classification.

Another measure that demonstrates the skill of the anomaly detection system is a 
receiver operating curve plot or ROC plot, where the rate of true positives (TPR), i.e., 
the rate of correctly detected anomalies, is plotted in contrast to FPR. The performance 
measure is generally represented as an area under curve (AUC) score. Simply put, AUC 
score gives insight into the trade-off between correctly detected attacks (true positives) 
and errors of miss-classifying attacks (false positives). A good AUC score is close to 1.

Step 11: Performance comparison

To discern if endline approach performs better than the baseline, or vice versa, we per-
form significance hypothesis testing. Though we can consume any (or all) of the evalu-
ation metrics for reporting comparative evaluation, we consider two—macro-average 
F1  score and MCC, mainly for their comprehensiveness but also for brevity. The nor-
mality test on macro-average F1  score and MCC samples over 50 candidate test-folds 
for both approaches yield that the samples are likely drawn from Gaussian distributions. 

(2)FPR = FP/(FP + TN )

(3)F1score = 2 ∗ TP/(2 ∗ TP + FP + FN )

(4)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN ) ∗ (TN + FP)(TN + FN )
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The preceding deduction converges our choice to Student’s t-test that outputs p-value 
(Flach 2012). The p-value is compared with the significance level to establish evidence 
for the null hypothesis. The null hypothesis of Student’s t-test state that two related 
samples have identical average values, which in our case refers to both macro-average 
F1 score and average MCC values for both approaches. The level of significance is set to 
1% as a criterion for accepting the null hypothesis.

The significance test is followed by Cohen’s d effect size test with the intent to quan-
tify the significance of the magnitude of difference between the two approaches. Cohen 
classifies effect sizes as small, medium and large, where d > 0.8 indicates large effect size 
(Sullivan and Feinn 2012).

Results
Initially, we executed the experiment with original IEC 104 attributes, which provides 
a baseline unary SVM anomaly detection evaluation. In the second run, the machine 
learning experiment performs anomaly detection using the reconstructed attribute set, 
which results in endline performance evaluation. Ultimately, the performance sum-
mary of IEC 104 one-class SVM anomaly detection in an unsupervised setting for both 
approaches is compared (Fig. 3).

We perform 10x5-fold cross-validations to assess the ability of the one-class SVM 
anomaly detector for the IEC 104 protocol communication. Each cross-validation model 
comprises a test set of approximately 8390 typical and 485 anomalous IEC 104 protocol 
packets. The result of the candidate anomaly detection models is represented in the form 
of an interval confusion matrix (Fig. 6). Each contingency matrix quadrant indicates the 
minimum and maximum IEC 104 packets for correct predictions and errors.

The results from the confusion matrices are used to calculate values for the evaluation 
metrics (Table 4). The table represents the models’ performance on all test folds for both 
approaches. Each row reports the average error rates—false negative rate (FNR) and 
false positive rate (FPR), along with mean detection ability in terms of macro-average 
F1 score, Matthews correlation coefficient (MCC), and area under the receiver operation 
characteristic curve score, shortened as AUC score.

Fig. 6 Resulting confusion matrices from 10x5 cross-validations of one-class SVM for anomaly detection on 
IEC 104 test sets for baseline and endline approaches
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Baseline one‑class SVM anomaly detection results for IEC 104 protocol data

Upon testing the detection ability of the approach with initial IEC 104 attributes 
(Table 4), the FNR lingers between 45% (0.45) and 54% (0.54), which indicates, on aver-
age, almost half of the anomalous IEC 104 packets ( 49% ) are undetected. The FPR on 
average remained around 6.8% , i.e., out of approximately 8390 normal IEC 104 protocol 
packets in each cross-validation test fold, 524 - 635 frames were falsely categorised as 
anomalous.

The macro-average F1 score of 0.6 for the given imbalanced IEC 104 communication 
shows the initial approach is separating the normal as well as anomalous IEC 104 pack-
ets poorly. Correspondingly, the average MCC (0.3) and average AUC (0.7) relay the 
same inefficiency of baseline one-class SVM anomaly detection models for the given IEC 
104 protocol data.

Endline one‑class SVM anomaly detection results for IEC 104 protocol data

For our evaluation, an FPR is satisfactory only when there is non-existent FNR and when 
the FPR remains lower than 5% . Both hold for our approach. The FNR remains between 
0 and 0.8% throughout the cross-validation folds (Table 4). The average false alert rate 
reduced to 2.8% from the baseline average of 6.8% . The overall endline FPR is about 3% , 
i.e., 2% less than the threshold of 5%.

A good anomaly detector for this context should correctly isolate malicious IEC 
104 protocol traffic and, at the same time, produce fewer false alerts. The macro-aver-
age F1  score metric reflects this behavior of the detector. The macro-average F1  score 
for all the folds remained above 0.88, indicating better performance than the baseline 
approach. The AUC score of 0.98 on average, shows the detector is skillfully discriminat-
ing the IEC 104 protocol packets in the given dataset. To understand the detection per-
formance of correct predictions while considering the errors, FNR and FPR, we calculate 
MCC. The average MCC value of 0.8 depicts near perfect detection performance for the 
endline case.

Performance comparison results

The results are analysed with the Student t-test and reveal that baseline has a mean 
macro-average F1  score of 0.6 and MCC of 0.3; and that endline have a mean macro-
average F1 score of 0.9 and MCC of 0.8. The p-value close to 0 indicates that the average 

Table 4 Baseline and endline experimental evaluation results for IEC 104 protocol with 
unsupervised one-class SVM anomaly detection on cross-validated test folds

SD: standard deviation

FNR FPR F1 score MCC AUC score

Baseline

 Minimum 0.453 0.062 0.643 0.303 0.694

 Maximum 0.540 0.075 0.677 0.373 0.739

 Average (SD) 0.492 (0.020) 0.068 (0.002) 0.663 (0.007) 0.344 (0.015) 0.719 (0.010)

Endline

 Minimum 0.000 0.026 0.884 0.790 0.980

 Maximum 0.008 0.031 0.900 0.816 0.986

 Average (SD) 0.003 (0.002) 0.028 (0.001) 0.891 (0.004) 0.802 (0.006) 0.983 (0.001)
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performance of both approaches over 50 candidate models is not identical, failing to 
accept the null hypothesis at a 1% significance level.

We calculate the magnitude of difference between the performance of baseline and 
endline approaches with the help of Cohen’s d test. The test is carried on macro-average 
F1 scores and MCCs values. The test result indicates the existence of a large effect size 
of over 20 Standard Deviations between the two configurations of one-class SVM algo-
rithm. Hence, we establish the endline anomaly detection for IEC 104 has significant 
improvement over baseline approach.

Discussion
When one-class SVM is applied to IEC 104 dataset (Egger et al. 2020) in an unsupervised 
setting, an AUC score of 0.49 (default algorithm setting) was reported (Table 5) and 0.64 
(after parameter tuning) on unseen data when final cross-validated candidate models are 
used for training (Anwar et al. 2021). Also, both instances have ensued a meager correct 
classification rate (Anwar et al. 2021) and are plagued with prediction errors (Table 5). 
In comparison to the aforementioned previous work, this study presents an improved 
one-class SVM anomaly detection approach for IEC 104 protocol communication. The 
average cross-validated AUC score for endline approach is 0.98, higher than the aver-
age cross-validated baseline AUC score. Other associated metrics, FNR, FPR, and MCC, 
show similar trends and are relayed for comparative purposes. Crucial criteria to assess 
the anomaly detector’s ability is to isolate suspicious IEC 104 protocol packets correctly 
and not miss any suspicious IEC 104 packets. Both criteria for the given context are cru-
cial and are satisfied in the endline approach, providing an average TPR of 99.6% and an 
average FPR of 2% . The endline approach does not miss attack communications for some 
test folds, as seen from the FNR, i.e., the best among other values (Table 5).

The anomaly detection algorithm in the learning phase forms a boundary for the given 
data. The SVM hyperplane cannot form an optimal decision boundary because our 
training data is polluted (to replicate a real scenario). Having some sanitised data for 
the learning phase may reduce prediction errors. For example, the case of semi-super-
vised learning where prior knowledge about some datapoints is used to train the clas-
sifier. However, this additional processing may require more effort as compared to our 
approach.

Prediction errors require additional analysis, which can be a hassle in production 
anomaly detection systems. We perform a preliminary analysis on the 50th candidate 

Table 5 Comparison of related one-class SVM anomaly detection results on 2 IEC 104 protocol 
datasets

Superscript t indicates tuned parameter setting

Superscript d indicates default parameter setting

FNR FPR MCC AUC Score

Dataset Egger et al. (2020) Unsupervised learningd Anwar et al. (2021) 0.98 0.03 −0.01 0.49

Unsupervised learningt  Anwar et al. (2021) 0.69 0.01 0.30 0.64

Dataset Maynard et al. (2018) Unsupervised learningd (baseline) 0.49 0.06 0.34 0.72

Unsupervised learningd (endline) 0.00 0.02 0.80 0.98
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model of the endline approach to highlight how the approach can assist in further analy-
sis of the anomalous IEC 104 packets. Further analysis reveals that the detected anom-
alous exchanges are mainly between four SCADA nodes. Two of the identified nodes, 
of which one is a MITM attacker, are transmitting information to a high-degree node 
(third node). The MITM attacker tries to synchronise clock times like other nodes, pos-
sibly RTUs. It goes undetected as the protocol does not verify senders. Upon interroga-
tion request from the high-degree node (possible attack target), the attacker replaces the 
cause of transmission with invalid data and terminates the connection.

The second isolated node is a legitimate RTU but is separated as it demonstrates low 
participation in the network. Further analysis and opinion of domain expert are crucial 
to investigate the reasons behind low participation. If low participation is acceptable 
for the particular RTU, the analyst can ignore the identified node. This falsely identified 
SCADA node constitutes about 99.6% of the FPs in the last candidate model.

The rare participation behaviour can help detect reconnaissance attackers. We see that 
the endline approach separated the reconnaissance attacker (fourth node). Reconnais-
sance attack nodes are passively observing the network and can contribute to advance 
persistent threats (Assante and Lee 2015); hence, their isolation can potentially delay or 
disrupt the following attack sequence.

Due to the lack of new nodes appearing in the test sets, it is difficult to confirm or deny 
the detection performance of the approach. As an alternative, we intentionally added 
two new nodes such that they only appear in the test set. The communication frames 
were flagged as an anomaly due to their rare characteristic, for example, the absence of 
communicating nodes.

Conclusions
Graph-based attribute extension of SCADA network nodes with one-class SVM algo-
rithm has the potential to isolate the rouge network nodes in IEC 104 protocol com-
munication. The work extracts meaningful relations between the network nodes to 
model the behavior of the network. Consequently, the representation allows isolating 
strange nodes, e.g., passive intruders trying to ping neighbouring nodes. Since it is pos-
sible to classify a new instance immediately when it arrives without considering other 
instances, it is feasible to use the approach for active detection in real-time. We compare 
the potential of attribute extension by presenting baseline and endline results. The cross-
validation models retain the highest average F1 score (0.90), MCC (0.80), and AUC score 
(0.98), while giving modest false-alert and miss-rates in comparison to related works, as 
well as the baseline detection method.

Keeping miss-alerts and false-alerts to a minimum is crucial for deploying an anomaly 
detector for critical infrastructures. The endline results produce fewer errors overall. 
The missed-alerts are almost negligible, with a drastic drop in the false alerts, depict-
ing a holistic boost in the endline method significantly over the baseline scores. Hence, 
through topological attribute extension of IEC 104 protocol features, one-class SVM can 
likely identify anomalies in the SCADA network.

One-class SVM is a popular choice for anomaly detection in communication net-
works (Tsai et  al. 2009; Thakkar and Lohiya 2021; Rakas et  al. 2020). Moreover, it 
demonstrated stable outcomes when assessed on a SCADA network communication 
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dataset (Anwar et  al. 2021). Future work will benefit by including other classifying 
methods, such as Auto-encoders or neural networks.

It is necessary to iterate that the approach is implemented and evaluated as an unsu-
pervised learning method and that the detection models are created in the presence 
of routine and anomalous data. For future work, sanitised SCADA protocol attributes 
could be used for modelling the detector. We can also test the presented approach for 
similar isolated topological networks to identify eavesdroppers, for example, in the 
Modbus SCADA protocol.

Often attribute processing is dependent on human intervention, creating scalabil-
ity concerns. The proposed approach relies on automatic extraction of attributes and, 
thus, is possible to be scaled. Notable advances are made towards graph embedding 
techniques and stacked auto-encoders to reveal hidden and intricate attributes, i.e., 
without manual effort, to model complex networks (Pourhabibi et al. 2020; Corizzo 
et al. 2021). For this reason, we expect that the acceptance of other methods to infer 
network behaviour will continue to grow.
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